1
|
Khan T, McFall DJ, Hussain AI, Frayser LA, Casilli TP, Steck MC, Sanchez-Brualla I, Kuehn NM, Cho M, Barnes JA, Harris BT, Vicini S, Forcelli PA. Senescent cell clearance ameliorates temporal lobe epilepsy and associated spatial memory deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605784. [PMID: 39211239 PMCID: PMC11360968 DOI: 10.1101/2024.07.30.605784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Current therapies for the epilepsies only treat the symptoms, but do not prevent epileptogenesis (the process in which epilepsy develops). Many cellular responses during epileptogenesis are also common hallmarks of cellular senescence , which halts proliferation of damaged cells. Clearing senescent cells (SCs) restores function in several age-associated and neurodegenerative disease models. It is unknown whether SC accumulation contributes to epileptogenesis and associated cognitive impairments. To address this question, we used a mouse model of temporal lobe epilepsy (TLE) and characterized the senescence phenotype throughout epileptogenesis. SCs accumulated 2 weeks after SE and were predominantly microglia. We ablated SCs and reduced (and in some cases prevented) the emergence of spontaneous seizures and normalized cognitive function in mice. Suggesting that this is a translationally-relevant target we also found SC accumulation in resected hippocampi from patients with TLE. These findings indicate that SC ablation after an epileptogenic insult is a potential anti-epileptogenic therapy.
Collapse
|
2
|
miR-223 Enhances the Neuroprotection of Estradiol Against Oxidative Stress Injury by Inhibiting the FOXO3/TXNIP Axis. Neurochem Res 2021; 47:1865-1877. [PMID: 34843004 DOI: 10.1007/s11064-021-03490-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder characterized by complex pathogenesis, of which oxidative stress has long been regarded as a major mechanism. Previously, the protective effects of estradiol on SH-SY5Y cells against Aβ42-induced injuries were demonstrated. In this study, the protection of SH-SY5Y cells by estradiol from H2O2-caused oxidative stress injury and Alzheimer's mice was further confirmed. H2O2 downregulated, whereas estradiol upregulated miR-223 expression. miR-223 overexpression promoted cell viability, inhibited cell apoptosis, reduced ROS levels, enhanced Superoxide Dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. However, miR-223 inhibition exerted opposite effects. miR-223 directly targeted forkhead box O3 (FOXO3) and inhibited FOXO3 expression. H2O2 increased, whereas estradiol decreased thioredoxin interacting protein (TXNIP) levels; FOXO3 positively regulated TXNIP protein levels. In SH-SY5Y cells, FOXO3 overexpression increased, whereas FOXO3 knockdown reduced the cell apoptosis and ROS levels. FOXO3 bound to TXNIP promoter region and activated TXNIP transcription, whereas the activation could be partially inhibited by estradiol. Collectively, the FOXO3/TXNIP axis is downstream of miR-223. miR-223 enhances the neuroprotection of estradiol against oxidative stress injury through the FOXO3/TXNIP axis.
Collapse
|
3
|
Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy. Pharmaceuticals (Basel) 2021; 14:ph14040376. [PMID: 33919533 PMCID: PMC8074097 DOI: 10.3390/ph14040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022] Open
Abstract
We aimed to characterize the mechanisms involved in neuroprotection by R-PIA administered before pilocarpine-induced seizures. Caspase-1 and caspase-3 activities were assayed using fluorimetry, and cathepsin D, HSP-70, and AKT expression levels were assayed using Western Blot of hippocampal samples. R-PIA was injected before pilocarpine (PILO), and four groups were studied at 1 h 30 min and 7 days following initiation of status epilepticus (SE): PILO, R-PIA+PILO, SALINE, and R-PIA+SALINE. At 1 h 30 min, significantly higher activities of caspase-1 and -3 were observed in the PILO group than in the SALINE group. Caspase-1 and -3 activities were higher in the R-PIA+PILO group than in the PILO group. At 7 days following SE, caspase-1 and -3 activities were higher than in the initial post-seizure phase compared to the SALINE group. The pretreatment of rats receiving PILO significantly reduced caspase activities compared to the PILO group. Expression of HSP-70, AKT, and cathepsin D was significantly higher in the PILO group than in the SALINE. In the R-PIA+PILO group, the expression of AKT and HSP-70 was greater than in rats receiving only PILO, while cathepsin D presented decreased expression. Pretreatment with R-PIA in PILO-injected rats strongly inhibited caspase-1 and caspase-3 activities and cathepsin D expression. It also increased expression levels of the neuroprotective proteins HSP-70 and AKT, suggesting an important role in modulating the cellular survival cascade.
Collapse
|
4
|
Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma. Mol Biol Rep 2020; 47:9337-9344. [PMID: 33200312 DOI: 10.1007/s11033-020-05994-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Analysis of the reactive oxygen species (ROS)-detoxifying biomarkers may elucidate the mitochondrial dysfunction in glaucoma pathogenesis. Therefore, we purposed to investigate the effects of ROS-detoxifying molecules including Silent Information Regulator T1 (SIRT1) and Forkhead Box O 1 (FOXO1) and 3a (FOXO3a) transcription factors in patients with glaucoma. Our analyses included 20 eyes from patients with primary open-angle glaucoma (POAG) and 20 eyes from patients with pseudoexfoliation glaucoma (PXG) who were scheduled for trabeculectomy. After extraction of total RNA from trabecular meshwork tissue, we compared the levels of SIRT1, FOXO1and FOXO3a genes in the oxidative pathway with the level of glyceraldehyde-3 phosphate dehydrogenase (GAPDH), the reference gene, using real-time polymerase chain reaction. Relative gene expression was calculated using the threshold cycle (2-ΔΔCT) method. We observed similarly reduced expression levels of SIRT1, FOXO1, and FOXO3a genes versus GAPDH among patient groups (p = 0.40; p = 0.56; p = 0.35, respectively). This is the first study to identify the role of SIRT1 and FOXOs in human TM with glaucoma. Relative expression levels of SIRT1, FOXO1, and FOXO3a genes versus a control gene (GAPDH) were decreased in POAG and PXG groups. Our results show that SIRT1and FOXOs (1-3a) deserve special attention in the pathogenesis of glaucoma.
Collapse
|
5
|
Valmiki RR, Venkatesalu S, Chacko AG, Prabhu K, Thomas MM, Mathew V, Yoganathan S, Muthusamy K, Chacko G, Vanjare HA, Krothapalli SB. Phosphoproteomic analysis reveals Akt isoform-specific regulation of cytoskeleton proteins in human temporal lobe epilepsy with hippocampal sclerosis. Neurochem Int 2019; 134:104654. [PMID: 31884041 DOI: 10.1016/j.neuint.2019.104654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023]
Abstract
Akt is one of the most important downstream effectors of phosphatidylinositol 3-kinase/mTOR pathway. Hyperactivation and expression of this pathway are seen in a variety of neurological disorders including human temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Nevertheless, the expression and activation profiles of the Akt isoforms, Akt1, Akt2, and Akt3 and their functional roles in human TLE-HS have not been studied. We examined the protein expression and activation (phosphorylation) patterns of Akt and its isoforms in human hippocampal tissue from TLE and non-TLE patients. A phosphoproteomic approach followed by interactome analysis of each Akt isoform was used to understand protein-protein interactions and their role in TLE-HS pathology. Our results demonstrated activation of the Akt/mTOR pathway as well as activation of Akt downstream substrates like GSK3β, mTOR, and S6 in TLE-HS samples. Akt1 isoform levels were significantly increased in the TLE-HS samples as compared to the non-TLE samples. Most importantly, different isoforms were activated in different TLE-HS samples, Akt2 was activated in three samples, Akt2 and Akt1 were simultaneously activated in one sample and Akt3 was activated in two samples. Our phosphoproteomic screen across six TLE-HS samples identified 183 proteins phosphorylated by Akt isoforms, 29 of these proteins belong to cytoskeletal modification. Also, we were able to identify proteins of several other classes involved in glycolysis, neuronal development, protein folding and excitatory amino acid transport functions as Akt substrates. Taken together, our data offer clues to understand the role of Akt and its isoforms in underlying the pathology of TLE-HS and further, modulation of Akt/mTOR pathway using Akt isoforms specific inhibitors may offer a new therapeutic window for treatment of human TLE-HS.
Collapse
Affiliation(s)
- Rajesh Ramanna Valmiki
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India.
| | - Subhashini Venkatesalu
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Ari George Chacko
- Neurosurgery, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Krishna Prabhu
- Neurosurgery, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Maya Mary Thomas
- Department of Pediatric Neurology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Vivek Mathew
- Neurology, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Sangeetha Yoganathan
- Department of Pediatric Neurology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Karthik Muthusamy
- Department of Pediatric Neurology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Geeta Chacko
- Neuropathology, Department of General Pathology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | | | - Srinivasa Babu Krothapalli
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| |
Collapse
|
6
|
Kelly E, Sharma D, Wilkinson CJ, Williams RSB. Diacylglycerol kinase (DGKA) regulates the effect of the epilepsy and bipolar disorder treatment valproic acid in Dictyostelium discoideum. Dis Model Mech 2018; 11:11/9/dmm035600. [PMID: 30135067 PMCID: PMC6176992 DOI: 10.1242/dmm.035600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Valproic acid (VPA) provides a common treatment for both epilepsy and bipolar disorder; however, common cellular mechanisms relating to both disorders have yet to be proposed. Here, we explore the possibility of a diacylglycerol kinase (DGK) playing a role in regulating the effect of VPA relating to the treatment of both disorders, using the biomedical model Dictyostelium discoideum. DGK enzymes provide the first step in the phosphoinositide recycling pathway, implicated in seizure activity. They also regulate levels of diacylglycerol (DAG), thereby regulating the protein kinase C (PKC) activity that is linked to bipolar disorder-related signalling. Here, we show that ablation of the single Dictyostelium dgkA gene results in reduced sensitivity to the acute effects of VPA on cell behaviour. Loss of dgkA also provides reduced sensitivity to VPA in extended exposure during development. To differentiate a potential role for this DGKA-dependent mechanism in epilepsy and bipolar disorder treatment, we further show that the dgkA null mutant is resistant to the developmental effects of a range of structurally distinct branched medium-chain fatty acids with seizure control activity and to the bipolar disorder treatment lithium. Finally, we show that VPA, lithium and novel epilepsy treatments function through DAG regulation, and the presence of DGKA is necessary for compound-specific increases in DAG levels following treatment. Thus, these experiments suggest that, in Dictyostelium, loss of DGKA attenuates a common cellular effect of VPA relating to both epilepsy and bipolar disorder treatments, and that a range of new compounds with this effect should be investigated as alternative therapeutic agents. This article has an associated First Person interview with the first author of the paper. Editor's choice: Here, using a tractable model system, Dictyostelium discoideum, we show that diacylglycerol kinase activity might contribute to the cellular mechanism of action of the epilepsy and bipolar disorder treatment, valproic acid.
Collapse
Affiliation(s)
- Elizabeth Kelly
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Devdutt Sharma
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Christopher J Wilkinson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
7
|
Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 2017; 7:3328. [PMID: 28607431 PMCID: PMC5468228 DOI: 10.1038/s41598-017-02969-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
There is a need for diagnostic biomarkers of epilepsy and status epilepticus to support clinical examination, electroencephalography and neuroimaging. Extracellular microRNAs may be potentially ideal biomarkers since some are expressed uniquely within specific brain regions and cell types. Cerebrospinal fluid offers a source of microRNA biomarkers with the advantage of being in close contact with the target tissue and sites of pathology. Here we profiled microRNA levels in cerebrospinal fluid from patients with temporal lobe epilepsy or status epilepticus, and compared findings to matched controls. Differential expression of 20 microRNAs was detected between patient groups and controls. A validation phase included an expanded cohort and samples from patients with other neurological diseases. This identified lower levels of miR-19b in temporal lobe epilepsy compared to controls, status epilepticus and other neurological diseases. Levels of miR-451a were higher in status epilepticus compared to other groups whereas miR-21-5p differed in status epilepticus compared to temporal lobe epilepsy but not to other neurological diseases. Targets of these microRNAs include proteins regulating neuronal death, tissue remodelling, gliosis and inflammation. The present study indicates cerebrospinal fluid contains microRNAs that can support differential diagnosis of temporal lobe epilepsy and status epilepticus from other neurological and non-neurological diseases.
Collapse
|
8
|
Iori V, Iyer AM, Ravizza T, Beltrame L, Paracchini L, Marchini S, Cerovic M, Hill C, Ferrari M, Zucchetti M, Molteni M, Rossetti C, Brambilla R, Steve White H, D'Incalci M, Aronica E, Vezzani A. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis 2016; 99:12-23. [PMID: 27939857 DOI: 10.1016/j.nbd.2016.12.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
We recently discovered that forebrain activation of the IL-1 receptor/Toll-like receptor (IL-1R1/TLR4) innate immunity signal plays a pivotal role in neuronal hyperexcitability underlying seizures in rodents. Since this pathway is activated in neurons and glia in human epileptogenic foci, it represents a potential target for developing drugs interfering with the mechanisms of epileptogenesis that lead to spontaneous seizures. The lack of such drugs represents a major unmet clinical need. We tested therefore novel therapies inhibiting the IL-1R1/TLR4 signaling in an established murine model of acquired epilepsy. We used an epigenetic approach by injecting a synthetic mimic of micro(mi)RNA-146a that impairs IL1R1/TLR4 signal transduction, or we blocked receptor activation with antiinflammatory drugs. Both interventions when transiently applied to mice after epilepsy onset, prevented disease progression and dramatically reduced chronic seizure recurrence, while the anticonvulsant drug carbamazepine was ineffective. We conclude that IL-1R1/TLR4 is a novel potential therapeutic target for attaining disease-modifications in patients with diagnosed epilepsy.
Collapse
Affiliation(s)
- Valentina Iori
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy; Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Anand M Iyer
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Lara Paracchini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Milica Cerovic
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Cameron Hill
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Mariella Ferrari
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Massimo Zucchetti
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Monica Molteni
- Department of Biotechnologies and Life Sciences, Insubria University, Varese, Italy
| | - Carlo Rossetti
- Department of Biotechnologies and Life Sciences, Insubria University, Varese, Italy
| | - Riccardo Brambilla
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy; Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, United Kingdom
| | - H Steve White
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; Stichting Epilepsie Instellingen (SEIN) Nederland and Epilepsy Institute in The Netherlands Foundation, The Netherlands.
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy.
| |
Collapse
|
9
|
Characterization of temporal expressions of FOXO and pFOXO proteins in the hippocampus by kainic acid in mice: involvement of NMDA and non-NMDA receptors. Arch Pharm Res 2016; 39:660-7. [PMID: 26987339 DOI: 10.1007/s12272-016-0733-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
Abstract
In the present study, we characterized the expression and role of forkhead box O (FoxO3a) in kainic acid (KA)-induced hippocampal neuronal cell death. FoxO3a and pFoxO3a expression in the CA1, CA2, and dentate gyrus regions in the hippocampus increased 0.5 and 1 h after intracerebroventricular administration of KA. In addition, both FoxO3a and pFoxO3a expression in the hippocampal CA3 region increased significantly and equally for 1 h but decreased gradually for 24 h after KA administration. In particular, the KA-induced increases in FoxO3a and pFoxO3a expression in the hippocampal CA3 region were inhibited by pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801, dizocilpine, 1 µg/5 µl) or a non-NMDA receptor antagonist (CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione, 0.5 µg/5 µl). Furthermore, dizocilpine and CNQX produced a neuroprotective effect against KA-induced neuronal death in the CA3 region of the hippocampus. Our results suggest that FoxO3a and pFoxO3 expression is upregulated by KA. Both FoxO3a and pFoxO3a expression appear to be responsible for KA-induced neuronal death in the CA3 region of the hippocampus.
Collapse
|
10
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
11
|
Chia WJ, Tan FCK, Ong WY, Dawe GS. Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochem Int 2015; 87:43-59. [PMID: 26004810 DOI: 10.1016/j.neuint.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 01/13/2023]
Abstract
The iron siderophore binding protein lipocalin 2 (LCN2, also known as 24p3, NGAL and siderocalin) may be involved in iron homeostasis, but to date, little is known about expression of its putative receptor, brain-type organic cation transporter (BOCT, also known as BOCT1, 24p3R, NGALR and LCN2R), in the brain during neurodegeneration. The present study was carried out to elucidate the expression of LCN2 and BOCT in hippocampus after excitotoxicity induced by the glutamate analog, kainate (KA) and a possible role of LCN2 in neuronal injury. As reported previously, a rapid and sustained induction in expression of LCN2 was found in the hippocampus after intracerebroventicular injection of KA. BOCT was expressed in neurons of the saline-injected control hippocampus, and immunolabel for BOCT protein was preserved in pyramidal neurons of CA1 at 1 day post-KA injection, likely due to the delayed onset of neurodegeneration after KA injection. At 3 days and 2 weeks after KA injections, loss of immunolabel was observed due to degenerated neurons, although remaining neurons continued to express BOCT, and induction of BOCT was found in OX-42 positive microglia. This resulted in an overall decrease in BOCT mRNA and protein expression after KA treatment. Increased expression of the pro-apoptotic marker, Bim, was found in both neurons and microglia after KA injection, but TUNEL staining indicating apoptosis was found primarily in Bim-expressing neurons, but not microglia. Interaction between LCN2 and BOCT was found by DuoLink assay in cultured hippocampal neurons. Apo-LCN2 without iron caused no significant differences in neuronal Bim expression or cell survival, whereas holo-LCN2 consisting of LCN2:iron:enterochelin complex increased Bim mRNA expression and decreased neuronal survival. Together, results suggest that LCN2 and BOCT may have a role in neuronal injury.
Collapse
Affiliation(s)
- Wan-Jie Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | - Wei-Yi Ong
- Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 4 Medical Drive, Singapore 117597.
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456.
| |
Collapse
|
12
|
Lima IVDA, Campos AC, Miranda AS, Vieira ÉLM, Amaral-Martins F, Vago JP, Santos RPDM, Sousa LP, Vieira LB, Teixeira MM, Fiebich BL, Moraes MFD, Teixeira AL, de Oliveira ACP. PI3Kγ deficiency enhances seizures severity and associated outcomes in a mouse model of convulsions induced by intrahippocampal injection of pilocarpine. Exp Neurol 2015; 267:123-34. [PMID: 25749189 DOI: 10.1016/j.expneurol.2015.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/22/2015] [Accepted: 02/18/2015] [Indexed: 11/16/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is an enzyme involved in different pathophysiological processes, including neurological disorders. However, its role in seizures and postictal outcomes is still not fully understood. We investigated the role of PI3Kγ on seizures, production of neurotrophic and inflammatory mediators, expression of a marker for microglia, neuronal death and hippocampal neurogenesis in mice (WT and PI3Kγ(-/-)) subjected to intrahippocampal microinjection of pilocarpine. PI3Kγ(-/-) mice presented a more severe status epilepticus (SE) than WT mice. In hippocampal synaptosomes, genetic or pharmacological blockade of PI3Kγ enhanced the release of glutamate and the cytosolic calcium concentration induced by KCl. There was an enhanced neuronal death and a decrease in the doublecortin positive cells in the dentate gyrus of PI3Kγ(-/-) animals after the induction of SE. Levels of BDNF were significantly increased in the hippocampus of WT and PI3Kγ(-/-) mice, although in the prefrontal cortex, only PI3Kγ(-/-) animals showed significant increase in the levels of this neurotrophic factor. Pilocarpine increased hippocampal microglial immunolabeling in both groups, albeit in the prelimbic, medial and motor regions of the prefrontal cortex this increase was observed only in PI3Kγ(-/-) mice. Regarding the levels of inflammatory mediators, pilocarpine injection increased interleukin (IL) 6 in the hippocampus of WT and PI3Kγ(-/-) animals and in the prefrontal cortex of PI3Kγ(-/-) animals 24h after the stimulus. Levels of TNFα were enhanced in the hippocampus and prefrontal cortex of only PI3Kγ(-/-) mice at this time point. On the other hand, PI3Kγ deletion impaired the increase in IL-10 in the hippocampus induced by pilocarpine. In conclusion, the lack of PI3Kγ revealed a deleterious effect in an animal model of convulsions induced by pilocarpine, suggesting that this enzyme may play a protective role in seizures and pathological outcomes associated with this condition.
Collapse
Affiliation(s)
- Isabel Vieira de Assis Lima
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Alline Cristina Campos
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Aline Silva Miranda
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Érica Leandro Marciano Vieira
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Flávia Amaral-Martins
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Department of Clinical and Toxicological Analysis, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Rebeca Priscila de Melo Santos
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analysis, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Luciene Bruno Vieira
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Bernd L Fiebich
- Department of Psychiatry, University of Freiburg Medical School, Hauptstr. 5, D-79104 Freiburg, Germany
| | - Márcio Flávio Dutra Moraes
- Department of Biophysics and Physiology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | | |
Collapse
|
13
|
Bhowmik M, Saini N, Vohora D. Histamine H3 receptor antagonism by ABT-239 attenuates kainic acid induced excitotoxicity in mice. Brain Res 2014; 1581:129-40. [PMID: 24952295 DOI: 10.1016/j.brainres.2014.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/28/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023]
Abstract
The multifaceted pathogenesis of temporal lobe epilepsy (TLE) offers a number of adjunctive therapeutic prospects. One such therapeutic strategy could be targeting H3 receptor (H3R) by selective H3R antagonists which are perceived to have antiepileptic and neuroprotective potential. Kainic acid (KA) induced seizure, a reliable model of TLE, triggers epileptogenic events resulting from initial neuronal death and ensuing recurring seizures. The present study aimed to determine whether pre-treatment with ABT-239, a novel H3R antagonist, and its combinations with sodium valproate (SVP) and TDZD-8 (glycogen synthase kinase-3β (GSK3β) inhibitor) can prevent the excitotoxic events in mice exposed to KA (10 mg/kg i.p.). ABT-239 (1 and 3 mg/kg i.p.) significantly attenuated KA-mediated behavioural and excitotoxic anomalies and restored altered expression of Bax, cleaved caspase-3, phospho-Akt (Ser473) and cAMP response element binding protein (CREB). Surprisingly, restoration of Bcl2 and phospho-GSK3β (Ser9) by ABT-239 did not reach the level of statistical significance. Co-administration of ABT-239 (1 and 3 mg/kg) with a sub-effective dose of SVP (150 mg/kg i.p.) yielded improved efficacy than when given alone. Similarly, low and high dose combinations of ABT-239 (1 and 3 mg/kg) with TDZD-8 (5 and 10 mg/kg i.p.) produced greater neuroprotection than any other treatment group. Our findings suggests a neuroprotective potential of ABT-239 and its combinations with SVP and TDZD-8 against KA-induced neurotoxicity, possibly mediated through in part each by modulating Akt/GSK3β and CREB pathways. The use of H3R antagonists as adjuvant in the treatment of human TLE might find potential utility, and can be pursued further.
Collapse
Affiliation(s)
- Malay Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Neeru Saini
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
14
|
Kim YS, Choi MY, Lee DH, Jeon BT, Roh GS, Kim HJ, Kang SS, Cho GJ, Choi WS. Decreased interaction between FoxO3a and Akt correlates with seizure-induced neuronal death. Epilepsy Res 2014; 108:367-78. [PMID: 24518891 DOI: 10.1016/j.eplepsyres.2014.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/29/2013] [Accepted: 01/17/2014] [Indexed: 12/17/2022]
Abstract
Status epilepticus (SE) leads to neurodegeneration which likely contributes to the development of chronic temporal lobe epilepsy (TLE). Therefore, neuroprotection following SE is considered as a promising strategy for preventing chronic TLE, but molecular changes that occur following SE still remain unclear. The Forkhead homeobox type O (FoxO) family of Forkhead transcription factors mediates cell death in several pathological conditions, but the role of FoxO in the excitotoxic effects of kainic acid (KA) remains largely unknown. The present study examined how FoxO3a and its interaction with other proteins changed in response to excitotoxic stimuli in the mouse hippocampus after SE. Mice were given intraperitoneal injection of kainate and seizure behavior was monitored for 2h to ensure SE. Western blot analyses, co-immunoprecipitation experiments, sub-cellular fractionation and double immunofluorescence analyses were used to determine changes in levels of FoxO3a, Akt, Bim, cleaved caspase-3 and phospho-FoxO3a or phospho-Akt, and their interactions at 6 or 24h after KA treatment. We found that SE activated FoxO3a and increased levels of Bim or cleaved caspase-3, and decreased levels of phospho-FoxO3a or phospho-Akt in the hippocampus. In addition, we noted extensive hippocampal cell death at 24h after KA treatment, evidenced by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL), fluoro-jade B or anti-active caspase-3 staining. Furthermore, co-immunoprecipitation experiments revealed that phospho-Akt interaction with FoxO3a was significantly lowered in the hippocampus at 24h after KA treatment, paralleling enhanced Bim levels and Bim interaction with Bcl-xL. Moreover, double immunofluorescence analyses showed increased co-localization of FoxO3a or Bim and TUNEL in the hippocampi at 24h after KA treatment. Identifying molecular mechanism underlying SE-induced neuronal death can provide a novel strategy to protect against seizure-induced neuronal injury. We found that Akt-FoxO3a signaling relates to seizure-induced neuronal death, providing insight into neuroprotection following SE.
Collapse
Affiliation(s)
- Yoon Sook Kim
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Mee Young Choi
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Dong Hoon Lee
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Byeong Tak Jeon
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Gu Seob Roh
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Sang Soo Kang
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea
| | - Wan Sung Choi
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Medical Research Center, Gyeongsang National University, 816-15 Jinju-daero, Jinju, Gyeongnam 660-751, South Korea.
| |
Collapse
|
15
|
Chang P, Walker MC, Williams RSB. Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 2013; 62:296-306. [PMID: 24148856 PMCID: PMC3898270 DOI: 10.1016/j.nbd.2013.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/11/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Phosphatidylinositol (3–5) trisphosphate (PIP3) is a central regulator of diverse neuronal functions that are critical for seizure progression, however its role in seizures is unclear. We have recently hypothesised that valproic acid (VPA), one of the most commonly used drugs for the treatment of epilepsy, may target PIP3 signalling as a therapeutic mode of action. Here, we show that seizure induction using kainic acid in a rat in vivo epilepsy model resulted in a decrease in hippocampal PIP3 levels and reduced protein kinase B (PKB/AKT) phosphorylation, measured using ELISA mass assays and Western blot analysis, and both changes were restored following VPA treatment. These finding were reproduced in cultured rat hippocampal primary neurons and entorhinal cortex–hippocampal slices during exposure to the GABA(A) receptor antagonist pentylenetetrazol (PTZ), which is widely used to generate seizures and seizure-like (paroxysmal) activity. Moreover, VPA's effect on paroxysmal activity in the PTZ slice model is blocked by phosphatidylinositol 3-kinase (PI3K) inhibition or PIP2 sequestration by neomycin, indicating that VPA's efficacy is dependent upon PIP3 signalling. PIP3 depletion following PTZ treatment may also provide a positive feedback loop, since enhancing PIP3 depletion increases, and conversely, reducing PIP3 dephosphorylation reduces paroxysmal activity and this effect is dependent upon AMPA receptor activation. Our results therefore indicate that PIP3 depletion occurs with seizure activity, and that VPA functions to reverse these effects, providing a novel mechanism for VPA in epilepsy treatment. In vivo seizure induction (using kainic acid) reduces hippocampal PIP3 levels. In vivo seizure induction (using kainic acid) reduces hippocampal phospho-PKB levels. Valproic acid protects against these reductions under seizure conditions only. Similar regulation is seen with PTZ-induced in vitro seizure activity. Seizure-induced PIP3 reduction causes a feedback activation of seizure activity.
Collapse
Affiliation(s)
- Pishan Chang
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, WC1N 3BG, UK.
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK.
| |
Collapse
|
16
|
Cell death and survival mechanisms are concomitantly active in the hippocampus of patients with mesial temporal sclerosis. Neuroscience 2013; 237:56-65. [DOI: 10.1016/j.neuroscience.2013.01.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 11/24/2022]
|
17
|
Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death. Cell Death Dis 2013; 4:e606. [PMID: 23618904 PMCID: PMC3668628 DOI: 10.1038/cddis.2013.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prolonged seizures (status epilepticus, SE) can cause neuronal death within brain regions such as the hippocampus. This may contribute to impairments in cognitive functioning and trigger or exacerbate epilepsy. Seizure-induced neuronal death is mediated, at least in part, by apoptosis-associated signaling pathways. Indeed, mice lacking certain members of the potently proapoptotic BH3-only subfamily of Bcl-2 proteins are protected against hippocampal damage caused by status epilepticus. The recently identified BH3-only protein Bcl-2-modifying factor (Bmf) normally interacts with the cytoskeleton, but upon certain cellular stresses, such as loss of extracellular matrix adhesion or energy crisis, Bmf relocalizes to mitochondria, where it can promote Bax activation and mitochondrial dysfunction. Although Bmf has been widely reported in the hematopoietic system to exert a proapoptotic effect, no studies have been undertaken in models of neurological disorders. To examine whether Bmf is important for seizure-induced neuronal death, we studied Bmf induction after prolonged seizures induced by intra-amygdala kainic acid (KA) in mice, and examined the effect of Bmf-deficiency on seizures and damage caused by SE. Seizures triggered an early (1-8 h) transcriptional activation and accumulation of Bax in the cell death-susceptible hippocampal CA3 subfield. Bmf mRNA was biphasically upregulated beginning at 1 h after SE and returning to normal by 8 h, while again being found elevated in the hippocampus of epileptic mice. Bmf upregulation was prevented by Compound C, an inhibitor of adenosine monophosphate-activated protein kinase, indicating Bmf expression may be induced in response to bioenergetic stress. Bmf-deficient mice showed normal sensitivity to the convulsant effects of KA, but, surprisingly, displayed significantly more neuronal death in the hippocampal CA1 and CA3 subfields after SE. These are the first studies investigating Bmf in a model of neurologic injury, and suggest that Bmf may protect neurons against seizure-induced neuronal death in vivo.
Collapse
|
18
|
Brennan GP, Jimenez-Mateos EM, McKiernan RC, Engel T, Tzivion G, Henshall DC. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS One 2013; 8:e54491. [PMID: 23359526 PMCID: PMC3554740 DOI: 10.1371/journal.pone.0054491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023] Open
Abstract
14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross C. McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Guri Tzivion
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
19
|
Caballero-Caballero A, Engel T, Martinez-Villarreal J, Sanz-Rodriguez A, Chang P, Dunleavy M, Mooney CM, Jimenez-Mateos EM, Schindler CK, Henshall DC. Mitochondrial localization of the forkhead box class O transcription factor FOXO3a in brain. J Neurochem 2013; 124:749-56. [PMID: 23278239 DOI: 10.1111/jnc.12133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
FOXO3a is member of the Forkhead box class O transcription factors, which functions in diverse pathways to regulate cellular metabolism, differentiation, and apoptosis. FOXO3a shuttles between the cytoplasm and nucleus and may be activated in neurons by stressors, including seizures. A subset of nuclear transcription factors may localize to mitochondria, but whether FOXO3a is present within brain mitochondria is unknown. Here, we report that purified mitochondrial fractions from rat, mouse, and human hippocampus, as well as HT22 hippocampal cells, contain FOXO3a protein. Immunogold electron microscopy supported the presence of FOXO3a within brain mitochondria, and chromatin immunoprecipitation analysis suggested FOXO3a was associated with mitochondrial DNA. Over-expression of a mitochondrially targeted FOXO3a fusion protein in HT22 cells, but not primary hippocampal neurons, conferred superior protection against glutamate toxicity than FOXO3a alone. Mitochondrial FOXO3a levels were reduced in the damaged region of the mouse hippocampus after status epilepticus, while mitochondrial fractions from the hippocampus of patients with temporal lobe epilepsy displayed higher levels of FOXO3a than controls. These results support mitochondria as a site of FOXO3a localization, which may contribute to the overall physiological and pathophysiological functions of this transcription factor.
Collapse
|
20
|
Salih DAM, Rashid AJ, Colas D, de la Torre-Ubieta L, Zhu RP, Morgan AA, Santo EE, Ucar D, Devarajan K, Cole CJ, Madison DV, Shamloo M, Butte AJ, Bonni A, Josselyn SA, Brunet A. FoxO6 regulates memory consolidation and synaptic function. Genes Dev 2012; 26:2780-801. [PMID: 23222102 DOI: 10.1101/gad.208926.112] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The FoxO family of transcription factors is known to slow aging downstream from the insulin/IGF (insulin-like growth factor) signaling pathway. The most recently discovered FoxO isoform in mammals, FoxO6, is highly enriched in the adult hippocampus. However, the importance of FoxO factors in cognition is largely unknown. Here we generated mice lacking FoxO6 and found that these mice display normal learning but impaired memory consolidation in contextual fear conditioning and novel object recognition. Using stereotactic injection of viruses into the hippocampus of adult wild-type mice, we found that FoxO6 activity in the adult hippocampus is required for memory consolidation. Genome-wide approaches revealed that FoxO6 regulates a program of genes involved in synaptic function upon learning in the hippocampus. Consistently, FoxO6 deficiency results in decreased dendritic spine density in hippocampal neurons in vitro and in vivo. Thus, FoxO6 may promote memory consolidation by regulating a program coordinating neuronal connectivity in the hippocampus, which could have important implications for physiological and pathological age-dependent decline in memory.
Collapse
Affiliation(s)
- Dervis A M Salih
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin TK, Cheng CH, Chen SD, Liou CW, Huang CR, Chuang YC. Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci 2012; 13:8722-8739. [PMID: 22942730 PMCID: PMC3430261 DOI: 10.3390/ijms13078722] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder marked by nigrostriatal dopaminergic degeneration. Evidence suggests that mitochondrial dysfunction may be linked to PD through a variety of different pathways, including free-radical generation and dysfunction of the mitochondrial Complex I activity. In Lewis rats, chronic systemic administration of a specific mitochondrial Complex I inhibitor, rotenone (3 mg/kg/day) produced parkinsonism-like symptoms. Increased oxidized proteins and peroxynitrite, and mitochondrial or cytosol translocation of Bim, Bax or cytochrome c in the striatum was observed after 2-4 weeks of rotenone infusion. After 28 days of systemic rotenone exposure, imunohistochemical staining for tyrosine hydroxylase indicated nigrostriatal dopaminergic neuronal cell degeneration. Characteristic histochemical (TUNEL or activated caspase-3 staining) or ultrastructural (electron microscopy) features of apoptotic cell death were present in the striatal neuronal cell after chronic rotenone intoxication. We conclude that chronic rotenone intoxication may enhance oxidative and nitrosative stress that induces mitochondrial dysfunction and ultrastructural damage, resulting in translocation of Bim and Bax from cytosol to mitochondria that contributes to apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (S.-D.C.); (C.-W.L.); (C.-R.H.)
- Center for Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (T.-K.L.); (Y.-C.C.); Tel.: +886-7-7317123 (T.-K.L.) (Y.-C.C.); Fax: +886-7-7318762 (T.-K.L.) (Y.-C.C.)
| | - Ching-Hsiao Cheng
- Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mail:
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (S.-D.C.); (C.-W.L.); (C.-R.H.)
- Center for Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (S.-D.C.); (C.-W.L.); (C.-R.H.)
- Center for Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (S.-D.C.); (C.-W.L.); (C.-R.H.)
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (S.-D.C.); (C.-W.L.); (C.-R.H.)
- Center for Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mail:
- Department of Biological Science, National Sun Yet-Sen University, Kaohsiung 804, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (T.-K.L.); (Y.-C.C.); Tel.: +886-7-7317123 (T.-K.L.) (Y.-C.C.); Fax: +886-7-7318762 (T.-K.L.) (Y.-C.C.)
| |
Collapse
|
22
|
Lopes MW, Soares FMS, de Mello N, Nunes JC, de Cordova FM, Walz R, Leal RB. Time-Dependent Modulation of Mitogen Activated Protein Kinases and AKT in Rat Hippocampus and Cortex in the Pilocarpine Model of Epilepsy. Neurochem Res 2012; 37:1868-78. [DOI: 10.1007/s11064-012-0797-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/11/2012] [Accepted: 05/07/2012] [Indexed: 01/14/2023]
|
23
|
Zhou W, Chen L, Yang S, Li F, Li X. Behavioral stress-induced activation of FoxO3a in the cerebral cortex of mice. Biol Psychiatry 2012; 71:583-92. [PMID: 21978520 PMCID: PMC3254805 DOI: 10.1016/j.biopsych.2011.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND The transcription factor FoxO3a is highly expressed in brain, but little is known about the response of FoxO3a to behavioral stress and its impact in the associated behavioral changes. METHODS We tested the response of brain FoxO3a in the learned helplessness (LH) paradigm and tested signaling pathways that mediate the response of FoxO3a. RESULTS A single session of inescapable shocks (IES) in mice reduced FoxO3a phosphorylation at the Akt-regulating serine/threonine residues and induced prolonged nuclear accumulation of FoxO3a in the cerebral cortex, both indicating activation of FoxO3a in brain. The response of FoxO3a is accompanied by a transient inactivation of Akt and a prolonged activation of glycogen synthase kinase-3beta (GSK3β). Noticeably, FoxO3a formed a protein complex with GSK3β in the cerebral cortex, and the interaction between the two proteins was stronger in IES-treated mice. Inhibition of glycogen synthase kinase-3 was able to abolish IES-induced LH behavior, disrupt IES-induced GSK3β-FoxO3a interaction, and reduce nuclear FoxO3a accumulation. In vitro approaches further revealed that the interaction between GSK3β and FoxO3a was strongest when both were active; FoxO3a was phosphorylated by recombinant GSK3β; and glycogen synthase kinase-3 inhibitors effectively reduced FoxO3a transcriptional activity. Importantly, IES-induced LH behavior was markedly diminished in FoxO3a-deficient mice that had minimal FoxO3a expression and reduced levels of FoxO3a-inducible genes. CONCLUSIONS FoxO3a is activated in response to IES by interacting with GSK3β, and inhibition of GSK3β or reducing FoxO3a expression promotes resistance to stress-induced behavioral disturbance by disrupting this signaling mechanism.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
24
|
Peng X, Wang L, Chen G, Wang X. Dynamic Expression of Adenylate Kinase 2 in the Hippocampus of Pilocarpine Model Rats. J Mol Neurosci 2012; 47:150-7. [DOI: 10.1007/s12031-011-9703-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/23/2011] [Indexed: 01/24/2023]
|
25
|
Zhao Y, Spigolon G, Bonny C, Culman J, Vercelli A, Herdegen T. The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria. Mol Cell Neurosci 2011; 49:300-10. [PMID: 22206897 DOI: 10.1016/j.mcn.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/19/2011] [Accepted: 12/14/2011] [Indexed: 02/08/2023] Open
Abstract
Kainic acid (KA) induced seizures provokes an extensive neuronal degeneration initiated by c-Jun N-terminal kinases (JNK) as central mediators of excitotoxicity. However, the actions of their individual isoforms in cellular organelles including mitochondria remain to be elucidated. Here, we have studied the activation of JNK1, JNK2 and JNK3 and their activators, mitogen-activated protein kinase kinase (MKK) 4/7, in brain mitochondria, cytosolic and nuclear fractions after KA seizures. In the mitochondrial fraction, KA significantly increased the presence of JNK1, JNK3 and MKK4 and stimulated their phosphorylation i.e. activation. The pro-apoptotic proteins, Bim and Bax were induced and, consequently, the ratio Bcl-2-Bax decreased. These changes were paralleled by the release of cytochrome c and cleavage of poly(ADP-ribose)-polymerase (PARP). The JNK peptide inhibitor, D-JNKI-1 (XG-102) reversed these pathological events in the mitochondria and almost completely abolished cytochrome c release and PARP cleavage. Importantly, JNK3, but not JNK1 or JNK2, was associated with Bim in mitochondria and D-JNKI-1 prevented the formation of this apoptotic complex. Apart from of the attenuation of c-Jun phosphorylation in the nucleus, D-JNKI-1 did not affect the level of JNK3 isoform in the nuclear and cytosolic fractions. These findings provide novel insights into the mode of action of individual JNK isoforms in cell organelles and points to the JNK3 pool in mitochondria as a target of the JNK inhibitor D-JNKI-1 to confer neuroprotection.
Collapse
Affiliation(s)
- Yi Zhao
- Institute for Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Hospital Strasse 4, 24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Piro RM, Molineris I, Ala U, Di Cunto F. Evaluation of candidate genes from orphan FEB and GEFS+ loci by analysis of human brain gene expression atlases. PLoS One 2011; 6:e23149. [PMID: 21858011 PMCID: PMC3157479 DOI: 10.1371/journal.pone.0023149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022] Open
Abstract
Febrile seizures, or febrile convulsions (FEB), represent the most common form of childhood seizures and are believed to be influenced by variations in several susceptibility genes. Most of the associated loci, however, remain ‘orphan’, i.e. the susceptibility genes they contain still remain to be identified. Further orphan loci have been mapped for a related disorder, genetic (generalized) epilepsy with febrile seizures plus (GEFS+). We show that both spatially mapped and ‘traditional’ gene expression data from the human brain can be successfully employed to predict the most promising candidate genes for FEB and GEFS+, apply our prediction method to the remaining orphan loci and discuss the validity of the predictions. For several of the orphan FEB/GEFS+ loci we propose excellent, and not always obvious, candidates for mutation screening in order to aid in gaining a better understanding of the genetic origin of the susceptibility to seizures.
Collapse
Affiliation(s)
- Rosario M Piro
- Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
| | | | | | | |
Collapse
|
27
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
28
|
In vivo contributions of BH3-only proteins to neuronal death following seizures, ischemia, and traumatic brain injury. J Cereb Blood Flow Metab 2011; 31:1196-210. [PMID: 21364604 PMCID: PMC3099642 DOI: 10.1038/jcbfm.2011.26] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bcl-2 homology (BH) domain 3-only proteins are a proapoptotic subgroup of the Bcl-2 gene family, which regulate cell death via effects on mitochondria. The BH3-only proteins react to various cell stressors and promote cell death by binding and inactivating antiapoptotic Bcl-2 family members and direct activation of proapoptotic multi-BH domain proteins such as Bax. Here, we review the in vivo evidence for their involvement in the pathophysiology of status epilepticus and contrast it to ischemia and traumatic brain injury. Seizures in rodents activate three potent proapoptotic BH3-only proteins: Bid, Bim, and Puma. Analysis of damage after seizures in mice singly deficient for each BH3-only protein supports a causal role for Puma and to a lesser extent Bim but, surprisingly, not Bid. In ischemia and trauma, where core aspects of the pathophysiology of cell death overlap, multiple BH3-only proteins are also activated and Bid has been shown to be required for neuronal death. The findings suggest that while each neurologic insult activates multiple BH3-only proteins, there may be specificity in their functional contribution. Future challenges include evaluating the remaining BH3-only proteins, explaining different causal contributions, and, if possible, exploring neurologic outcomes in mouse models deficient for multiple BH3-only proteins.
Collapse
|
29
|
Characterization of intracellular translocation of Forkhead transcription factor O (FoxO) members induced by NGF in PC12 cells. Neurosci Lett 2011; 498:31-6. [PMID: 21549807 DOI: 10.1016/j.neulet.2011.04.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/08/2011] [Accepted: 04/21/2011] [Indexed: 12/15/2022]
Abstract
Nuclear translocation of Forkhead transcription factors of the O class (FoxOs) is important for the action of growth factors. However it is not known if all members of the FOXO family have the same translocation properties. We examined the effects of nerve growth factor (NGF) on nuclear/cytoplasmic shuttling of FoxO1, FoxO3a and FoxO6 in PC12 cells and determined their translocation kinetics. Our data demonstrated that NGF could induce the nuclear exclusion of FoxO1-GFP and FoxO3a-GFP in PC12 cells with different properties, but had no effect on FoxO6-GFP's nuclear localization and FoxO6-GFP showed an exclusive nuclear localization. Translocat ould be blocked by K252a and LY294002 but not by PD98059. Moreover, FoxO3a returned to cytoplasm at a higher rate than FoxO1 after NGF stimulation and it was more sensitive than FoxO1 to NGF stimulation.
Collapse
|
30
|
Chen SD, Chang AYW, Chuang YC. The potential role of mitochondrial dysfunction in seizure-associated cell death in the hippocampus and epileptogenesis. J Bioenerg Biomembr 2011; 42:461-5. [PMID: 21153870 DOI: 10.1007/s10863-010-9321-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epilepsy is considered one of the most common neurological disorders worldwide. The burst firing neurons associated with prolonged epileptic discharges could lead to a large number of changes with events of cascades at the cellular level. From its role as the cellular powerhouse, mitochondria also play a crucial role in the mechanisms of cell death. Emerging evidence has shown that prolonged seizures may result in mitochondrial dysfunction and increase of oxidative and nitrosative stress in the hippocampus that precede neuronal cell death and cause subsequent epileptogenesis. The selective dysfunction of mitochondrial respiratory chain Complex I has been suggested to be a biochemical hallmark of seizure-induced neuronal cell death and epileptogenesis. Therefore, protection of mitochondria from bioenergetic failure and oxidative stress in the hippocampus may open a new vista to the development of effective neuroprotective strategies against seizure-induced brain damage and to the design of novel treatment perspectives against therapy-resistant forms of epilepsy.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
31
|
Thompson S, Pearson AN, Ashley MD, Jessick V, Murphy BM, Gafken P, Henshall DC, Morris KT, Simon RP, Meller R. Identification of a novel Bcl-2-interacting mediator of cell death (Bim) E3 ligase, tripartite motif-containing protein 2 (TRIM2), and its role in rapid ischemic tolerance-induced neuroprotection. J Biol Chem 2011; 286:19331-9. [PMID: 21478148 DOI: 10.1074/jbc.m110.197707] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that the cell death-promoting protein Bcl-2-interacting mediator of cell death (Bim) is ubiquitinated and degraded following a neuroprotection-conferring episode of brief ischemia (preconditioning). Here, we identify the E3 ligase that ubiquitinates Bim in this model, using a proteomics approach. Using phosphorylated GST-Bim as bait, we precipitated and identified by mass spectrometry tripartite motif protein 2 (TRIM2), a RING (really interesting new gene) domain-containing protein. The reaction between TRIM2 and Bim was confirmed using co-immunoprecipitation followed by immunoblotting. We show that TRIM2 binds to Bim when it is phosphorylated by p42/p44 MAPK but does not interact with a nonphosphorylatable Bim mutant (3ABim). 12-O-tetradecanoylphorbol-13-acetate activation of p42/p44 MAPK drives Bim ubiquitination in mouse embryonic fibroblast cells and is associated with an increased interaction between TRIM2 and Bim. One hour following preconditioning ischemia, the binding of Bim to TRIM2 increased, consistent with the time window of enhanced Bim degradation. Blocking p42/p44 MAPK activation following preconditioning ischemia with U0126 or using the nonphosphorylatable 3ABim reduced the binding between Bim and TRIM2. Immunodepletion of TRIM2 from cell lysates prepared from preconditioned cells reduced Bim ubiquitination. Finally, suppression of TRIM2 expression, using lentivirus transduction of shRNAmir, stabilized Bim protein levels and blocked neuroprotection observed in rapid ischemic tolerance. Taken together, these data support a role for TRIM2 in mediating the p42/p44 MAPK-dependent ubiquitination of Bim in rapid ischemic tolerance.
Collapse
Affiliation(s)
- Simon Thompson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsuchiya T, Bonner HP, Engel T, Woods I, Matsushima S, Ward MW, Taki W, Henshall DC, Concannon CG, Prehn JHM. Bcl-2 homology domain 3-only proteins Puma and Bim mediate the vulnerability of CA1 hippocampal neurons to proteasome inhibition in vivo. Eur J Neurosci 2010; 33:401-8. [PMID: 21198986 DOI: 10.1111/j.1460-9568.2010.07538.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bcl-2 homology domain 3 (BH3)-only proteins are pro-apoptotic Bcl-2 family members that play important roles in upstream cell death signalling during apoptosis. Proteasomal stress has been shown to contribute to the pathology of cerebral ischaemia and many neurodegenerative disorders. Here we explored the contribution of BH3-only proteins in mediating proteasome-inhibition-induced apoptosis in the murine brain in vivo. Stereotactic intrahippocampal microinjection of the selective proteasome inhibitor epoxomicin (2.5 nmol) induced a delayed apoptosis within only the CA1 hippocampal neurons and not neurons within the CA3 or dentate gyrus regions, a selective vulnerability similar to that seen during ischaemia. This injury developed over a time-course of 3 days and was characterized by positive terminal deoxynucleotidyl transferase dUTP nick end labelling staining and nuclear condensation. Previous work from our laboratory has identified the BH3-only protein p53-upregulated mediator of apoptosis (Puma) as mediating proteasome-inhibition-induced apoptosis in cultured neural cells. Genetic deletion of puma reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labelling-positive cells within the CA1 following epoxomicin microinjection but it did not provide a complete protection. Subsequent studies identified the BH3-only protein Bim as also being upregulated during proteasome inhibition in organotypic hippocampal slice cultures and after epoxomicin treatment in vivo. Interestingly, the genetic deletion of bim also afforded significant neuroprotection, although this protection was less pronounced. In summary, we demonstrate that the BH3-only proteins Puma and Bim mediate the delayed apoptosis of CA1 hippocampal neurons induced by proteasome inhibition in vivo, and that either BH3-only protein can only partly compensate for the deficiency of the other.
Collapse
Affiliation(s)
- Takuro Tsuchiya
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11:682-96. [PMID: 20842175 PMCID: PMC2948541 DOI: 10.1038/nrn2911] [Citation(s) in RCA: 1165] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a long-standing paradox that NMDA (N-methyl-D-aspartate) receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signalling, leads to the build-up of a neuroprotective 'shield', whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and from opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling.
Collapse
Affiliation(s)
- Giles E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
34
|
Engel T, Caballero-Caballero A, Schindler CK, Plesnila N, Strasser A, Prehn JH, Henshall DC. BH3-only protein Bid is dispensable for seizure-induced neuronal death and the associated nuclear accumulation of apoptosis-inducing factor. J Neurochem 2010; 115:92-101. [DOI: 10.1111/j.1471-4159.2010.06909.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Rocha LL, Lopez-Meraz ML, Niquet J, Wasterlain CG. Do single seizures cause neuronal death in the human hippocampus? Epilepsy Curr 2010; 7:77-81. [PMID: 17520081 PMCID: PMC1874327 DOI: 10.1111/j.1535-7511.2007.00178.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The question of whether repeated single seizures cause neuronal death in the adult human brain is of great clinical importance and might have broad therapeutic implications. Reviewed here are recent studies on the effects of repeated single seizures (in the absence of status epilepticus) on hippocampal volume and on neuronal death markers in blood and in surgically ablated hippocampi.
Collapse
Affiliation(s)
- Luisa L Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City, Mexico
| | | | | | | |
Collapse
|
36
|
Abstract
Most cell death in vertebrates proceeds through the intrinsic pathway of apoptosis and results from unregulated increase of mitochondrial membrane permeability. Bcl2-associated X protein (Bax) and Bcl2-antagonist/killer protein (Bak), the effector proapoptotic members of the Bcl-2 family, are, in their active state, the principal accomplices for this permeabilization process. How exactly Bax and Bak are activated has been a matter of major investigation in the last decade, and suitable tools offered by quantitative cytometric methodologies have significantly contributed to the understanding of the function of Bcl-2 family members. Here, we review the most relevant findings in this field and highlight one common trait that has emerged from the diverse new theories: a crucial role in the control of Bax/Bak activation has to be attributed to the BH3-only subset of the Bcl-2 family. BH3-only proteins exert their proapoptotic activity by hierarchical and tightly tuned interactions with other Bcl-2 family members and operate as sensors of intracellular/extracellular death signals and vectors of information to the core apoptotic machinery. Given their essential role in apoptosis, BH3-only molecules are proposed as molecular targets for the cure of diseases associated with abnormal cell death, as in the case with neurodegenerative conditions. As well, they are explored as possible tools for cancer therapy, according to the concept that molecules mimicking the BH3 domain of these proteins could selectively and efficiently cooperate in the cell killing by chemotherapeutic drugs. A few BH3 mimetics are currently being tested in clinical trials of hematologic and solid tumors. Nevertheless, the knowledge about the cellular and molecular mechanisms that regulate responsiveness to BH3 therapy has to be further expanded and will benefit from recent advances in cytometric quantitative technologies.
Collapse
Affiliation(s)
- Fabio Ghiotto
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, Genoa 16132, Italy
| | | | | |
Collapse
|
37
|
Goto EM, Silva MDP, Perosa SR, Argañaraz GA, Pesquero JB, Cavalheiro EA, Naffah-Mazzacoratti MG, Teixeira VPC, Silva JA. Akt pathway activation and increased neuropeptide Y mRNA expression in the rat hippocampus: implications for seizure blockade. Neuropeptides 2010; 44:169-76. [PMID: 20064661 DOI: 10.1016/j.npep.2009.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 01/01/2023]
Abstract
The aim of this study was to analyze the expression of survival-related molecules such Akt and integrin-linked kinase (ILK) to evaluate Akt pathway activation in epileptogenesis process. Furthermore, was also investigated the mRNA expression of neuropeptide Y, a considered antiepileptic neuropeptide, in the pilocarpine-induced epilepsy. Male Wistar rats were submitted to the pilocarpine model of epilepsy. Hippocampi were removed 6h (acute phase), 12h (late acute), 5d (silent) and 60d (chronic) after status epilepticus (SE) onset, and from animals that received pilocarpine but did not develop SE (partial group). Hippocampi collected were used to specify mRNA expression using Real-Time PCR. Immunohistochemistry assay was employed to place ILK distribution in the hippocampus and Western blot technique was used to determine Akt activation level. A decrease in ILK mRNA content was found during acute (0.39+/-0.03) and chronic (0.48+/-0.06) periods when compared to control group (0.87+/-0.10). Protein levels of ILK were also diminished during both periods. Partial group showed increased ILK mRNA expression (0.80+/-0.06) when compared with animals in the acute stage. Silent group had ILK mRNA and immunoreactivity similar to control group. Western blot assay showed an augmentation in Akt activation in silent period (0.52+/-0.03) in comparison with control group (0.44+/-0.01). Neuropeptide Y mRNA expression increased in the partial group (1.67+/-0.22) and in the silent phase (1.45+/-0.29) when compared to control group (0.36+/-0.12). Results suggest that neuropeptide Y (as anticonvulsant) might act in protective mechanisms occurred during epileptic phenomena. Together with ILK expression and Akt activation, these molecules could be involved in hippocampal neuroprotection in epilepsy.
Collapse
Affiliation(s)
- Eduardo M Goto
- Pathology Department, Universidade Federal de São Paulo, UNIFESP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Engel T, Hatazaki S, Tanaka K, Prehn JHM, Henshall DC. Deletion of Puma protects hippocampal neurons in a model of severe status epilepticus. Neuroscience 2010; 168:443-50. [PMID: 20362645 DOI: 10.1016/j.neuroscience.2010.03.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 02/04/2023]
Abstract
Prolonged seizures (status epilepticus) can activate apoptosis-associated signaling pathways. The extent to which such pathways contribute to cell death might depend on the insult intensity, whereby the programmed or apoptotic cell death component is reduced when seizures are more severe or protracted. We recently showed that mice lacking the pro-apoptotic Bcl-2 homology domain 3-only protein Puma (Bbc3) were potently protected against damage caused by status epilepticus. In the present study we examined whether Puma deficiency was protective when the seizure episode was more severe. Intra-amygdala microinjection of 1 microg kainic acid (KA) into C57BL/6 mice triggered status epilepticus that lasted about twice as long as with 0.3 microg KA prior to lorazepam termination. Hippocampal damage was also significantly greater in the higher-dose group. Over 80% of degenerating neurons after seizures were positive for DNA fragmentation assessed by terminal deoxynucleotidyl dUTP nick end labeling (TUNEL). Microscopic analysis of neuronal nuclear morphology in TUNEL-positive cells revealed the proportion displaying large rounded clumps of condensed chromatin was approximately 50% lower in the high-dose versus low-dose KA group. Nevertheless, compared to heterozygous and wild-type mice subject to status epilepticus by high-dose KA, neuronal death was reduced by approximately 50% in the hippocampus of Puma-deficient mice. These data suggest aspects of the apoptotic component of seizure-induced neuronal death are insult duration- or severity-dependent. Moreover, they provide further genetic evidence that seizure-induced neuronal death is preventable by targeting so-called apoptosis-associated signaling pathways and Puma loss likely disrupts caspase-independent or non-apoptotic seizure-induced neuronal death.
Collapse
Affiliation(s)
- T Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
39
|
Zhang Y, Wang W, Sun Z, Feng D, Deng Y, Liu Y, Zhao G, Wang H, Huang Y. Granulocyte Colony-Stimulating Factor Treatment Prevents Cognitive Impairment Following Status Epilepticus in Rats. Biol Pharm Bull 2010; 33:572-9. [DOI: 10.1248/bpb.33.572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yong Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
- Department of Neurology, The PLA 187th Hospital
| | - WenYong Wang
- Department of Pathology, The Fourth Military Medical University
| | - ZhiJian Sun
- Department of Histology and Embryology, The Fourth Military Medical University
| | - DongYun Feng
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - YanChun Deng
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - YongHong Liu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - HuaNing Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University
| | - YuanGui Huang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| |
Collapse
|
40
|
Fu M, Sun ZH, Zuo HC. Neuroprotective Effect of Piperine on Primarily Cultured Hippocampal Neurons. Biol Pharm Bull 2010; 33:598-603. [DOI: 10.1248/bpb.33.598] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Min Fu
- Medical College, Tsinghua University
| | | | | |
Collapse
|
41
|
Contrasting patterns of Bim induction and neuroprotection in Bim-deficient mice between hippocampus and neocortex after status epilepticus. Cell Death Differ 2009; 17:459-68. [PMID: 19779495 DOI: 10.1038/cdd.2009.134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prolonged seizures (status epilepticus) are associated with brain region-specific regulation of apoptosis-associated signaling pathways. Bcl-2 homology domain 3-only (BH3) members of the Bcl-2 gene family are of interest as possible initiators of mitochondrial dysfunction and release of apoptogenic molecules after seizures. Previously, we showed that expression of the BH3-only protein, Bcl-2 interacting mediator of cell death (Bim), increased in the rat hippocampus but not in the neocortex after focal-onset status epilepticus. In this study, we examined Bim expression in mice and compared seizure damage between wild-type and Bim-deficient animals. Status epilepticus induced by intra-amygdala kainic acid (KA) caused extensive neuronal death within the ipsilateral hippocampal CA3 region. Hippocampal activation of factors associated with transcriptional and posttranslational activation of Bim, such as CHOP and c-Jun NH(2)-terminal kinases, was significant within 1 h. Upregulation of bim mRNA was evident after 2 h and Bim protein increased between 4 and 24 h. Hippocampal CA3 neurodegeneration was reduced in Bim-deficient mice compared with wild-type animals after seizures in vivo, and short interfering RNA molecules targeting bim reduced cell death after KA treatment of hippocampal organotypic cultures. In contrast, neocortical Bim expression declined after status epilepticus, and neocortex damage in Bim-deficient mice was comparable with that in wild-type animals. These results show region-specific differential contributions of Bim to seizure-induced neuronal death.
Collapse
|
42
|
Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice. ACTA ACUST UNITED AC 2009; 4:91-9. [PMID: 19674507 DOI: 10.1017/s1740925x09990135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The astrocytic enzyme adenosine kinase (ADK) is a key negative regulator of the brain's endogenous anticonvulsant adenosine. Astrogliosis with concomitant upregulation of ADK is part of the epileptogenic cascade and contributes to seizure generation. To molecularly dissect the respective roles of astrogliosis and ADK-expression for seizure generation, we used a transgenic approach to uncouple ADK-expression from astrogliosis: in Adk-tg mice the endogenous Adk-gene was deleted and replaced by a ubiquitously expressed Adk-transgene with novel ectopic expression in pyramidal neurons, resulting in spontaneous seizures. Here, we followed a unique approach to selectively injure the CA3 of these Adk-tg mice. Using this strategy, we had the opportunity to study astrogliosis and epileptogenesis in the absence of the endogenous astrocytic Adk-gene. After triggering epileptogenesis we demonstrate astrogliosis without upregulation of ADK, but lack of seizures, whereas matching wild-type animals developed astrogliosis with upregulation of ADK and spontaneous recurrent seizures. By uncoupling ADK-expression from astrogliosis, we demonstrate that global expression levels of ADK rather than astrogliosis per se contribute to seizure generation.
Collapse
|
43
|
Jun Y, JiangTao X, YuanGui H, YongBin S, Jun Z, XiaoJun M, JianChun X, Heng X, XiaoXin Z, XinXiang X. Erythropoietin pre-treatment prevents cognitive impairments following status epilepticus in rats. Brain Res 2009; 1282:57-66. [PMID: 19497315 DOI: 10.1016/j.brainres.2009.05.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Selective neuronal loss is closely associated with cognitive impairments that occur following status epilepticus (SE). Our previous study suggested that erythropoietin (Epo) pre-treatment suppressed hippocampal neuronal death in rats after 1 h of SE convulsions. However, the underlying protective mechanism remained unclear. In the present study, we investigated the anti-apoptotic mechanism of Epo pre-treatment in the hippocampus using Li-pilocarpine-induced SE in rats. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was performed to detect apoptosis and the Morris water maze was employed to assess spatial learning ability and to analyze the protective effects of Epo. Levels of Bcl-2 family (Bid, Bcl-2 and Bax) markers were examined via Western blot and immunofluorescence. We found that Epo pre-treatment prevented SE-induced cognitive impairments. The protection and cognitive effects were associated with higher levels of Bcl-2 and lower levels of Bax. The present results suggest that systemic Epo pre-treatment can confer neuroprotection following SE, and may provide novel insights into pathogenesis and treatment following SE injury.
Collapse
Affiliation(s)
- Yang Jun
- Department of Neurology, Xin Jiang Urumqi Military General Hospital, No.41, Ke La Ma Yi Road, Urumqi 830000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meller R. The role of the ubiquitin proteasome system in ischemia and ischemic tolerance. Neuroscientist 2009; 15:243-60. [PMID: 19181875 DOI: 10.1177/1073858408327809] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ubiquitin modification targets a protein for rapid degradation by the proteasome. However, polyubiquitination of proteins can result in multiple functions depending on the topology of the ubiquitin chain. Therefore, ubiquitin signaling offers a more complex and versatile biology compared with many other posttranslational modifications. One area of potential for the application of this knowledge is the field of ischemia-induced brain damage, as occurs following a stroke. The ubiquitin proteasome system may exert a dual role on neuronal outcome following ischemia. Harmful ischemia results in an overload of the ubiquitin proteasome system, and blocking the proteasome reduces brain infarction following ischemia. However, the rapid and selective degradation of proteins following brief ischemia results in endogenous protection against ischemia. Therefore, further understanding of the molecular signaling mechanisms that regulate the ubiquitin proteasome system may reveal novel therapeutic targets to reduce brain damage when ischemia is predicted or reduce the activation of the cell death mechanisms and the inflammatory response following stroke. The aim of this review is to discuss some of the recent advances in the understanding of protein ubiquitination and its implications for novel stroke therapies.
Collapse
Affiliation(s)
- Robert Meller
- Legacy Clinical Research and Technology Center, Portland, Oregon, USA.
| |
Collapse
|
45
|
The Proapoptotic BCL-2 Homology Domain 3-Only Protein Bim Is Not Critical for Acute Excitotoxic Cell Death. J Neuropathol Exp Neurol 2009; 68:102-10. [DOI: 10.1097/nen.0b013e31819385fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
46
|
Cui M, Huang Y, Zhao Y, Zheng J. New insights for FOXO and cell-fate decision in HIV infection and HIV associated neurocognitive disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 665:143-59. [PMID: 20429422 DOI: 10.1007/978-1-4419-1599-3_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human immunodeficiency virus Type 1 (HIV-1) infection and associated diseases continue to represent major health problem worldwide. FOXO transcriptional factors play an important role in the regulation of cell apoptosis, cell cycle arrest, stress resistance, metabolism and differentiation. This chapter will discuss the diverse functions of FOXO in different cell types including T-cells, macrophages, neurons and astrocytes within the context of HIV-1 infection. Given the overwhelming evidence that FOXO proteins influence the cell fate of immune cells and involve in the homeostasis of the central nervous system (CNS), we will also discuss the potential role of FOXO factors in HIV-1-associated neurological disorders.
Collapse
Affiliation(s)
- Min Cui
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | |
Collapse
|
47
|
Pathophysiological relevance of forkhead transcription factors in brain ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 665:130-42. [PMID: 20429421 DOI: 10.1007/978-1-4419-1599-3_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Forkhead box transcription factor, class 0 (FOXO) is a mammalian homologue of DAF-16, which is known to regulate the lifespan of Caenorhabditis elegans and includes subfamiies of forkhead transcription factors such as FOXO1 (FKHR). FOXO3 (FKHRL1), FOXO4 (AFX) and FOXO6. All these FOXO members are expressed in the brain with different spatial patterns. FOXO1 is phosphorylated on three sites (Thr-24, Ser-256 and Ser-319) in phosphatidylinositol 3-kinase (PI3-K)/Akt-dependenr manner, thereby inhibiting apoptosis signals. We here documented dephosphorylation of FOXO1, FOXO3 and FOXO4 following transient forebrain ischemia with its concomitant translocation into the nucleus in neurons in the gerbil and mouse brains. The dephosphorylarion of FOXO1 following brain ischemia is in part mediated by constirutively active calcineurin in the mouse hippocampus. The activation of FOXOs preceded delayed neuronal death in the vulnerable hippocampal regions following ischemic brain injury. The FOXOl activation is accompanied by an increase in DNA binding activity for FOXO1-responsive element on the Fas ligand promoter. Thus, downstream targets induced by FOXOl include Fas ligand and Bcl-2-interacting mediator of cell death (Bim) in the brain ischemia. Accumulating evidence documented how FOXO activation is involved in the mechanisms of ischemic cell death. In this chapter, we document the activation mechanism of FOXO factors following brain ischemia and deline their downstream targets underlying neuronal death. The pathophysiological relevance of crosstalk between FOXOs and calcineurmn pathways is also discussed. Finally, we propose therapeutic perspectives to rescue neurons from delayed neuronal death by promoting the Akt signaling. Vanadium compounds, protein tyrosine phosphatase inhibitor, up-regulates Akt activity in the brain and thereby rescues neurons from delayed neuronal death by inhibiting FOXO-dependent and -independent death signals in neurons.
Collapse
|
48
|
Howlett E, Lin CCJ, Lavery W, Stern M. A PI3-kinase-mediated negative feedback regulates neuronal excitability. PLoS Genet 2008; 4:e1000277. [PMID: 19043547 PMCID: PMC2581892 DOI: 10.1371/journal.pgen.1000277] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/23/2008] [Indexed: 01/22/2023] Open
Abstract
Use-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability. Use-dependent downregulation of neuronal excitability (negative feedback) can act to maintain neuronal activity within specified levels. Disruption of this homeostasis can lead to neurological disorders, such as epilepsy. Here, we report a novel mechanism for negative feedback control of excitability in the Drosophila larval motor neuron. In this mechanism, activation by the excitatory neurotransmitter glutamate of metabotropic glutamate receptors (mGluRs) located at motor nerve terminals decreases excitability by activating PI3 kinase (PI3K), consequently causing the phosphorylation and inhibition of the transcription factor Foxo. Foxo inhibition, in turn, decreases neuronal excitability. These observations are of interest for two reasons. First, our observation that PI3K activity regulates neuronal excitability is of interest because altered PI3K activity is implicated in a number of neurological disorders, such as autism and neurofibromatosis. Our results raise the possibility that altered excitability might contribute to the deficits in these disorders. Second, our observation that group II metabotropic glutamate receptors (mGluRs) activate PI3K is of interest because group II mGluRs are implicated in epilepsy, anxiety disorders, and schizophrenia. Yet the downstream signaling pathways affected by these treatments are incompletely understood. Our results raise the possibility that the PI3K pathway might be an essential mediator of signalling by these mGluRs.
Collapse
Affiliation(s)
- Eric Howlett
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America.
| | | | | | | |
Collapse
|
49
|
Murphy N, Bonner HP, Ward MW, Murphy BM, Prehn JHM, Henshall DC. Depletion of 14-3-3 zeta elicits endoplasmic reticulum stress and cell death, and increases vulnerability to kainate-induced injury in mouse hippocampal cultures. J Neurochem 2008; 106:978-88. [PMID: 18466333 DOI: 10.1111/j.1471-4159.2008.05447.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
14-3-3 proteins are ubiquitous signalling molecules that regulate development and survival pathways in brain. Altered expression and cellular localization of 14-3-3 proteins has been implicated in neurodegenerative diseases and in neuronal death after acute neurological insults, including seizures. Presently, we examined expression and function of 14-3-3 isoforms in vitro using mouse organotypic hippocampal cultures. Treatment of cultures with the endoplasmic reticulum (ER) stressor tunicamycin caused an increase in levels of 14-3-3 zeta within the ER-containing microsomal fraction, along with up-regulation of Lys-Asp-Glu-Leu-containing proteins and calnexin, and the selective death of dentate granule cells. Depletion of 14-3-3 zeta levels using small interfering RNA induced both ER stress proteins and death of granule cells. Treatment of hippocampal cultures with the excitotoxin kainic acid increased levels of Lys-Asp-Glu-Leu-containing proteins and microsomal 14-3-3 zeta levels and caused cell death within the CA1, CA3 and dentate gyrus of the hippocampus. Kainic acid-induced damage was significantly increased in each hippocampal subfield of cultures treated with small interfering RNA targeting 14-3-3 zeta. The present data indicate a role for 14-3-3 zeta in survival responses following ER stress and possibly protection against seizure injury to the hippocampus.
Collapse
Affiliation(s)
- Niamh Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland, UK
| | | | | | | | | | | |
Collapse
|
50
|
Mouri G, Jimenez-Mateos E, Engel T, Dunleavy M, Hatazaki S, Paucard A, Matsushima S, Taki W, Henshall DC. Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res 2008; 1213:140-51. [PMID: 18455706 DOI: 10.1016/j.brainres.2008.03.061] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 02/08/2023]
Abstract
Mesial temporal lobe epilepsy is the most common, intractable seizure disorder in adults. It is associated with an asymmetric pattern of hippocampal neuron loss within the endfolium (hilus and CA3) and CA1, with limited pathology in extra-hippocampal regions. We previously developed a model of focally-evoked seizure-induced neuronal death using intra-amygdala kainic acid (KA) microinjection and characterized the acute hippocampal pathology. Here, we sought to characterize the full extent of hippocampal and potential extra-hippocampal damage in this model, and the temporal onset of epileptic seizures. Seizure damage assessed at four stereotaxic levels by FluoroJade B staining was most prominent in ipsilateral hippocampal CA3 where it extended from septal to temporal pole. Minor but significant neuronal injury was present in ipsilateral CA1. Extra-hippocampal neuronal damage was generally limited in extent and restricted to the lateral septal nucleus, injected amygdala and select regions of neocortex ipsilateral to the seizure elicitation side. Continuous surface EEG recorded with implanted telemetry units in freely-moving mice detected spontaneous, epileptic seizures by five days post-KA in all mice. Epileptic seizure number averaged 1-4 per day. Hippocampi from epileptic mice 15 days post-KA displayed unilateral CA3 lesions, astrogliosis and increased neuropeptide Y immunoreactivity suggestive of mossy fiber rearrangement. These studies characterize a mouse model of unilateral hippocampal-dominant neuronal damage and short latency epileptogenesis that may be suitable for studying the cell and molecular pathogenesis of human mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Genshin Mouri
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|