1
|
Creisher PS, Klein SL. Pathogenesis of viral infections during pregnancy. Clin Microbiol Rev 2024; 37:e0007323. [PMID: 38421182 PMCID: PMC11237665 DOI: 10.1128/cmr.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYViral infections during pregnancy are associated with significant adverse perinatal and fetal outcomes. Pregnancy is a unique immunologic and physiologic state, which can influence control of virus replication, severity of disease, and vertical transmission. The placenta is the organ of the maternal-fetal interface and provides defense against microbial infection while supporting the semi-allogeneic fetus via tolerogenic immune responses. Some viruses, such as cytomegalovirus, Zika virus, and rubella virus, can breach these defenses, directly infecting the fetus and having long-lasting consequences. Even without direct placental infection, other viruses, including respiratory viruses like influenza viruses and severe acute respiratory syndrome coronavirus 2, still cause placental damage and inflammation. Concentrations of progesterone and estrogens rise during pregnancy and contribute to immunological adaptations, placentation, and placental development and play a pivotal role in creating a tolerogenic environment at the maternal-fetal interface. Animal models, including mice, nonhuman primates, rabbits, and guinea pigs, are instrumental for mechanistic insights into the pathogenesis of viral infections during pregnancy and identification of targetable treatments to improve health outcomes of pregnant individuals and offspring.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
McMahon CL, Hurley EM, Muniz Perez A, Estrada M, Lodge DJ, Hsieh J. Prenatal SARS-CoV-2 infection results in neurodevelopmental and behavioral outcomes in mice. JCI Insight 2024; 9:e179068. [PMID: 38781563 PMCID: PMC11383367 DOI: 10.1172/jci.insight.179068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Prenatal exposure to viral pathogens has been known to cause the development of neuropsychiatric disorders in adulthood. Furthermore, COVID-19 has been associated with a variety of neurological manifestations, raising the question of whether in utero SARS-CoV-2 exposure can affect neurodevelopment, resulting in long-lasting behavioral and cognitive deficits. Using a human ACE2-knock-in mouse model, we have previously shown that prenatal exposure to SARS-CoV-2 at later stages of development leads to fetal brain infection and gliosis in the hippocampus and cortex. In this study, we aimed to determine whether infection of the fetal brain results in long-term neuroanatomical alterations of the cortex and hippocampus or in any cognitive deficits in adulthood. Here, we show that infected mice developed slower and weighed less in adulthood. We also found altered hippocampal and amygdala volume and aberrant newborn neuron morphology in the hippocampus of adult mice infected in utero. Furthermore, we observed sex-dependent alterations in anxiety-like behavior and locomotion, as well as hippocampal-dependent spatial memory. Taken together, our study reveals long-lasting neurological and cognitive changes as a result of prenatal SARS-CoV-2 infection, identifying a window for early intervention and highlighting the importance of immunization and antiviral intervention in pregnant women.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Erin M Hurley
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, and
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Creisher PS, Parish MA, Lei J, Liu J, Perry JL, Campbell AD, Sherer ML, Burd I, Klein SL. Suppression of progesterone by influenza A virus mediates adverse maternal and fetal outcomes in mice. mBio 2024; 15:e0306523. [PMID: 38190129 PMCID: PMC10865978 DOI: 10.1128/mbio.03065-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Influenza A virus infection during pregnancy can cause adverse maternal and fetal outcomes but the mechanism responsible remains elusive. Infection of outbred mice with 2009 H1N1 at embryonic day (E) 10 resulted in significant maternal morbidity, placental tissue damage and inflammation, fetal growth restriction, and developmental delays that lasted through weaning. Restriction of pulmonary virus replication was not inhibited during pregnancy, but infected dams had suppressed circulating and placental progesterone (P4) concentrations that were caused by H1N1-induced upregulation of pulmonary cyclooxygenase (COX)-1-, but not COX-2-, dependent synthesis and secretion of prostaglandin (PG) F2α. Treatment with 17-α-hydroxyprogesterone caproate (17-OHPC), a synthetic progestin that is safe to use in pregnancy, ameliorated the adverse maternal and fetal outcomes from H1N1 infection and prevented placental cell death and inflammation. These findings highlight the therapeutic potential of progestin treatments for influenza during pregnancy.IMPORTANCEPregnant individuals are at risk of severe outcomes from both seasonal and pandemic influenza A viruses. Influenza infection during pregnancy is associated with adverse fetal outcomes at birth and adverse consequences for offspring into adulthood. When outbred dams, with semi-allogenic fetuses, were infected with 2009 H1N1, in addition to pulmonary virus replication, lung damage, and inflammation, the placenta showed evidence of transient cell death and inflammation that was mediated by increased activity along the arachidonic acid pathway leading to suppression of circulating progesterone. Placental damage and suppressed progesterone were associated with detrimental effects on perinatal growth and developmental delays in offspring. Treatment of H1N1-infected pregnant mice with 17-OHPC, a synthetic progestin treatment that is safe to use in pregnancy, prevented placental damage and inflammation and adverse fetal outcomes. This novel therapeutic option for the treatment of influenza during pregnancy should be explored clinically.
Collapse
Affiliation(s)
- Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maclaine A. Parish
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jamie L. Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ariana D. Campbell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|