1
|
Jego G, Hermetet F, Girodon F, Garrido C. Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010021. [PMID: 31861612 PMCID: PMC7017265 DOI: 10.3390/cancers12010021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Abstract
While cells from multicellular organisms are dependent upon exogenous signals for their survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within the cell. This general control of protein quality involves the expression and the activity of molecular chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5 transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell proliferation, survival) and for the microenvironmental immune cell compartment (differentiation, activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70, HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which HSP would be the best candidate for such a strategy.
Collapse
Affiliation(s)
- Gaëtan Jego
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| | - François Hermetet
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
| | - François Girodon
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Haematology laboratory, Dijon University Hospital, F-21000 Dijon, France
| | - Carmen Garrido
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| |
Collapse
|
2
|
M2-specific reduction of CD1d switches NKT cell-mediated immune responses and triggers metaflammation in adipose tissue. Cell Mol Immunol 2017; 15:506-517. [PMID: 28392574 DOI: 10.1038/cmi.2017.11] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/21/2017] [Accepted: 01/21/2017] [Indexed: 01/21/2023] Open
Abstract
Metaflammation is responsible for several metabolic syndromes, such as type 2 diabetes. However, the mechanisms by which metabolic disorders trigger metaflammation remain unclear. We identified a cell type-specific downregulation of CD1d expression in M2 macrophages during the progression of obesity prior to the onset of inflammation in visceral adipose tissues. A reduction in CD1d expression influenced the ability of M2 macrophages to present antigens and caused a change in antigen-presenting cells from M2 macrophages to M1 macrophages. With CD1d conditional knockout (KO) mice, we further demonstrated that natural killer T (NKT) cell activation by M2 macrophages inhibited metaflammation and insulin resistance by promoting Th2 responses and M2 polarization in visceral adipose tissues of obese mice, whereas NKT cell activation by M1 macrophages exacerbated metaflammation and insulin resistance by promoting Th1 responses and inhibiting M2 polarization. Our results suggest that an M2-specific reduction of CD1d is an initiating event that switches NKT cell-mediated immune responses and disrupts the immune balance in visceral adipose tissues in obese mice.
Collapse
|
3
|
HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene 2016; 36:2328-2336. [PMID: 27819670 DOI: 10.1038/onc.2016.403] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023]
Abstract
Heat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110-inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer cell proliferation and that this effect is associated with STAT3 activation, specifically an increase in STAT3 phosphorylation, nuclear translocation and transcription factor activity. STAT3 inhibition blocks the proliferative effect of HSP110. From a molecular standpoint, we demonstrated that HSP110 directly binds to STAT3, thereby facilitating its phosphorylation by JAK2. Finally, we showed a correlation between HSP110 expression and STAT3 phosphorylation in colon cancer patient samples. Thus, the expression of HSP110 in colon cancer contributes to STAT3-dependent tumor growth and the frequent inactivating mutation of this chaperone is probably an important event underlying the improved prognosis in colon cancer displaying MSI.
Collapse
|
4
|
Berthenet K, Boudesco C, Collura A, Svrcek M, Richaud S, Hammann A, Causse S, Yousfi N, Wanherdrick K, Duplomb L, Duval A, Garrido C, Jego G. Extracellular HSP110 skews macrophage polarization in colorectal cancer. Oncoimmunology 2016; 5:e1170264. [PMID: 27622020 DOI: 10.1080/2162402x.2016.1170264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 12/22/2022] Open
Abstract
HSP110 is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps the cells to survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently showed that colorectal cancer (CRC) patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110 inactivating mutation (HSP110DE9). In this work, we have used patients' biopsies and human CRC cells grown in vitro and in vivo (xenografts) to demonstrate that (1) HSP110 is secreted by CRC cells and that the amount of this extracellular HSP110 is strongly decreased by the expression of the mutant HSP110DE9, (2) Supernatants from CRC cells overexpressing HSP110 or purified recombinant human HSP110 (LPS-free) affect macrophage differentiation/polarization by favoring a pro-tumor, anti-inflammatory profile, (3) Conversely, inhibition of HSP110 (expression of siRNA, HSP110DE9 or immunodepletion) induced the formation of macrophages with a cytotoxic, pro-inflammatory profile. (4) Finally, this effect of extracellular HSP110 on macrophages seems to implicate TLR4. These results together with the fact that colorectal tumor biopsies with HSP110 high were infiltrated with macrophages with a pro-tumoral profile while those with HSP110 low were infiltrated with macrophages with a cytotoxic profile, suggest that the effect of extracellular HSP110 function on macrophages may also contribute to the poor outcomes associated with HSP110 expression.
Collapse
Affiliation(s)
- Kevin Berthenet
- INSERM, LNC UMR866, Equipe Labellisée par la Ligue Nationale Contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France; Univ. Bourgogne Franche-Comté, LNC UMR866, Dijon, France
| | - Christophe Boudesco
- INSERM, LNC UMR866, Equipe Labellisée par la Ligue Nationale Contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France; Univ. Bourgogne Franche-Comté, LNC UMR866, Dijon, France
| | - Ada Collura
- INSERM, UMR 938, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris, France; Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Magali Svrcek
- INSERM, UMR 938, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris, France; Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Sarah Richaud
- INSERM, LNC UMR866, Equipe Labellisée par la Ligue Nationale Contre le Cancer and Laboratoire d'Excellence LipSTIC , Dijon, France
| | - Arlette Hammann
- INSERM, LNC UMR866, Equipe Labellisée par la Ligue Nationale Contre le Cancer and Laboratoire d'Excellence LipSTIC , Dijon, France
| | - Sebastien Causse
- INSERM, LNC UMR866, Equipe Labellisée par la Ligue Nationale Contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France; Univ. Bourgogne Franche-Comté, LNC UMR866, Dijon, France
| | - Nadhir Yousfi
- EPHE, Laboratoire d'Immunologie et Immunothérapie des Cancers, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France
| | - Kristell Wanherdrick
- INSERM, UMR 938, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris, France; Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Laurence Duplomb
- Génétique et anomalies du développement, Univ. Bourgogne Franche-Comté, Dijon, France; Département de Génétique, Hôpital d'enfants, CHU Dijon, Dijon, France
| | - Alex Duval
- INSERM, UMR 938, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris, France; Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Carmen Garrido
- Univ. Bourgogne Franche-Comté, LNC UMR866, Dijon, France; CGFL service, Dijon, France
| | - Gaetan Jego
- INSERM, LNC UMR866, Equipe Labellisée par la Ligue Nationale Contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France; Univ. Bourgogne Franche-Comté, LNC UMR866, Dijon, France
| |
Collapse
|
5
|
Zuo D, Subjeck J, Wang XY. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Front Immunol 2016; 7:75. [PMID: 26973652 PMCID: PMC4771732 DOI: 10.3389/fimmu.2016.00075] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170), have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, due to the presence of a loop structure, result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here, we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
6
|
Olszak T, Neves JF, Dowds CM, Baker K, Glickman J, Davidson NO, Lin CS, Jobin C, Brand S, Sotlar K, Wada K, Katayama K, Nakajima A, Mizuguchi H, Kawasaki K, Nagata K, Müller W, Snapper SB, Schreiber S, Kaser A, Zeissig S, Blumberg RS. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 2014; 509:497-502. [PMID: 24717441 PMCID: PMC4132962 DOI: 10.1038/nature13150] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/17/2014] [Indexed: 12/20/2022]
Abstract
The mechanisms by which mucosal homeostasis is maintained are of central importance to inflammatory bowel disease. Critical to these processes is the intestinal epithelial cell (IEC), which regulates immune responses at the interface between the commensal microbiota and the host. CD1d presents self and microbial lipid antigens to natural killer T (NKT) cells, which are involved in the pathogenesis of colitis in animal models and human inflammatory bowel disease. As CD1d crosslinking on model IECs results in the production of the important regulatory cytokine interleukin (IL)-10 (ref. 9), decreased epithelial CD1d expression--as observed in inflammatory bowel disease--may contribute substantially to intestinal inflammation. Here we show in mice that whereas bone-marrow-derived CD1d signals contribute to NKT-cell-mediated intestinal inflammation, engagement of epithelial CD1d elicits protective effects through the activation of STAT3 and STAT3-dependent transcription of IL-10, heat shock protein 110 (HSP110; also known as HSP105), and CD1d itself. All of these epithelial elements are critically involved in controlling CD1d-mediated intestinal inflammation. This is demonstrated by severe NKT-cell-mediated colitis upon IEC-specific deletion of IL-10, CD1d, and its critical regulator microsomal triglyceride transfer protein (MTP), as well as deletion of HSP110 in the radioresistant compartment. Our studies thus uncover a novel pathway of IEC-dependent regulation of mucosal homeostasis and highlight a critical role of IL-10 in the intestinal epithelium, with broad implications for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Torsten Olszak
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| | - Joana F Neves
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| | - C Marie Dowds
- 1] Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany [2]
| | - Kristi Baker
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jonathan Glickman
- GI Pathology, Miraca Life Sciences, Newton, Massachusetts 02464, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Christian Jobin
- Department of Medicine, Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Stephan Brand
- Department of Medicine II-Grosshadern, Ludwig Maximilians University, Munich 81377, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig Maximilians University, Munich 80337, Germany
| | - Koichiro Wada
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Kazufumi Katayama
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Nakajima
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0027, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kunito Kawasaki
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Scott B Snapper
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Arthur Kaser
- Division of Gastroenterology, Addenbrooke Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sebastian Zeissig
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany [3]
| | - Richard S Blumberg
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| |
Collapse
|
7
|
CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:199-223. [PMID: 23468111 DOI: 10.1007/978-1-4614-6111-1_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The critical role of peptide antigen-specific T cells in controlling mycobacterial infections is well documented in natural resistance and vaccine-induced immunity against Mycobacterium tuberculosis. However, many other populations of leukocytes contribute to innate and adaptive immunity against mycobacteria. Among these, non-conventional T cells recognizing lipid antigens presented by the CD1 antigen presentation system have attracted particular interest. In this chapter, we review the basic immunobiology and potential antimycobacterial properties of a subset of CD1-restricted T cells that have come to be known as Natural Killer T cells. This group of lipid reactive T cells is notable for its high level of conservation between humans and mice, thus enabling a wide range of highly informative studies in mouse models. As reviewed below, NKT cells appear to have subtle but potentially significant activities in the host response to mycobacteria. Importantly, they also provide a framework for investigations into other types of lipid antigen-specific T cells that may be more abundant in larger mammals such as humans.
Collapse
|
8
|
Buschard K, Hansen AK, Jensen K, Lindenbergh-Kortleve DJ, de Ruiter LF, Krohn TC, Hufeldt MR, Vogensen FK, Aasted B, Osterbye T, Roep BO, de Haar C, Nieuwenhuis EE. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice. PLoS One 2011; 6:e17931. [PMID: 21483778 PMCID: PMC3069977 DOI: 10.1371/journal.pone.0017931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 02/20/2011] [Indexed: 01/13/2023] Open
Abstract
Background Ethanol (‘alcohol’) is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. Methods The study included cellular in vitro tests using α-galactosylceramide (αGalCer), and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. Results Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05). CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05), whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. Conclusion Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases.
Collapse
|
9
|
Kato M, Ishige A, Anjiki N, Yamamoto M, Irie Y, Taniyama M, Kibe R, Oka J, Benno Y, Watanabe K. Effect of herbal medicine Juzentaihoto on hepatic and intestinal heat shock gene expression requires intestinal microflora in mouse. World J Gastroenterol 2007; 13:2289-97. [PMID: 17511026 PMCID: PMC4147136 DOI: 10.3748/wjg.v13.i16.2289] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the role of intestinal microflora in the effects of multi-herbal medicine on gene expression in the gut and liver.
METHODS: The multi-herbal medicine Juzentaihoto (JTX) was administered to five germ-free mice and regular mice for 2 wk. Among the results of the comprehensive gene chip analysis of the intestine and liver, we featured heat shock proteins (HSPs) 70 and 105 because their gene expression changed only in the presence of microflora. Real-time RT-PCR was performed to confirm the expression levels of these HSP genes. To determine whether JTX acts directly on the HSP genes, sodium arsenite (SA) was used to induce the heat shock proteins directly. To examine the change of the intestinal microflora with administration of JTX, the terminal restriction fragment polymorphism (T-RFLP) method was used. To identify the changed bacteria, DNA sequencing was performed.
RESULTS: Heat shock protein gene expression, documented by gene chip and real-time RT-PCR, changed with the administration of JTX in the regular mice but not in the germ-free mice. JTX did not suppress the direct induction of the HSPs by SA. T-RFLP suggested that JTX decreased unculturable bacteria and increased Lactobacillus johnsoni. These data suggested that JTX changed the intestinal microflora which, in turn, changed HSP gene expression.
CONCLUSION: Intestinal microflora affects multi-herbal product JTX on the gene expression in the gut and liver.
Collapse
Affiliation(s)
- Miho Kato
- Department of Kampo Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu KOA, Im JS, Molano A, Dutronc Y, Illarionov PA, Forestier C, Fujiwara N, Arias I, Miyake S, Yamamura T, Chang YT, Besra GS, Porcelli SA. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc Natl Acad Sci U S A 2005; 102:3383-8. [PMID: 15722411 PMCID: PMC552918 DOI: 10.1073/pnas.0407488102] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A form of alpha-galactosylceramide, KRN7000, activates CD1d-restricted Valpha14-invariant (Valpha14i) natural killer (NK) T cells and initiates multiple downstream immune reactions. We report that substituting the C26:0 N-acyl chain of KRN7000 with shorter, unsaturated fatty acids modifies the outcome of Valpha14i NKT cell activation. One analogue containing a diunsaturated C20 fatty acid (C20:2) potently induced a T helper type 2-biased cytokine response, with diminished IFN-gamma production and reduced Valpha14i NKT cell expansion. C20:2 also exhibited less stringent requirements for loading onto CD1d than KRN7000, suggesting a mechanism for the immunomodulatory properties of this lipid. The differential cellular response elicited by this class of Valpha14i NKT cell agonists may prove to be useful in immunotherapeutic applications.
Collapse
Affiliation(s)
- Karl O A Yu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nicchitta CV. Come forth CD1d: Hsp110 in the regulation of intestinal epithelial CD1d expression. J Clin Invest 2003; 112:646-8. [PMID: 12952910 PMCID: PMC182217 DOI: 10.1172/jci19641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CD1d, a nonclassical MHC class I-like molecule, is prominently expressed on intestinal epithelial cells and is thought to function in the regulation of intestinal intraepithelial lymphocyte activity. Hsp110, an abundant heat shock protein present in essentially all mammalian tissues, has now been shown to upregulate CD1d expression in colonic tissue culture cell lines. Might this abundant chaperone serve an autocrine function in the regulation of CD1d expression?
Collapse
Affiliation(s)
- Christopher V Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|