1
|
Park SY, Jung SR, Kim JY, Kim YW, Sung HK, Park SY, Doh KO, Koh JH. Lactate promotes fatty acid oxidation by the tricarboxylic acid cycle and mitochondrial respiration in muscles of obese mice. Am J Physiol Cell Physiol 2024; 327:C619-C633. [PMID: 38981606 DOI: 10.1152/ajpcell.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise for over 3 wk. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for 8 wk. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. In addition, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH-NAD+ shuttle. Conversely, ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.NEW & NOTEWORTHY Lactate administration post-exercise promotes triglyceride content loss in skeletal muscles (SKMs) and reduced body weight. Lactate enhances fatty acid oxidation in the SKMs of high-fat diet (HFD)-fed mice due to enhanced mitochondrial oxygen consumption. In addition, lactate restores the malate-aspartate shuttle, which is reduced by a HFD, and activates the tricarboxylic acid cycle (TCA) cycle in SKMs. Interestingly, supraphysiological lactate facilitates uncoupling protein-3 expression through NADH/NAD+, which is enhanced under high-fat levels in SKMs.
Collapse
Affiliation(s)
- Sol-Yi Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Su-Ryun Jung
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jong-Yeon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - So-Young Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
2
|
Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol Rev 2023; 103:1137-1191. [PMID: 36239451 PMCID: PMC9886361 DOI: 10.1152/physrev.00037.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
Collapse
Affiliation(s)
- Joseph A Taylor
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David B Bartlett
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas A Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility? Antioxidants (Basel) 2021; 10:antiox10111746. [PMID: 34829617 PMCID: PMC8614977 DOI: 10.3390/antiox10111746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Uncoupling proteins (UCPs) are transmembrane proteins members of the mitochondrial anion transporter family present in the mitochondrial inner membrane. Currently, six homologs have been identified (UCP1-6) in mammals, with ubiquitous tissue distribution and multiple physiological functions. UCPs are regulators of key events for cellular bioenergetic metabolism, such as membrane potential, metabolic efficiency, and energy dissipation also functioning as pivotal modulators of ROS production and general cellular redox state. UCPs can act as proton channels, leading to proton re-entry the mitochondrial matrix from the intermembrane space and thus collapsing the proton gradient and decreasing the membrane potential. Each homolog exhibits its specific functions, from thermogenesis to regulation of ROS production. The expression and function of UCPs are intimately linked to diabesity, with their dysregulation/dysfunction not only associated to diabesity onset, but also by exacerbating oxidative stress-related damage. Male infertility is one of the most overlooked diabesity-related comorbidities, where high oxidative stress takes a major role. In this review, we discuss in detail the expression and function of the different UCP homologs. In addition, the role of UCPs as key regulators of ROS production and redox homeostasis, as well as their influence on the pathophysiology of diabesity and potential role on diabesity-induced male infertility is debated.
Collapse
|
4
|
Mitochondrial dysfunction is the cause of one of the earliest changes seen on magnetic resonance imaging in Charcot neuroarthopathy - Oedema of the small muscles in the foot. Med Hypotheses 2019; 134:109439. [PMID: 31644972 DOI: 10.1016/j.mehy.2019.109439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
The hypothesis laid out in this thesis states that the early changes seen on an MR imaging in those with early Charcot neuroarthopathy may be due to mitochondrial dysfunction. In a Charcot foot, there is movement between bones. In an attempt to prevent this movement, the small muscles of the foot contract continuously when the foot is weight bearing. This contraction takes energy in the form of ATP. However, the reduction of glucose transport into the muscle cells due to insulin resistance / insufficiency, leads to reduction in the ATP producing capacity of the mitochondria. The ATP depletion affects the cell membrane gradient leading to mitochondrial and cellular swelling. These early cellular changes could then be picked up with MR imaging as muscle oedema.
Collapse
|
5
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
6
|
Abstract
The hypermetabolic effects of thyroid hormones (THs), the major endocrine regulators of metabolic rate, are widely recognized. Although, the cellular mechanisms underlying these effects have been extensively investigated, much has yet to be learned about how TH regulates diverse cellular functions. THs have a profound impact on mitochondria, the organelles responsible for the majority of cellular energy production, and several studies have been devoted to understand the respective importance of the nuclear and mitochondrial pathways for organelle activity. During the last decades, several new aspects of both THs (i.e., metabolism, transport, mechanisms of action, and the existence of metabolically active TH derivatives) and mitochondria (i.e., dynamics, respiratory chain organization in supercomplexes, and the discovery of uncoupling proteins other than uncoupling protein 1) have emerged, thus opening new perspectives to the investigation of the complex relationship between thyroid and the mitochondrial compartment. In this review, in the light of an historical background, we attempt to point out the present findings regarding thyroid physiology and the emerging recognition that mitochondrial dynamics as well as the arrangement of the electron transport chain in mitochondrial cristae contribute to the mitochondrial activity. We unravel the genomic and nongenomic mechanisms so far studied as well as the effects of THs on mitochondrial energetics and, principally, uncoupling of oxidative phosphorylation via various mechanisms involving uncoupling proteins. The emergence of new approaches to the question as to what extent and how the action of TH can affect mitochondria is highlighted. © 2016 American Physiological Society. Compr Physiol 6:1591-1607, 2016.
Collapse
Affiliation(s)
- Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| |
Collapse
|
7
|
Nabben M, van Bree BWJ, Lenaers E, Hoeks J, Hesselink MKC, Schaart G, Gijbels MJJ, Glatz JFC, da Silva GJJ, de Windt LJ, Tian R, Mike E, Skapura DG, Wehrens XHT, Schrauwen P. Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death. Basic Res Cardiol 2014; 109:447. [PMID: 25344084 DOI: 10.1007/s00395-014-0447-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
UCP3's exact physiological function in lipid handling in skeletal and cardiac muscle remains unknown. Interestingly, etomoxir, a fat oxidation inhibitor and strong inducer of UCP3, is proposed for treating both diabetes and heart failure. We hypothesize that the upregulation of UCP3 upon etomoxir serves to protect mitochondria against lipotoxicity. To evaluate UCP3's role in skeletal muscle (skm) and heart under lipid-challenged conditions, the effect of UCP3 ablation was examined in a state of dysbalance between fat availability and oxidative capacity. Wild type (WT) and UCP3(-/-) mice were subjected to high-fat feeding for 14 days. From day 6 onwards, they were given either saline or etomoxir. Etomoxir treatment induced an increase in markers of lipotoxicity in skm compared to saline. This increase upon etomoxir was similar for both, WT and UCP3(-/-) mice, suggesting that UCP3 does not play a role in protection against lipotoxicity. Interestingly, we observed 25 % mortality in UCP3(-/-)s upon etomoxir administration vs. 11 % in WTs. This increased mortality in UCP3(-/-) compared to WT mice could not be explained by differences in cardiac lipotoxicity, apoptosis, fibrosis (histology, immunohistochemistry), oxidative capacity (respirometry) or function (echocardiography). Electrophysiology demonstrated, however, prolonged QRS and QTc intervals and greater susceptibility to ventricular tachycardia upon programmed electrical stimulation in etomoxir-treated UCP3(-/-)s versus WTs. Isoproterenol administration after pacing resulted in 75 % mortality in UCP3(-/-)s vs. 14 % in WTs. Our results argue against a protective role for UCP3 on skm metabolism under lipid overload, but suggest UCP3 to be crucial in prevention of arrhythmias upon lipid-challenged conditions.
Collapse
Affiliation(s)
- Miranda Nabben
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Bianca W J van Bree
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Ellen Lenaers
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joris Hoeks
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marion J J Gijbels
- Department of Molecular Genetics, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gustavo J J da Silva
- Department of Cardiology, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Elise Mike
- Department of Molecular Physiology and Biophysics and Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Darlene G Skapura
- Department of Molecular Physiology and Biophysics and Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics and Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
8
|
Conley KE, Amara CE, Bajpeyi S, Costford SR, Murray K, Jubrias SA, Arakaki L, Marcinek DJ, Smith SR. Higher mitochondrial respiration and uncoupling with reduced electron transport chain content in vivo in muscle of sedentary versus active subjects. J Clin Endocrinol Metab 2013; 98:129-36. [PMID: 23150693 PMCID: PMC3537085 DOI: 10.1210/jc.2012-2967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals. RESEARCH DESIGN AND METHODS Chronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as well as a maximal oxygen uptake test. The ATP and O(2) fluxes and mitochondrial coupling (ATP/O(2) or P/O) in resting muscle as well as mitochondrial capacity (ATP(max)) were determined in vivo in human vastus lateralis muscle using magnetic resonance and optical spectroscopy on 24 sedentary and seven active subjects. Muscle biopsies were analyzed for electron transport chain content (using complex III as a representative marker) and mitochondrial proteins associated with antioxidant protection. RESULTS Sedentary muscle had lower electron transport chain complex content (65% of the active group) in proportion to the reduction in ATP(max) (0.69 ± 0.07 vs. 1.07 ± 0.06 mM sec(-1)) as compared with active subjects. This lower ATP(max) paired with an unchanged O(2) flux in resting muscle between groups resulted in a doubling of O(2) flux per ATP(max) (3.3 ± 0.3 vs. 1.7 ± 0.2 μM O(2) per mM ATP) that reflected mitochondrial uncoupling (P/O = 1.41 ± 0.1 vs. 2.1 ± 0.3) and greater UCP3/complex III (6.0 ± 0.7 vs. 3.8 ± 0.3) in sedentary vs. active subjects. CONCLUSION A smaller mitochondrial pool serving the same O(2) flux resulted in elevated mitochondrial respiration in sedentary muscle. In addition, uncoupling contributed to this higher mitochondrial respiration. This finding resolves the paradox of stable muscle metabolism but greater mitochondrial respiration in muscle of inactive vs. active subjects.
Collapse
Affiliation(s)
- Kevin E Conley
- Department of Radiology, University of Washington Medical Center, Box 357115, Seattle, Washington 98195-7115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Martins AR, Nachbar RT, Gorjao R, Vinolo MA, Festuccia WT, Lambertucci RH, Cury-Boaventura MF, Silveira LR, Curi R, Hirabara SM. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis 2012; 11:30. [PMID: 22360800 PMCID: PMC3312873 DOI: 10.1186/1476-511x-11-30] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/23/2012] [Indexed: 01/06/2023] Open
Abstract
Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.
Collapse
Affiliation(s)
- Amanda R Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Butantã, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dhamrait SS, Williams AG, Day SH, Skipworth J, Payne JR, World M, Humphries SE, Montgomery HE. Variation in the uncoupling protein 2 and 3 genes and human performance. J Appl Physiol (1985) 2012; 112:1122-7. [PMID: 22241057 DOI: 10.1152/japplphysiol.00766.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uncoupling proteins 2 and 3 (UCP2 and UCP3) may negatively regulate mitochondrial ATP synthesis and, through this, influence human physical performance. However, human data relating to both these issues remain sparse. Examining the association of common variants in the UCP3/2 locus with performance phenotypes offers one means of investigation. The efficiency of skeletal muscle contraction, delta efficiency (DE), was assessed by cycle ergometry in 85 young, healthy, sedentary adults both before and after a period of endurance training. Of these, 58 were successfully genotyped for the UCP3-55C>T (rs1800849) and 61 for the UCP2-866G>A (rs659366) variant. At baseline, UCP genotype was unrelated to any physical characteristic, including DE. However, the UCP2-866G>A variant was independently and strongly associated with the DE response to physical training, with UCP2-866A allele carriers exhibiting a greater increase in DE with training (absolute change in DE of -0.2 ± 3.6% vs. 1.7 ± 2.8% vs. 2.3 ± 3.7% for GG vs. GA vs. AA, respectively; P = 0.02 for A allele carriers vs. GG homozygotes). In multivariate analysis, there was a significant interaction between UCP2-866G>A and UCP3-55C>T genotypes in determining changes in DE (adjusted R(2) = 0.137; P value for interaction = 0.003), which was independent of the effect of either single polymorphism or baseline characteristics. In conclusion, common genetic variation at the UCP3/2 gene locus is associated with training-related improvements in DE, an index of skeletal muscle performance. Such effects may be mediated through differences in the coupling of mitochondrial energy transduction in human skeletal muscle, but further mechanistic studies are required to delineate this potential role.
Collapse
Affiliation(s)
- Sukhbir S Dhamrait
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free & University College London Medical School, London.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Silveira LR, Pinheiro CHDJ, Zoppi CC, Hirabara SM, Vitzel KF, Bassit RA, Barbosa MR, Sampaio IH, Melo IHP, Fiamoncini J, Carneiro EM, Curi R. [Regulation of glucose and fatty acid metabolism in skeletal muscle during contraction]. ACTA ACUST UNITED AC 2011; 55:303-13. [PMID: 21881812 DOI: 10.1590/s0004-27302011000500002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/12/2011] [Indexed: 03/10/2023]
Abstract
The glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle?
Collapse
Affiliation(s)
- Leonardo R Silveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, Brooker H, Tyler DJ, Robbins PA, Clarke K. Short‐term consumption of a high‐fat diet impairs whole‐body efficiency and cognitive function in sedentary men. FASEB J 2010; 25:1088-96. [DOI: 10.1096/fj.10-171983] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lindsay M. Edwards
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | - Andrew J. Murray
- Department of Physiology Development, and Neuroscience University of Cambridge Cambridge UK
| | - Cameron J. Holloway
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | - Emma E. Carter
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Graham J. Kemp
- Institute of Ageing and Chronic Disease Faculty of Health and Life Sciences University of Liverpool Liverpool UK
| | - Ion Codreanu
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | | | - Damian J. Tyler
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Peter A. Robbins
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Kieran Clarke
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| |
Collapse
|
13
|
Hancock AM, Clark VJ, Qian Y, Di Rienzo A. Population genetic analysis of the uncoupling proteins supports a role for UCP3 in human cold resistance. Mol Biol Evol 2010; 28:601-14. [PMID: 20802238 PMCID: PMC3002247 DOI: 10.1093/molbev/msq228] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Production of heat via nonshivering thermogenesis (NST) is critical for temperature homeostasis in mammals. Uncoupling protein UCP1 plays a central role in NST by uncoupling the proton gradients produced in the inner membranes of mitochondria to produce heat; however, the extent to which UCP1 homologues, UCP2 and UCP3, are involved in NST is the subject of an ongoing debate. We used an evolutionary approach to test the hypotheses that variants that are associated with increased expression of these genes (UCP1 -3826A, UCP2 -866A, and UCP3 -55T) show evidence of adaptation with winter climate. To that end, we calculated correlations between allele frequencies and winter climate variables for these single-nucleotide polymorphisms (SNPs), which we genotyped in a panel of 52 worldwide populations. We found significant correlations with winter climate for UCP1 -3826G/A and UCP3 -55C/T. Further, by analyzing previously published genotype data for these SNPs, we found that the peak of the correlation for the UCP1 region occurred at the disease-associated -3826A/G variant and that the UCP3 region has a striking signal overall, with several individual SNPs showing interesting patterns, including the -55C/T variant. Resequencing of the regions in a set of three diverse population samples helped to clarify the signals that we found with the genotype data. At UCP1, the resequencing data revealed modest evidence that the haplotype carrying the -3826A variant was driven to high frequency by selection. In the UCP3 region, combining results from the climate analysis and resequencing survey suggest a more complex model in which variants on multiple haplotypes may independently be correlated with temperature. This is further supported by an excess of intermediate frequency variants in the UCP3 region in the Han Chinese population. Taken together, our results suggest that adaptation to climate influenced the global distribution of allele frequencies in UCP1 and UCP3 and provide an independent source of evidence for a role in cold resistance for UCP3.
Collapse
|
14
|
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12:537-77. [PMID: 19650713 PMCID: PMC2824521 DOI: 10.1089/ars.2009.2531] [Citation(s) in RCA: 529] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Given their essential function in aerobic metabolism, mitochondria are intuitively of interest in regard to the pathophysiology of diabetes. Qualitative, quantitative, and functional perturbations in mitochondria have been identified and affect the cause and complications of diabetes. Moreover, as a consequence of fuel oxidation, mitochondria generate considerable reactive oxygen species (ROS). Evidence is accumulating that these radicals per se are important in the pathophysiology of diabetes and its complications. In this review, we first present basic concepts underlying mitochondrial physiology. We then address mitochondrial function and ROS as related to diabetes. We consider different forms of diabetes and address both insulin secretion and insulin sensitivity. We also address the role of mitochondrial uncoupling and coenzyme Q. Finally, we address the potential for targeting mitochondria in the therapy of diabetes.
Collapse
Affiliation(s)
- William I Sivitz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Iowa City Veterans Affairs Medical Center and University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
15
|
Lumini JA, Magalhães J, Oliveira PJ, Ascensão A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med 2009; 38:735-50. [PMID: 18712941 DOI: 10.2165/00007256-200838090-00003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiopathology of diabetes mellitus has been closely associated with a variety of alterations in mitochondrial histology, biochemistry and function. Generally, the alterations comprise increased mitochondrial reactive oxygen and nitrogen species (RONS) generation, resulting in oxidative stress and damage; decreased capacity to metabolize lipids, leading to intramyocyte lipid accumulation; and diminished mitochondrial density and reduced levels of uncoupling proteins (UCPs), with consequent impairment in mitochondrial function. Chronic physical exercise is a physiological stimulus able to induce mitochondrial adaptations that can counteract the adverse effects of diabetes on muscle mitochondria. However, the mechanisms responsible for mitochondrial adaptations in the muscles of diabetic patients are still unclear. The main mechanisms by which exercise may be considered an important non-pharmacological strategy for preventing and/or attenuating diabetes-induced mitochondrial impairments may involve (i) increased mitochondrial biogenesis, which is dependent on the increased expression of some important proteins, such as the 'master switch' peroxisome proliferator-activated receptor (PPAR)-gamma-coactivator-1alpha (PGC-1alpha) and heat shock proteins (HSPs), both of which are severely downregulated in the muscles of diabetic patients; and (ii) the restoration or attenuation of the low UCP3 expression in skeletal muscle mitochondria of diabetic patients, which is suggested to play a pivotal role in mitochondrial dysfunction.There is evidence that chronic exercise and lifestyle interventions reverse impairments in mitochondrial density and size, in the activity of respiratory chain complexes and in cardiolipin content; however, the mechanisms by which chronic exercise alters mitochondrial respiratory parameters, mitochondrial antioxidant systems and other specific proteins involved in mitochondrial metabolism in the muscles of diabetic patients remain to be elucidated.
Collapse
Affiliation(s)
- José A Lumini
- Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
16
|
Wijers SLJ, Schrauwen P, Saris WHM, van Marken Lichtenbelt WD. Human skeletal muscle mitochondrial uncoupling is associated with cold induced adaptive thermogenesis. PLoS One 2008; 3:e1777. [PMID: 18335051 PMCID: PMC2258415 DOI: 10.1371/journal.pone.0001777] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 02/11/2008] [Indexed: 11/24/2022] Open
Abstract
Background Mild cold exposure and overfeeding are known to elevate energy expenditure in mammals, including humans. This process is called adaptive thermogenesis. In small animals, adaptive thermogenesis is mainly caused by mitochondrial uncoupling in brown adipose tissue and regulated via the sympathetic nervous system. In humans, skeletal muscle is a candidate tissue, known to account for a large part of the epinephrine-induced increase in energy expenditure. However, mitochondrial uncoupling in skeletal muscle has not extensively been studied in relation to adaptive thermogenesis in humans. Therefore we hypothesized that cold-induced adaptive thermogenesis in humans is accompanied by an increase in mitochondrial uncoupling in skeletal muscle. Methodology/Principal Findings The metabolic response to mild cold exposure in 11 lean, male subjects was measured in a respiration chamber at baseline and mild cold exposure. Skeletal muscle mitochondrial uncoupling (state 4) was measured in muscle biopsies taken at the end of the respiration chamber stays. Mild cold exposure caused a significant increase in 24h energy expenditure of 2.8% (0.32 MJ/day, range of −0.21 to 1.66 MJ/day, p<0.05). The individual increases in energy expenditure correlated to state 4 respiration (p<0.02, R2 = 0.50). Conclusions/Significance This study for the first time shows that in humans, skeletal muscle has the intrinsic capacity for cold induced adaptive thermogenesis via mitochondrial uncoupling under physiological conditions. This opens possibilities for mitochondrial uncoupling as an alternative therapeutic target in the treatment of obesity.
Collapse
Affiliation(s)
- Sander L J Wijers
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Nicolson GL. Metabolic syndrome and mitochondrial function: molecular replacement and antioxidant supplements to prevent membrane peroxidation and restore mitochondrial function. J Cell Biochem 2007; 100:1352-69. [PMID: 17243117 DOI: 10.1002/jcb.21247] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic syndrome consists of a cluster of metabolic conditions, such as hypertriglyceridemia, hyper-low-density lipoproteins, hypo-high-density lipoproteins, insulin resistance, abnormal glucose tolerance and hypertension, that-in combination with genetic susceptibility and abdominal obesity-are risk factors for type 2 diabetes, vascular inflammation, atherosclerosis, and renal, liver and heart disease. One of the defects in metabolic syndrome and its associated diseases is excess cellular oxidative stress (mediated by reactive oxygen and nitrogen species, ROS/RNS) and oxidative damage to mitochondrial components, resulting in reduced efficiency of the electron transport chain. Recent evidence indicates that reduced mitochondrial function caused by ROS/RNS membrane oxidation is related to fatigue, a common complaint of MS patients. Lipid replacement therapy (LRT) administered as a nutritional supplement with antioxidants can prevent excess oxidative membrane damage, restore mitochondrial and other cellular membrane functions and reduce fatigue. Recent clinical trials have shown the benefit of LRT plus antioxidants in restoring mitochondrial electron transport function and reducing moderate to severe chronic fatigue. Thus LRT plus antioxidant supplements should be considered for metabolic syndrome patients who suffer to various degrees from fatigue.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California 92647, USA.
| |
Collapse
|
18
|
Abstract
A high dietary fat intake and low physical activity characterize the current Western lifestyle. Dietary fatty acids do not stimulate their own oxidation and a surplus of fat is stored in white adipose tissue, liver, heart and muscle. In these organs intracellular lipids serve as a rapidly-available energy source during, for example, physical activity. However, under conditions of elevated plasma fatty acid levels and high dietary fat intake, conditions implicated in the development of modern diseases such as obesity and type 2 diabetes mellitus, fat accumulation in liver and muscle (intramyocellular lipids; IMCL) is associated with the development of insulin resistance. Recent data suggest that IMCL are specifically harmful when combined with reduced mitochondrial function, both conditions that characterize type 2 diabetes. In the (pre)diabetic state reduced expression of the transcription factor PPARgamma co-activator-1alpha (PGC-1alpha), which is involved in mitochondrial biogenesis, has been suggested to underlie the reduced mitochondrial function. Importantly, the reduction in PGC-1alpha may be a result of low physical activity, consumption of high-fat diets and high plasma fatty acid levels. Mitochondrial function can also be impaired as a result of enhanced mitochondrial damage by reactive oxygen species. Fatty acids in the vicinity of mitochondria are particularly prone to lipid peroxidation. In turn, lipid peroxides can induce oxidative damage to mitochondrial RNA, DNA and proteins. The mitochondrial protein uncoupling protein 3, which is induced under high-fat conditions, may serve to protect mitochondria against lipid-induced oxidative damage, but is reduced in the prediabetic state. Thus, muscular lipotoxicity may impair mitochondrial function and may be central to insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Department of Human Biology, Maastricht University, Wageningen Center for Food Sciences & Nutrition and Toxicology Research Institute Maastricht, PO Box 616, NL-6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Schrauwen P, Hesselink MKC. The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? Proc Nutr Soc 2007; 63:287-92. [PMID: 15294045 DOI: 10.1079/pns2003336] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The physiological function of the mitochondrial uncoupling protein (UCP), UCP3, is still under debate. There is, however, ample evidence to indicate that, in contrast to UCP1, the primary function of UCP3 is not the dissipation of energy. Rather, several lines of evidence suggest that UCP3 is associated with cellular fatty acid metabolism. The highest levels of expression of UCP3 have been found in type 2 glycolytic muscle fibres, and fasting and high-fat diets up regulate UCP3. This up-regulation is most pronounced in muscle with a low fat oxidative capacity. Acute exercise also up regulates UCP3, and this effect has been shown to be a result of the exercise-induced increase in plasma fatty acid levels. In contrast, regular physical activity, which increases fat oxidative capacity, reduces UCP3 content. Based on these data it has been postulated that UCP3 functions to export those fatty acids that cannot be oxidized from the mitochondrial matrix, in order to prevent fatty acid accumulation inside the matrix. Several experiments have been conducted to test this hypothesis. Blocking carnitine palmitoyltransferase 1, thereby reducing fat oxidative capacity, rapidly induces UCP3. High-fat diets, which increase the mitochondrial supply of fatty acids, also up regulate UCP. However, feeding a similar amount of medium-chain fatty acids, which can be oxidized inside the mitochondrial matrix and therefore does not need to be exported from the matrix, does not affect UCP3 protein levels. In addition, UCP3 is increased in patients with defective β-oxidation and is reduced after restoring oxidative capacity. In conclusion, it is suggested that UCP3 has an important physiological function in facilitating outward transport from the mitochondrial matrix of fatty acid anions that cannot be oxidized, thereby protecting against lipid-induced mitochondrial damage.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Departments of Human Biology and Movement Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
20
|
Fisler JS, Warden CH. Uncoupling proteins, dietary fat and the metabolic syndrome. Nutr Metab (Lond) 2006; 3:38. [PMID: 16968550 PMCID: PMC1592539 DOI: 10.1186/1743-7075-3-38] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 09/12/2006] [Indexed: 12/30/2022] Open
Abstract
There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI) with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic beta-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to beta-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome.
Collapse
Affiliation(s)
- Janis S Fisler
- Department of Nutrition, University of California, Davis, CA 95616 USA
| | - Craig H Warden
- Rowe Program in Genetics, Department of Pediatrics, Division of Clinical Nutrition, Endocrinology and Vascular Biology, and Section of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616 USA
| |
Collapse
|
21
|
Minnaard R, Schrauwen P, Schaart G, Hesselink MKC. UCP3 in muscle wasting, a role in modulating lipotoxicity? FEBS Lett 2006; 580:5172-6. [PMID: 16962595 DOI: 10.1016/j.febslet.2006.08.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/17/2006] [Accepted: 08/18/2006] [Indexed: 11/30/2022]
Abstract
UCP3 has been postulated to function in the defense against lipid-induced oxidative muscle damage (lipotoxicity). We explored this hypothesis during cachexia in rats (zymosan-induced sepsis), a condition characterized by increased oxidative stress and supply of fatty acids to the muscle. Muscle UCP3 protein content was increased 2, 6 and 11 days after zymosan injection. Plasma FFA levels were increased at day 2, but dropped below control levels on days 6 and 11. Muscular levels of the lipid peroxidation byproduct 4-hydroxy-2-nonenal (4-HNE) were increased at days 6 and 11 in zymosan-treated rats, supporting a role for UCP3 in modulating lipotoxicity during cachexia.
Collapse
Affiliation(s)
- Ronnie Minnaard
- Department of Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, NUTRIM, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
22
|
Chanseaume E, Malpuech-Brugère C, Patrac V, Bielicki G, Rousset P, Couturier K, Salles J, Renou JP, Boirie Y, Morio B. Diets high in sugar, fat, and energy induce muscle type-specific adaptations in mitochondrial functions in rats. J Nutr 2006; 136:2194-200. [PMID: 16857840 DOI: 10.1093/jn/136.8.2194] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Obesity is often associated with insulin resistance and mitochondrial dysfunction within skeletal muscles, but the causative factors are not clearly identified. The present study examined the role of nutrition, both qualitatively and quantitatively, in the induction of muscle mitochondrial defects. Two experimental diets [high sucrose (SU) and high fat (F)] were provided for 6 wk to male Wistar rats at 2 levels of energy [standard (N) and high (H)] and compared with a standard energy cornstarch-based diet (C). Insulin sensitivity (intraperitoneal glucose tolerance test, IPGTT) and intramyocellular triglyceride (IMTG) content (1H MRS) were determined at wk 5. Mitochondrial oxidative phosphorylation and superoxide anion radical (MSR) production were assessed on soleus (oxidative) and tibialis (glycolytic) muscles. Experimental diets induced hyperinsulinemia during IPGTT (P < 0.01 vs. C). Rats in the HSU and HF groups were hyperglycemic relative to the C group, P < 0.05 vs. C. The severity of insulin resistance paralleled IMTG accumulation (P < 0.05). In soleus, mitochondrial respiration and ATP production rates were lower in HSU and HF than in C (P < 0.05). By contrast, respiration was unaffected by the diets in tibialis, whereas ATP production tended to be lower in rats fed the experimental diets compared with C (P = 0.09). Mitochondrial adaptations were associated with more than a 50% reduction in MSR production in HSU and HF compared with C in both soleus (P < 0.05) and tibialis (P < 0.01). Changes in mitochondrial functions in the NSU and NF groups were intermediate and not significantly different from C. Therefore, excess fat or sucrose and more importantly, excess energy intake by rats is associated with muscle type-specific mitochondrial adaptations, which contribute to decrease mitochondrial production of ATP and reactive oxygen species.
Collapse
|
23
|
Schrauwen P, Mensink M, Schaart G, Moonen-Kornips E, Sels JP, Blaak EE, Russell AP, Hesselink MKC. Reduced skeletal muscle uncoupling protein-3 content in prediabetic subjects and type 2 diabetic patients: restoration by rosiglitazone treatment. J Clin Endocrinol Metab 2006; 91:1520-5. [PMID: 16384852 DOI: 10.1210/jc.2005-1572] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The mitochondrial uncoupling protein-3 (UCP3) has been implicated in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Recent evidence points toward mitochondrial aberrations as a major contributor to the development of insulin resistance and diabetes, and UCP3 is reduced in diabetes. OBJECTIVE We compared skeletal muscle UCP3 protein levels in prediabetic subjects [i.e. impaired glucose tolerance (IGT)], diabetic patients, and healthy controls and examined whether rosiglitazone treatment was able to restore UCP3. PATIENTS, DESIGN, INTERVENTION: Ten middle-aged obese men with type 2 diabetes mellitus [age, 61.4 +/- 3.1 yr; body mass index (BMI), 29.8 +/- 2.9 kg/m(2)], nine IGT subjects (age, 59.0 +/- 6.6 yr; BMI, 29.7 +/- 3.0 kg/m(2)), and 10 age- and BMI-matched healthy controls (age, 57.3 +/- 7.4 yr; BMI, 30.1 +/- 3.9 kg/m(2)) participated in this study. After baseline comparisons, diabetic patients received rosiglitazone (2 x 4 mg/d) for 8 wk. MAIN OUTCOME MEASURES Muscle biopsies were sampled to determine UCP3 and mitochondrial protein (complex I-V) content. RESULTS UCP3 protein content was significantly lower in prediabetic IGT subjects and in diabetic patients compared with healthy controls (39.0 +/- 28.5, 47.2 +/- 24.7, and 72.0 +/- 23.7 arbitrary units, respectively; P < 0.05), whereas the levels of the mitochondrial protein complex I-V were similar between groups. Rosiglitazone treatment for 8 wk significantly increased insulin sensitivity and muscle UCP3 content (from 53.2 +/- 29.9 to 66.3 +/- 30.9 arbitrary units; P < 0.05). CONCLUSION We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Nutrition and Toxicology Research Institute Maastricht, Department of Human Biology, Maastricht University, P.O. Box 616, NL-6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sugden MC, Holness MJ. Skeletal muscle lipid metabolism and the adipomuscular axis. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.2.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Ricquier D. Respiration uncoupling and metabolism in the control of energy expenditure. Proc Nutr Soc 2005; 64:47-52. [PMID: 15877922 DOI: 10.1079/pns2004408] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metabolic energy expenditure negatively regulates energy balance. Metabolic and catabolic pathways contribute to energy expenditure. Catabolic pathways split C-containing molecules into small molecules and generate reduced coenzymes and ATP. For a given amount of substrate, any increase in energy expenditure requires either increased ATP hydrolysis or decreased ATP synthesis. In skeletal muscles substrate utilisation is coupled to ATP production, whereas ATP hydrolysis is activated during physical exercise and increases energy expenditure. In brown adipose tissue activation of cells during exposure to cold increases substrate utilisation in such a way that glucose and fatty acid oxidation detach from the orthodox coupling to ATP synthesis and result in thermogenesis. The unique mechanism of uncoupling respiration that occurs in brown adipocyte mitochondria represents an attractive strategy for promoting energy expenditure and decreasing the fat content of the body. Moreover, ectopic expression of brown fat uncoupling protein (UCP) 1 in mouse skeletal muscle and induction of UCP1 in mouse or human white adipocytes promote fatty acid oxidation and resistance to obesity. In normal conditions UCP2 and UCP3 do not seem to contribute substantially to energy expenditure. Whether the induction of UCP1, the induction of other UCP or chemical mild uncoupling represent promising strategies for attenuating nutrient efficiency and counteracting obesity should be considered.
Collapse
Affiliation(s)
- Daniel Ricquier
- Centre National de la Recherche Scientifique Unit 9078, Faculty of Medicine Necker-Enfants Malades, Paris, France
| |
Collapse
|
26
|
Abstract
Several ion channels are expressed in the inner and outer membranes of mitochondria, but the exact function of these channels is not completely understood. The opening of certain channels is thought to induce the process of cell death or apoptosis. However, other channels of the inner mitochondrial membrane help protect against ischemic injury and oxidative stress. Mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)) and mitochondrial Ca(2+)-activated K(+) channels (mitoK(Ca)) are the primary protective channels that have been identified. In addition to their thermogenic role, certain isoforms of uncoupling proteins are also shown to have protective roles in certain experimental models. This review attempts to provide an updated overview of the proposed mechanism for the protective function of these membrane proteins. Controversies and unanswered questions regarding these channels will also be discussed.
Collapse
Affiliation(s)
- Hossein Ardehali
- Feinberg Cardiovascular Institute, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
De Bock K, Richter EA, Russell AP, Eijnde BO, Derave W, Ramaekers M, Koninckx E, Léger B, Verhaeghe J, Hespel P. Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. J Physiol 2005; 564:649-60. [PMID: 15705646 PMCID: PMC1464435 DOI: 10.1113/jphysiol.2005.083170] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effects were compared of exercise in the fasted state and exercise with a high rate of carbohydrate intake on intramyocellular triglyceride (IMTG) and glycogen content of human muscle. Using a randomized crossover study design, nine young healthy volunteers participated in two experimental sessions with an interval of 3 weeks. In each session subjects performed 2 h of constant-load bicycle exercise ( approximately 75% ), followed by 4 h of controlled recovery. On one occasion they exercised after an overnight fast (F), and on the other (CHO) they received carbohydrates before ( approximately 150 g) and during (1 g (kg bw)(-1) h(-1)) exercise. In both conditions, subjects ingested 5 g carbohydrates per kg body weight during recovery. Fibre type-specific relative IMTG content was determined by Oil red O staining in needle biopsies from m. vastus lateralis before, immediately after and 4 h after exercise. During F but not during CHO, the exercise bout decreased IMTG content in type I fibres from 18 +/- 2% to 6 +/- 2% (P = 0.007) area lipid staining. Conversely, during recovery, IMTG in type I fibres decreased from 15 +/- 2% to 10 +/- 2% in CHO, but did not change in F. Neither exercise nor recovery changed IMTG in type IIa fibres in any experimental condition. Exercise-induced net glycogen breakdown was similar in F and CHO. However, compared with CHO (11.0 +/- 7.8 mmol kg(-1) h(-1)), mean rate of postexercise muscle glycogen resynthesis was 3-fold greater in F (32.9 +/- 2.7 mmol kg(-1) h(-1), P = 0.01). Furthermore, oral glucose loading during recovery increased plasma insulin markedly more in F (+46.80 microU ml(-1)) than in CHO (+14.63 microU ml(-1), P = 0.02). We conclude that IMTG breakdown during prolonged submaximal exercise in the fasted state takes place predominantly in type I fibres and that this breakdown is prevented in the CHO-fed state. Furthermore, facilitated glucose-induced insulin secretion may contribute to enhanced muscle glycogen resynthesis following exercise in the fasted state.
Collapse
Affiliation(s)
- K De Bock
- Exercise Physiology and Biomechanics Laboratory, Faculty of Kinesiology and Rehabilitation Sciences, K.U.Leuven, Tervuursevest 101, B-3001 Leuven (Heverlee), Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dejean L, Cámara Y, Sibille B, Solanes G, Villarroya F. Uncoupling protein-3 sensitizes cells to mitochondrial-dependent stimulus of apoptosis. J Cell Physiol 2004; 201:294-304. [PMID: 15334664 DOI: 10.1002/jcp.20048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrial uncoupling protein-3 is a member of the mitochondrial carrier protein family. As a homologue of the thermogenic brown fat uncoupling protein-1, it possesses a mitochondrial uncoupling activity and thus can influence cell energy metabolism but its exact biological function remains unclear. In the present study, uncoupling protein-3 was expressed in 293 cells using the tetracycline-inducible system and its impact on cell bioenergetics and responsiveness to the apoptotic stimulus was determined. The induction of uncoupling protein-3 expression in mitochondria did not lead to uncontrolled respiratory uncoupling in intact cells. However, it caused a GDP-inhibition of state 4 respiration and a GDP-induced re-polarization of the inner mitochondrial membrane in the presence of fatty acids, in agreement with its expected physiological behavior as an uncoupling protein (UCP). Uncoupling protein-3 expression did not cause apoptosis per se but increased the responsiveness of the cells to a mitochondrial apoptotic stimulus (i.e., addition of staurosporine in the culture medium). It enhanced caspase 3 and caspase 9 activation and favored cytochrome c release. Moreover, cells in which uncoupling protein-3 expression had been induced showed a higher mitochondrial Bax/Bcl-2 ratio essentially due to enhanced translocation of Bax from cytosol to mitochondria. Finally, the induction of uncoupling protein-3 also increased the sensitivity of mitochondria to open the permeability transition pore in response to calcium. It is concluded that the presence of uncoupling protein-3 in mitochondria sensitizes cells to apoptotic stimuli involving mitochondrial pathways.
Collapse
Affiliation(s)
- Laurent Dejean
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
29
|
Schrauwen P, Hardie DG, Roorda B, Clapham JC, Abuin A, Thomason-Hughes M, Green K, Frederik PM, Hesselink MKC. Improved glucose homeostasis in mice overexpressing human UCP3: a role for AMP-kinase? Int J Obes (Lond) 2004; 28:824-8. [PMID: 15024403 DOI: 10.1038/sj.ijo.0802629] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE An unexplained phenotype of mice overexpressing human UCP3 is their improved glucose homeostasis. Since overexpression of UCP3 might affect the energy charge of the cell, we investigated whether these mice have an increased AMP-activated protein kinase (AMPK) activity. METHODS Mitochondrial localisation of UCP3 was determined by immunoelectronmicroscopy and AMPK activity was measured in medial gastrocnemius of control mice and mice overexpressing human UCP3. RESULTS Mice overexpressing human UCP3 had 5.8 fold higher levels of UCP3 protein, for which mitochondrial localisation was confirmed by immunoelectronmicroscopy. The ATP/AMP ratio was significantly lower in mice over-expressing UCP3 compared to the wild-type (10.9+/-1.6 vs 20.4+/-1.9 AU, P=0.03). Over-expression of UCP3 resulted in increased AMPK alpha1 activity (1.23+/-0.05 vs 1.00+/-0.06 normalized values, P=0.004) and a tendency towards increased AMPK alpha2 activity (1.18+/-0.08 vs 1.00+/-0.10 normalized values, P=0.08). CONCLUSION Increased AMPK activity provides a plausible explanation for the improved glucose tolerance characteristic for these mice.
Collapse
Affiliation(s)
- P Schrauwen
- Department of Human Biology, Maastricht University, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ljubicic V, Adhihetty PJ, Hood DA. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis. J Appl Physiol (1985) 2004; 97:976-83. [PMID: 15145919 DOI: 10.1152/japplphysiol.00336.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In an effort to better characterize uncoupling protein-3 (UCP3) function in skeletal muscle, we assessed basal UCP3 protein content in rat intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondrial subfractions in conjunction with measurements of state 4 respiration. UCP3 content was 1.3-fold ( P < 0.05) greater in IMF compared with SS mitochondria. State 4 respiration was 2.6-fold greater ( P < 0.05) in the IMF subfraction than in SS mitochondria. GDP attenuated state 4 respiration by ∼40% ( P < 0.05) in both subfractions. The UCP3 activator oleic acid (OA) significantly increased state 4 respiration in IMF mitochondria only. We used chronic electrical stimulation (3 h/day for 7 days) to investigate the relationship between changes in UCP3 protein expression and alterations in state 4 respiration during contractile activity-induced mitochondrial biogenesis. UCP3 content was increased by 1.9- and 2.3-fold in IMF and SS mitochondria, respectively, which exceeded the concurrent 40% ( P < 0.05) increase in cytochrome- c oxidase activity. Chronic contractile activity increased state 4 respiration by 1.4-fold ( P < 0.05) in IMF mitochondria, but no effect was observed in the SS subfraction. The uncoupling function of UCP3 accounted for 50–57% of the OA-induced increase in state 4 respiration in IMF mitochondria, which was independent of the induced twofold difference in UCP3 content due to chronic contractile activity. Thus modifications in UCP3 function are more important than changes in UCP3 expression in modifying state 4 respiration. This effect is evident in IMF but not SS mitochondria. We conclude that UCP3 at physiological concentrations accounts for a significant portion of state 4 respiration in both IMF and SS mitochondria, with the contribution being greater in the IMF subfraction. In addition, the contradiction between human and rat training studies with respect to UCP3 protein expression may partly be explained by the greater than twofold difference in mitochondrial UCP3 content between rat and human skeletal muscle.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
31
|
Arkinstall MJ, Tunstall RJ, Cameron-Smith D, Hawley JA. Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation. Am J Physiol Endocrinol Metab 2004; 287:E25-31. [PMID: 14761878 DOI: 10.1152/ajpendo.00557.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.
Collapse
Affiliation(s)
- Melissa J Arkinstall
- School of Medical Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
32
|
Abstract
Recent evidence points toward decreased oxidative capacity and mitochondrial aberrations as a major contributor to the development of insulin resistance and type 2 diabetes. In this article we will provide an integrative view on the interrelation between decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations in type 2 diabetes. Type 2 diabetes is characterized by disturbances in fatty acid metabolism and is accompanied by accumulation of fatty acids in nonadipose tissues. In metabolically active tissues, such as skeletal muscle, fatty acids are prone to so-called oxidative damage. In addition to producing energy, mitochondria are also a major source of reactive oxygen species, which can lead to lipid peroxidation. In particular, the mitochondrial matrix, which contains DNA, RNA, and numerous enzymes necessary for substrate oxidation, is sensitive to peroxide-induced oxidative damage and needs to be protected against the formation and accumulation of lipids and lipid peroxides. Recent evidence reports that mitochondrial uncoupling is involved in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Disturbances in this protection mechanism can contribute to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands.
| | | |
Collapse
|
33
|
Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53 Suppl 1:S130-5. [PMID: 14749278 DOI: 10.2337/diabetes.53.2007.s130] [Citation(s) in RCA: 372] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Uncoupling proteins (UCPs) are mitochondrial transporters present in the inner membrane of mitochondria. They are found in all mammals and in plants. They belong to the family of anion mitochondrial carriers including adenine nucleotide transporters. The term "uncoupling protein" was originally used for UCP1, which is uniquely present in mitochondria of brown adipocytes, the thermogenic cells that maintain body temperature in small rodents. In these cells, UCP1 acts as a proton carrier activated by free fatty acids and creates a shunt between complexes of the respiratory chain and ATP synthase. Activation of UCP1 enhances respiration, and the uncoupling process results in a futile cycle and dissipation of oxidation energy as heat. UCP2 is ubiquitous and highly expressed in the lymphoid system, macrophages, and pancreatic islets. UCP3 is mainly expressed in skeletal muscles. In comparison to the established uncoupling and thermogenic activities of UCP1, UCP2 and UCP3 appear to be involved in the limitation of free radical levels in cells rather than in physiological uncoupling and thermogenesis. Moreover, UCP2 is a regulator of insulin secretion and UCP3 is involved in fatty acid metabolism.
Collapse
Affiliation(s)
- Sophie Rousset
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9078, Faculté de Médecine and Institut de Recherches Necker-Enfants Malades (IRNEM), Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Hoeks J, Hesselink MKC, van Bilsen M, Schaart G, van der Vusse GJ, Saris WHM, Schrauwen P. Differential response of UCP3 to medium versus long chain triacylglycerols; manifestation of a functional adaptation. FEBS Lett 2004; 555:631-7. [PMID: 14675786 DOI: 10.1016/s0014-5793(03)01343-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We compared UCP3 protein in rat cardiac, glycolytic and oxidative skeletal muscle and examined the effect of high-fat medium chain vs. long chain triacylglycerol feeding on UCP3 content in these tissues. Cardiac muscle displays the lowest basal levels of UCP3 protein. Increasing long chain - but not medium chain - fatty acid supply upregulates UCP3 in all muscles. Since plasma non-esterified fatty acids and the expression of two peroxisome proliferator-activated receptor (PPAR)-responsive genes, were not different between groups, we conclude that the differential upregulation of UCP3 is not merely PPAR-mediated. This study supports a role of UCP3 in export of non-metabolizable fatty acids.
Collapse
Affiliation(s)
- Joris Hoeks
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Fernström M, Tonkonogi M, Sahlin K. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. J Physiol 2003; 554:755-63. [PMID: 14634202 PMCID: PMC1664806 DOI: 10.1113/jphysiol.2003.055202] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial proteins such as uncoupling protein 3 (UCP3) and adenine nucleotide translocase (ANT) may mediate back-leakage of protons and serve as uncouplers of oxidative phosphorylation. We hypothesized that UCP3 and ANT increase after prolonged exercise and/or endurance training, resulting in increased uncoupled respiration (UCR). Subjects were investigated with muscle biopsies before and after acute exercise (75 min of cycling at 70% of .VO2peak) or 6 weeks endurance training. Mitochondria were isolated and respiration measured in the absence (UCR or state 4) and presence of ADP (coupled respiration or state 3). Protein expression of UCP3 and ANT was measured with Western blotting. After endurance training, .VO2peak, citrate synthase activity (CS), state 3 respiration and ANT increased by 24, 47, 40 and 95%, respectively (all P < 0.05), whereas UCP3 remained unchanged. When expressed per unit of CS (a marker of mitochondrial volume) UCP3 and UCR decreased by 54% and 18%(P < 0.05). CS increased by 43% after acute exercise and remained elevated after 3 h of recovery (P < 0.05), whereas the other muscle parameters remained unchanged. An intriguing finding was that acute exercise reversibly enhanced the capacity of mitochondria to accumulate Ca2+(P < 0.05) before opening of permeability transition pores. In conclusion, UCP3 protein and UCR decrease after endurance training when related to mitochondrial volume. These changes may prevent excessive basal thermogenesis. Acute exercise enhances mitochondrial resistance to Ca2+ overload but does not influence UCR or protein expression of UCP3 and ANT. The increased Ca2+ resistance may prevent mitochondrial degradation and the mechanism needs to be further explored.
Collapse
Affiliation(s)
- Maria Fernström
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | | | | |
Collapse
|
36
|
Schrauwen P, Hoeks J, Schaart G, Kornips E, Binas B, Van De Vusse GJ, Van Bilsen M, Luiken JJFP, Coort SLM, Glatz JFC, Saris WHM, Hesselink MKC. Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J 2003; 17:2272-4. [PMID: 14525936 DOI: 10.1096/fj.03-0515fje] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In contrast to UCP1, the primary function of UCP3 is not the dissipation of energy. Rather, several lines of evidence suggest that UCP3 is related to cellular long-chain fatty acid homeostasis. If long-chain fatty acids enter the mitochondrial matrix in their non-esterified form, they cannot be metabolized and may exert deleterious effects. To test the feasibility that UCP3 exports fatty acid anions, we systematically interfered at distinct steps in the fatty acid metabolism pathway, thereby creating conditions in which the entry of (non-esterified) fatty acids into the mitochondrial matrix is enhanced. First, reducing the cellular fatty acid binding capacity, known to increase cytosolic concentrations of non-esterified fatty acids, up-regulated UCP3 5.3-fold. Second, inhibition of mitochondrial entry of esterified long-chain fatty acids up-regulated UCP3 by 1.9-fold. Third, high-fat diets, to increase mitochondrial supply of non-esterified long-chain fatty acids exceeding oxidative capacity, up-regulated UCP3 twofold. However, feeding a similar amount of medium-chain fatty acids, which can be oxidized inside the mitochondrial matrix and therefore do not need to be exported from the matrix, did not affect UCP3 protein levels. These data are compatible with a physiological function of UCP3 in facilitating outward transport of long-chain fatty acid anions, which cannot be oxidized, from the mitochondrial matrix.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht , Maastricht University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Thyroid hormone (TH/T3) exerts many of its effects on energy metabolism by affecting gene transcription. However, although this is an important target for T3, only a limited number of T3-responsive genes have been identified and studied. Among these, the genes for uncoupling proteins (UCPs) have attracted the interest of scientists. Although the role of UCP1 seems quite well established, uncertainty surrounds the physiological function of the recently discovered UCP1 analogs, UCP2 and UCP3. The literature suggests that T3 affects both the expression and the activity of each of these UCPs but further studies are needed to establish whether the mechanisms activated by the hormone are the same. Recently, because of their larger range of expression, much attention has been devoted to UCP2 and UCP3. Most detailed studies on the involvement of these proteins as mediators of the effects of T3 on metabolism have focused on UCP3 because of its expression in skeletal muscle. T3 seems to be unique in having the ability to stimulate the expression and activity of UCP3 and this may be related to the capacity of T3 to activate the integrated biochemical processes linked to UCP activity, such as those related to fatty acids, coenzyme Q and free radicals.
Collapse
Affiliation(s)
- A Lanni
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100, Caserta, Italy.
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- W Timothy Garvey
- Division of Endocrinology, Diabetes, and Medical Genetics and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| |
Collapse
|