1
|
Wang X, Schepler H, Neufurth M, Wang S, Schröder HC, Müller WEG. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:51-82. [PMID: 35697937 DOI: 10.1007/978-3-031-01237-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many pathological conditions are characterized by a deficiency of metabolic energy. A prominent example is nonhealing or difficult-to-heal chronic wounds. Because of their unique ability to serve as a source of metabolic energy, inorganic polyphosphates (polyP) offer the opportunity to develop novel strategies to treat such wounds. The basis is the generation of ATP from the polymer through the joint action of two extracellular or plasma membrane-bound enzymes alkaline phosphatase and adenylate kinase, which enable the transfer of energy-rich phosphate from polyP to AMP with the formation of ADP and finally ATP. Building on these findings, it was possible to develop novel regeneratively active materials for wound therapy, which have already been successfully evaluated in first studies on patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
2
|
At physiological concentrations, AMP increases phosphofructokinase-1 activity compared to fructose 2, 6-bisphosphate in postmortem porcine skeletal muscle. Meat Sci 2020; 172:108332. [PMID: 33038798 DOI: 10.1016/j.meatsci.2020.108332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
Phosphofructokinase-1 (PFK-1) is the most important enzyme controlling postmortem glycolysis in living skeletal muscle and is the most likely candidate for regulation of postmortem glycolysis. We investigated the regulation of PFK-1 activity by F-2, 6-BP and AMP under simulated postmortem conditions in porcine skeletal muscle. Six pigs were harvested and longissimus lumborum samples were collected immediately post-slaughter. PFK-1 activity was assayed using increasing concentrations of F-2, 6-BP or AMP, added to the buffer adjusted to different pH. Both F-2, 6-BP and AMP increased PFK-1 activity with increasing buffer pH from 5.5 to 7.0. A concentration of 50 μM F-2, 6-BP was required to increase PFK-1 activity which is very high compared to physiological concentration in the porcine skeletal muscle. However, physiological concentrations (50-150 μM) of AMP resulted in increased PFK-1 activity compared to 1-2 μM F-2, 6-BP. Thus, AMP may play a greater role in dictating the rate and extent of postmortem muscle glycolysis and pH decline as compared to F-2, 6-BP.
Collapse
|
3
|
Li J, Li B, Bai F, Ma Y, Liu N, Liu Y, Wang Y, Liu Q. Metformin therapy confers cardioprotection against the remodeling of gap junction in tachycardia-induced atrial fibrillation dog model. Life Sci 2020; 254:117759. [PMID: 32389830 DOI: 10.1016/j.lfs.2020.117759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Metformin, introduced in 1957, is widely used as an anti-diabetic drug and has considerable benefits in cardiovascular disease reportedly, dependent or independent on its glucose-lowering effects. Aim of this study was to investigate the effect of metformin on gap junction and the inducibility of AF. METHODS Beagle dogs were subjected to acute or chronic pacing at right atrial appendage by a pacemaker to develop an AF model and electrophysiological parameters were measured. In vitro study, a cell fast pacing model was developed by CardioExcyte 96. We performed Western blot, histology immunohistochemical staining and electron microscopy to detect the effect of metformin. RESULTS In chronic AF model, the inducibility and duration of AF increased obviously after pacing for 6 weeks compared with sham-operated group (Inducibility, 3.33 ± 5.77 vs. 85.33 ± 7.89%, P<0.0001; Duration, 0.8 ± 0.84 vs. 11 ± 2.67 ms, P<0.0001). Effective refractory periods (ERP) decreased at left and right left atrium and atrial appendages compared with sham-operated group (123.95 ± 6.57 vs. 89.96 ± 7.39 ms P<0.0001). Metformin attenuated the pacing-induced increase in EPR (89.96 ± 7.39 vs. 105.83 ± 7.45 ms, P<0.05), AF inducibility and AF duration (Inducibility, 85.33 ± 7.89 vs. 64.17 ± 7.36%, Duration, 11 ± 2.67 vs. 8.62 ± 1.15 ms, P<0.05). The expression of Cx43 shows a significant downregulation(about 38%, P<0.001) after chronic pacing and treating with metformin could alleviate this decrease(P<0.01). However, the effect of metformin in acute pacing model is limited. The immunohistochemical staining of cardiac tissue also shown that there is more lateralized Cx43 under pacing condition (87.67 ± 2.52 vs. 60.8 ± 9.13%, P<0.005). These pacing-induced lateralize Cx43 could be alleviated by the metformin (48.4 ± 8.62 vs. 60.8 ± 9.13%, P<0.05). Additionally, metformin could affect the interactions of ZO-1 with p-Src/Cx43 via decrease the abnormal cAMP level after pacing (84.04 ± 4.58 vs. 69.34 ± 4.5 nmol/L, P<0.001). CONCLUSIONS Metformin could alleviate the vulnerability of AF and attenuate the downregulation of gap junction under pacing condition via AMPK pathway and decreasing the P-Src level.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Biao Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinxu Ma
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yaozhong Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Zhu J, Wang YF, Chai XM, Qian K, Zhang LW, Peng P, Chen PM, Cao JF, Qin ZH, Sheng R, Xie H. Exogenous NADPH ameliorates myocardial ischemia-reperfusion injury in rats through activating AMPK/mTOR pathway. Acta Pharmacol Sin 2020; 41:535-545. [PMID: 31776448 PMCID: PMC7470878 DOI: 10.1038/s41401-019-0301-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Our previous study shows that nicotinamide adenine dinucleotide phosphate (NADPH) plays an important role in protecting against cerebral ischemia injury. In this study we investigated whether NADPH exerted cardioprotection against myocardial ischemia/reperfusion (I/R) injury. To induce myocardial I/R injury, rats were subjected to ligation of the left anterior descending branch of coronary artery for 30 min followed by reperfusion for 2 h. At the onset of reperfusion, NADPH (4, 8, 16 mg· kg−1· d−1, iv) was administered to the rats. We found that NADPH concentrations in plasma and heart were significantly increased at 4 h after intravenous administration. Exogenous NADPH (8−16 mg/kg) significantly decreased myocardial infarct size and reduced serum levels of lactate dehydrogenase (LDH) and cardiac troponin I (cTn-I). Exogenous NADPH significantly decreased the apoptotic rate of cardiomyocytes, and reduced the cleavage of PARP and caspase-3. In addition, exogenous NADPH reduced mitochondrial vacuolation and increased mitochondrial membrane protein COXIV and TOM20, decreased BNIP3L and increased Bcl-2 to protect mitochondrial function. We conducted in vitro experiments in neonatal rat cardiomyocytes (NRCM) subjected to oxygen–glucose deprivation/restoration (OGD/R). Pretreatment with NADPH (60, 500 nM) significantly rescued the cell viability and inhibited OGD/R-induced apoptosis. Pretreatment with NADPH significantly increased the phosphorylation of AMPK and downregulated the phosphorylation of mTOR in OGD/R-treated NRCM. Compound C, an AMPK inhibitor, abolished NADPH-induced AMPK phosphorylation and cardioprotection in OGD/R-treated NRCM. In conclusion, exogenous NADPH exerts cardioprotection against myocardial I/R injury through the activation of AMPK/mTOR pathway and inhibiting mitochondrial damage and cardiomyocyte apoptosis. NADPH may be a potential candidate for the prevention and treatment of myocardial ischemic diseases.
Collapse
|
5
|
Yang Y, Han L, Yu Q, Gao Y, Song R. Study of the AMP-Activated Protein Kinase Role in Energy Metabolism Changes during the Postmortem Aging of Yak Longissimus dorsal. Animals (Basel) 2020; 10:E427. [PMID: 32143283 PMCID: PMC7143603 DOI: 10.3390/ani10030427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
To explore the postmortem physiological mechanism of muscle, activity of adenosine monophosphate activated protein kinase (AMPK) as well as its role in energy metabolism of postmortem yaks were studied. In this experiment, we injected 5-amino-1-beta-d-furanonyl imidazole-4-formamide (AICAR), a specific activator of AMPK, and STO-609 to observe the changes in glycolysis, energy metabolism, AMPK activity, and AMPK gene expression (PRKA1 and PRKA2) in postmortem yaks during maturation. The results showed that AICAR could increase the expression of the PRKKA1 and PRKAA2 genes, activate AMPK and increase its activity. The effects of AICAR include a lower concentration of ATP, an increase in AMP production, an acceleration of glycolysis, an increase in the lactic acid concentration, and a decrease in the pH value. In contrast, STO-609 had the opposite effect. Under hypoxic adaptation, the activity of the meat AMPK increased, which accelerated glycolysis and metabolism and more effectively regulated energy metabolism. Therefore, this study lays the foundation for establishing a theoretical system of energy metabolism in postmortem yak meat.
Collapse
Affiliation(s)
- Yayuan Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, China; (Y.Y.); (Q.Y.); (Y.G.)
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, China; (Y.Y.); (Q.Y.); (Y.G.)
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, China; (Y.Y.); (Q.Y.); (Y.G.)
| | - Yongfang Gao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, China; (Y.Y.); (Q.Y.); (Y.G.)
| | - Rende Song
- Qinghai Animal and Veterinary Sciences Work Station, No. 189, Xinjian road, Yushu prefecture, Qinghai 815000, China;
| |
Collapse
|
6
|
The Tumor Suppressor Roles of MYBBP1A, a Major Contributor to Metabolism Plasticity and Stemness. Cancers (Basel) 2020; 12:cancers12010254. [PMID: 31968688 PMCID: PMC7017249 DOI: 10.3390/cancers12010254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The MYB binding protein 1A (MYBBP1A, also known as p160) acts as a co-repressor of multiple transcription factors involved in many physiological processes. Therefore, MYBBP1A acts as a tumor suppressor in multiple aspects related to cell physiology, most of them very relevant for tumorigenesis. We explored the different roles of MYBBP1A in different aspects of cancer, such as mitosis, cellular senescence, epigenetic regulation, cell cycle, metabolism plasticity and stemness. We especially reviewed the relationships between MYBBP1A, the inhibitory role it plays by binding and inactivating c-MYB and its regulation of PGC-1α, leading to an increase in the stemness and the tumor stem cell population. In addition, MYBBP1A causes the activation of PGC-1α directly and indirectly through c-MYB, inducing the metabolic change from glycolysis to oxidative phosphorylation (OXPHOS). Therefore, the combination of these two effects caused by the decreased expression of MYBBP1A provides a selective advantage to tumor cells. Interestingly, this only occurs in cells lacking pVHL. Finally, the loss of MYBBP1A occurs in 8%–9% of renal tumors. tumors, and this subpopulation could be studied as a possible target of therapies using inhibitors of mitochondrial respiration.
Collapse
|
7
|
Bell DSH, Goncalves E. Heart failure in the patient with diabetes: Epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications. Diabetes Obes Metab 2019; 21:1277-1290. [PMID: 30724013 DOI: 10.1111/dom.13652] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
In people with type 2 diabetes the frequency of heart failure (HF) is increased and mortality from HF is higher than with non-diabetic HF. The increased frequency of HF is attributable to the cardiotoxic tetrad of ischaemic heart disease, left ventricular hypertrophy, diabetic cardiomyopathy and an extracellular volume expansion resistant to atrial natriuretic peptides. Activation of the renin-angiotensin-aldosterone system and sympathetic nervous systems results in cardiac remodelling, which worsens cardiac function. Reversal of remodelling can be achieved, and cardiac function improved in people with HF with reduced ejection fraction (HFrEF) by treatment with angiotensin-converting enzyme inhibitors and β-blockers. However, with HF with preserved ejection fraction (HFpEF), only therapy for the underlying risk factors helps. Blockers of mineralocorticoid receptors may be beneficial in both HFrEF and HFpEF. Glucose-lowering drugs can have a negative effect (insulin, sulphonylureas, dipeptidyl peptidase-4 inhibitors and thiazolidinediones), a neutral effect (α-glucosidase inhibitors and glucagon-like peptide-1 receptor agonists) or a positive effect (sodium-glucose co-transporter-2 inhibitors and metformin).
Collapse
|
8
|
Verkerk AO, Lodder EM, Wilders R. Aquaporin Channels in the Heart-Physiology and Pathophysiology. Int J Mol Sci 2019; 20:ijms20082039. [PMID: 31027200 PMCID: PMC6514906 DOI: 10.3390/ijms20082039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Melo Z, Ishida C, Goldaraz MDLP, Rojo R, Echavarria R. Novel Roles of Non-Coding RNAs in Opioid Signaling and Cardioprotection. Noncoding RNA 2018; 4:ncrna4030022. [PMID: 30227648 PMCID: PMC6162605 DOI: 10.3390/ncrna4030022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is a significant cause of morbidity and mortality across the world. A large proportion of CVD deaths are secondary to coronary artery disease (CAD) and myocardial infarction (MI). Even though prevention is the best strategy to reduce risk factors associated with MI, the use of cardioprotective interventions aimed at improving patient outcomes is of great interest. Opioid conditioning has been shown to be effective in reducing myocardial ischemia-reperfusion injury (IRI) and cardiomyocyte death. However, the molecular mechanisms behind these effects are under investigation and could provide the basis for the development of novel therapeutic approaches in the treatment of CVD. Non-coding RNAs (ncRNAs), which are functional RNA molecules that do not translate into proteins, are critical modulators of cardiac gene expression during heart development and disease. Moreover, ncRNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are known to be induced by opioid receptor activation and regulate opioid signaling pathways. Recent advances in experimental and computational tools have accelerated the discovery and functional characterization of ncRNAs. In this study, we review the current understanding of the role of ncRNAs in opioid signaling and opioid-induced cardioprotection.
Collapse
Affiliation(s)
- Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico.
| | - Cecilia Ishida
- Programa de Genomica Computacional, Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca 62210, Morelos, Mexico.
| | - Maria de la Paz Goldaraz
- Departamento de Anestesiologia, Hospital de Especialidades UMAE CMNO, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico.
| | - Rocio Rojo
- Departamento de Anestesiologia, Hospital de Especialidades UMAE CMNO, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico.
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico.
| |
Collapse
|
10
|
Varjabedian L, Bourji M, Pourafkari L, Nader ND. Cardioprotection by Metformin: Beneficial Effects Beyond Glucose Reduction. Am J Cardiovasc Drugs 2018; 18:181-193. [PMID: 29478240 DOI: 10.1007/s40256-018-0266-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metformin is a biguanide that is widely used as an insulin-sparing agent to treat diabetes. When compared with the general population, diabetics are twice as likely to die from fatal myocardial infarction and congestive heart failure (CHF). There has been a significant concern regarding the use of metformin in patients with CHF because of their higher tendency to develop lactic acidosis. However, large epidemiological trials have reported better cardiovascular prognosis with metformin compared to other glucose-lowering agents among diabetics. Additionally, metformin has reduced the risk of reinfarction and all-cause mortality in patients with coronary artery disease and CHF, respectively. The protection against cardiovascular diseases appears to be independent of the anti-hyperglycemic effects of metformin. These effects are mediated through an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and by increased phosphorylation of endothelial nitric oxide synthase (eNOS) in cardiomyocytes with an increased production of nitric oxide (NO). Metformin preconditions the heart against ischemia-reperfusion injury and may improve myocardial remodeling after an ischemic insult. The preponderance of evidence currently suggests that metformin is safe in patients with CHF, prompting the Food and Drug Administration to remove CHF as a contraindication from the package insert of all generic metformin preparations. In this narrative, along with a limited meta-analysis of available studies, we have reviewed the pleiotropic (non-glucose-lowering) effects of metformin that potentially contribute to its cardioprotective properties. Additionally, we have reviewed issues surrounding the safety of metformin in patients with cardiac diseases.
Collapse
Affiliation(s)
| | - Mohammad Bourji
- Department of Medicine, University at Buffalo, Buffalo, NY, 14203, USA
| | - Leili Pourafkari
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street # 550, Buffalo, NY, 14203, USA
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street # 550, Buffalo, NY, 14203, USA.
| |
Collapse
|
11
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol 2017; 13:769-781. [DOI: 10.1038/nrneph.2017.126] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Liang Z, Li T, Jiang S, Xu J, Di W, Yang Z, Hu W, Yang Y. AMPK: a novel target for treating hepatic fibrosis. Oncotarget 2017; 8:62780-62792. [PMID: 28977988 PMCID: PMC5617548 DOI: 10.18632/oncotarget.19376] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/08/2017] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common process of excessive extracellular matrix (ECM) accumulation following inflammatory injury. Fibrosis is involved in the pathogenesis of almost all liver diseases for which there is no effective treatment. 5'-AMP-activated protein kinase (AMPK) is a cellular energy sensor that can ameliorate the process of hepatic fibrogenesis. Given the existing evidence, we first introduce the basic background of AMPK and hepatic fibrosis and the actions of AMPK in hepatic fibrosis. Second, we discuss the three phases of hepatic fibrosis and potential drugs that target AMPK. Third, we analyze possible anti-fibrosis mechanisms and other benefits of AMPK on the liver. Finally, we summarize and briefly explain the current objections to targeting AMPK. This review may aid clinical and basic research on AMPK, which may be a novel drug candidate for hepatic fibrosis.
Collapse
Affiliation(s)
- Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
14
|
Henry Bell DS. Re: Mechanisms by Which Metformin improves Mortality and Hospital Re-admission in Diabetic Patients With Heart Failure. Endocr Pract 2017; 23:379. [DOI: 10.4158/1934-2403-23.3.379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Alleviation of hepatic fat accumulation by betaine involves reduction of homocysteine via up-regulation of betaine-homocysteine methyltransferase (BHMT). Biochem Biophys Res Commun 2016; 477:440-7. [DOI: 10.1016/j.bbrc.2016.06.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 01/08/2023]
|
16
|
Bairwa SC, Parajuli N, Dyck JRB. The role of AMPK in cardiomyocyte health and survival. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2199-2210. [PMID: 27412473 DOI: 10.1016/j.bbadis.2016.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Cellular energy homeostasis is a fundamental process that governs the overall health of the cell and is paramount to cell survival. Central to this is the control of ATP generation and utilization, which is regulated by a complex myriad of enzymatic reactions controlling cellular metabolism. In the cardiomyocyte, ATP generated from substrate catabolism is used for numerous cellular processes including maintaining ionic homeostasis, cell repair, protein synthesis and turnover, organelle turnover, and contractile function. In many instances, cardiovascular disease is associated with impaired cardiac energetics and thus the signalling that regulates pathways involved in cardiomyocyte metabolism may be potential targets for pharmacotherapy designed to help treat cardiovascular disease. An important regulator of cardiomyocyte energy homeostasis is adenosine monophosphate-activated protein kinase (AMPK). AMPK is a serine-threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic activities in the cell via the phosphorylation of multiple proteins involved in metabolic pathways. In addition to the direct role that AMPK plays in the regulation of cardiomyocyte metabolism, AMPK can also either directly or indirectly influence other cellular processes such as regulating mitochondrial function, post-translation acetylation, autophagy, mitophagy, endoplasmic reticulum stress, and apoptosis. Thus, AMPK is implicated in the control of a wide variety of cellular processes that can influence cardiomyocyte health and survival. In this review, we will discuss the important role that AMPK plays in regulating cardiac metabolism, as well as the additional cellular processes that may contribute to cardiomyocyte function and survival in the healthy and the diseased heart. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan. F.C. Glatz.
Collapse
Affiliation(s)
- Suresh C Bairwa
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Nirmal Parajuli
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Tepp K, Timohhina N, Puurand M, Klepinin A, Chekulayev V, Shevchuk I, Kaambre T. Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Res Rev 2016; 28:1-14. [PMID: 27063513 DOI: 10.1016/j.arr.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Faculty of Science, Tallinn University, Narva mnt. 25, 10120, Estonia
| |
Collapse
|
18
|
Abumrad NA, Goldberg IJ. CD36 actions in the heart: Lipids, calcium, inflammation, repair and more? Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1442-9. [PMID: 27004753 DOI: 10.1016/j.bbalip.2016.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/15/2023]
Abstract
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa(2+)) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Nada A Abumrad
- Departments of Medicine and Cell Biology, Washington University, St. Louis, MO, United States..
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
19
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
20
|
Jiang N, Xing T, Han M, Deng S, Xu X. Effects of water-misting sprays with forced ventilation on post mortem glycolysis, AMP-activated protein kinase and meat quality of broilers after transport during summer. Anim Sci J 2015; 87:718-28. [PMID: 26712455 DOI: 10.1111/asj.12467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
Abstract
Effects of water-misting sprays with forced ventilation on post mortem glycolysis, adenosine monophosphate-activated protein kinase (AMPK) and meat quality of broilers after transport during summer were investigated in the present paper. A total of 105 mixed-sex Arbor Acres broilers were divided into three treatment groups: (i) 45 min transport without rest (T); (ii) 45 min transport with 1 h rest (TR); and (iii) 45 min transport with 15 min water-misting sprays with forced ventilation and 45 min rest (TWFR). Each treatment consisted of five replicates with seven birds each. The results indicated that the water-misting sprays with forced ventilation could mitigate the stress caused by transport under high temperature conditions during summer, which reduced the energy depletion in post mortem Pectoralis major (PM) muscle. This resulted in a higher energy status compared to the T group, which would decrease the expression of phosphorylation of AMPK (p-AMPK). Furthermore, decreased the expression of p-AMPK then slowed down the rate of glycolysis in post mortem PM muscle during the early post mortem period, which in turn lessened the negative effects caused by transport on meat quality. In conclusion, water-misting sprays with forced ventilation may be a better method to control the incidence of the pale, soft and exudative meat in broilers.
Collapse
Affiliation(s)
- Nannan Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tong Xing
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Minyi Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaolin Deng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
AICAR Protects against High Palmitate/High Insulin-Induced Intramyocellular Lipid Accumulation and Insulin Resistance in HL-1 Cardiac Cells by Inducing PPAR-Target Gene Expression. PPAR Res 2015; 2015:785783. [PMID: 26649034 PMCID: PMC4663352 DOI: 10.1155/2015/785783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/17/2023] Open
Abstract
Here we studied the impact of 5-aminoimidazole-4-carboxamide riboside (AICAR), a well-known AMPK activator, on cardiac metabolic adaptation. AMPK activation by AICAR was confirmed by increased phospho-Thr(172)-AMPK and phospho-Ser(79)-ACC protein levels in HL-1 cardiomyocytes. Then, cells were exposed to AICAR stimulation for 24 h in the presence or absence of the AMPK inhibitor Compound C, and the mRNA levels of the three PPARs were analyzed by real-time RT-PCR. Treatment with AICAR induced gene expression of all three PPARs, but only the Ppara and Pparg regulation were dependent on AMPK. Next, we exposed HL-1 cells to high palmitate/high insulin (HP/HI) conditions either in presence or in absence of AICAR, and we evaluated the expression of selected PPAR-targets genes. HP/HI induced insulin resistance and lipid storage was accompanied by increased Cd36, Acot1, and Ucp3 mRNA levels. AICAR treatment induced the expression of Acadvl and Glut4, which correlated to prevention of the HP/HI-induced intramyocellular lipid build-up, and attenuation of the HP/HI-induced impairment of glucose uptake. These data support the hypothesis that AICAR contributes to cardiac metabolic adaptation via regulation of transcriptional mechanisms.
Collapse
|
22
|
Faustino-Rocha AI, Ferreira R, Oliveira PA, Gama A, Ginja M. N-Methyl-N-nitrosourea as a mammary carcinogenic agent. Tumour Biol 2015; 36:9095-117. [PMID: 26386719 DOI: 10.1007/s13277-015-3973-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
The administration of chemical carcinogens is one of the most commonly used methods to induce tumors in several organs in laboratory animals in order to study oncologic diseases of humans. The carcinogen agent N-methyl-N-nitrosourea (MNU) is the oldest member of the nitroso compounds that has the ability to alkylate DNA. MNU is classified as a complete, potent, and direct alkylating compound. Depending on the animals' species and strain, dose, route, and age at the administration, MNU may induce tumors' development in several organs. The aim of this manuscript was to review MNU as a carcinogenic agent, taking into account that this carcinogen agent has been frequently used in experimental protocols to study the carcinogenesis in several tissues, namely breast, ovary, uterus, prostate, liver, spleen, kidney, stomach, small intestine, colon, hematopoietic system, lung, skin, retina, and urinary bladder. In this paper, we also reviewed the experimental conditions to the chemical induction of tumors in different organs with this carcinogen agent, with a special emphasis in the mammary carcinogenesis.
Collapse
Affiliation(s)
- Ana I Faustino-Rocha
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal. .,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal.
| | - Rita Ferreira
- Organic Chemistry of Natural Products and Agrifood (QOPNA), Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal
| | - Adelina Gama
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Animal and Veterinary Research Center (CECAV), School of Agrarian and Veterinary Sciences, UTAD, 5001-911, Vila Real, Portugal
| | - Mário Ginja
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal
| |
Collapse
|
23
|
Oestrogen receptors interact with the α-catalytic subunit of AMP-activated protein kinase. Biosci Rep 2015; 35:BSR20150074. [PMID: 26374855 PMCID: PMC4626870 DOI: 10.1042/bsr20150074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/10/2015] [Indexed: 01/19/2023] Open
Abstract
We identified a novel interaction between the classical oestrogen receptors (ERα and ERβ) and the catalytic subunit of AMP-activated protein kinase (AMPK) in several cell types. In addition, we demonstrate that oestradiol (E2) activates AMPK through ERα and requires the upstream kinase complex liver kinase B (LKB1). Normal and pathological stressors engage the AMP-activated protein kinase (AMPK) signalling axis to protect the cell from energetic pressures. Sex steroid hormones also play a critical role in energy metabolism and significantly modify pathological progression of cardiac disease, diabetes/obesity and cancer. AMPK is targeted by 17β-oestradiol (E2), the main circulating oestrogen, but the mechanism by which E2 activates AMPK is currently unknown. Using an oestrogen receptor α/β (ERα/β) positive (T47D) breast cancer cell line, we validated E2-dependent activation of AMPK that was mediated through ERα (not ERβ) by using three experimental strategies. A series of co-immunoprecipitation experiments showed that both ERs associated with AMPK in cancer and striated (skeletal and cardiac) muscle cells. We further demonstrated direct binding of ERs to the α-catalytic subunit of AMPK within the βγ-subunit-binding domain. Finally, both ERs interacted with the upstream liver kinase B 1 (LKB1) kinase complex, which is required for E2-dependent activation of AMPK. We conclude that E2 activates AMPK through ERα by direct interaction with the βγ-binding domain of AMPKα.
Collapse
|
24
|
Yang KC, Kyle JW, Makielski JC, Dudley SC. Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res 2015; 116:1937-55. [PMID: 26044249 PMCID: PMC4458707 DOI: 10.1161/circresaha.116.304691] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Ventricular arrhythmia is the leading cause of sudden cardiac death (SCD). Deranged cardiac metabolism and abnormal redox state during cardiac diseases foment arrhythmogenic substrates through direct or indirect modulation of cardiac ion channel/transporter function. This review presents current evidence on the mechanisms linking metabolic derangement and excessive oxidative stress to ion channel/transporter dysfunction that predisposes to ventricular arrhythmias and SCD. Because conventional antiarrhythmic agents aiming at ion channels have proven challenging to use, targeting arrhythmogenic metabolic changes and redox imbalance may provide novel therapeutics to treat or prevent life-threatening arrhythmias and SCD.
Collapse
Affiliation(s)
- Kai-Chien Yang
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.)
| | - John W Kyle
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.)
| | - Jonathan C Makielski
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.).
| | - Samuel C Dudley
- From the Department of Pharmacology (K.-C.Y.) and Division of Cardiology, Department of Internal Medicine (K.-C.Y.), National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (J.W.K., J.C.M.); and Lifespan Cardiovascular Institute, the Providence VA Medical Center, and Brown University, RI (S.C.D.).
| |
Collapse
|
25
|
Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase. Biochem J 2015; 468:245-57. [DOI: 10.1042/bj20150270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We solved the structures of β1- and β2-carbohydrate-binding modules (CBMs) of AMP-activated protein kinase (AMPK) bound to a branched carbohydrate. The additional threonine within the β2-module allows it to bind single α1,6-branched carbohydrates, such as partially degraded glycogen, with greater affinity.
Collapse
|
26
|
Lin JT, Chen HM, Chiu CH, Liang YJ. AMP-activated protein kinase activators in diabetic ulcers: from animal studies to Phase II drugs under investigation. Expert Opin Investig Drugs 2014; 23:1253-65. [PMID: 24857754 DOI: 10.1517/13543784.2014.922951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Diagnosed cases of diabetes have gradually increased year by year, and research on diabetes mellitus (DM) has attracted greater attention from the medical profession. Diabetic ulcers present persistent pain and the risk of bacterial infection. However, no promising treatment methods have been found. As a regulator of cellular energy balance, 5' adenosine monophosphate-activated protein kinase (AMPK) has been suggested as a drug target for DM, including such drugs as metformin. AREAS COVERED This review summarizes the current research and clinical trials of AMPK activators on diabetic wound healing and diabetic ulcers. Furthermore, it discusses the feasibility of AMPK activators in the treatment of diabetic wounds. EXPERT OPINION Animal studies have demonstrated that AMPK activators are a potential treatment for diabetic ulcers. AMPK activators alleviate tissue inflammation and promote re-epithelialization in diabetic wounds. However, due to the complicated pathological mechanism of diabetic foot ulcers, AMPK activators should be combined with other approaches. The new strategies for combination therapy with AMPK activator may provide a therapeutic advantage for patients with diabetic ulcers.
Collapse
Affiliation(s)
- Jiun-Tsai Lin
- Energenesis Biomedical Co., Ltd. , New Taipei City , Taiwan
| | | | | | | |
Collapse
|
27
|
Lieberthal W, Tang M, Zhang L, Viollet B, Patel V, Levine JS. Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the α1 or the α2 isoform of the catalytic domain of AMPK. BMC Nephrol 2013; 14:251. [PMID: 24228806 PMCID: PMC3834531 DOI: 10.1186/1471-2369-14-251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/06/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The purpose of this study was to determine whether AMPK influences the survival of primary cultures of mouse proximal tubular (MPT) cells subjected to metabolic stress. Previous studies, using an immortalized MPT cell line, suggest that AMPK is activated during metabolic stress, and ameliorates stress-induced apoptosis of these cells. METHODS Primary MPT cells were cultured from AMPK knockout (KO) mice lacking either the α1 or the α2 isoform of the catalytic domain of AMPK. MPT cells were subjected to ATP depletion using antimycin A. RESULTS Surprisingly, there was no difference in the amount of death induced by metabolic stress of MPT cells from either type of AMPK KO mice compared to its WT control. Moreover, inhibition of the activity of the α1 isoform in primary MPT cells from α2-/- mice (pharmacologically, via compound C) or inhibition of the α2 isoform in primary MPT cells from α1-/- mice (molecularly, via knockdown) both decreased cell viability equivalently in response to metabolic stress. The explanation for this unexpected result appears to be an adaptive increase in expression of the non-deleted α-isoform. As a consequence, total α-domain expression (i.e. α1 + α2), is comparable in kidney cortex and in cultured MPT cells derived from either type of KO mouse versus its WT control. Importantly, each α-isoform appears able to compensate fully for the absence of the other, with respect to both the phosphorylation of downstream targets of AMPK and the amelioration of stress-induced cell death. CONCLUSIONS These findings not only confirm the importance of AMPK as a pro-survival kinase in MPT cells during metabolic stress, but also show, for the first time, that each of the two α-isoforms can substitute for the other in MPT cells from AMPK KO mice with regard to amelioration of stress-induced loss of cell viability.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Department of Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Turdi S, Hu N, Ren J. Tauroursodeoxycholic acid mitigates high fat diet-induced cardiomyocyte contractile and intracellular Ca2+ anomalies. PLoS One 2013; 8:e63615. [PMID: 23667647 PMCID: PMC3647067 DOI: 10.1371/journal.pone.0063615] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/09/2013] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The endoplasmic reticulum (ER) chaperone tauroursodeoxycholic acid (TUDCA) has exhibited promises in the treatment of obesity, although its impact on obesity-induced cardiac dysfunction is unknown. This study examined the effect of TUDCA on cardiomyocyte function in high-fat diet-induced obesity. METHODS Adult mice were fed low or high fat diet for 5 months prior to treatment of TUDCA (300 mg/kg. i.p., for 15d). Intraperitoneal glucose tolerance test (IPGTT), cardiomyocyte mechanical and intracellular Ca(2+) property, insulin signaling molecules including IRS-1, Akt, AMPK, ACC, GSK-3β, c-Jun, ERK and c-Jun N terminal kinase (JNK) as well as ER stress and intracellular Ca(2+) regulatory proteins were examined. Myocardial ultrastructure was evaluated using transmission electron microscopy (TEM). RESULTS High-fat diet depressed peak shortening (PS) and maximal velocity of shortening/relengthenin as well as prolonged relengthening duration. TUDCA reversed or overtly ameliorated high fat diet-induced cardiomyocyte dysfunction including prolongation in relengthening. TUDCA alleviated high-fat diet-induced decrease in SERCA2a and phosphorylation of phospholamban, increase in ER stress (GRP78/BiP, CHOP, phosphorylation of PERK, IRE1α and eIF2α), ultrastructural changes and mitochondrial permeation pore opening. High-fat diet feeding inhibited phosphorylation of AMPK and promoted phosphorylation of GSK-3β. TUDCA prevented high fat-induced dephosphorylation of AMPK but not GSK-3β. High fat diet promoted phosphorylation of IRS-1 (Ser(307)), JNK, and ERK without affecting c-Jun phosphorylation, the effect of which with the exception of ERK phosphorylation was attenuated by TUDCA. CONCLUSIONS These data depict that TUDCA may ameliorate high fat diet feeding-induced cardiomyocyte contractile and intracellular Ca(2+) defects through mechanisms associated with mitochondrial integrity, AMPK, JNK and IRS-1 serine phosphorylation.
Collapse
Affiliation(s)
- Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, Division of Pharmaceutical Sciences, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
| | | | | |
Collapse
|
29
|
Yan H, Zhang DX, Shi X, Zhang Q, Huang YS. Activation of the prolyl-hydroxylase oxygen-sensing signal cascade leads to AMPK activation in cardiomyocytes. J Cell Mol Med 2013; 16:2049-59. [PMID: 22128786 PMCID: PMC3822975 DOI: 10.1111/j.1582-4934.2011.01500.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The proline hydroxylase domain-containing enzymes (PHD) act as cellular oxygen sensors and initiate a hypoxic signal cascade to induce a range of cellular responses to hypoxia especially in the aspect of energy and metabolic homeostasis regulation. AMP-activated protein kinase (AMPK) is recognized as a major energetic sensor and regulator of cardiac metabolism. However, the effect of PHD signal on AMPK has never been studied before. A PHD inhibitor (PHI), dimethyloxalylglycine and PHD2-specific RNA interference (RNAi) have been used to activate PHD signalling in neonatal rat cardiomyocytes. Both PHI and PHD2-RNAi activated AMPK pathway in cardiomyocytes effectively. In addition, the increased glucose uptake during normoxia and enhanced myocyte viability during hypoxia induced by PHI pretreatment were abrogated substantially upon AMPK inhibition with an adenoviral vector expressing a dominant negative mutant of AMPK-α1. Furthermore, chelation of intracellular Ca2+ by BAPTA, inhibition of calmodulin-dependent kinase kinase (CaMKK) with STO-609, or RNAi-mediated down-regulation of CaMKK α inhibited PHI-induced AMPK activation significantly. In contrast, down-regulation of LKB1 with adenoviruses expressing the dominant negative form did not affect PHI-induced AMPK activation. We establish for the first time that activation of PHD signal cascade can activate AMPK pathway mainly through a Ca(2+)/CaMKK-dependent mechanism in cardiomyocytes. Furthermore, activation of AMPK plays an essential role in hypoxic protective responses induced by PHI.
Collapse
Affiliation(s)
- Hong Yan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, The Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
30
|
Lieberthal W, Zhang L, Patel VA, Levine JS. AMPK protects proximal tubular cells from stress-induced apoptosis by an ATP-independent mechanism: potential role of Akt activation. Am J Physiol Renal Physiol 2011; 301:F1177-92. [PMID: 21957177 DOI: 10.1152/ajprenal.00034.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the role of AMP-activated protein kinase (AMPK) in modulating the viability of cultured kidney proximal tubular cells subjected to metabolic stress induced by either dextrose deprivation, inhibition of glycolysis, or inhibition of mitochondrial respiration. We used BU.MPT cells, a conditionally immortalized kidney epithelial cell line derived from the proximal tubules of transgenic mice bearing a temperature-sensitive mutation of the simian virus 40 large-tumor antigen. All three forms of metabolic stress increased the phosphorylation and activity of AMPK. Activation of AMPK led to changes in the phosphorylation of two downstream targets of AMPK, acetyl coenzyme A carboxylase and p70 S6 kinase. Inhibition of AMPK, either pharmacologically with compound C (CC) or by gene silencing, significantly increased the amount of apoptosis in response to all three forms of metabolic stress. Although the amount of apoptosis was directly related to the severity of ATP depletion, inhibition of AMPK had no effect on cellular ATP levels. Notably, metabolic stress increased the phosphorylation and activity of Akt. Furthermore, inhibition of AMPK, with CC or gene silencing, abrogated the ability of metabolic stress to activate Akt. The augmentation of apoptosis induced by inhibition of AMPK was comparable to that induced by inhibition of Akt. We conclude that activation of AMPK following acute metabolic stress plays a major role in promoting the viability of cultured proximal tubular cells. Protection by AMPK appears to be due not to AMPK-mediated conservation of cell energy stores, but rather, at least in part, to AMPK-mediated activation of Akt.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Dept. of Medicine, Stony Brook Medical Center, 101 Nicholls Rd., Stony Brook, NY 11794-8166, USA.
| | | | | | | |
Collapse
|
31
|
Yoshida H, Bao L, Kefaloyianni E, Taskin E, Okorie U, Hong M, Dhar-Chowdhury P, Kaneko M, Coetzee WA. AMP-activated protein kinase connects cellular energy metabolism to KATP channel function. J Mol Cell Cardiol 2011; 52:410-8. [PMID: 21888913 DOI: 10.1016/j.yjmcc.2011.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/21/2011] [Accepted: 08/17/2011] [Indexed: 11/29/2022]
Abstract
AMPK is an important sensor of cellular energy levels. The aim of these studies was to investigate whether cardiac K(ATP) channels, which couple cellular energy metabolism to membrane excitability, are regulated by AMPK activity. We investigated effects of AMPK on rat ventricular K(ATP) channels using electrophysiological and biochemical approaches. Whole-cell K(ATP) channel current was activated by metabolic inhibition; this occurred more rapidly in the presence of AICAR (an AMPK activator). AICAR had no effects on K(ATP) channel activity recorded in the inside-out patch clamp configuration, but ZMP (the intracellular intermediate of AICAR) strongly activated K(ATP) channels. An AMPK-mediated effect is demonstrated by the finding that ZMP had no effect on K(ATP) channels in the presence of Compound C (an AMPK inhibitor). Recombinant AMPK activated Kir6.2/SUR2A channels in a manner that was dependent on the AMP concentration, whereas heat-inactivated AMPK was without effect. Using mass-spectrometry and co-immunoprecipitation approaches, we demonstrate that the AMPK α-subunit physically associates with K(ATP) channel subunits. Our data demonstrate that the cardiac K(ATP) channel function is directly regulated by AMPK activation. During metabolic stress, a small change in cellular AMP that activates AMPK can be a potential trigger for K(ATP) channel opening. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Hidetada Yoshida
- Pediatric Cardiology, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shinmura K. Cardiovascular protection afforded by caloric restriction: essential role of nitric oxide synthase. Geriatr Gerontol Int 2011; 11:143-56. [PMID: 21199236 DOI: 10.1111/j.1447-0594.2010.00675.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Caloric restriction is an established intervention, of which anti-aging effects are scientifically proven. It has pleiotropic effects on the cardiovascular system: vascular protection, improvement of myocardial ischemic tolerance and retardation of cardiac senescence. First, increasing evidence from both experimental and clinical studies supports the concept that "a man is as old as his arteries". Caloric restriction could prevent the progression of atherosclerosis and vascular aging through direct and indirect mechanisms. Second, the hearts of senescent animals are more susceptible to ischemia than those of young animals. We demonstrated that short-term and prolonged caloric restriction confers cardioprotection against ischemia/reperfusion injury in young and aged rodents. Furthermore, we showed that the increase in circulating adiponectin levels and subsequent activation of adenosine monophosphate-activated protein kinase are necessary for the cardioprotection afforded by short-term caloric restriction. In contrast, the mechanisms by which prolonged caloric restriction confers cardioprotection seem more complicated. Adiponectin, nitric oxide synthase and sirtuin may form a network of cardiovascular protection during caloric restriction. Recently, by using genetically engineered mice, we found that, in addition to endothelial nitric oxide synthase, neuronal nitric oxide synthase plays an essential role in the development of cardioprotection afforded by prolonged caloric restriction. Third, long-term caloric restriction has cardiac-specific effects that attenuate the age-associated impairment seen in left ventricular diastolic function. It is possible that long-term caloric restriction partially retards cardiac senescence by attenuating oxidative damage in the aged heart. Overall, we strongly believe that caloric restriction could reduce morbidity and mortality of cardiovascular events in humans.
Collapse
Affiliation(s)
- Ken Shinmura
- Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Konishi M, Haraguchi G, Ohigashi H, Ishihara T, Saito K, Nakano Y, Isobe M. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK up-regulation. Cardiovasc Res 2010; 89:309-19. [DOI: 10.1093/cvr/cvq335] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Andersson C, Søgaard P, Hoffmann S, Hansen PR, Vaag A, Major-Pedersen A, Hansen TF, Bech J, Køber L, Torp-Pedersen C, Gislason GH. Metformin is associated with improved left ventricular diastolic function measured by tissue Doppler imaging in patients with diabetes. Eur J Endocrinol 2010; 163:593-9. [PMID: 20679358 DOI: 10.1530/eje-10-0624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To examine the association between selected glucose-lowering medications and left ventricular (LV) diastolic function in patients with diabetes. DESIGN Retrospective cohort study (years 2005-2008). METHODS Echocardiograms of 242 patients with diabetes undergoing coronary angiography were analyzed. All patients had an LV ejection fraction (LVEF) ≥20% and were without atrial fibrillation, bundle branch block, valvular disease, or cardiac pacemaker. Patients were grouped according to the use of metformin (n=56), sulfonylureas (n=43), insulin (n=61), and combination treatment (n=82). RESULTS Mean age (66±10 years) and mean LVEF (45±11%) were similar across the groups. Mean isovolumic relaxation time (IVRT) was 66±31, 79±42, 69±23, and 66±29 ms in metformin, sulfonylureas, insulin, and combination treatment groups respectively (P=0.4). Mean early diastolic longitudinal tissue velocity (e') was 5.3±1.6, 4.6±1.6, 5.3±1.8, and 5.4±1.7 cm/s in metformin, sulfonylureas, insulin, and combination treatment groups (P=0.04). In adjusted linear regression models, the use of metformin was associated with a shorter IVRT (parameter estimate -9.9 ms, P=0.049) and higher e' (parameter estimate +0.52 cm/s, P=0.03), compared with no use of metformin. The effects of metformin were not altered by concomitant use of sulfonylureas or insulin (P for interactions >0.4). CONCLUSIONS The use of metformin is associated with improved LV relaxation, as compared with no use of metformin.
Collapse
Affiliation(s)
- Charlotte Andersson
- Department of Cardiology, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dong Q, Yang Y, Song L, Qian H, Xu Z. Atorvastatin prevents mesenchymal stem cells from hypoxia and serum-free injury through activating AMP-activated protein kinase. Int J Cardiol 2010; 153:311-6. [PMID: 20832877 DOI: 10.1016/j.ijcard.2010.08.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are the optimal candidate of treating myocardial infarction; however, the lower survival ratio of implanted cell discourages the advantages of this treatment. Recent studies have displayed statins, which exert pleiotropic effects on the cardiovascular system partially through the increase in endothelial nitric oxide synthase (eNOS) activity, could increase the livability of cells under hypoxia and serum-free (H/SF) conditions. AMP-activated protein kinase (AMPK) is the essential part in keeping the balance of energy production and metabolism in various tissues, which is the dominant factor modulating the programmed cell death. Therefore, we hypothesized that atorvastatin could protect MSCs from H/SF injury through AMPK-eNOS pathway. METHODS AND RESULTS Stained with Annexin V/propidine iodine (PI), we found atorvastatin (0.001 μM-10 μM) reduced apoptosis of porcine bone marrow-derived MSCs cultured in H/SF condition; however, this effect was obstructed by compound C, an inhibitor of AMPK. This trend was similar as what bax protein, a pro-apoptosis protein, showed analyzed by Western blotting; whereas the bcl-2 protein, an anti-apoptosis protein, increased in atorvastatin treated cells. Meanwhile, MSCs treated with atorvastatin increased phosphorylation of AMPK and eNOS. The uptrend was partially inhibited by compound C. CONCLUSIONS Atorvastatin can activate AMPK and the phosphorylation of AMPK results in eNOS activated, which provides a novel explanation for the multi-effect of statins on cardiovascular system.
Collapse
Affiliation(s)
- Qiuting Dong
- Department of Cardiology, FuWai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, 167 Beilishi Rd, Beijing 100037, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Lopaschuk GD, Ussher JR, Jaswal JS. Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite. Pharmacol Rev 2010; 62:237-64. [PMID: 20392806 DOI: 10.1124/pr.109.002428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The central nervous system mediates energy balance (energy intake and energy expenditure) in the body; the hypothalamus has a key role in this process. Recent evidence has demonstrated an important role for hypothalamic malonyl CoA in mediating energy balance. Malonyl CoA is generated by the carboxylation of acetyl CoA by acetyl CoA carboxylase and is then either incorporated into long-chain fatty acids by fatty acid synthase, or converted back to acetyl-CoA by malonyl CoA decarboxylase. Increased hypothalamic malonyl CoA is an indicator of energy surplus, resulting in a decrease in food intake and an increase in energy expenditure. In contrast, a decrease in hypothalamic malonyl CoA signals an energy deficit, resulting in an increased appetite and a decrease in body energy expenditure. A number of hormonal and neural orexigenic and anorexigenic signaling pathways have now been shown to be associated with changes in malonyl CoA levels in the arcuate nucleus (ARC) of the hypothalamus. Despite compelling evidence that malonyl CoA is an important mediator in the hypothalamic ARC control of food intake and regulation of energy balance, the mechanism(s) by which this occurs has not been established. Malonyl CoA inhibits carnitine palmitoyltransferase-1 (CPT-1), and it has been proposed that the substrate of CPT-1, long-chain acyl CoA(s), may act as a mediator(s) of appetite and energy balance. However, recent evidence has challenged the role of long-chain acyl CoA(s) in this process, as well as the involvement of CPT-1 in hypothalamic malonyl CoA signaling. A better understanding of how malonyl CoA regulates energy balance should provide novel approaches to targeting intermediary metabolism in the hypothalamus as a mechanism to control appetite and body weight. Here, we review the data supporting an important role for malonyl CoA in mediating hypothalamic control of energy balance, and recent evidence suggesting that targeting malonyl CoA synthesis or degradation may be a novel approach to favorably modify appetite and weight gain.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- 423 Heritage Medical Research Center, University of Alberta, Edmonton, Canada T6G2S2.
| | | | | |
Collapse
|
37
|
Van Den Neste E, Van den Berghe G, Bontemps F. AICA-riboside (acadesine), an activator of AMP-activated protein kinase with potential for application in hematologic malignancies. Expert Opin Investig Drugs 2010; 19:571-8. [DOI: 10.1517/13543781003703694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1505] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Andreas S Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
40
|
Lieberthal W, Levine JS. The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 2009; 20:2493-502. [PMID: 19875810 DOI: 10.1681/asn.2008111186] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in mediating cell size and mass, proliferation, and survival. mTOR has also emerged as an important modulator of several forms of renal disease. mTOR is activated after acute kidney injury and contributes to renal regeneration and repair. Inhibition of mTOR with rapamycin delays recovery of renal function after acute kidney injury. Activation of mTOR within the kidney also occurs in animal models of diabetic nephropathy and other causes of progressive kidney disease. Rapamycin ameliorates several key mechanisms believed to mediate changes associated with the progressive loss of GFR in chronic kidney disease. These include glomerular hypertrophy, intrarenal inflammation, and interstitial fibrosis. mTOR also plays an important role in mediating cyst formation and enlargement in autosomal dominant polycystic kidney disease. Inhibition of mTOR by rapamycin or one of its analogues represents a potentially novel treatment for autosomal dominant polycystic kidney disease. Finally, inhibitors of mTOR improve survival in patients with metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Stony Brook Medical Center, Health Sciences Center, 16-081B Nicholls Road, Stony Brook, NY 11794-8166, USA.
| | | |
Collapse
|
41
|
Zhang QJ, McMillin SL, Tanner JM, Palionyte M, Abel ED, Symons JD. Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases. J Physiol 2009; 587:3911-20. [PMID: 19505983 DOI: 10.1113/jphysiol.2009.172916] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The intracellular signalling kinases Akt/protein kinase B (Akt), protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) are phosphorylated in response to increased mechanical force or perfusion rate in cultured endothelial cells or isolated blood vessels. All three kinases phosphorylate endothelial nitric oxide synthase (eNOS) on serine (S) 1177, while Akt and PKA additionally phosphorylate eNOS on S617 and S635 respectively. Although these kinases might contribute to subsequent activation of eNOS during dynamic exercise, the specific mediators of exercise-induced eNOS phosphorylation and activation in vivo are unknown. We determined the impact of 50 min of treadmill running on the phosphorylation of Akt, AMPK, cyclic adenosine monophosphate response element binding protein (CREB - a target of PKA) and eNOS (S 1177, 635 and 617 and threonine (T) 495) in the presence or absence of pharmacological inhibition of PI3 kinase (PI3K) and Akt signalling using wortmannin. Compared to arteries from sedentary mice, eNOS enzyme activity was greater in vessels from treadmill-running animals and was associated with increased phosphorylation of Akt (S473), CREB (S133), AMPK (T172), and eNOS at S1177 and S617 but not at S635 or T495. These data suggest that Akt signalling is a major mediator of eNOS activation. To confirm this, treadmill-running was performed in the presence of vehicle (DMSO) or PI3K inhibition. Compared to results from sedentary mice, vascular Akt phosphorylation and eNOS phosphorylation at S617 during treadmill-running were prevented by wortmannin but not vehicle treatment, whereas exercise-related increases in AMPK and CREB phosphorylation were similar between groups. Arterial eNOS phosphorylation at S1177 increased during exercise after wortmannin treatment relative to values obtained from sedentary animals, but the elevation was blunted by approximately 50% compared to results from vehicle-treated mice. These findings indicate that Akt and AMPK contribute importantly to vascular eNOS S1177 phosphorylation during treadmill-running, and that AMPK is sufficient to activate p-eNOS S1177 in the presence of PI3K inhibition.
Collapse
Affiliation(s)
- Quan-Jiang Zhang
- College of Health, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, Ogai A, Asakura M, Kim J, Minamino T, Takashima S, Sanada S, Sugimachi M, Komamura K, Mochizuki N, Kitakaze M. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 2009; 119:2568-77. [PMID: 19414638 DOI: 10.1161/circulationaha.108.798561] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Some studies have shown that metformin activates AMP-activated protein kinase (AMPK) and has a potent cardioprotective effect against ischemia/reperfusion injury. Because AMPK also is activated in animal models of heart failure, we investigated whether metformin decreases cardiomyocyte apoptosis and attenuates the progression of heart failure in dogs. METHODS AND RESULTS Treatment with metformin (10 micromol/L) protected cultured cardiomyocytes from cell death during exposure to H2O2 (50 micromol/L) via AMPK activation, as shown by the MTT assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, and flow cytometry. Continuous rapid ventricular pacing (230 bpm for 4 weeks) caused typical heart failure in dogs. Both left ventricular fractional shortening and left ventricular end-diastolic pressure were significantly improved in dogs treated with oral metformin at 100 mg x kg(-1) x d(-1) (n=8) (18.6+/-1.8% and 11.8+/-1.1 mm Hg, respectively) compared with dogs receiving vehicle (n=8) (9.6+/-0.7% and 22+/-0.9 mm Hg, respectively). Metformin also promoted phosphorylation of both AMPK and endothelial nitric oxide synthase, increased plasma nitric oxide levels, and improved insulin resistance. As a result of these effects, metformin decreased apoptosis and improved cardiac function in failing canine hearts. Interestingly, another AMPK activator (AICAR) had effects equivalent to those of metformin, suggesting the primary role of AMPK activation in reducing apoptosis and preventing heart failure. CONCLUSIONS Metformin attenuated oxidative stress-induced cardiomyocyte apoptosis and prevented the progression of heart failure in dogs, along with activation of AMPK. Therefore, metformin may be a potential new therapy for heart failure.
Collapse
Affiliation(s)
- Hideyuki Sasaki
- Department of Cardiovascular Medicine, National Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Inadvertent phosphorylation of survival kinases in isolated perfused hearts: a word of caution. Basic Res Cardiol 2009; 104:412-23. [DOI: 10.1007/s00395-009-0780-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/06/2009] [Indexed: 11/25/2022]
|
44
|
Affiliation(s)
- Hiroshi Asanuma
- Department of Emergency Room Medicine, Kinki University School of Medicine
| | | |
Collapse
|
45
|
Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Mol Cell Biol 2008; 29:378-88. [PMID: 19001090 DOI: 10.1128/mcb.01661-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intracellular signaling mechanisms underlying the pathogenesis of cardiac diseases are not fully understood. We report here that selective deletion of Shp2, an SH2-containing cytoplasmic tyrosine phosphatase, in striated muscle results in severe dilated cardiomyopathy in mice, leading to heart failure and premature mortality. Development of cardiomyopathy in this mouse model is coupled with insulin resistance, glucose intolerance, and impaired glucose uptake in striated muscle cells. Shp2 deficiency leads to upregulation of leukemia inhibitory factor-stimulated phosphatidylinositol 3-kinase/Akt, Erk5, and Stat3 pathways in cardiomyocytes. Insulin resistance and impaired glucose uptake in Shp2-deficient mice are at least in part due to impaired protein kinase C-zeta/lambda and AMP-kinase activities in striated muscle. Thus, we have generated a mouse line modeling human patients suffering from cardiomyopathy and insulin resistance. This study reinforces a concept that a compound disease with multiple cardiovascular and metabolic disturbances can be caused by a defect in a single molecule such as Shp2, which modulates multiple signaling pathways initiated by cytokines and hormones.
Collapse
|
46
|
Shinmura K, Tamaki K, Bolli R. Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 2008; 295:H2348-55. [PMID: 18931029 DOI: 10.1152/ajpheart.00602.2008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic tolerance decreases with aging, and the cardioprotective effect of ischemic preconditioning (IPC) is impaired in middle-aged animals. We have demonstrated that short-term caloric restriction (CR) improves myocardial ischemic tolerance in young and old animals via the activation of adiponectin-AMP-activated protein kinase (AMPK)-mediated signaling. However, it is unknown whether prolonged CR confers cardioprotection in a similar manner. Furthermore, little is known regarding the myocardial expression of silent information regulator 1 (Sirt1; which reportedly mediates various aspects of the CR response) with prolonged CR. Thus, 6-mo-old male Fischer-344 rats were randomly divided into ad libitum (AL) and CR groups. Six months later, isolated perfused hearts were subjected to 25 min of global ischemia followed by 120 min of reperfusion with or without IPC. CR improved the recovery of left ventricular function and reduced infarct size after ischemia-reperfusion and restored the IPC effect. Serum adiponectin levels increased, but myocardial levels of total and phosphorylated AMPK did not change with prolonged CR. Total levels of Sirt1 did not change with CR; however, in the nuclear fraction, CR significantly increased Sirt1 and decreased acetyl-histone H3. Eleven rats from each group were given N-nitro-l-arginine methyl ester in their drinking water for 4 wk before death. In these hearts, chronic inhibition of nitric oxide synthase prevented the increase in nuclear Sirt1 content by CR and abrogated CR-induced cardioprotection. These results demonstrate that 1) prolonged CR improves myocardial ischemic tolerance and restores the IPC effect in middle-aged rats and 2) CR-induced cardioprotection is associated with a nitric oxide-dependent increase in nuclear Sirt1 content.
Collapse
Affiliation(s)
- Ken Shinmura
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
47
|
Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 2008; 295:H1580-6. [PMID: 18689499 DOI: 10.1152/ajpheart.00379.2008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic postconditioning (IPCD) significantly reduces infarct size in healthy animals and protects the human heart. Because obesity is a major risk factor of cardiovascular diseases, the effects of IPCD were investigated in 8- to 10-wk-old leptin-deficient obese (ob/ob) mice and compared with wild-type C57BL/6J (WT) mice. All animals underwent 30 min of coronary artery occlusion followed by 24 h of reperfusion associated or not with IPCD (6 cycles of 10-s occlusion, 10-s reperfusion). Additional mice were killed at 10 min of reperfusion for Western blotting. IPCD reduced infarct size by 58% in WT mice (33+/-1% vs. 14+/-3% for control and IPCD, respectively, P<0.05) but failed to induce cardioprotection in ob/ob mice (53+/-4% vs. 56+/-5% for control and IPCD, respectively). In WT mice, IPCD significantly increased the phosphorylation of Akt (+77%), ERK1/2 (+41%), and their common target p70S6K1 (+153% at Thr389 and +57% at Thr421/Ser424). In addition, the phosphorylated AMP-activated protein kinase (AMPK)-to-total AMPK ratio was also increased by IPCD in WT mice (+64%, P<0.05). This was accompanied by decreases in phosphatase and tensin homolog deleted on chromosome 10 (PTEN), MAP kinase phosphatase (MKP)-3, and protein phosphatase (PP)2C levels. In contrast, IPCD failed to increase the phosphorylation state of all these kinases in ob/ob mice, and the level of the three phosphatases was significantly increased. Thus, although IPCD reduces myocardial infarct size in healthy animals, its cardioprotective effect vanishes with obesity. The lack of enhanced phosphorylation by IPCD of Akt, ERK1/2, p70S6K1, and AMPK might partly explain the loss of cardioprotection in this experimental model of obese mice.
Collapse
Affiliation(s)
- Omar Bouhidel
- Institut National de la Santé et de la Recherche Médicale U841, Equipe 3, Université Paris 12, Créteil, France
| | | | | | | | | | | |
Collapse
|
48
|
Dallabrida SM, Ismail NS, Pravda EA, Parodi EM, Dickie R, Durand EM, Lai J, Cassiola F, Rogers RA, Rupnick MA. Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy. FASEB J 2008; 22:3010-23. [PMID: 18502941 DOI: 10.1096/fj.07-100966] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiopoietins were thought to be endothelial cell-specific via the tie2 receptor. We showed that angiopoietin-1 (ang1) also interacts with integrins on cardiac myocytes (CMs) to increase survival. Because ang1 monomers bind and activate integrins (not tie2), we determined their function in vivo. We examined monomer and multimer expressions during physiological and pathological cardiac remodeling and overexpressed ang1 monomers in phenylephrine-induced cardiac hypertrophy. Cardiac ang1 levels (mRNA, protein) increased during postnatal development and decreased with phenylephrine-induced cardiac hypertrophy, whereas tie2 phosphorylations were unchanged. We found that most or all of the changes during cardiac remodeling were in monomers, offering an explanation for unchanged tie2 activity. Heart tissue contains abundant ang1 monomers and few multimers (Western blotting). We generated plasmids that produce ang1 monomers (ang1-256), injected them into mice, and confirmed cardiac expression (immunohistochemistry, RT-PCR). Ang1 monomers localize to CMs, smooth muscle cells, and endothelial cells. In phenylephrine-induced cardiac hypertrophy, ang1-256 reduced left ventricle (LV)/tibia ratios, fetal gene expressions (atrial and brain natriuretic peptides, skeletal actin, beta-myosin heavy chain), and fibrosis (collagen III), and increased LV prosurvival signaling (akt, MAPK(p42/44)), and AMPK(T172). However, tie2 phosphorylations were unchanged. Ang1-256 increased integrin-linked kinase, a key regulator of integrin signaling and cardiac health. Collectively, these results suggest a role for ang1 monomers in cardiac remodeling.
Collapse
Affiliation(s)
- Susan M Dallabrida
- Division of Vascular Biology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shen QW, Gerrard DE, Du M. Compound C, an inhibitor of AMP-activated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem. Meat Sci 2008; 78:323-30. [DOI: 10.1016/j.meatsci.2007.06.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 02/07/2023]
|
50
|
Affiliation(s)
- Lawrence H. Young
- From the Departments of Internal Medicine (Section of Cardiovascular Medicine) and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|