1
|
Ullah K, Hossain A, Cao M, Xue L, Wang Y. Target miRNA identification for the LPL gene in large yellow croaker (Larimichthys crocea). Sci Rep 2025; 15:4164. [PMID: 39905090 PMCID: PMC11794633 DOI: 10.1038/s41598-024-82988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
MicroRNA (miRNA), a conservatively evolved single-stranded non-coding RNA, exerts pivotal control over the appearance of target genes and several biological processes. This study conducted a comprehensive screening of candidate microRNAs (miRNAs) associated with Lipoprotein Lipase (LPL) in the large yellow croaker (Larimichthys crocea), utilizing sophisticated bioinformatics techniques across the species' muscular and hepatic tissues. The bioinformatics analysis facilitated the compilation and examination of miRNA datasets specific to these tissues. The investigation culminated in the identification of miR-84a and miR-1231-5p as key miRNAs that modulate fat hydrolysis, highlighting their potential roles in lipid metabolism. Subsequent in-depth analysis further implicated these miRNAs, along with miR-891a, as prospective targets of LPL, suggesting their integral involvement in the regulation of this critical enzyme. Validation of these bioinformatics predictions was conducted through the construction of double luciferase reporters concealing the LPL 3' untranslated region (3'UTR), substantiating that miR-84a and miR-1231-5p can modulate LPL expression via the LPL 3'UTR. Conversely, miR-891a was not concerned with this regulatory mechanism. Site-directed mutagenesis experiments elucidated the specificity of the interaction sequences. Quantitative PCR assays suggested that miR-84a and miR-1231-5p might influence LPL expression during the starvation phase, intimating the regulatory role of miRNA in fatty acid metabolism within hepatic and muscular tissue under starvation. These findings offer a nuanced understanding of LPL's molecular functionality under stress conditions in fish, emphasizing the regulatory dynamics of miRNA during metabolic stress.
Collapse
Affiliation(s)
- Kalim Ullah
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Aslam Hossain
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
3
|
Poh KK, Panday VB, Shabbir A, Ngiam JN, Sia CH, Chan SP, Tan SY, Kong WKF, Richards AM, Thomas JD. Impact of surgical and non-surgical weight loss on echocardiographic and strain parameters in Asian patients. Sci Rep 2024; 14:24157. [PMID: 39406757 PMCID: PMC11480092 DOI: 10.1038/s41598-024-69586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024] Open
Abstract
Surgical weight loss (SWL) improves myocardial mechanics as measured by speckle-tracking imaging. However non-surgical versus SWL and the subsequent impact on myocardial function in overweight Asian subjects has not been evaluated. 66 patients underwent a 16-week lifestyle intervention (LSI) programme consisting of dietary interventions and exercise prescription. Echocardiography with speckle tracking was performed at baseline and post-intervention. This group was compared against a group of 12 subjects who had undergone bariatric surgery and a control group of 10 lean Asian subjects. A generalised structural equation model (gSEM) was constructed to ascertain the effect of modality of weight loss on strain parameters, adjusting for BMI. Participants attained significant weight loss after LSI (28.2 ± 2.66 kg/m2 vs. 25.8 ± 2.84 kg/m2, p = 0.001). This was associated with a non-significant trend towards improvement in strain parameters. SWL participants had significant improvement in the left ventricular global longitudinal strain (- 20.52 ± 3.34 vs. - 16.68 ± 4.15, p < 0.01) and left atrium reservoir strain (44.32 ± 14.23 vs. 34.3 ± 19.31, p = 0.02). Lean subjects had significantly higher strain parameters than overweight subjects. The gSEM model demonstrated surgical modality of weight loss as an independent predictor of improvement in strain parameters. Significant improvement in echocardiographic parameters were documented in patients who underwent bariatric surgery.
Collapse
Affiliation(s)
- Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Vinay Bahadur Panday
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jinghao Nicholas Ngiam
- Department of Medicine, National University Health System Singapore, Singapore, Singapore
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siew-Pang Chan
- Cardiovascular Research Institute, National University Heart Centre Singapore, National University Health System, Singapore, Singapore
- Centre for Behavioural and Implementation Science Interventions, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sik Yin Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - William K F Kong
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arthur Mark Richards
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, National University Health System, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - James D Thomas
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Scicchitano P, Amati F, Ciccone MM, D’Ascenzi F, Imbalzano E, Liga R, Paolillo S, Pastore MC, Rinaldi A, Mattioli AV, Cameli M. Hypertriglyceridemia: Molecular and Genetic Landscapes. Int J Mol Sci 2024; 25:6364. [PMID: 38928071 PMCID: PMC11203941 DOI: 10.3390/ijms25126364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Lipid disorders represent one of the most worrisome cardiovascular risk factors. The focus on the impact of lipids on cardiac and vascular health usually concerns low-density lipoprotein cholesterol, while the role of triglycerides (TGs) is given poor attention. The literature provides data on the impact of higher plasma concentrations in TGs on the cardiovascular system and, therefore, on the outcomes and comorbidities of patients. The risk for coronary heart diseases varies from 57 to 76% in patients with hypertriglyceridemia. Specifically, the higher the plasma concentrations in TGs, the higher the incidence and prevalence of death, myocardial infarction, and stroke. Nevertheless, the metabolism of TGs and the exact physiopathologic mechanisms which try to explain the relationship between TGs and cardiovascular outcomes are not completely understood. The aims of this narrative review were as follows: to provide a comprehensive evaluation of the metabolism of triglycerides and a possible suggestion for understanding the targets for counteracting hypertriglyceridemia; to describe the inner physiopathological background for the relationship between vascular and cardiac damages derived from higher plasma concentrations in TGs; and to outline the need for promoting further insights in therapies for reducing TGs plasma levels.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital “F Perinei” ASL BA, 70022 Altamura, Italy
| | - Francesca Amati
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Marco Matteo Ciccone
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Flavio D’Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Riccardo Liga
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Andrea Rinaldi
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant’Orsola-Malpighi Hospital, IRCCS, 40138 Bologna, Italy;
| | - Anna Vittoria Mattioli
- Department of Science of Quality of Life, University of Bologna “Alma Mater Studiorum”, 40126 Bologna, Italy;
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| |
Collapse
|
6
|
Badmus OO, da Silva AA, Li X, Taylor LC, Greer JR, Wasson AR, McGowan KE, Patel PR, Stec DE. Cardiac lipotoxicity and fibrosis underlie impaired contractility in a mouse model of metabolic dysfunction-associated steatotic liver disease. FASEB Bioadv 2024; 6:131-142. [PMID: 38706754 PMCID: PMC11069051 DOI: 10.1096/fba.2023-00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 05/07/2024] Open
Abstract
The leading cause of death among patients with metabolic dysfunction-associated steatotic liver disease (MASLD) is cardiovascular disease. A significant percentage of MASLD patients develop heart failure driven by functional and structural alterations in the heart. Previously, we observed cardiac dysfunction in hepatocyte-specific peroxisome proliferator-activated receptor alpha knockout (Ppara HepKO), a mouse model that exhibits hepatic steatosis independent of obesity and insulin resistance. The goal of the present study was to determine mechanisms that underlie hepatic steatosis-induced cardiac dysfunction in Ppara HepKO mice. Experiments were performed in 30-week-old Ppara HepKO and littermate control mice fed regular chow. We observed decreased cardiomyocyte contractility (0.17 ± 0.02 vs. 0.24 ± 0.02 μm, p < 0.05), increased cardiac triglyceride content (0.96 ± 0.13 vs. 0.68 ± 0.06 mM, p < 0.05), collagen type 1 (4.65 ± 0.25 vs. 0.31 ± 0.01 AU, p < 0.001), and collagen type 3 deposition (1.32 ± 0.46 vs. 0.05 ± 0.03 AU, p < 0.05). These changes were associated with increased apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining (30.9 ± 4.7 vs. 13.1 ± 0.8%, p < 0.006) and western blots showing increased cleaved caspase-3 (0.27 ± 0.006 vs. 0.08 ± 0.01 AU, p < 0.003) and pro-caspase-3 (5.4 ± 1.5 vs. 0.5 ± 0.3 AU, p < 0.02), B-cell lymphoma protein 2-associated X (0.68 ± 0.07 vs. 0.04 ± 0.04 AU, p < 0.001), and reduced B-cell lymphoma protein 2 (0.29 ± 0.01 vs. 1.47 ± 0.54 AU, p < 0.05). We further observed elevated circulating natriuretic peptides and exercise intolerance in Ppara HepKO mice when compared to controls. Our data demonstrated that lipotoxicity, and fibrosis underlie cardiac dysfunction in MASLD.
Collapse
Affiliation(s)
- Olufunto O. Badmus
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Alexandre A. da Silva
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Xuan Li
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Lucy C. Taylor
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jennifer R. Greer
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Andrew R. Wasson
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Karis E. McGowan
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Parth R. Patel
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, Cardiovascular‐Renal Research CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
7
|
Nakamura M. Lipotoxicity as a therapeutic target in obesity and diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12568. [PMID: 38706718 PMCID: PMC11066298 DOI: 10.3389/jpps.2024.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Unhealthy sources of fats, ultra-processed foods with added sugars, and a sedentary lifestyle make humans more susceptible to developing overweight and obesity. While lipids constitute an integral component of the organism, excessive and abnormal lipid accumulation that exceeds the storage capacity of lipid droplets disrupts the intracellular composition of fatty acids and results in the release of deleterious lipid species, thereby giving rise to a pathological state termed lipotoxicity. This condition induces endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory responses, and cell death. Recent advances in omics technologies and analytical methodologies and clinical research have provided novel insights into the mechanisms of lipotoxicity, including gut dysbiosis, epigenetic and epitranscriptomic modifications, dysfunction of lipid droplets, post-translational modifications, and altered membrane lipid composition. In this review, we discuss the recent knowledge on the mechanisms underlying the development of lipotoxicity and lipotoxic cardiometabolic disease in obesity, with a particular focus on lipotoxic and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| |
Collapse
|
8
|
Guo D, Zhang M, Qi B, Peng T, Liu M, Li Z, Fu F, Guo Y, Li C, Wang Y, Hu L, Li Y. Lipid overload-induced RTN3 activation leads to cardiac dysfunction by promoting lipid droplet biogenesis. Cell Death Differ 2024; 31:292-308. [PMID: 38017147 PMCID: PMC10923887 DOI: 10.1038/s41418-023-01241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Lipid droplet (LD) accumulation is a notable feature of obesity-induced cardiomyopathy, while underlying mechanism remains poorly understood. Here we show that mice fed with high-fat diet (HFD) exhibited significantly increase in cardiac LD and RTN3 expression, accompanied by cardiac function impairment. Multiple loss- and gain-of function experiments indicate that RTN3 is critical to HFD-induced cardiac LD accumulation. Mechanistically, RTN3 directly bonds with fatty acid binding protein 5 (FABP5) to facilitate the directed transport of fatty acids to endoplasmic reticulum, thereby promoting LD biogenesis in a diacylglycerol acyltransferase 2 dependent way. Moreover, lipid overload-induced RTN3 upregulation is due to increased expression of CCAAT/enhancer binding protein α (C/EBPα), which positively regulates RTN3 transcription by binding to its promoter region. Notably, above findings were verified in the myocardium of obese patients. Our findings suggest that manipulating LD biogenesis by modulating RTN3 may be a potential strategy for treating cardiac dysfunction in obese patients.
Collapse
Affiliation(s)
- Dong Guo
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, Airforce Medical University, Xi'an, 710032, China
| | - Yanjie Guo
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Airforce Medical University, 710032, Xi'an, China
| | - Ying Wang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Wang H, Shen M, Shu X, Guo B, Jia T, Feng J, Lu Z, Chen Y, Lin J, Liu Y, Zhang J, Zhang X, Sun D. Cardiac Metabolism, Reprogramming, and Diseases. J Cardiovasc Transl Res 2024; 17:71-84. [PMID: 37668897 DOI: 10.1007/s12265-023-10432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.
Collapse
Affiliation(s)
- Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Min Shen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Tengfei Jia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiaxu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Zuocheng Lu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yanyan Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yue Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
10
|
Guo Y, Livelo C, Melkani G. Time-restricted feeding regulates lipid metabolism under metabolic challenges. Bioessays 2023; 45:e2300157. [PMID: 37850554 PMCID: PMC10841423 DOI: 10.1002/bies.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Dysregulation of lipid metabolism is a commonly observed feature associated with metabolic syndrome and leads to the development of negative health outcomes such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, or atherosclerosis. Time-restricted feeding/eating (TRF/TRE), an emerging dietary intervention, has been shown to promote pleiotropic health benefits including the alteration of diurnal expression of genes associated with lipid metabolism, as well as levels of lipid species. Although TRF likely induces a response in multiple organs leading to the modulation of lipid metabolism, a majority of the studies related to TRF effects on lipids have focused only on individual tissues, and furthermore there is a lack of insight into potential underlying mechanisms. In this review, we summarize the current insights regarding TRF effects on lipid metabolism and the potential mechanisms in adipose tissue, liver, skeletal muscle, and heart, and conclude by outlining possible avenues for future exploration.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Kaesler N, Cheng M, Nagai J, O’Sullivan J, Peisker F, Bindels EM, Babler A, Moellmann J, Droste P, Franciosa G, Dugourd A, Saez-Rodriguez J, Neuss S, Lehrke M, Boor P, Goettsch C, Olsen JV, Speer T, Lu TS, Lim K, Floege J, Denby L, Costa I, Kramann R. Mapping cardiac remodeling in chronic kidney disease. SCIENCE ADVANCES 2023; 9:eadj4846. [PMID: 38000021 PMCID: PMC10672229 DOI: 10.1126/sciadv.adj4846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.
Collapse
Affiliation(s)
- Nadine Kaesler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James Nagai
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James O’Sullivan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Patrick Droste
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Sabine Neuss
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thimoteus Speer
- Department of Medicine (Nephrology), Goethe University Frankfurt, Frankfurt, Germany
| | - Tzong-Shi Lu
- Brigham and Women’s Hospital, Renal Division, Boston, MA, USA
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jürgen Floege
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Laura Denby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Batista ANR, Garcia T, Prudente R, Barbosa MF, Modesto P, Franco E, de Godoy I, Paiva S, Azevedo P, Tanni SE. Cardiac function, myocardial fat deposition, and lipid profile in young smokers: a cross-sectional study. Front Cardiovasc Med 2023; 10:1225621. [PMID: 38034384 PMCID: PMC10682099 DOI: 10.3389/fcvm.2023.1225621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Background There is a possibility that cardiac morphometric characteristics are associated with the lipid profile, that is, the composition and concentration of triglycerides, total cholesterol, HDL, LDL, and others lipoproteins in young smokers without comorbidities. Thus, this study aimed to evaluate the association of cardiac morphometric characteristics, myocardial fat deposition, and smoking cessation with the lipid profile of young smokers. Methods A clinical and laboratory evaluation of lipids and the smoking status was performed on 57 individuals, including both a smoker group and a control group. Cardiac magnetic resonance imaging (MRI) with proton spectroscopy was performed to identify cardiac changes and triglyceride (TG) deposition in myocardial tissue. Results No differences were observed between the groups (control vs. smokers) in relation to the amount of myocardial TG deposition (p = 0.47); however, when TG deposition was correlated with cardiac MRI variables, a positive correlation was identified between smoking history and myocardial TG deposition [hazard ratio (95% CI), 0.07 (0.03-0.12); p = 0.002]. Furthermore, it was observed that the smoking group had lower high-density lipoprotein cholesterol [51 (45.5-59.5) mg/dl vs. 43 (36-49.5) mg/dl, p = 0.003] and higher TG [73 (58-110) mg/dl vs. 122 (73.5-133) mg/dl, p = 0.01] and very-low-density lipoprotein cholesterol [14.6 (11.6-22.2) mg/dl vs. 24.4 (14.7-26.6) mg/dl, p = 0.01] values. In the control and smoking groups, a negative correlation between TGs and the diameter of the aortic root lumen and positive correlation with the thickness of the interventricular septum and end-diastolic volume (EDV) of both the right ventricle (RV) and left ventricle (LV) were noted. Moreover, in the RV, positive correlations with the end-systolic volume (ESV) index (ESVI), stroke volume (SV), ESV, and EDV were observed. Regarding serum free fatty acids, we found a negative correlation between their values and the diameter of the lumen of the ascending aortic vessel. Lipoprotein lipase showed a positive correlation with the SV index of the RV and negative correlation with the diameter of the lumen of the ascending aortic vessel. Conclusion Several associations were observed regarding cardiac morphometric characteristics, myocardial fat deposition, and smoking cessation with the lipid profile of young smokers.
Collapse
Affiliation(s)
- Ana Natália Ribeiro Batista
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Thaís Garcia
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Robson Prudente
- Pulmonary Function Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Maurício F. Barbosa
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Pamela Modesto
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Estefânia Franco
- Pulmonary Function Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Irma de Godoy
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sergio Paiva
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Paula Azevedo
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Suzana Erico Tanni
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
13
|
Shah RV, Hwang S, Murthy VL, Zhao S, Tanriverdi K, Gajjar P, Duarte K, Schoenike M, Farrell R, Brooks LC, Gopal DM, Ho JE, Girerd N, Vasan RS, Levy D, Freedman JE, Lewis GD, Nayor M. Proteomics and Precise Exercise Phenotypes in Heart Failure With Preserved Ejection Fraction: A Pilot Study. J Am Heart Assoc 2023; 12:e029980. [PMID: 37889181 PMCID: PMC10727424 DOI: 10.1161/jaha.122.029980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.
Collapse
Affiliation(s)
- Ravi V. Shah
- Vanderbilt Translational and Clinical Research Center, Cardiology DivisionVanderbilt University Medical CenterNashvilleTN
| | - Shih‐Jen Hwang
- Population Sciences Branch, Division of Intramural ResearchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Venkatesh L. Murthy
- Departments of Medicine and RadiologyUniversity of Michigan Medical SchoolAnn ArborMI
| | - Shilin Zhao
- Vanderbilt Center for Quantitative SciencesVanderbilt University Medical CenterNashvilleTN
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Research Center, Cardiology DivisionVanderbilt University Medical CenterNashvilleTN
| | - Priya Gajjar
- Cardiology Section, Department of MedicineBoston University School of MedicineBostonMA
| | - Kevin Duarte
- Université de Lorraine, Centre d’Investigations Cliniques Plurithématique 1433, INSERM 1116NancyFrance
| | - Mark Schoenike
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Robyn Farrell
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Liana C. Brooks
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Deepa M. Gopal
- Cardiology Section, Department of MedicineBoston University School of MedicineBostonMA
| | - Jennifer E. Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBostonMA
| | - Nicholas Girerd
- Université de Lorraine, Centre d’Investigations Cliniques Plurithématique 1433, INSERM 1116NancyFrance
| | - Ramachandran S. Vasan
- University of Texas School of Public Health San Antonio, and Departments of Medicine and Population Health Sciences, University of Texas Health Science CenterSan AntonioTX
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural ResearchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Jane E. Freedman
- Vanderbilt Translational and Clinical Research Center, Cardiology DivisionVanderbilt University Medical CenterNashvilleTN
| | - Gregory D. Lewis
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Matthew Nayor
- Cardiology Section, Department of MedicineBoston University School of MedicineBostonMA
| |
Collapse
|
14
|
Abdalla M, El-Arabey AA, Gai Z. Interplay between LPL and GPIHBP1 in COVID-19 patients: a possible mechanism for post-recovery cardiomyopathy. Hum Cell 2023; 36:2270-2272. [PMID: 37462845 DOI: 10.1007/s13577-023-00953-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, 250022, Shandong, China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Zhongtao Gai
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, 250022, Shandong, China.
| |
Collapse
|
15
|
Zhou M, Liu H, Lu B, Li B, Huang W, Tan B, Yang Y, Dong X, Zhang H. Lycopene Alleviates the Adverse Effects of Feeding High-Lipid Diets to Hybrid Grouper (♀ Epinephelus fuscoguttatus ×♂ E. lanceolatus). AQUACULTURE NUTRITION 2023; 2023:8814498. [PMID: 37908497 PMCID: PMC10615579 DOI: 10.1155/2023/8814498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
It has been found that high-lipid diets (HLDs) disrupt lipid metabolism in fish, leading to an excessive accumulation of lipids in various tissues of the fish body. The objective of this study was to investigate if the inclusion of lycopene (LCP) in an HLD may mitigate the adverse consequences of excessive dietary lipid intake in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus). The experimental design incorporated a control group (L0), which was administered a diet consisting of 42% protein and 16% lipid. The diets for groups L1, L2, and L3 were developed by augmenting the control diet with 100, 200, and 400 mg/kg LCP, respectively. The duration of the trial spanned a period of 42 days. The results of the study showed that the weight gain rate (WGR) and protein efficiency ratio (PER) of the three LCP treatment groups (L1, L2, and L3) tended to increase and then decrease, with a significant increase in WGR and PER in L2 (P < 0.05). Visceral somatic index and hepatic somatic index tended to decrease and then increase in all treatment groups, with a significant decrease in L2 (P < 0.05). In serum dietary LCP significantly reduced triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL) content and significantly increased high-density lipoprotein (HDL) content (P < 0.05). In the liver, dietary LCP reduced TC, TG, and very LDL levels and improved lipoprotein lipase, hepatic lipase, fatty acid (FA) synthetase, and acetyl-CoA carboxylase activities. The number and area of hepatic lipid droplets decreased significantly with increasing LCP content. In the liver, the addition of appropriate levels of LCP significantly upregulated lipoprotein lipase (lpl) and peroxisome proliferator-activated receptor α (pparα). In summary, dietary LCP improves growth and reduces lipid deposition in the liver of hybrid grouper by increasing lipolytic metabolism and decreasing FA synthesis. Under the experimental conditions, the fitted curve analysis showed that the recommended LCP additions to the high lipid diet for juvenile hybrid grouper were 200-300 mg/kg.
Collapse
Affiliation(s)
- Menglong Zhou
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Baiquan Lu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Biao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
16
|
Li X, Wu F, Günther S, Looso M, Kuenne C, Zhang T, Wiesnet M, Klatt S, Zukunft S, Fleming I, Poschet G, Wietelmann A, Atzberger A, Potente M, Yuan X, Braun T. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 2023; 622:619-626. [PMID: 37758950 PMCID: PMC10584682 DOI: 10.1038/s41586-023-06585-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fan Wu
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ting Zhang
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marion Wiesnet
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Klatt
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Astrid Wietelmann
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centres, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Örd T, Örd D, Adler P, Örd T. Genome-wide census of ATF4 binding sites and functional profiling of trait-associated genetic variants overlapping ATF4 binding motifs. PLoS Genet 2023; 19:e1011014. [PMID: 37906604 PMCID: PMC10637723 DOI: 10.1371/journal.pgen.1011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Activating Transcription Factor 4 (ATF4) is an important regulator of gene expression in stress responses and developmental processes in many cell types. Here, we catalogued ATF4 binding sites in the human genome and identified overlaps with trait-associated genetic variants. We probed these genetic variants for allelic regulatory activity using a massively parallel reporter assay (MPRA) in HepG2 hepatoma cells exposed to tunicamycin to induce endoplasmic reticulum stress and ATF4 upregulation. The results revealed that in the majority of cases, the MPRA allelic activity of these SNPs was in agreement with the nucleotide preference seen in the ATF4 binding motif from ChIP-Seq. Luciferase and electrophoretic mobility shift assays in additional cellular models further confirmed ATF4-dependent regulatory effects for the SNPs rs532446 (GADD45A intronic; linked to hematological parameters), rs7011846 (LPL upstream; myocardial infarction), rs2718215 (diastolic blood pressure), rs281758 (psychiatric disorders) and rs6491544 (educational attainment). CRISPR-Cas9 disruption and/or deletion of the regulatory elements harboring rs532446 and rs7011846 led to the downregulation of GADD45A and LPL, respectively. Thus, these SNPs could represent examples of GWAS genetic variants that affect gene expression by altering ATF4-mediated transcriptional activation.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Daima Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
18
|
Xu J, Qian B, Wang F, Huang Y, Yan X, Li P, Zhang Q, Li Y, Sun K. Global Profile of tRNA-Derived Small RNAs in Pathological Cardiac Hypertrophy Plasma and Identification of tRF-21-NB8PLML3E as a New Hypertrophy Marker. Diagnostics (Basel) 2023; 13:2065. [PMID: 37370960 DOI: 10.3390/diagnostics13122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It remains unclear whether transfer RNA-derived small RNAs (tsRNAs) play a role in pathological cardiac hypertrophy (PCH). We aimed to clarify the expression profile of tsRNAs and disclose their relationship with the clinical phenotype of PCH and the putative role. METHODS Small RNA sequencing was performed on the plasma of PCH patients and healthy volunteers. In the larger sample size and angiotensin II (Ang II)-stimulated H9c2 cells, the data were validated by real-time qPCR. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were examined in Ang II-stimulated H9c2 cells. The potential role of tsRNAs in the pathogenesis of PCH was explored by bioinformatics analysis. RESULTS A total of 4185 differentially expressed tsRNAs were identified, of which four and five tsRNAs were observed to be significantly upregulated and downregulated, respectively. Of the five downregulated tsRNAs, four were verified to be significantly downregulated in the larger sample group, including tRF-30-3JVIJMRPFQ5D, tRF-16-R29P4PE, tRF-21-NB8PLML3E, and tRF-21-SWRYVMMV0, and the AUC values for diagnosis of concentric hypertrophy were 0.7893, 0.7825, 0.8475, and 0.8825, respectively. The four downregulated tsRNAs were negatively correlated with the left ventricular posterior wall dimensions in PCH patients (r = -0.4227; r = -0.4517; r = -0.5567; r = -0.4223). The levels of ANP and BNP, as well as cell size, were decreased in Ang II-stimulated H9c2 cells with 21-NB8PLML3E mimic transfection. Bioinformatics analysis revealed that the target genes of tRF-21-NB8PLML3E were mainly enriched in the metabolic pathway and involved in the regulation of ribosomes. CONCLUSIONS The plasma tRF-21-NB8PLML3E might be considered as a biomarker and offers early screening potential in patients with PCH.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Buyun Qian
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ying Huang
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Xinxin Yan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ping Li
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| |
Collapse
|
19
|
Gaebel R, Lang C, Vasudevan P, Lührs L, de Carvalho KAT, Abdelwahid E, David R. New Approaches in Heart Research: Prevention Instead of Cardiomyoplasty? Int J Mol Sci 2023; 24:ijms24109017. [PMID: 37240361 DOI: 10.3390/ijms24109017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in industrialized nations. Due to the high number of patients and expensive treatments, according to the Federal Statistical Office (2017) in Germany, cardiovascular diseases account for around 15% of total health costs. Advanced coronary artery disease is mainly the result of chronic disorders such as high blood pressure, diabetes, and dyslipidemia. In the modern obesogenic environment, many people are at greater risk of being overweight or obese. The hemodynamic load on the heart is influenced by extreme obesity, which often leads to myocardial infarction (MI), cardiac arrhythmias, and heart failure. In addition, obesity leads to a chronic inflammatory state and negatively affects the wound-healing process. It has been known for many years that lifestyle interventions such as exercise, healthy nutrition, and smoking cessation drastically reduce cardiovascular risk and have a preventive effect against disorders in the healing process. However, little is known about the underlying mechanisms, and there is significantly less high-quality evidence compared to pharmacological intervention studies. Due to the immense potential of prevention in heart research, the cardiologic societies are calling for research work to be intensified, from basic understanding to clinical application. The topicality and high relevance of this research area are also evident from the fact that in March 2018, a one-week conference on this topic with contributions from top international scientists took place as part of the renowned "Keystone Symposia" ("New Insights into the Biology of Exercise"). Consistent with the link between obesity, exercise, and cardiovascular disease, this review attempts to draw lessons from stem-cell transplantation and preventive exercise. The application of state-of-the-art techniques for transcriptome analysis has opened new avenues for tailoring targeted interventions to very individual risk factors.
Collapse
Affiliation(s)
- Ralf Gaebel
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Cajetan Lang
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Larissa Lührs
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Prίncipe Research Institute & Pequeno Prίncipe Faculties, Ave. Silva Jardim, P.O. Box 80240-020, Curitiba 1632, Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Prίncipe Research Institute & Pequeno Prίncipe Faculties, Ave. Silva Jardim, P.O. Box 80240-020, Curitiba 1632, Brazil
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| |
Collapse
|
20
|
Pang J, Raka F, Heirali AA, Shao W, Liu D, Gu J, Feng JN, Mineo C, Shaul PW, Qian X, Coburn B, Adeli K, Ling W, Jin T. Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1. Nat Commun 2023; 14:2656. [PMID: 37160898 PMCID: PMC10169763 DOI: 10.1038/s41467-023-38259-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Two common features of dietary polyphenols have hampered our mechanistic understanding of their beneficial effects for decades: targeting multiple organs and extremely low bioavailability. We show here that resveratrol intervention (REV-I) in high-fat diet (HFD)-challenged male mice inhibits chylomicron secretion, associated with reduced expression of jejunal but not hepatic scavenger receptor class B type 1 (SR-B1). Intestinal mucosa-specific SR-B1-/- mice on HFD-challenge exhibit improved lipid homeostasis but show virtually no further response to REV-I. SR-B1 expression in Caco-2 cells cannot be repressed by pure resveratrol compound while fecal-microbiota transplantation from mice on REV-I suppresses jejunal SR-B1 in recipient mice. REV-I reduces fecal levels of bile acids and activity of fecal bile-salt hydrolase. In Caco-2 cells, chenodeoxycholic acid treatment stimulates both FXR and SR-B1. We conclude that gut microbiome is the primary target of REV-I, and REV-I improves lipid homeostasis at least partially via attenuating FXR-stimulated gut SR-B1 elevation.
Collapse
Affiliation(s)
- Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fitore Raka
- Department of Molecular Structure and Function Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alya Abbas Heirali
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jianqiu Gu
- Department of Endocrinology and Metabolism and The Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jia Nuo Feng
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chieko Mineo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip W Shaul
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bryan Coburn
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Khosrow Adeli
- Department of Molecular Structure and Function Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
22
|
Lee H, Hong HJ, Ahn S, Kim D, Kang SH, Cho K, Koh WG. One-Pot Synthesis of Double-Network PEG/Collagen Hydrogel for Enhanced Adipogenic Differentiation and Retrieval of Adipose-Derived Stem Cells. Polymers (Basel) 2023; 15:polym15071777. [PMID: 37050391 PMCID: PMC10098799 DOI: 10.3390/polym15071777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Hydrogels are widely used in stem cell therapy due to their extensive tunability and resemblance to the extracellular matrix (ECM), which has a three-dimensional (3D) structure. These features enable various applications that enhance stem cell maintenance and function. However, fast and simple hydrogel fabrication methods are desirable for stem cells for efficient encapsulation and to reduce adverse effects on the cells. In this study, we present a one-pot double-crosslinked hydrogel consisting of polyethylene glycol (PEG) and collagen, which can be prepared without the multi-step sequential synthesis of each network, by using bio-orthogonal chemistry. To enhance the adipogenic differentiation efficiency of adipose-derived stem cells (ADSCs), we added degradable components within the hydrogel to regulate matrix stiffness through cell-mediated degradation. Bio-orthogonal reactions used for hydrogel gelation allow rapid gel formation for efficient cell encapsulation without toxic by-products. Furthermore, the hybrid network of synthetic (PEG) and natural (collagen) components demonstrated adequate mechanical strength and higher cell adhesiveness. Therefore, ADSCs grown within this hybrid hydrogel proliferated and functioned better than those grown in the single-crosslinked hydrogel. The degradable elements further improved adipogenesis in ADSCs with dynamic changes in modulus during culture and enabled the retrieval of differentiated cells for potential future applications.
Collapse
Affiliation(s)
- Hwajung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sujeong Ahn
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dohyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - Kanghee Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Pan Z, Du G, Li G, Wu D, Chen X, Geng Z. Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1199-1214. [PMID: 36812035 PMCID: PMC9890340 DOI: 10.5187/jast.2022.e60] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.
Collapse
Affiliation(s)
- Ziyi Pan
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Guoqing Du
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Guoyu Li
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Dongsheng Wu
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China,Corresponding author: Xingyong Chen,
College of Animal Science and Technology, Anhui Agricultural University, Hefei
230036, China. Tel: +86-15605510863, E-mail:
| | - Zhaoyu Geng
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China,Corresponding author: Xingyong Chen,
College of Animal Science and Technology, Anhui Agricultural University, Hefei
230036, China. Tel: +86-15605510863, E-mail:
| |
Collapse
|
25
|
Yan K, Mei Z, Zhao J, Prodhan MAI, Obal D, Katragadda K, Doelling B, Hoetker D, Posa DK, He L, Yin X, Shah J, Pan J, Rai S, Lorkiewicz PK, Zhang X, Liu S, Bhatnagar A, Baba SP. Integrated Multilayer Omics Reveals the Genomic, Proteomic, and Metabolic Influences of Histidyl Dipeptides on the Heart. J Am Heart Assoc 2022; 11:e023868. [PMID: 35730646 PMCID: PMC9333374 DOI: 10.1161/jaha.121.023868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Histidyl dipeptides such as carnosine are present in a micromolar to millimolar range in mammalian hearts. These dipeptides facilitate glycolysis by proton buffering. They form conjugates with reactive aldehydes, such as acrolein, and attenuate myocardial ischemia–reperfusion injury. Although these dipeptides exhibit multifunctional properties, a composite understanding of their role in the myocardium is lacking. Methods and Results To identify histidyl dipeptide–mediated responses in the heart, we used an integrated triomics approach, which involved genome‐wide RNA sequencing, global proteomics, and unbiased metabolomics to identify the effects of cardiospecific transgenic overexpression of the carnosine synthesizing enzyme, carnosine synthase (Carns), in mice. Our result showed that higher myocardial levels of histidyl dipeptides were associated with extensive changes in the levels of several microRNAs, which target the expression of contractile proteins, β‐fatty acid oxidation, and citric acid cycle (TCA) enzymes. Global proteomic analysis showed enrichment in the expression of contractile proteins, enzymes of β‐fatty acid oxidation, and the TCA in the Carns transgenic heart. Under aerobic conditions, the Carns transgenic hearts had lower levels of short‐ and long‐chain fatty acids as well as the TCA intermediate—succinic acid; whereas, under ischemic conditions, the accumulation of fatty acids and TCA intermediates was significantly attenuated. Integration of multiple data sets suggested that β‐fatty acid oxidation and TCA pathways exhibit correlative changes in the Carns transgenic hearts at all 3 levels. Conclusions Taken together, these findings reveal a central role of histidyl dipeptides in coordinated regulation of myocardial structure, function, and energetics.
Collapse
Affiliation(s)
- Keqiang Yan
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Zhanlong Mei
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Jingjing Zhao
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | | | - Detlef Obal
- Department of Anesthesiology and Perioperative and Pain Medicine Stanford University Palo Alto CA
| | - Kartik Katragadda
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Benjamin Doelling
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - David Hoetker
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Liqing He
- Department of Chemistry University of Louisville KY
| | - Xinmin Yin
- Department of Chemistry University of Louisville KY
| | - Jasmit Shah
- Department of Medicine, Medical college The Aga Khan University Nairobi Kenya
| | - Jianmin Pan
- Biostatistics Shared Facility University of Louisville Health, Brown Cancer Center Louisville KY
| | - Shesh Rai
- Biostatistics Shared Facility University of Louisville Health, Brown Cancer Center Louisville KY
| | - Pawel Konrad Lorkiewicz
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Xiang Zhang
- Department of Chemistry University of Louisville KY
| | - Siqi Liu
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Aruni Bhatnagar
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Shahid P Baba
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| |
Collapse
|
26
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
27
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
28
|
Zhao M, Wei H, Li C, Zhan R, Liu C, Gao J, Yi Y, Cui X, Shan W, Ji L, Pan B, Cheng S, Song M, Sun H, Jiang H, Cai J, Garcia-Barrio MT, Chen YE, Meng X, Dong E, Wang DW, Zheng L. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nat Commun 2022; 13:1757. [PMID: 35365608 PMCID: PMC8976029 DOI: 10.1038/s41467-022-29060-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO. Intestinal microbiota alterations may affect heart function through the production of gut-derived metabolites. Here the authors found that gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent fatty acid oxidation.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Cui
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenxin Shan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Si Cheng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, 100050, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haipeng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Cai
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minerva T Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China. .,Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
29
|
Zhao X, Liu H, Pan Y, Liu Y, Zhang F, Ao H, Zhang J, Xing K, Wang C. Identification of Potential Candidate Genes From Co-Expression Module Analysis During Preadipocyte Differentiation in Landrace Pig. Front Genet 2022; 12:753725. [PMID: 35178067 PMCID: PMC8843850 DOI: 10.3389/fgene.2021.753725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Preadipocyte differentiation plays an important role in lipid deposition and affects fattening efficiency in pigs. In the present study, preadipocytes isolated from the subcutaneous adipose tissue of three Landrace piglets were induced into mature adipocytes in vitro. Gene clusters associated with fat deposition were investigated using RNA sequencing data at four time points during preadipocyte differentiation. Twenty-seven co-expression modules were subsequently constructed using weighted gene co-expression network analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed three modules (blue, magenta, and brown) as being the most critical during preadipocyte differentiation. Based on these data and our previous differentially expressed gene analysis, angiopoietin-like 4 (ANGPTL4) was identified as a key regulator of preadipocyte differentiation and lipid metabolism. After inhibition of ANGPTL4, the expression of adipogenesis-related genes was reduced, except for that of lipoprotein lipase (LPL), which was negatively regulated by ANGPTL4 during preadipocyte differentiation. Our findings provide a new perspective to understand the mechanism of fat deposition.
Collapse
Affiliation(s)
- Xitong Zhao
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China.,China Agricultural University, Beijing, China
| | - Huatao Liu
- China Agricultural University, Beijing, China
| | - Yongjie Pan
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China
| | - Yibing Liu
- China Agricultural University, Beijing, China
| | | | - Hong Ao
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibin Zhang
- City of Hope National Medical Center, Duarte, CA, United States
| | - Kai Xing
- Beijing University of Agriculture, Beijing, China
| | | |
Collapse
|
30
|
Exploring the Pattern of Metabolic Alterations Causing Energy Imbalance via PPARα Dysregulation in Cardiac Muscle During Doxorubicin Treatment. Cardiovasc Toxicol 2022; 22:436-461. [PMID: 35157213 DOI: 10.1007/s12012-022-09725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity by anthracycline antineoplastic drug doxorubicin is one of the systemic toxicity of the cardiovascular system. The mechanism responsible for doxorubicin cardiotoxicity and lipid metabolism remains elusive. The current study tested the hypotheses that the role of peroxisome proliferator-activated receptor α (PPARα) in the progress of doxorubicin-induced cardiomyopathy and its mechanism behind lipid metabolism. In the present study, male rats were subjected to intraperitoneal injection (5-week period) of doxorubicin with different dosages such as low dosage (1.5 mg/kg body weight) and high dosage (15 mg/kg body weight) to induce doxorubicin cardiomyopathy. Myocardial PPARα was impaired in both low dosage and high dosage of doxorubicin-treated rats in a dose-dependent manner. The attenuated level of PPARα impairs the expression of the genes involved in mitochondrial transporter, fatty acid transportation, lipolysis, lipid metabolism, and fatty acid oxidation. Moreover, it disturbs the reverse triacylglycerol transporter apolipoprotein B-100 (APOB) in the myocardium. Doxorubicin elevates the circulatory lipid profile and glucose. Further aggravated lipid profile in circulation impedes the metabolism of lipid in cardiac tissue, which causes a lipotoxic condition in the heart and subsequently associated disease for the period of doxorubicin treatment. Elevated lipids in the circulation translocate into the heart dysregulates lipid metabolism in the heart, which causes augmented oxidative stress and necro-apoptosis and mediates lipotoxic conditions. This finding determines the mechanistic role of doxorubicin-disturbed lipid metabolism via PPARα, which leads to cardiac dysfunction.
Collapse
|
31
|
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci 2022; 23:996. [PMID: 35055179 PMCID: PMC8779056 DOI: 10.3390/ijms23020996] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The heart requires fatty acids to maintain its activity. Various mechanisms regulate myocardial fatty acid metabolism, such as energy production using fatty acids as fuel, for which it is known that coordinated control of fatty acid uptake, β-oxidation, and mitochondrial oxidative phosphorylation steps are important for efficient adenosine triphosphate (ATP) production without unwanted side effects. The fatty acids taken up by cardiomyocytes are not only used as substrates for energy production but also for the synthesis of triglycerides and the replacement reaction of fatty acid chains in cell membrane phospholipids. Alterations in fatty acid metabolism affect the structure and function of the heart. Recently, breakthrough studies have focused on the key transcription factors that regulate fatty acid metabolism in cardiomyocytes and the signaling systems that modify their functions. In this article, we reviewed the latest research on the role of fatty acid metabolism in the pathogenesis of heart failure and provide an outlook on future challenges.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
32
|
Zhang R, Zhang K. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res 2022; 85:101140. [PMID: 34793860 PMCID: PMC8760165 DOI: 10.1016/j.plipres.2021.101140] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
In mammals, triglyceride (TG), the main form of lipids for storing and providing energy, is stored in white adipose tissue (WAT) after food intake, while during fasting it is routed to oxidative tissues (heart and skeletal muscle) for energy production, a process referred to as TG partitioning. Lipoprotein lipase (LPL), a rate-limiting enzyme in this fundamental physiological process, hydrolyzes circulating TG to generate free fatty acids that are taken up by peripheral tissues. The postprandial activity of LPL declines in oxidative tissues but rises in WAT, directing TG to WAT; the reverse is true during fasting. However, the molecular mechanism in regulating tissue-specific LPL activity during the fed-fast cycle has not been completely understood. Research on angiopoietin-like (ANGPTL) proteins (A3, A4, and A8) has resulted in an ANGPTL3-4-8 model to explain the TG partitioning between WAT and oxidative tissues. Food intake induces A8 expression in the liver and WAT. Liver A8 activates A3 by forming the A3-8 complex, which is then secreted into the circulation. The A3-8 complex acts in an endocrine manner to inhibit LPL in oxidative tissues. WAT A8 forms the A4-8 complex, which acts locally to block A4's LPL-inhibiting activity. Therefore, the postprandial activity of LPL is low in oxidative tissues but high in WAT, directing circulating TG to WAT. Conversely, during fasting, reduced A8 expression in the liver and WAT disables A3 from inhibiting oxidative-tissue LPL and restores WAT A4's LPL-inhibiting activity, respectively. Thus, the fasting LPL activity is high in oxidative tissues but low in WAT, directing TG to the former. According to the model, we hypothesize that A8 antagonism has the potential to simultaneously reduce TG and increase HDL-cholesterol plasma levels. Future research on A3, A4, and A8 can hopefully provide more insights into human health, disease, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
33
|
Ishihama S, Yoshida S, Yoshida T, Mori Y, Ouchi N, Eguchi S, Sakaguchi T, Tsuda T, Kato K, Shimizu Y, Ohashi K, Okumura T, Bando YK, Yagyu H, Wettschureck N, Kubota N, Offermanns S, Kadowaki T, Murohara T, Takefuji M. LPL/AQP7/GPD2 promotes glycerol metabolism under hypoxia and prevents cardiac dysfunction during ischemia. FASEB J 2021; 35:e22048. [PMID: 34807469 DOI: 10.1096/fj.202100882r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.
Collapse
Affiliation(s)
- Sohta Ishihama
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Satoya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tatsuya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yu Mori
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Shunsuke Eguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Teruhiro Sakaguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takuma Tsuda
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yasuko K Bando
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
34
|
Katzer K, Hill JL, McIver KB, Foster MT. Lipedema and the Potential Role of Estrogen in Excessive Adipose Tissue Accumulation. Int J Mol Sci 2021; 22:ijms222111720. [PMID: 34769153 PMCID: PMC8583809 DOI: 10.3390/ijms222111720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Lipedema is a painful fat disorder that affects ~11% of the female population. It is characterized by bilateral, disproportionate accumulation of subcutaneous adipose tissue predominantly in the lower body. The onset of lipedema pathophysiology is thought to occur during periods of hormonal fluctuation, such as puberty, pregnancy, or menopause. Although the identification and characterization of lipedema have improved, the underlying disease etiology remains to be elucidated. Estrogen, a key regulator of adipocyte lipid and glucose metabolism, and female-associated body fat distribution are postulated to play a contributory role in the pathophysiology of lipedema. Dysregulation of adipose tissue accumulation via estrogen signaling likely occurs by two mechanisms: (1). altered adipocyte estrogen receptor distribution (ERα/ERß ratio) and subsequent metabolic signaling and/or (2). increased release of adipocyte-produced steroidogenic enzymes leading to increased paracrine estrogen release. These alterations could result in increased activation of peroxisome proliferator-activated receptor γ (PPARγ), free fatty acid entry into adipocytes, glucose uptake, and angiogenesis while decreasing lipolysis, mitochondriogenesis, and mitochondrial function. Together, these metabolic alterations would lead to increased adipogenesis and adipocyte lipid deposition, resulting in increased adipose depot mass. This review summarizes research characterizing estrogen-mediated adipose tissue metabolism and its possible relation to excessive adipose tissue accumulation associated with lipedema.
Collapse
|
35
|
Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders. Arch Pharm Res 2021; 44:839-856. [PMID: 34664210 DOI: 10.1007/s12272-021-01352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined by abnormal accumulation of extracellular matrix, which can affect virtually every organ system under diseased conditions. Fibrotic tissue remodeling often leads to organ dysfunction and is highly associated with increased morbidity and mortality. The disease burden caused by fibrosis is substantial, and the medical need for effective antifibrotic therapies is essential. Significant progress has been made in understanding the molecular mechanism and pathobiology of fibrosis, such as transforming growth factor-β (TGF-β)-mediated signaling pathways. However, owing to the complex and dynamic properties of fibrotic disorders, there are currently no therapeutic options that can prevent or reverse fibrosis. Recent studies have revealed that alterations in fatty acid metabolic processes are common mechanisms and core pathways that play a central role in different fibrotic disorders. Excessive lipid accumulation or defective fatty acid oxidation is associated with increased lipotoxicity, which directly contributes to the development of fibrosis. Genetic alterations or pharmacologic targeting of fatty acid metabolic processes have great potential for the inhibition of fibrosis development. Furthermore, mechanistic studies have revealed active interactions between altered metabolic processes and fibrosis development. Several well-known fibrotic factors change the lipid metabolic processes, while altered metabolic processes actively participate in fibrosis development. This review summarizes the recent evidence linking fatty acid metabolism and fibrosis, and provides new insights into the pathogenesis of fibrotic diseases for the development of drugs for fibrosis prevention and treatment.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
36
|
Harada M, Yamakawa T, Kashiwagi R, Ohira A, Sugiyama M, Sugiura Y, Kondo Y, Terauchi Y. Association between ANGPTL3, 4, and 8 and lipid and glucose metabolism markers in patients with diabetes. PLoS One 2021; 16:e0255147. [PMID: 34293055 PMCID: PMC8297858 DOI: 10.1371/journal.pone.0255147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Lipid management, especially with respect to triglyceride (TG) metabolism, in patients with diabetes is not sufficient with current therapeutic agents, and new approaches for improvement are needed. Members of the angiopoietin-like protein (ANGPTL) family, specifically ANGPTL3, 4, and 8, have been reported as factors that inhibit lipoprotein lipase (LPL) activity and affect TGs. The present study investigated the association between lipid and glucose metabolism markers and the mechanism by which these proteins affect lipid metabolism. A total of 84 patients hospitalized for diabetes treatment were evaluated. Lipid and glucose metabolism markers in blood samples collected before breakfast, on the day after hospitalization, were analyzed. ANGPTL8 showed a significant positive correlation with TG values. HDL-C values displayed a significant positive correlation with ANGPTL3 but a negative correlation with ANGPTL4 and ANGPTL8. The results did not indicate a significant correlation among ANGPTL3, 4, and 8 levels. Thus, it is possible that the distribution of these proteins differs among patients. When patients were divided into groups according to the levels of ANGPTL3 and ANGPTL8, those with high levels of both ANGPTL3 and ANGPTL8 also had high levels of TG and small dense LDL-C/LDL-C (%). Multiple regression analysis indicated that low LPL, high ApoC2, high ApoC3, high ApoE, and high ANGPTL8 levels were the determinants of fasting hypertriglyceridemia. By contrast, no clear association was observed between any of the ANGPTLs and glucose metabolism markers, but ANGPTL8 levels were positively correlated with the levels of HOMA2-IR and BMI. Patients with high levels of both ANGPTL3 and ANGPTL8 had the worst lipid profiles. Among ANGPTL3, 4, and 8, ANGPTL8 is more important as a factor determining plasma TG levels. We anticipate that the results of this research will facilitate potential treatments targeting ANGPTL8 in patients with diabetes.
Collapse
Affiliation(s)
- Marina Harada
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Tadashi Yamakawa
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
- * E-mail:
| | - Rie Kashiwagi
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Akeo Ohira
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Mai Sugiyama
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yasuyuki Sugiura
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoshinobu Kondo
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
37
|
Da Dalt L, Castiglioni L, Baragetti A, Audano M, Svecla M, Bonacina F, Pedretti S, Uboldi P, Benzoni P, Giannetti F, Barbuti A, Pellegatta F, Indino S, Donetti E, Sironi L, Mitro N, Catapano AL, Norata GD. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J 2021; 42:3078-3090. [PMID: 34252181 PMCID: PMC8380058 DOI: 10.1093/eurheartj/ehab431] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Aims PCSK9 is secreted into the circulation, mainly by the liver, and interacts with low-density lipoprotein receptor (LDLR) homologous and non-homologous receptors, including CD36, thus favouring their intracellular degradation. As PCSK9 deficiency increases the expression of lipids and lipoprotein receptors, thus contributing to cellular lipid accumulation, we investigated whether this could affect heart metabolism and function. Methods and results Wild-type (WT), Pcsk9 KO, Liver conditional Pcsk9 KO and Pcsk9/Ldlr double KO male mice were fed for 20 weeks with a standard fat diet and then exercise resistance, muscle strength, and heart characteristics were evaluated. Pcsk9 KO presented reduced running resistance coupled to echocardiographic abnormalities suggestive of heart failure with preserved ejection fraction (HFpEF). Heart mitochondrial activity, following maximal coupled and uncoupled respiration, was reduced in Pcsk9 KO mice compared to WT mice and was coupled to major changes in cardiac metabolism together with increased expression of LDLR and CD36 and with lipid accumulation. A similar phenotype was observed in Pcsk9/Ldlr DKO, thus excluding a contribution for LDLR to cardiac impairment observed in Pcsk9 KO mice. Heart function profiling of the liver selective Pcsk9 KO model further excluded the involvement of circulating PCSK9 in the development of HFpEF, pointing to a possible role locally produced PCSK9. Concordantly, carriers of the R46L loss-of-function variant for PCSK9 presented increased left ventricular mass but similar ejection fraction compared to matched control subjects. Conclusion PCSK9 deficiency impacts cardiac lipid metabolism in an LDLR independent manner and contributes to the development of HFpEF.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,IRCCS Multimedica Hospital, Via Milanese, 300, 20099 Sesto San Giovanni, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Federica Giannetti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Fabio Pellegatta
- Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Via Massimo Gorki, 50, 20092 Cinisello Balsamo, Italy
| | - Serena Indino
- Department of Biomedical Science for Health, Università degli Studi di Milano, Via Mangiagalli, 31, 20133 Milan, Italy
| | - Elena Donetti
- Department of Biomedical Science for Health, Università degli Studi di Milano, Via Mangiagalli, 31, 20133 Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,IRCCS Multimedica Hospital, Via Milanese, 300, 20099 Sesto San Giovanni, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Via Massimo Gorki, 50, 20092 Cinisello Balsamo, Italy
| |
Collapse
|
38
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
39
|
Kopf A, Fortuin V, Somnath VR, Claassen M. Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data. PLoS Comput Biol 2021; 17:e1009086. [PMID: 34191792 PMCID: PMC8277074 DOI: 10.1371/journal.pcbi.1009086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/13/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Clustering high-dimensional data, such as images or biological measurements, is a long-standing problem and has been studied extensively. Recently, Deep Clustering has gained popularity due to its flexibility in fitting the specific peculiarities of complex data. Here we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-VAE), a novel generative clustering model. The model can learn multi-modal distributions of high-dimensional data and use these to generate realistic data with high efficacy and efficiency. MoE-Sim-VAE is based on a Variational Autoencoder (VAE), where the decoder consists of a Mixture-of-Experts (MoE) architecture. This specific architecture allows for various modes of the data to be automatically learned by means of the experts. Additionally, we encourage the lower dimensional latent representation of our model to follow a Gaussian mixture distribution and to accurately represent the similarities between the data points. We assess the performance of our model on the MNIST benchmark data set and challenging real-world tasks of clustering mouse organs from single-cell RNA-sequencing measurements and defining cell subpopulations from mass cytometry (CyTOF) measurements on hundreds of different datasets. MoE-Sim-VAE exhibits superior clustering performance on all these tasks in comparison to the baselines as well as competitor methods.
Collapse
Affiliation(s)
- Andreas Kopf
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
- Life Science Graduate School Zurich, PhD Program Systems Biology, Zurich, Switzerland
| | - Vincent Fortuin
- Biomedical Informatics Group, Department of Computer Science, ETH Zürich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
| | - Vignesh Ram Somnath
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Manfred Claassen
- Division of Clinical Bioinformatics, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
40
|
Huang W, Lin Y, Xiang H, Zhu J, Wang Y. Angiopoietin-like protein 8, molecular cloning and regulating lipid accumulation in goat intramuscular preadipocytes. Anim Biotechnol 2021; 33:876-883. [PMID: 34077300 DOI: 10.1080/10495398.2020.1845711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aimed to clone the full-length open reading frame (ORF) of goat ANGPTL8 gene sequence, reveal its molecular and expression characteristics, and explore its effect on the differentiation of goat intramuscular preadipocytes. The full-length ORF sequence of goat ANGPTL8 gene was cloned by RT-PCR technology, and bioinformatics analysis was performed by related biological software. RT-qPCR was used to detect the expression of ANGPTL8 mRNA in goat tissues. Further use of RNA interference to study the effect of ANGPTL8 on the differentiation of goat intramuscular preadipocytes. The total length of the ANGPTL8 gene nucleotide sequence is 717 bp, including 597 bp of ORF, encoding 198 amino acids. Goat ANGPTL8 has the closest relationship with sheep, it was widely expressed in different tissues, and relatively enriched in liver. The silence of ANGPTL8 inhibited the accumulation of lipid droplets by 5.76% in goat intramuscular preadipocytes (p > 0.05) and significantly suppressed the expression of the genes related to preadipocytes differentiation, fatty acid synthesis and transport (p<0.05 or p<0.01). These data illuminate the speculation that ANGPTL8 may involve in the lipid accumulation regulation via the control of PPARγ and C/EBPβ in goat adipocytes.
Collapse
Affiliation(s)
- Wei Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| |
Collapse
|
41
|
Goldberg IJ, Cabodevilla AG, Samovski D, Cifarelli V, Basu D, Abumrad NA. Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis 2021; 329:1-8. [PMID: 34130222 DOI: 10.1016/j.atherosclerosis.2021.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Lipids released from circulating lipoproteins by intravascular action of lipoprotein lipase (LpL) reach parenchymal cells in tissues with a non-fenestrated endothelium by transfer through or around endothelial cells. The actions of LpL are controlled at multiple sites, its synthesis and release by myocytes and adipocytes, its transit and association with the endothelial cell luminal surface, and finally its activation and inhibition by a number of proteins and by its product non-esterified fatty acids. Multiple pathways mediate endothelial transit of lipids into muscle and adipose tissues. These include movement of fatty acids via the endothelial cell fatty acid transporter CD36 and movement of whole or partially LpL-hydrolyzed lipoproteins via other apical endothelial cell receptors such as SR-B1and Alk1. Lipids also likely change the barrier function of the endothelium and operation of the paracellular pathway around endothelial cells. This review summarizes in vitro and in vivo support for the key role of endothelial cells in delivery of lipids and highlights incompletely understood processes that are the focus of active investigation.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitri Samovski
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
42
|
Sithara T, Drosatos K. Metabolic Complications in Cardiac Aging. Front Physiol 2021; 12:669497. [PMID: 33995129 PMCID: PMC8116539 DOI: 10.3389/fphys.2021.669497] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is a process that can be accompanied by molecular and cellular alterations that compromise cardiac function. Although other metabolic disorders with increased prevalence in aged populations, such as diabetes mellitus, dyslipidemia, and hypertension, are associated with cardiovascular complications; aging-related cardiomyopathy has some unique features. Healthy hearts oxidize fatty acids, glucose, lactate, ketone bodies, and amino acids for producing energy. Under physiological conditions, cardiac mitochondria use fatty acids and carbohydrate mainly to generate ATP, 70% of which is derived from fatty acid oxidation (FAO). However, relative contribution of nutrients in ATP synthesis is altered in the aging heart with glucose oxidation increasing at the expense of FAO. Cardiac aging is also associated with impairment of mitochondrial abundance and function, resulting in accumulation of reactive oxygen species (ROS) and activation of oxidant signaling that eventually leads to further mitochondrial damage and aggravation of cardiac function. This review summarizes the main components of pathophysiology of cardiac aging, which pertain to cardiac metabolism, mitochondrial function, and systemic metabolic changes that affect cardiac function.
Collapse
Affiliation(s)
- Thomas Sithara
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
43
|
Zhu R, Feng X, Wei Y, Guo D, Li J, Liu Q, Jiang J, Shi D, Huang J. lncSAMM50 Enhances Adipogenic Differentiation of Buffalo Adipocytes With No Effect on Its Host Gene. Front Genet 2021; 12:626158. [PMID: 33841496 PMCID: PMC8033173 DOI: 10.3389/fgene.2021.626158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Fat deposition is one of the most important traits that are mediated by a set of complex regulatory factors in meat animals. Several researches have revealed the significant role of long non-coding RNAs (lncRNAs) in fat deposition while the precise regulatory mechanism is still largely elusive. In this study, we investigated the lncRNA profiles of adipose and muscle tissues in buffalo by using the Illumina HiSeq 3000 platform. In total, 43,809 lncRNAs were finally identified based on the computer algorithm. A comparison analysis revealed 241 lncRNAs that are differentially expressed (DE) in adipose and muscle tissues. We focused on lncSAMM50, a DE lncRNA that has a high expression in adipose tissue. Sequence alignment showed that lncSAMM50 is transcribed from the antisense strand of the upstream region of sorting and assembly machinery component 50 homolog (SAMM50), a gene involved in the function of mitochondrion and is subsequently demonstrated to inhibit the adipogenic differentiation of 3T3-L1 adipocyte cells in this study. lncSAMM50 is highly expressed in adipose tissue and upregulated in the mature adipocytes and mainly exists in the nucleus. Gain-of-function experiments demonstrated that lncSAMM50 promotes the adipogenic differentiation by upregulating adipogenic markers but with no effect on its host gene SAMM50 in buffalo adipocytes. These results indicate that lncSAMM50 enhances fat deposition in buffalo and provide a new factor for the regulatory network of adipogenesis.
Collapse
Affiliation(s)
- Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xue Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yutong Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Duo Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jiaojiao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
44
|
Wei X, Zhu Y, Du J, Ma X, Zhao X, Ma Y, Han S, Ma Y. Analysis of ANGPTL8 promoter activity and screening of related transcription factors in bovine. Gene 2021; 784:145594. [PMID: 33766704 DOI: 10.1016/j.gene.2021.145594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Analysing the molecular regulation mechanism of fat deposition in yellow cattle can provide a theoretical basis for the breeding of excellent beef cattle. ANGPTL8 (angiopoietin-like protein 8) promotes the formation of lipid droplets during adipocyte differentiation. To explore the promoter active region of ANGPTL8 and predict potential transcription factors, we further provide a theoretical basis for the functional analysis and regulatory mechanism of ANGPTL8 in adipogenesis. The promoter region of bovine ANGPTL8 was cloned by overlap extension PCR. Online software was used to predict potential transcription factor binding sites, and it identified PPARγ, SREBP1, C/EBPα, and Znf423 transcription factor binding sites in ANGPTL8 promoter region. A luciferase reporter gene vector which contained different deletion fragments of the ANGPTL8 promoter was constructed. Then, the vectors were cotransfected into 293 T cells with the internal control plasmid pRL-TK by cationic liposomes, and the relative fluorescence intensity was detected by a microplate reader. The results of the luciferase activity analysis showed that the core promoter area of ANGPTL8 was in the -885/-227 bp region of the 5' flanking sequence, while just two SREBP1 binding sites occurred in this area. When SREBP1 was knocked down by siRNA, the expression level of ANGPTL8 was reduced, and we speculated that SREBP1 may be an important transcription factor regulating ANGPTL8 transcription.
Collapse
Affiliation(s)
- Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jie Du
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiaojie Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yaoyao Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuang Han
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China; School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
45
|
Kim JJ, Wilbon SS, Fornoni A. Podocyte Lipotoxicity in CKD. KIDNEY360 2021; 2:755-762. [PMID: 35373048 PMCID: PMC8791311 DOI: 10.34067/kid.0006152020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
CKD represents the ninth most common cause of death in the United States but, despite this large health burden, treatment options for affected patients remain limited. To remedy this, several relevant pathways have been identified that may lead to novel therapeutic options. Among them, altered renal lipid metabolism, first described in 1982, has been recognized as a common pathway in clinical and experimental CKD of both metabolic and nonmetabolic origin. This observation has led many researchers to investigate the cause of this renal parenchyma lipid accumulation and its downstream effect on renal structure and function. Among key cellular components of the kidney parenchyma, podocytes are terminally differentiated cells that cannot be easily replaced when lost. Clinical and experimental evidence supports a role of reduced podocyte number in the progression of CKD. Given the importance of the podocytes in the maintenance of the glomerular filtration barrier and the accumulation of TG and cholesterol-rich lipid droplets in the podocyte and glomerulus in kidney diseases that cause CKD, understanding the upstream cause and downstream consequences of lipid accumulation in podocytes may lead to novel therapeutic opportunities. In this review, we hope to consolidate our understanding of the causes and consequences of dysregulated renal lipid metabolism in CKD development and progression, with a major focus on podocytes.
Collapse
|
46
|
Tan Y, Li M, Wu G, Lou J, Feng M, Xu J, Zhou J, Zhang P, Yang H, Dong L, Li J, Zhang X, Gao F. Short-term but not long-term high fat diet feeding protects against pressure overload-induced heart failure through activation of mitophagy. Life Sci 2021; 272:119242. [PMID: 33607155 DOI: 10.1016/j.lfs.2021.119242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
AIMS Recent studies have shown that enhancement of fatty acid utilization through feeding animals a high fat diet (HFD) attenuated cardiac dysfunction in heart failure (HF). Here, we aimed to examine the temporal effects of HFD feeding on cardiac function in mice with heart failure and its underlying mechanism. MAIN METHODS Pressure overload-induced HF was established via transverse aortic constriction (TAC) surgery. After surgery, the mice were fed on either normal diet or HFD for 8 or 16 weeks. KEY FINDINGS HFD feeding exerted opposite effects on cardiac function at different time points post-surgery. Short-term HFD feeding (8 wk) protected the heart against pressure overload, inhibiting cardiac hypertrophy and improving cardiac function, while long-term HFD feeding (16 wk) aggravated cardiac dysfunction in TAC mice. Short-term HFD feeding elevated cardiac fatty acid utilization, while long-term HFD feeding showed no significant effects on cardiac fatty acid utilization in TAC mice. Specifically, an increase in cardiac fatty acid utilization was accompanied with activated mitophagy and improved mitochondrial function. Palmitic acid treatment (400 μM, 2 h) stimulated fatty acid oxidation and mitophagy in neonatal myocytes. Mechanistically, fatty acid utilization stimulated mitophagy through upregulation of Parkin. Cardiac-specific knockdown of Parkin abolished the protective effects of short-term HFD feeding on cardiac function in TAC mice. SIGNIFICANCES These results suggested that short-term but not long-term HFD feeding protects against pressure overload-induced heart failure through activation of mitophagy, and dietary fat intake should be used with caution in treatment of heart failure.
Collapse
Affiliation(s)
- Yanzhen Tan
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Lou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengya Feng
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Xu
- Department of Cardiology, 986(th) Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaheng Zhou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Pengfei Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Dong
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
47
|
Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021; 236:4857-4873. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara D'Imperio
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Signorelli
- Department of Health Sciences, Biochemistry and Molecular Biology Laboratory, University of Milan, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
48
|
Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc Natl Acad Sci U S A 2020; 117:32584-32593. [PMID: 33293421 PMCID: PMC7768680 DOI: 10.1073/pnas.1922169117] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but the molecular mechanism by which adiponectin reverses insulin resistance remains unclear. Two weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma glucose, triglyceride (TAG), and insulin concentrations and reversed whole-body insulin resistance, which could be attributed to both improved insulin-mediated suppression of endogenous glucose production and increased insulin-stimulated glucose uptake in muscle and adipose tissues. These improvements in liver and muscle sensitivity were associated with ∼50% reductions in liver and muscle TAG and plasma membrane (PM)-associated diacylglycerol (DAG) content and occurred independent of reductions in total ceramide content. Reductions of PM DAG content in liver and skeletal muscle were associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor tyrosine1162 phosphorylation, IRS-1/IRS-2-associated PI3-kinase activity, and Akt-serine phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 infusions also increased TAG uptake in epididymal white adipose tissue (eWAT), which could be attributed to increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by reducing ectopic lipid storage in these organs, resulting in decreased plasma membrane sn-1,2-DAG-induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects by both promoting the storage of TAG in eWAT likely through stimulation of LPL as well as by stimulation of AMPK in muscle resulting in increased muscle fat oxidation.
Collapse
|
49
|
Larsen TS, Jansen KM. Impact of Obesity-Related Inflammation on Cardiac Metabolism and Function. J Lipid Atheroscler 2020; 10:8-23. [PMID: 33537250 PMCID: PMC7838512 DOI: 10.12997/jla.2021.10.1.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
This review focuses on the role of adipose tissue in obese individuals in the development of metabolic diseases, and their consequences for metabolic and functional derangements in the heart. The general idea is that the expansion of adipocytes during the development of obesity gives rise to unhealthy adipose tissue, characterized by low-grade inflammation and the release of proinflammatory adipokines and fatty acids (FAs). This condition, in turn, causes systemic inflammation and elevated FA concentrations in the circulation, which links obesity to several pathologies, including impaired insulin signaling in cardiac muscle and a subsequent shift in myocardial substrate oxidation in favor of FAs and reduced cardiac efficiency. This review also argues that efforts to prevent obesity-related cardiometabolic disease should focus on anti-obesogenic strategies to restore normal adipose tissue metabolism.
Collapse
Affiliation(s)
- Terje S Larsen
- Department of Medical Biology, The Health Sciences Faculty, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten M Jansen
- Department of Medical Biology, The Health Sciences Faculty, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
50
|
Qin M, Zhu Q, Lai W, Ma Q, Liu C, Chen X, Zhang Y, Wang Z, Chen H, Yan H, Lei H, Zhang S, Dong X, Wang H, Huang M, Lian Q, Zhong S. Insights into the prognosis of lipidomic dysregulation for death risk in patients with coronary artery disease. Clin Transl Med 2020; 10:e189. [PMID: 32997403 PMCID: PMC7522592 DOI: 10.1002/ctm2.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dyslipidaemia contributes to the progression of coronary artery disease (CAD) toward adverse outcomes. Plasma lipidomic measure may improve the prognostic performances of clinical endpoints of CAD. Our research is designed to identify the correlations between plasma lipid species and the risks of death, major adverse cardiovascular event (MACE) and left ventricular (LV) remodeling in patients with CAD. METHODS A total of 1569 Chinese patients with CAD, 1011 single-centre patients as internal training cohort, and 558 multicentre patients as external validation cohort, were enrolled. The concentration of plasma lipids in both cohorts was determined through widely targeted lipidomic profiling. Least absolute shrinkage and selection operator Cox and multivariate Cox regressions were used to develop prognostic models for death and MACE, respectively. RESULTS Ten (Cer(d18:1/20:1), Cer(d18:1/24:1), PE(30:2), PE(32:0), PE(32:2), PC(O-38:2), PC(O-36:4), PC(16:1/22:2), LPC(18:2/0:0) and LPE(0:0/24:6)) and two (Cer(d18:1/20:1) and LPC(20:0/0:0)) lipid species were independently related to death and MACE, respectively. Cer(d18:1/20:1) and Cer(d18:1/24:1) were correlated with LV remodeling (P < .05). The lipidic panel incorporating 10 lipid species and two traditional biomarkers for predicting 5-year death risk represented a remarkable higher discrimination than traditional model with increased area under the curve from 76.56 to 83.65%, continuous NRI of 0.634 and IDI of 0.131. Furthermore, the panel was successfully used in differentiating multicentre patients with low, middle, or high risks (P < .0001). Further analysis indicated that the number of double bonds of phosphatidyl choline and the content of carbon atoms of phosphatidyl ethanolamines were negatively associated with death risk. CONCLUSIONS Improvement in the prediction of death confirms the effectiveness of plasma lipids as predictors to risk classification in patients with CAD. The association between the structural characteristics of long-chain polyunsaturated fatty acids and death risk highlights the need for mechanistic research that characterizes the role of individual lipid species in disease pathogenesis.
Collapse
Affiliation(s)
- Min Qin
- Department of PharmacyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangzhouGuangdongP. R. China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongP. R. China
| | - Qian Zhu
- Department of PharmacyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangzhouGuangdongP. R. China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongP. R. China
| | - Weihua Lai
- Department of PharmacyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Qilin Ma
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Chen Liu
- Department of CardiologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Xiaoping Chen
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Yuelin Zhang
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Zixian Wang
- Department of PharmacyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangzhouGuangdongP. R. China
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongP. R. China
| | - Hui Chen
- Department of PharmacyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangzhouGuangdongP. R. China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongP. R. China
| | - Hong Yan
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangzhouGuangdongP. R. China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongP. R. China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangzhouGuangdongP. R. China
| | - Shuyao Zhang
- Guangzhou Red Cross Hospital affiliated to Ji‐Nan University Medical CollegeGuangzhouGuangdongP. R. China
| | - Xuekui Dong
- Wuhan Metware Biotechnology Co., Ltd.WuhanHubeiP. R. China
| | - Hong Wang
- Wuhan Metware Biotechnology Co., Ltd.WuhanHubeiP. R. China
| | - Min Huang
- School of Pharmaceutical SciencesInstitute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
| | - Qizhou Lian
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Shilong Zhong
- Department of PharmacyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangzhouGuangdongP. R. China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongP. R. China
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongP. R. China
| |
Collapse
|