1
|
Wang X, Zhang C, Su J, Ren S, Wang X, Zhang Y, Yuan Z, He X, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Wang X, Sun Y, Shen J, Ji H, Hou Y, Xiao Z. Rejuvenation Strategy for Inducing and Enhancing Autoimmune Response to Eliminate Senescent Cells. Aging Dis 2024:AD.2024.0579. [PMID: 39122450 DOI: 10.14336/ad.2024.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The process of aging, which involves progressive changes in the body over time, is closely associated with the development of age-related diseases. Cellular senescence is a pivotal hallmark and mechanism of the aging process. The accumulation of senescent cells can significantly contribute to the onset of age-related diseases, thereby compromising overall health. Conversely, the elimination of senescent cells enhances the body's regenerative and reparative capacity, thereby retarding the aging process. Here, we present a brief overview of 12 Hallmarks of aging and subsequently emphasize the potential of immune checkpoint blockade, innate immune cell therapy (including T cells, iNKT cells, macrophages, and NK cells), as well as CAR-T cell therapy for inducing and augmenting immune responses aimed at eliminating senescent cells. In addition to CAR-T cells, we also explore the possibility of engineered immune cells such as CAR-NK and CAR-M cells to eliminate senescent cells. In summary, immunotherapy, as an emerging strategy for the treatment of aging, offers new prospects for age-related research.
Collapse
Affiliation(s)
- Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chengyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- LongmaTan District People's Hospital of Luzhou City, Luzhou 646600, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| |
Collapse
|
2
|
Pessoa J, Nóbrega-Pereira S, de Jesus BB. Senescent cell-derived vaccines: a new concept towards an immune response against cancer and aging? Aging (Albany NY) 2024; 16:10657-10665. [PMID: 38942604 PMCID: PMC11236300 DOI: 10.18632/aging.205975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 06/30/2024]
Abstract
Two recent seminal works have untangled the intricate role of tumor-associated senescent cells in cancer progression, or regression, by guiding our immune system against cancer cells. The characterization of these unique, yet diverse cell populations, should be considered, particularly when contemplating the use of senolytics, which are drugs that selectively eliminate senescent cells, in a cancer framework. Here, we will describe the current knowledge in this field. In particular, we will discuss how the presence of senescent cells in tumors could be used as a therapeutic target in immunogenic cancers and how we may hypothetically design an adaptive anti-aging vaccine.
Collapse
Affiliation(s)
- João Pessoa
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
3
|
Chen XK, Zheng C, Wong SHS, Ma ACH. Moderate-vigorous physical activity attenuates premature senescence of immune cells in sedentary adults with obesity: a pilot randomized controlled trial. Aging (Albany NY) 2022; 14:10137-10152. [PMID: 36585923 PMCID: PMC9831733 DOI: 10.18632/aging.204458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Despite the well-known senolytic effects of physical exercise on immune cells in older adults, the effect of physical activity (PA) on premature immune senescence in sedentary adults with obesity remains largely unknown. This pilot study aimed to investigate the role of objectively measured physical behaviors and Fitbit watch-based free-living PA intervention in premature senescence of immune cells in sedentary adults with obesity. Forty-five participants were recruited in the cross-sectional analysis, and forty of them further participated in the randomized controlled trial. We found that objectively measured moderate-vigorous PA was independently and inversely correlated with the expression of p16INK4a and p21Cip1 in the peripheral blood mononuclear cell (PBMCs) of adults with obesity; however, chronological age, body mass index, body fat, maximal oxygen consumption, light PA, sedentary behaviors, and sleep duration were not. More importantly, the 12-week PA intervention mitigated the elevated p16INK4a levels in PBMCs, though it showed no effect on p21Cip1 and senescence-associated secretory phenotypes. Taken together, physical inactivity is an independent determinant of premature senescence in immune cells, while the 12-week PA intervention is a promising strategy to alleviate premature immune senescence in adults with obesity.
Collapse
Affiliation(s)
- Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Chen Zheng
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
4
|
Erichsen L, Adjaye J. Crosstalk between age accumulated DNA-damage and the SIRT1-AKT-GSK3ß axis in urine derived renal progenitor cells. Aging (Albany NY) 2022; 14:8179-8204. [PMID: 36170022 PMCID: PMC9648809 DOI: 10.18632/aging.204300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Abstract
The aging process is manifested by a multitude of inter-linked biological processes. These processes contribute to genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, de-regulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. The mammalian ortholog of the yeast silent information regulator (Sir2) SIRT1 is a NAD+-dependent class III histone deacetylase and has been recognized to be involved in many of the forementioned processes. Furthermore, the physiological activity of several Sirtuin family members has been connected to the regulation of life span of lower organisms (Caenorhabditis elegans and Drosophila melanogaster) as well as mammals. In the present study, we provide evidence that SIX2-positive urine derived renal progenitor cells-UdRPCs isolated directly from human urine show typical hallmarks of aging. This includes the subsequent transcriptional downregulation of SIRT1 and its downstream targets AKT and GSK3ß with increased donor age. This transcriptional downregulation is accompanied by an increase in DNA damage and transcriptional levels of several cell cycle inhibitors such as P16. We provide evidence that the renal progenitor transcription factor SIX2 binds to the coding sequence of SIRT1. Furthermore, we show that the SIRT1 promoter region is methylation sensitive and becomes methylated during aging, dividing them into SIRT1-high and -low expressing UdRPCs. Our results highlight the importance of SIRT1 in DNA damage repair recognition in UdRPCs and the control of differentiation by regulating the activation of GSK3β through AKT.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
5
|
TRPC3 shapes the ER-mitochondria Ca 2+ transfer characterizing tumour-promoting senescence. Nat Commun 2022; 13:956. [PMID: 35177596 PMCID: PMC8854551 DOI: 10.1038/s41467-022-28597-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells. Mitochondrial Ca2+ homeostasis is reported to influence cellular senescence. Here the authors show that TRPC3 limits senescence by inhibiting IP3R-mediated Ca2+ release and ER mitochondria Ca2+ transfer and that the downregulation of TRPC3 in stromal cells affects SASP production and tumour progression.
Collapse
|
6
|
Lin W, Wang X, Wang Z, Shao F, Yang Y, Cao Z, Feng X, Gao Y, He J. Comprehensive Analysis Uncovers Prognostic and Immunogenic Characteristics of Cellular Senescence for Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:780461. [PMID: 34869385 PMCID: PMC8636167 DOI: 10.3389/fcell.2021.780461] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence plays a crucial role in tumorigenesis, development and immune modulation in cancers. However, to date, a robust and reliable cellular senescence-related signature and its value in clinical outcomes and immunotherapy response remain unexplored in lung adenocarcinoma (LUAD) patients. Through exploring the expression profiles of 278 cellular senescence-related genes in 936 LUAD patients, a cellular senescence-related signature (SRS) was constructed and validated as an independent prognostic predictor for LUAD patients. Notably, patients with high SRS scores exhibited upregulation of senescence-associated secretory phenotype (SASP) and an immunosuppressive phenotype. Further analysis showed that SRS combined with immune checkpoint expression or TMB served as a good predictor for patients’ clinical outcomes, and patients with low SRS scores might benefit from immunotherapy. Collectively, our findings demonstrated that SRS involved in the regulation of the tumor immune microenvironment through SASP was a robust biomarker for the immunotherapeutic response and prognosis in LUAD.
Collapse
Affiliation(s)
- Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Mehta IS, Riyahi K, Pereira RT, Meaburn KJ, Figgitt M, Kill IR, Eskiw CH, Bridger JM. Interphase Chromosomes in Replicative Senescence: Chromosome Positioning as a Senescence Biomarker and the Lack of Nuclear Motor-Driven Chromosome Repositioning in Senescent Cells. Front Cell Dev Biol 2021; 9:640200. [PMID: 34113611 PMCID: PMC8185894 DOI: 10.3389/fcell.2021.640200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1β (NM1β). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1β (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1β within senescent HDFs.
Collapse
Affiliation(s)
- Ishita S Mehta
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Tata Institute of Fundamental Research, Mumbai, India
| | - Kumars Riyahi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Rita Torres Pereira
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Karen J Meaburn
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Martin Figgitt
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Department of Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ian R Kill
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joanna M Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
8
|
ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging (Albany NY) 2021; 13:10703-10723. [PMID: 33824228 PMCID: PMC8064223 DOI: 10.18632/aging.202850] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Stem cell approaches have become an attractive therapeutic option for intervertebral disc degeneration (IVDD). Nucleus pulposus mesenchymal stem cells (NP-MSCs) participate in the regeneration and homeostasis of the intervertebral disc (IVD), but the molecular mechanisms governing these processes remain to be elucidated. Acid-sensing ion channels (ASICs) which act as key receptors for extracellular protons in central and peripheral neurons, have been implicated in IVDD where degeneration is associated with reduced microenvironmental pH. Here we show that ASIC1 and ASIC3, but not ASIC2 and ASIC4 are upregulated in human IVDs according to the degree of clinical degeneration. Subjecting IVD-derived NP-MSCs to pH 6.6 culture conditions to mimic pathological IVD changes resulted in decreased cell proliferation that was associated with cell cycle arrest and induction of senescence. Key molecular changes observed were increased expression of p53, p21, p27, p16 and Rb1. Instructively, premature senescence in NP-MSCs could be largely alleviated using ASIC inhibitors, suggesting both ASIC1 and ASIC3 act decisively upstream to activate senescence programming pathways including p53-p21/p27 and p16-Rb1 signaling. These results highlight the potential of ASIC inhibitors as a therapeutic approach for IVDD and broadly define an in vitro system that can be used to evaluate other IVDD therapies.
Collapse
|
9
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
10
|
Abstract
Significance: Senescence is a cellular state induced by internal or external stimuli, which result in cell cycle arrest, morphological changes, and dysfunctions in mitochondrial and lysosomal functionality as well as the senescence-associated secretory phenotype. Senescent cells accumulate in tissues in physiological and pathological conditions such as development, tissue repair, aging, and cancer. Recent Advances: Growing evidences indicate that senescent cells in vivo are a heterogeneous cell population due to different cell-autonomous activated pathways and distinct microenvironmental contexts. Critical Issues: In this review, we discuss the different contexts where senescence assumes a key role with beneficial or harmful outcomes. The heterogeneous nature of senescence pushes toward resolution of the specific molecular profile and secretome to typify senescent cells in physiological and pathological contexts. Future Directions: Future research will enable exploring the heterogeneity of the senescent population to precisely map the progression of cells through senescent trajectories and study the impact of the therapeutic advantage of senolytic drugs for translational strategies toward supporting the health span. Antioxid. Redox Signal. 34, 294-307.
Collapse
Affiliation(s)
- Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Laura Belloni
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Latella
- Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy.,Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
11
|
Rackley B, Seong CS, Kiely E, Parker RE, Rupji M, Dwivedi B, Heddleston JM, Giang W, Anthony N, Chew TL, Gilbert-Ross M. The level of oncogenic Ras determines the malignant transformation of Lkb1 mutant tissue in vivo. Commun Biol 2021; 4:142. [PMID: 33514834 PMCID: PMC7846793 DOI: 10.1038/s42003-021-01663-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
The genetic and metabolic heterogeneity of RAS-driven cancers has confounded therapeutic strategies in the clinic. To address this, rapid and genetically tractable animal models are needed that recapitulate the heterogeneity of RAS-driven cancers in vivo. Here, we generate a Drosophila melanogaster model of Ras/Lkb1 mutant carcinoma. We show that low-level expression of oncogenic Ras (RasLow) promotes the survival of Lkb1 mutant tissue, but results in autonomous cell cycle arrest and non-autonomous overgrowth of wild-type tissue. In contrast, high-level expression of oncogenic Ras (RasHigh) transforms Lkb1 mutant tissue resulting in lethal malignant tumors. Using simultaneous multiview light-sheet microcopy, we have characterized invasion phenotypes of Ras/Lkb1 tumors in living larvae. Our molecular analysis reveals sustained activation of the AMPK pathway in malignant Ras/Lkb1 tumors, and demonstrate the genetic and pharmacologic dependence of these tumors on CaMK-activated Ampk. We further show that LKB1 mutant human lung adenocarcinoma patients with high levels of oncogenic KRAS exhibit worse overall survival and increased AMPK activation. Our results suggest that high levels of oncogenic KRAS is a driving event in the malignant transformation of LKB1 mutant tissue, and uncovers a vulnerability that may be used to target this aggressive genetic subset of RAS-driven tumors.
Collapse
Affiliation(s)
- Briana Rackley
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Cancer Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan Kiely
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Research Informatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Rebecca E Parker
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Cancer Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Manali Rupji
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Bioinformatics and Systems Biology Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - John M Heddleston
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William Giang
- Integrated Cellular Imaging Core, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Neil Anthony
- Integrated Cellular Imaging Core, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Wei H, Wang J, Liang Z. STAT1-p53-p21axis-dependent stress-induced progression of chronic nephrosis in adriamycin-induced mouse model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1002. [PMID: 32953802 PMCID: PMC7475511 DOI: 10.21037/atm-20-5167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Chronic nephrosis (CN) is an aging-related disease with high mortality. Signal transduction and transcriptional activator 1 (STAT1) protein promotes senescence in human glomerular mesangial cells (HMCs), but whether it affects the progression of adriamycin (ADR)-induced CN in vivo remains unclear. Methods We established an ADR-induced CN mouse model that was completed in wild-type (wt) mice by a single intravenous injection of 10 mg/kg ADR for 2 or 4 weeks. Clinical indexes in each group were determined. Hematoxylin and eosin staining (H&E) was employed to determine renal histopathological damage, SA-β-gal staining was used to evaluate cell senescence phenotype. TUNEL and immunohistochemistry (IHC) staining were used to detect renal apoptosis. Protein levels of Bcl-2, Bax, STAT1, p53 and p21 were measured by Western Blot. Results STAT1 intervention ameliorated renal function. H&E staining indicated that STAT1-deficient (stat1−/−) improved the renal tubular injury, and stat1−/− obviously inhibited the apoptosis and Caspase-3+ number in kidney tissues. Besides, stat1−/− decreased proteinuria, and the levels of urea nitrogen and creatinine as well as that of reactive oxygen species induced by ADR. Also, stat1−/− resulted in the reduced expression of p53 and p21. Conclusions Our current study strongly demonstrated the involvement of the STAT1-p53-p21 axis in the regulation of CN and is a potential target for the nephrosis treatment.
Collapse
Affiliation(s)
- Hua Wei
- Nephrology Department, Xinxiang Central Hospital, Xinxiang, China
| | - Jiali Wang
- Nephrology Department, Xinxiang Central Hospital, Xinxiang, China
| | - Zhaozhi Liang
- Nephrology Department, Xinxiang Central Hospital, Xinxiang, China
| |
Collapse
|
13
|
Honda Y, Huang A, Tanaka T, Han X, Gao B, Liu H, Wang X, Zhao J, Hashimoto Y, Yamamoto K, Matsumoto N, Baba S, Umeda M. Augmentation of Bone Regeneration by Depletion of Stress-Induced Senescent Cells Using Catechin and Senolytics. Int J Mol Sci 2020; 21:ijms21124213. [PMID: 32545756 PMCID: PMC7352429 DOI: 10.3390/ijms21124213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Despite advances in bone regenerative medicine, the relationship between stress-induced premature senescence (SIPS) in cells and bone regeneration remains largely unknown. Herein, we demonstrated that the implantation of a lipopolysaccharide (LPS) sustained-release gelatin sponge (LS-G) increases the number of SIPS cells and that the elimination of these cells promotes bone formation in critical-sized bone defects in the rat calvaria. Histological (hematoxylin–eosin and SA-β-gal) and immunohistological (p16 and p21 for analyzing cellular senescence and 4-HNE for oxidation) staining was used to identify SIPS cells and elucidate the underlying mechanism. Bone formation in defects were analyzed using microcomputed tomography, one and four weeks after surgery. Parallel to LS-G implantation, local epigallocatechin gallate (EGCG) administration, and systemic senolytic (dasatinib and quercetin: D+Q) administration were used to eliminate SIPS cells. After LS-G implantation, SA-β-gal-, p16-, and p21-positive cells (SIPS cells) accumulated in the defects. However, treatment with LS-G+EGCG and LS-G+D+Q resulted in lower numbers of SIPS cells than that with LS-G in the defects, resulting in an augmentation of newly formed bone. We demonstrated that SIPS cells induced by sustained stimulation by LPS may play a deleterious role in bone formation. Controlling these cell numbers is a promising strategy to increase bone regeneration.
Collapse
Affiliation(s)
- Yoshitomo Honda
- Institute of Dental Research, Osaka Dental University, 8-1, Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan;
- Correspondence: (Y.H.); (T.T.); Tel.: +81-72-864-3130 (Y.H.); +81-75-724-7802 (T.T.)
| | - Anqi Huang
- Department of Oral Implantology, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (A.H.); (B.G.); (S.B.)
| | - Tomonari Tanaka
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (Y.H.); (T.T.); Tel.: +81-72-864-3130 (Y.H.); +81-75-724-7802 (T.T.)
| | - Xiaoyu Han
- Department of Operative Dentistry, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (X.H.); (H.L.); (K.Y.)
| | - Beiyuan Gao
- Department of Oral Implantology, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (A.H.); (B.G.); (S.B.)
| | - Haitao Liu
- Department of Operative Dentistry, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (X.H.); (H.L.); (K.Y.)
| | - Xinchen Wang
- Department of Orthodontics, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (X.W.); (J.Z.); (N.M.)
| | - Jianxin Zhao
- Department of Orthodontics, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (X.W.); (J.Z.); (N.M.)
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1, Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan;
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (X.H.); (H.L.); (K.Y.)
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (X.W.); (J.Z.); (N.M.)
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan; (A.H.); (B.G.); (S.B.)
| | - Makoto Umeda
- Institute of Dental Research, Osaka Dental University, 8-1, Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan;
- Department of Periodontology, Osaka Dental University, 1-5-17, Otemae, Chuo-ku, Osaka 540-0008, Japan
| |
Collapse
|
14
|
Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells. Int J Mol Sci 2020; 21:ijms21114074. [PMID: 32517296 PMCID: PMC7312583 DOI: 10.3390/ijms21114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a leading cause of death. Most previous studies have been based on traditional cell-culturing methods. However, lung cells are periodically subjected to mechanical forces during breathing. Understanding the mechanisms underlying the cyclic stretching induced in lung cells may be important for lung cancer therapy. Here, we applied cyclic stretching to stimulate the continual contraction that is present under physiological conditions in lung cells. We first uncovered the stretching-induced phosphoproteome in lung cancer cell line A549 and fibroblast cell line IMR-90. We identified 2048 and 2604 phosphosites corresponding to 837 and 1008 phosphoproteins in A549 and IMR-90, respectively. Furthermore, we combined our phosphoproteomics and public gene expression data to identify the biological functions in response to cyclic stretching. Interestingly, cytoskeletal and mitochondrial reorganization were enriched. We further used cell imaging analysis to validate the profiling results and found that this physical force changed cell alignment and mitochondrial length. This study not only reveals the molecular mechanism of cyclic stretching but also provides evidence that cell stretching causes cellular rearrangement and mitochondrial length change.
Collapse
|
15
|
Dai L, Qureshi AR, Witasp A, Lindholm B, Stenvinkel P. Early Vascular Ageing and Cellular Senescence in Chronic Kidney Disease. Comput Struct Biotechnol J 2019; 17:721-729. [PMID: 31303976 PMCID: PMC6603301 DOI: 10.1016/j.csbj.2019.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical model of premature ageing characterized by progressive vascular disease, systemic inflammation, muscle wasting and frailty. The predominant early vascular ageing (EVA) process mediated by medial vascular calcification (VC) results in a marked discrepancy between chronological and biological vascular age in CKD. Though the exact underlying mechanisms of VC and EVA are not fully elucidated, accumulating evidence indicates that cellular senescence - and subsequent chronic inflammation through the senescence-associated secretary phenotype (SASP) - plays a fundamental role in its initiation and progression. In this review, we discuss the pathophysiological links between senescence and the EVA process in CKD, with focus on cellular senescence and media VC, and potential anti-ageing therapeutic strategies of senolytic drugs targeting cellular senescence and EVA in CKD.
Collapse
Affiliation(s)
| | | | | | | | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| |
Collapse
|
16
|
Eberhardt K, Matthäus C, Marthandan S, Diekmann S, Popp J. Raman and infrared spectroscopy reveal that proliferating and quiescent human fibroblast cells age by biochemically similar but not identical processes. PLoS One 2018; 13:e0207380. [PMID: 30507927 PMCID: PMC6277109 DOI: 10.1371/journal.pone.0207380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Dermal fibroblast cells can adopt different cell states such as proliferation, quiescence, apoptosis or senescence, in order to ensure tissue homeostasis. Proliferating (dividing) cells pass through the phases of the cell cycle, while quiescent and senescent cells exist in a non-proliferating cell cycle-arrested state. However, the reversible quiescence state is in contrast to the irreversible senescence state. Long-term quiescent cells transit into senescence indicating that cells age also when not passing through the cell cycle. Here, by label-free in vitro vibrational spectroscopy, we studied the biomolecular composition of quiescent dermal fibroblast cells and compared them with those of proliferating and senescent cells. Spectra were examined by multivariate statistical analysis using a PLS-LDA classification model, revealing differences in the biomolecular composition between the cell states mainly associated with protein alterations (variations in the side chain residues of amino acids and protein secondary structure), but also within nucleic acids and lipids. We observed spectral changes in quiescent compared to proliferating cells, which increased with quiescence cultivation time. Raman and infrared spectroscopy, which yield complementary biochemical information, clearly distinguished contact-inhibited from serum-starved quiescent cells. Furthermore, the spectra displayed spectral differences between quiescent cells and proliferating cells, which had recovered from quiescence. This became more distinct with increasing quiescence cultivation time. When comparing proliferating, (in particular long-term) quiescent and senescent cells, we found that Raman as well as infrared spectroscopy can separate these three cellular states from each other due to differences in their biomolecular composition. Our spectroscopic analysis shows that proliferating and quiescent fibroblast cells age by similar but biochemically not identical processes. Despite their aging induced changes, over long time periods quiescent cells can return into the cell cycle. Finally however, the cell cycle arrest becomes irreversible indicating senescence.
Collapse
Affiliation(s)
- Katharina Eberhardt
- Spectroscopy and Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Christian Matthäus
- Spectroscopy and Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
| | - Shiva Marthandan
- Department of Molecular Biology, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Stephan Diekmann
- Department of Molecular Biology, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Jürgen Popp
- Spectroscopy and Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
17
|
Yang C, Xue J, An N, Huang XJ, Wu ZH, Ye L, Li ZH, Wang SJ, Pan QJ, Liang D, Liu HF. Accelerated Glomerular Cell Senescence in Experimental Lupus Nephritis. Med Sci Monit 2018; 24:6882-6891. [PMID: 30265659 PMCID: PMC6180956 DOI: 10.12659/msm.909353] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The aim of this study was to determine whether senescence in renal glomeruli is involved in lupus nephritis (LN); the expression of senescence-associated β-galactosidase (SA-β-Gal) and its association with glomerular lesions were investigated in a mouse model of LN. MATERIAL AND METHODS Eighteen MRL/lpr mice with severe proteinuria were randomly divided into 2 equal groups and intraperitoneally injected with dexamethasone (DEX) or saline; 4 age-matched mice with mild proteinuria served as controls. Serum creatinine and urinary protein levels were analyzed, and kidney histological changes were observed by periodic acid-Schiff and Sirius Red staining. SA-β-Gal was detected via histochemistry. Glomerular expression of collagen IV, α-SMA, and nephrin was analyzed by immunohistochemistry, and glomerular complement C3 deposition was tested by immunofluorescence. The relationships between SA-β-Gal expression and renal function or glomerular lesion markers were determined by Spearman's correlation analysis. RESULTS Mice with severe proteinuria exhibited glomerular segmental sclerosis and endothelial cell proliferation. DEX administration suppressed these lesions but had no significant effect on 24-hour urinary protein levels. The elevated glomerular expression of SA-β-Gal in proteinuric mice was attenuated by DEX treatment. In addition, DEX treatment markedly downregulated glomerular C3 deposition and collagen IV and α-SMA expression, while significantly increasing nephrin expression. Furthermore, SA-β-Gal expression was positively correlated with urinary protein levels and expression of α-SMA. CONCLUSIONS Accelerated senescence of glomerular cells may contribute to glomerular injury in LN.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Jing Xue
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Ning An
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Xi-Jie Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Zhi-Hong Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Lin Ye
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Zhi-Hang Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Shu-Jun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Qing-Jun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Dong Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| |
Collapse
|
18
|
Dubé BP, Laveneziana P. Effects of aging and comorbidities on nutritional status and muscle dysfunction in patients with COPD. J Thorac Dis 2018; 10:S1355-S1366. [PMID: 29928518 DOI: 10.21037/jtd.2018.02.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent, complex and debilitating disease which imposes a formidable burden on patients and the healthcare system. The recognition that COPD is a multifaceted disease is not new, and increasing evidence have outlined the importance of its extra-pulmonary manifestations and its relation to other comorbid conditions in the clinical course of the disease and its societal cost. The relationship between aging, COPD and its comorbidities on skeletal muscle function and nutritional status is complex, multidirectional and incompletely understood. Despite this, the current body of knowledge allows the identification of various, seemingly partially independent factors related both to the normal aging process and to the independent deleterious effects of chronic diseases on muscle function and body composition. There is a dire need of studies evaluating the relative contribution of each of these factors, and their potential synergistic effects in patients with COPD and advanced age/comorbid conditions, in order to delineate the best course of therapeutic action in this increasingly prevalent population.
Collapse
Affiliation(s)
- Bruno-Pierre Dubé
- Département de Médecine, Service de Pneumologie, Centre Hospitalier de l'Université de Montréal (CHUM) Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) - Carrefour de l'Innovation et de l'Évaluation en Santé, Montréal, Québec, Canada
| | - Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée du Département R3S, Paris, France
| |
Collapse
|
19
|
Farina V, Lepore G, Biagi F, Carcupino M, Zedda M. Autophagic processes increase during senescence in cultured sheep neurons and astrocytes. Eur J Histochem 2018; 62:2891. [PMID: 29943951 PMCID: PMC6038115 DOI: 10.4081/ejh.2018.2891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
A possible response to aging is autophagy, a self-digestion process in which portions of cytoplasm are encapsulated by double-membrane-bound structures and delivered to lysosome for degradation. A previous work of our group showed that astrocytes under starving conditions are characterized by a higher upregulation of the marker of autophagy LC3 II than neurons. Aim of the present work was to evaluate LC3 II expression in an aging model consisting in fetal sheep neurons and astrocytes at 10, 20 and 30 days of culture. Such model has been validated by a remarkable activity of β-galactosidase, commonly used to reveal cell aging. LC3 II immunoreactivity in neurons and astrocytes progressively increased with time but differences were observed on the basis of cell density. Indeed, LC3 II immunoreactivity is higher in clusters of neurons and astrocytes and this may be due to the fact that cell-cell contact would represent a second stress in addition to aging itself. Both cell types displayed a reduction in LC3 II signal in nuclei, and a corresponding strengthening in the cytoplasm with time. This may be due to the need of aged cells to remove damaged cytoplasmic components through autophagic processes. Such variation in LC3 II localization could be caused by migration from the nucleus to cytoplasm as well as possible de novo intracytoplasmic production. The present work based on sheep neural cells in vitro may represent a helpful tool in the studies on aging processes in which autophagy plays a remarkable role.
Collapse
|
20
|
Gadd45b deficiency promotes premature senescence and skin aging. Oncotarget 2017; 7:26935-48. [PMID: 27105496 PMCID: PMC5053623 DOI: 10.18632/oncotarget.8854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
The GADD45 family of proteins functions as stress sensors in response to various physiological and environmental stressors. Here we show that primary mouse embryo fibroblasts (MEFs) from Gadd45b null mice proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. The impaired proliferation and increased senescence in Gadd45b null MEFs is partially reversed by culturing at physiological oxygen levels, indicating that Gadd45b deficiency leads to decreased ability to cope with oxidative stress. Interestingly, Gadd45b null MEFs arrest at the G2/M phase of cell cycle, in contrast to other senescent MEFs, which arrest at G1. FACS analysis of phospho-histone H3 staining showed that Gadd45b null MEFs are arrested in G2 phase rather than M phase. H2O2 and UV irradiation, known to increase oxidative stress, also triggered increased senescence in Gadd45b null MEFs compared to wild type MEFs. In vivo evidence for increased senescence in Gadd45b null mice includes the observation that embryos from Gadd45b null mice exhibit increased senescence staining compared to wild type embryos. Furthermore, it is shown that Gadd45b deficiency promotes senescence and aging phenotypes in mouse skin. Together, these results highlight a novel role for Gadd45b in stress-induced senescence and in tissue aging.
Collapse
|
21
|
Bakopoulou A, Apatzidou D, Aggelidou E, Gousopoulou E, Leyhausen G, Volk J, Kritis A, Koidis P, Geurtsen W. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects "stemness" properties. Stem Cell Res Ther 2017; 8:247. [PMID: 29096714 PMCID: PMC5667471 DOI: 10.1186/s13287-017-0705-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023] Open
Abstract
Background Development of clinical-grade cell preparations is central to meeting the regulatory requirements for cellular therapies under good manufacturing practice-compliant (cGMP) conditions. Since addition of animal serum in culture media may compromise safe and efficient expansion of mesenchymal stem cells (MSCs) for clinical use, this study aimed to investigate the potential of two serum/xeno-free, cGMP culture systems to maintain long-term “stemness” of oral MSCs (dental pulp stem cells (DPSCs) and alveolar bone marrow MSCs (aBMMSCs)), compared to conventional serum-based expansion. Methods DPSC and aBMMSC cultures (n = 6/cell type) were established from pulp and alveolar osseous biopsies respectively. Three culture systems were used: StemPro_MSC/SFM_XenoFree (Life Technologies); StemMacs_MSC/XF (Miltenyi Biotek); and α-MEM (Life Technologies) with 15% fetal bovine serum. Growth (population doublings (PDs)), immunophenotypic (flow cytometric analysis of MSC markers) and senescence (β-galactosidase (SA-β-gal) activity; telomere length) characteristics were determined during prolonged expansion. Gene expression patterns of osteogenic (ALP, BMP-2), adipogenic (LPL, PPAR-γ) and chondrogenic (ACAN, SOX-9) markers and maintenance of multilineage differentiation potential were determined by real-time PCR. Results Similar isolation efficiency and stable growth dynamics up to passage 10 were observed for DPSCs under all expansion conditions. aBMMSCs showed lower cumulative PDs compared to DPSCs, and when StemMacs was used substantial delays in cell proliferation were noted after passages 6–7. Serum/xeno-free expansion produced cultures with homogeneous spindle-shaped phenotypes, while serum-based expansion preserved differential heterogeneous characteristics of each MSC population. Prolonged expansion of both MSC types but in particular the serum/xeno-free-expanded aBMMSCs was associated with downregulation of CD146, CD105, Stro-1, SSEA-1 and SSEA-4, but not CD90, CD73 and CD49f, in parallel with an increase of SA-gal-positive cells, cell size and granularity and a decrease in telomere length. Expansion under both serum-free systems resulted in “osteogenic pre-disposition”, evidenced by upregulation of osteogenic markers and elimination of chondrogenic and adipogenic markers, while serum-based expansion produced only minor changes. DPSCs retained a diminishing (CCM, StemPro) or increasing (StemMacs) mineralization potential with passaging, while aBMMSCs lost this potential after passages 6–7 under all expansion conditions. Conclusions These findings indicate there is still a vacant role for development of qualified protocols for clinical-grade expansion of oral MSCs; a key milestone achievement for translation of research from the bench to clinics. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0705-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124, Thessaloniki, Greece. .,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece. .,Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany.
| | - Danae Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Evangelia Gousopoulou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece.,Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Gabriele Leyhausen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Petros Koidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124, Thessaloniki, Greece
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
22
|
Xu W, Larbi A. Markers of T Cell Senescence in Humans. Int J Mol Sci 2017; 18:E1742. [PMID: 28796199 PMCID: PMC5578132 DOI: 10.3390/ijms18081742] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022] Open
Abstract
Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as "immunosenescence" can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.
Collapse
Affiliation(s)
- Weili Xu
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Anis Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Department of Microbiology, National University of Singapore, Singapore 117597, Singapore.
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
- Faculty of Sciences, University ElManar, Tunis 1068, Tunisia.
| |
Collapse
|
23
|
Brouwers B, Fumagalli D, Brohee S, Hatse S, Govaere O, Floris G, Van den Eynde K, Bareche Y, Schöffski P, Smeets A, Neven P, Lambrechts D, Sotiriou C, Wildiers H. The footprint of the ageing stroma in older patients with breast cancer. Breast Cancer Res 2017; 19:78. [PMID: 28673354 PMCID: PMC5494807 DOI: 10.1186/s13058-017-0871-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Background Tumours are not only composed of malignant cells but also consist of a stromal micro-environment, which has been shown to influence cancer cell behaviour. Because the ageing process induces accumulation of senescent cells in the body, this micro-environment is thought to be different in cancers occurring in old patients compared with younger patients. More specifically, senescence-related fibroblastic features, such as the senescence-associated secretory profile (SASP) and the induction of autophagy, are suspected to stimulate tumour growth and progression. Methods We compared gene expression profiles in stromal fields of breast carcinomas by performing laser capture microdissection of the cancer-associated stroma from eight old (aged ≥80 years at diagnosis) and nine young (aged <45 years at diagnosis) patients with triple-negative breast cancer. Gene expression data were obtained by microarray analysis (Affymetrix). Differential gene expression and gene set enrichment analysis (GSEA) were performed. Results Differential gene expression analysis showed changes reminiscent of increased growth, de-differentiation and migration in stromal samples of older versus younger patients. GSEA confirmed the presence of a SASP, as well as the presence of autophagy in the stroma of older patients. Conclusions We provide the first evidence in humans that older age at diagnosis is associated with a different stromal micro-environment in breast cancers. The SASP and the presence of autophagy appear to be important age-induced stromal features. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0871-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Brouwers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium. .,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.
| | - Debora Fumagalli
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Sylvain Brohee
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Govaere
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Kathleen Van den Eynde
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Yacine Bareche
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Department of Oncology, Laboratory for Translational Genetics, Vesalius Research Center (VRC), Vlaams Instituut voor Biotechnologie (VIB) and KU Leuven, Leuven, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Choi M, Park M, Lee S, Lee JW, Cho MC, Noh M, Lee C. Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction. Biomol Ther (Seoul) 2017; 25:296-307. [PMID: 28365978 PMCID: PMC5424640 DOI: 10.4062/biomolther.2017.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/29/2022] Open
Abstract
In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced blockage of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.
Collapse
Affiliation(s)
- Moonju Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Minkyung Park
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Suhyon Lee
- R&D Institute, Biosolution Co., Ltd., Seoul 01811, Republic of Korea
| | - Jeong Woo Lee
- Department of Urology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Min Chul Cho
- Department of Urology, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
25
|
Ito T, Igaki T. Dissecting cellular senescence and SASP in Drosophila. Inflamm Regen 2016; 36:25. [PMID: 29259698 PMCID: PMC5725765 DOI: 10.1186/s41232-016-0031-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence can act as both tumor suppressor and tumor promoter depending on the cellular contexts. On one hand, premature senescence has been considered as an innate host defense mechanism against carcinogenesis in mammals. In response to various stresses including oxidative stress, DNA damage, and oncogenic stress, suffered cells undergo irreversible cell cycle arrest, leading to tumor suppression. On the other hand, recent studies in mammalian systems have revealed that senescent cells can drive oncogenesis by secreting diverse proteins such as inflammatory cytokines, matrix remodeling factors, and growth factors, the phenomenon called senescence-associated secretory phenotype (SASP). However, the mechanisms by which these contradictory effects regulate tumor growth and metastasis in vivo have been elusive. Here, we review the recent discovery of cellular senescence in Drosophila and the mechanisms underlying senescence-mediated tumor regulation dissected by Drosophila genetics.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
26
|
Marthandan S, Menzel U, Priebe S, Groth M, Guthke R, Platzer M, Hemmerich P, Kaether C, Diekmann S. Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence. Biol Res 2016; 49:34. [PMID: 27464526 PMCID: PMC4963952 DOI: 10.1186/s40659-016-0095-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023] Open
Abstract
Background Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. Results Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, “Cell cycle” was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, “DNA repair” and “replication” pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. Conclusion We found the pathways associated with “DNA repair” and “replication” less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction. Electronic supplementary material The online version of this article (doi:10.1186/s40659-016-0095-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiva Marthandan
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
| | - Uwe Menzel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Steffen Priebe
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Marco Groth
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Peter Hemmerich
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Kaether
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Stephan Diekmann
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| |
Collapse
|
27
|
Mao P, Liu J, Zhang Z, Zhang H, Liu H, Gao S, Rong YS, Zhao Y. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun 2016; 7:12154. [PMID: 27396625 PMCID: PMC4942568 DOI: 10.1038/ncomms12154] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/28/2022] Open
Abstract
Telomeres prevent chromosome ends from being recognized as double-stranded breaks (DSBs). Meanwhile, G/C-rich repetitive telomeric DNA is susceptible to attack by DNA-damaging agents. How cells balance the need to protect DNA ends and the need to repair DNA lesions in telomeres is unknown. Here we show that telomeric DSBs are efficiently repaired in proliferating cells, but are irreparable in stress-induced and replicatively senescent cells. Using the CRISPR-Cas9 technique, we specifically induce DSBs at telomeric or subtelomeric regions. We find that DSB repair (DSBR) at subtelomeres occurs in an error-prone manner resulting in small deletions, suggestive of NHEJ. However, DSBR in telomeres involves 'telomere-clustering', 3'-protruding C-rich telomeric ssDNA, and HR between sister-chromatid or interchromosomal telomeres. DSBR in telomeres is suppressed by deletion or inhibition of Rad51. These findings reveal proliferation-dependent DSBR in telomeres and suggest that telomeric HR, which is normally constitutively suppressed, is activated in the context of DSBR.
Collapse
Affiliation(s)
- Pingsu Mao
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
| | - Jingfan Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
- Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510006, China
| | - Zepeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yikang S. Rong
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
28
|
Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, Guthke R, Cellerino A, Platzer M, Diekmann S, Hemmerich P. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS One 2016; 11:e0154531. [PMID: 27140416 PMCID: PMC4854426 DOI: 10.1371/journal.pone.0154531] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence correlates with changes in the transcriptome. To obtain a complete view on senescence-associated transcription networks and pathways, we assessed by deep RNA sequencing the transcriptomes of five of the most commonly used laboratory strains of human fibroblasts during their transition into senescence. In a number of cases, we verified the RNA-seq data by real-time PCR. By determining cellular protein levels we observed that the age-related expression of most but not all genes is regulated at the transcriptional level. We found that 78% of the age-affected differentially expressed genes were commonly regulated in the same direction (either up- or down-regulated) in all five fibroblast strains, indicating a strong conservation of age-associated changes in the transcriptome. KEGG pathway analyses confirmed up-regulation of the senescence-associated secretory phenotype and down-regulation of DNA synthesis/repair and most cell cycle pathways common in all five cell strains. Newly identified senescence-induced pathways include up-regulation of endocytotic/phagocytic pathways and down-regulation of the mRNA metabolism and the mRNA splicing pathways. Our results provide an unprecedented comprehensive and deep view into the individual and common transcriptome and pathway changes during the transition into of senescence of five human fibroblast cell strains.
Collapse
Affiliation(s)
- S. Marthandan
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- * E-mail:
| | - M. Baumgart
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Priebe
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - M. Groth
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - J. Schaer
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - C. Kaether
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - R. Guthke
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - A. Cellerino
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- Laboratory of NeuroBiology, Scuola Normale Superiore, Pisa, Italy
| | - M. Platzer
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Diekmann
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - P. Hemmerich
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| |
Collapse
|
29
|
Borodkina AV, Shatrova AN, Deryabin PI, Grukova AA, Nikolsky NN, Burova EB. Tetraploidization or autophagy: The ultimate fate of senescent human endometrial stem cells under ATM or p53 inhibition. Cell Cycle 2016; 15:117-27. [PMID: 26636375 PMCID: PMC4825783 DOI: 10.1080/15384101.2015.1121326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023] Open
Abstract
Previously we demonstrated that endometrium-derived human mesenchymal stem cells (hMESCs) via activation of the ATM/p53/p21/Rb pathway enter the premature senescence in response to oxidative stress. Down regulation effects of the key components of this signaling pathway, particularly ATM and p53, on a fate of stressed hMESCs have not yet been investigated. In the present study by using the specific inhibitors Ku55933 and Pifithrin-α, we confirmed implication of both ATM and p53 in H(2)O(2)-induced senescence of hMESCs. ATM or p53 down regulation was shown to modulate differently the cellular fate of H(2)O(2)-treated hMESCs. ATM inhibition allowed H(2)O(2)-stimulated hMESCs to escape the permanent cell cycle arrest due to loss of the functional ATM/p53/p21/Rb pathway, and induced bypass of mitosis and re-entry into S phase, resulting in tetraploid cells. On the contrary, suppression of the p53 transcriptional activity caused a pronounced cell death of H(2)O(2)-treated hMESCs via autophagy induction. The obtained data clearly demonstrate that down regulation of ATM or p53 shifts senescence of human endometrial stem cells toward tetraploidization or autophagy.
Collapse
Affiliation(s)
- Aleksandra V. Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alla N. Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Pavel I. Deryabin
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiya A. Grukova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolay N. Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Medical Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Elena B. Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
30
|
George J, Nihal M, Singh CK, Zhong W, Liu X, Ahmad N. Pro-Proliferative Function of Mitochondrial Sirtuin Deacetylase SIRT3 in Human Melanoma. J Invest Dermatol 2015; 136:809-818. [PMID: 26743598 DOI: 10.1016/j.jid.2015.12.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/28/2022]
Abstract
Melanoma, the most aggressive form of skin cancer, is often fatal if not treated early. Therefore, novel target-based strategies are required to combat this neoplasm. The objective of this study was to determine the role and functional significance of the mitochondrial sirtuin 3 (SIRT3) in melanoma. We found that compared with normal primary and immortalized human melanocytes, SIRT3 is significantly overexpressed in multiple human melanoma cells at mRNA and protein levels. Further, employing human tissue microarray, we found that SIRT3 is significantly upregulated in clinical melanoma tissues, compared with melanocytic nevi tissues. Furthermore, a short hairpin RNA-mediated knockdown of SIRT3 in human melanoma cells resulted in (i) a decrease in cellular proliferation, colony formation, and cellular migration; (ii) induction of senescence as shown by an increase in senescence-associated beta-galactosidase activity and formation of senescence-associated heterochromatin foci as well as an increase in mRNA and protein levels of p16(INK4a) and p21(Waf1); (iii) G1-phase arrest of the cell cycle; and (iv) decreases in mRNA and protein levels of cyclins (D1, E1) and cyclin-dependent kinases (2, 4, and 6). Conversely, forced exogenous overexpression of SIRT3 promoted an increase in proliferative potential of Hs294T melanoma cells and normal immortalized Mel-ST melanocytes. Finally, we found that SIRT3 knockdown significantly inhibited tumorigenesis in a xenograft model in vivo. To our knowledge, this is the first study supporting the pro-proliferative function of SIRT3 in melanoma.
Collapse
Affiliation(s)
- Jasmine George
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Minakshi Nihal
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
31
|
Solovjeva L, Firsanov D, Vasilishina A, Chagin V, Pleskach N, Kropotov A, Svetlova M. DNA double-strand break repair is impaired in presenescent Syrian hamster fibroblasts. BMC Mol Biol 2015; 16:18. [PMID: 26458748 PMCID: PMC4601148 DOI: 10.1186/s12867-015-0046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
Background Studies of DNA damage response are critical for the comprehensive understanding of age-related changes in cells, tissues and organisms. Syrian hamster cells halt proliferation and become presenescent after several passages in standard conditions of cultivation due to what is known as «culture stress». Using proliferating young and non-dividing presenescent cells in primary cultures of Syrian hamster fibroblasts, we defined their response to the action of radiomimetic drug bleomycin (BL) that induces DNA double-strand breaks (DSBs). Results The effect of the drug was estimated by immunoblotting and immunofluorescence microscopy using the antibody to phosphorylated histone H2AX (gH2AX), which is generally accepted as a DSB marker. At all stages of the cell cycle, both presenescent and young cells demonstrated variability of the number of gH2AX foci per nucleus. gH2AX focus induction was found to be independent from BL-hydrolase expression. Some differences in DSB repair process between BL-treated young and presenescent Syrian hamster cells were observed: (1) the kinetics of gH2AX focus loss in G0 fibroblasts of young culture was faster than in cells that prematurely stopped dividing; (2) presenescent cells were characterized by a slower recruitment of DSB repair proteins 53BP1, phospho-DNA-PK and phospho-ATM to gH2AX focal sites, while the rate of phosphorylated ATM/ATR substrate accumulation was the same as that in young cells. Conclusions Our results demonstrate an impairment of DSB repair in prematurely aged Syrian hamster fibroblasts in comparison with young fibroblasts, suggesting age-related differences in response to BL therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0046-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ljudmila Solovjeva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Denis Firsanov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia. .,Saint-Petersburg's State Pediatric Medical University, Ministry of Health of Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100, Russia.
| | - Anastasia Vasilishina
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Vadim Chagin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Nadezhda Pleskach
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| |
Collapse
|
32
|
Choi M, Lee C. Immortalization of Primary Keratinocytes and Its Application to Skin Research. Biomol Ther (Seoul) 2015; 23:391-9. [PMID: 26336577 PMCID: PMC4556197 DOI: 10.4062/biomolther.2015.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 01/16/2023] Open
Abstract
As a major component of the epidermal tissue, a primary keratinocyte has served as an essential tool not only for the study of pathogenesis of skin-related diseases but also for the assessment of potential toxicities of various chemicals used in cosmetics. However, its short lifespan in ex vivo setting has been a great hurdle for many practical applications. Therefore, a number of immortalization attempts have been made with success to overcome this limitation. In order to understand the immortalization process of a primary keratinocyte, several key biological phenomena governing its lifespan will be reviewed first. Then, various immortalization methods for the establishment of stable keratinocyte cell lines will be explained. Finally, its application to a three-dimensional skin culture system will be described.
Collapse
Affiliation(s)
- Moonju Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Republic of Korea
| |
Collapse
|
33
|
Morgan JT, Raghunathan VK, Chang YR, Murphy CJ, Russell P. The intrinsic stiffness of human trabecular meshwork cells increases with senescence. Oncotarget 2015; 6:15362-74. [PMID: 25915531 PMCID: PMC4558157 DOI: 10.18632/oncotarget.3798] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/20/2015] [Indexed: 12/26/2022] Open
Abstract
Dysfunction of the human trabecular meshwork (HTM) plays a central role in the age-associated disease glaucoma, a leading cause of irreversible blindness. The etiology remains poorly understood but cellular senescence, increased stiffness of the tissue, and the expression of Wnt antagonists such as secreted frizzled related protein-1 (SFRP1) have been implicated. However, it is not known if senescence is causally linked to either stiffness or SFRP1 expression. In this study, we utilized in vitro HTM senescence to determine the effect on cellular stiffening and SFRP1 expression. Stiffness of cultured cells was measured using atomic force microscopy and the morphology of the cytoskeleton was determined using immunofluorescent analysis. SFRP1 expression was measured using qPCR and immunofluorescent analysis. Senescent cell stiffness increased 1.88±0.14 or 2.57±0.14 fold in the presence or absence of serum, respectively. This was accompanied by increased vimentin expression, stress fiber formation, and SFRP1 expression. In aggregate, these data demonstrate that senescence may be a causal factor in HTM stiffening and elevated SFRP1 expression, and contribute towards disease progression. These findings provide insight into the etiology of glaucoma and, more broadly, suggest a causal link between senescence and altered tissue biomechanics in aging-associated diseases.
Collapse
Affiliation(s)
- Joshua T. Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Ophthalmology &; Vision Science, School of Medicine, University of California, Davis, CA, USA
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Wiel C, Gras B, Vindrieux D, Warnier M, Gitenay D, Le Calvé B, Ferrand M, Augert A, Bernard D. Multidrug resistance protein 3 loss promotes tumor formation by inducing senescence escape. Oncogene 2015; 35:1596-601. [PMID: 26073088 DOI: 10.1038/onc.2015.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
Oncogenic-stress-induced senescence (OIS) is a stress response allowing normal cells, when receiving oncogenic signals, to stably arrest their proliferation. OIS thus acts to prevent aberrant cell proliferation and tumor formation. To identify novel tumor suppressive pathways, we have recently completed a loss-of-function genetic screen to identify novel genes promoting escape from OIS and thus, potentially, tumor formation when their functions are lost. Using this approach, we unexpectedly found that loss of function of the multidrug resistance protein 3 (MRP3 or ABCC3) promotes escape from OIS in human epithelial cells. Importantly, ABCC3 expression is reduced in human skin tumors, and ABCC3-knockout mice display increased sensitivity to RAS-induced skin carcinogenesis, concomitantly with decreased OIS. ABCC3 participates in resistance to chemotherapy via its transporter activity. Our data show that this transporter activity is involved in ABCC3-induced senescence, demonstrating that this protein has a complex role in cancer, since its loss of function may promote escape from OIS and tumor formation whereas its gain of function promotes resistance to chemotherapy.
Collapse
Affiliation(s)
- C Wiel
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - B Gras
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - D Vindrieux
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - M Warnier
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - D Gitenay
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - B Le Calvé
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - M Ferrand
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - A Augert
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| | - D Bernard
- Senescence Escape Mechanisms Laboratory, Tumoral Escape Department, Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Université de Lyon, Lyon, France
| |
Collapse
|
35
|
Marthandan S, Priebe S, Hemmerich P, Klement K, Diekmann S. Long-term quiescent fibroblast cells transit into senescence. PLoS One 2014; 9:e115597. [PMID: 25531649 PMCID: PMC4274099 DOI: 10.1371/journal.pone.0115597] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions. Both, long-term quiescent and senescent fibroblasts almost completely fail to undergo apoptosis. The transition of long-term quiescent fibroblasts into senescence is also independent of HES1 which protects short-term quiescent cells from becoming senescent. Most significantly, DNA damage accumulates during senescence as well as during long-term quiescence at physiological oxygen levels. We suggest that telomere-independent, potentially maintenance driven gradual induction of cellular senescence during quiescence is a counterbalance to tumor development.
Collapse
Affiliation(s)
- Shiva Marthandan
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
| | - Steffen Priebe
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Peter Hemmerich
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
| | - Karolin Klement
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
| | - Stephan Diekmann
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
- * E-mail:
| |
Collapse
|
36
|
Vervloessem T, Yule DI, Bultynck G, Parys JB. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1992-2005. [PMID: 25499268 DOI: 10.1016/j.bbamcr.2014.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) type 2 (IP3R2) is an intracellular Ca²⁺-release channel located on the endoplasmic reticulum (ER). IP3R2 is characterized by a high sensitivity to both IP3 and ATP and is biphasically regulated by Ca²⁺. Furthermore, IP3R2 is modulated by various protein kinases. In addition to its regulation by protein kinase A, IP3R2 forms a complex with adenylate cyclase 6 and is directly regulated by cAMP. Finally, in the ER, IP3R2 is less mobile than the other IP3R isoforms, while its functional properties appear dominant in heterotetramers. These properties make the IP3R2 a Ca²⁺ channel with exquisite properties for setting up intracellular Ca²⁺ signals with unique characteristics. IP3R2 plays a crucial role in the function of secretory cell types (e.g. pancreatic acinar cells, hepatocytes, salivary gland, eccrine sweat gland). In cardiac myocytes, the role of IP3R2 appears more complex, because, together with IP3R1, it is needed for normal cardiogenesis, while its aberrant activity is implicated in cardiac hypertrophy and arrhythmias. Most importantly, its high sensitivity to IP3 makes IP3R2 a target for anti-apoptotic proteins (e.g. Bcl-2) in B-cell cancers. Disrupting IP3R/Bcl-2 interaction therefore leads in those cells to increased Ca²⁺ release and apoptosis. Intriguingly, IP3R2 is not only implicated in apoptosis but also in the induction of senescence, another tumour-suppressive mechanism. These results were the first to unravel the physiological and pathophysiological role of IP3R2 and we anticipate that further progress will soon be made in understanding the function of IP3R2 in various tissues and organs.
Collapse
Affiliation(s)
- Tamara Vervloessem
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY, USA
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium.
| |
Collapse
|
37
|
Abstract
Cellular senescence is a stable cell cycle arrest, caused by insults, such as: telomere erosion, oncogene activation, irradiation, DNA damage, oxidative stress, and viral infection. Extrinsic stimuli such as cell culture stress can also trigger this growth arrest. Senescence is thought to have evolved as an example of antagonistic pleiotropy, as it acts as a tumor suppressor mechanism during the reproductive age, but can promote organismal aging by disrupting tissue renewal, repair, and regeneration later in life. The mechanisms underlying the senescence growth arrest are broadly considered to involve p16(INK4A) -pRB and p53-p21(CIP1/WAF1/SDI1) tumor suppressor pathways; but it is not known what makes the senescence arrest stable and what the critical downstream targets are, as they are likely to be key to the establishment and maintenance of the senescent state. MYB-related protein B (B-MYB/MYBL2), a member of the myeloblastosis family of transcription factors, has recently emerged as a potential candidate for regulating entry into senescence. Here, we review the evidence which indicates that loss of B-MYB expression has an important role in causing senescence growth arrest. We discuss how B-MYB acts, as the gatekeeper, to coordinate transit through the cell cycle, in conjunction with the multivulval class B (MuvB) complex and FOXM1 transcription factors. We also evaluate the evidence connecting B-MYB to the mTOR nutrient signaling pathway and suggest that inhibition of this pathway leading to an extension of healthspan may involve activation of B-MYB.
Collapse
Affiliation(s)
- Sophia N. Mowla
- Department of Neurodegenerative Disease and MRC Prion Unit; UCL Institute of Neurology; Queen Square London WC1N 3BG UK
| | - Eric W.-F. Lam
- Division of Cancer; Department of Surgery and Cancer; Imperial Centre for Translational and Experimental Medicine; Imperial College London; Hammersmith Hospital; Du Cane Road London W12 0NN UK
| | - Parmjit S. Jat
- Department of Neurodegenerative Disease and MRC Prion Unit; UCL Institute of Neurology; Queen Square London WC1N 3BG UK
| |
Collapse
|
38
|
Kilic Eren M, Tabor V. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence. PLoS One 2014; 9:e101064. [PMID: 24984035 PMCID: PMC4077769 DOI: 10.1371/journal.pone.0101064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/23/2014] [Indexed: 12/11/2022] Open
Abstract
Oncogene induced senescence (OIS) is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR), senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs). We showed here that hypoxia prevents execution of oncogene induced senescence (OIS), through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α). In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.
Collapse
Affiliation(s)
- Mehtap Kilic Eren
- Department of Medical Biology, Adnan Menderes University Medical School and ADU-BILTEM, Aydin, Turkey
- * E-mail:
| | - Vedrana Tabor
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
39
|
Grandjenette C, Schnekenburger M, Karius T, Ghelfi J, Gaigneaux A, Henry E, Dicato M, Diederich M. 5-aza-2'-deoxycytidine-mediated c-myc Down-regulation triggers telomere-dependent senescence by regulating human telomerase reverse transcriptase in chronic myeloid leukemia. Neoplasia 2014; 16:511-28. [PMID: 24970385 PMCID: PMC4198755 DOI: 10.1016/j.neo.2014.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022] Open
Abstract
Increased proliferation rates as well as resistance to apoptosis are considered major obstacles for the treatment of patients with chronic myelogenous leukemia (CML), thus highlighting the need for novel therapeutic approaches. Since senescence has been recognized as a physiological barrier against tumorigenesis, senescence-based therapy could represent a new strategy against CML. DNA demethylating agent 5-aza-2′-deoxycytidine (DAC) was reported to induce cellular senescence but underlying mechanisms remain to be elucidated. Here, we report that exposure to DAC triggers senescence in chronic leukemia cell lines as evidenced by increased senescence-associated β-galactosidase activity and lysosomal mass, accompanied by an up-regulation of cell cycle-related genes. We provide evidence that DAC is able to decrease telomere length, to reduce telomerase activity and to decrease human telomerase reverse transcriptase (hTERT) expression through decreased binding of c-myc to the hTERT promoter. Altogether, our results reveal the role of c-myc in telomere-dependent DAC-induced senescence and therefore provide new clues for improving chronic human leukemia treatments.
Collapse
Affiliation(s)
- Cindy Grandjenette
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Tommy Karius
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Jenny Ghelfi
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Anthoula Gaigneaux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Estelle Henry
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
40
|
Feng X, Xing J, Feng G, Sang A, Shen B, Xu Y, Jiang J, Liu S, Tan W, Gu Z, Li L. Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol 2013; 33:1023-31. [PMID: 24043508 DOI: 10.1007/s10571-013-9965-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/15/2013] [Indexed: 02/08/2023]
Abstract
Two kinds of dental stem cells (DSCs), dental pulp stem cells (DPSCs) and stem cells from human-exfoliated deciduous teeth (SHED), have been identified as novel populations of mesenchymal stem cells that can be induced to differentiate into osteoblasts, chondrocytes, adipocytes, and neuron-like cells in vitro. As we know, both of them originate from the neural crest, but have distinct characteristics and functions in vitro and in vivo. The regeneration potential of DSCs declines with advanced age; however, the mechanism of the impaired potential in DSCs has not been fully explored. In this study, we investigated whether declined neurogenic differentiation capacity is associated with an altered expression of Wnt signaling-related proteins in vitro. We compared stem cells isolated from human dental pulp in two age groups: the exfoliated deciduous teeth (5-12 years), and the third permanent teeth (45-50 years). We found that the expression levels of neuron markers, such as βIII-tubulin, microtubule-associated protein 2(MAP2), tyrosine hydroxylase (TH), and Nestin were lower in the DPSCs group compared with that in the SHED group; however, in supplementation with human recombinant Wnt1 in the medium, the DPSCs were prone to neural differentiation and expressed higher levels of neurogenic markers. In summary, our study demonstrated that Wnt/β-catenin signaling may play a vital role in the age-dependent neural differentiation of DSCs. Therefore, DSCs may provide an ideal source of stem cells that can further extend their therapeutic application in nerve injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Markers of cellular senescence depend in part on the MTOR (mechanistic target of rapamycin) pathway. MTOR participates in geroconversion, a conversion from reversible cell cycle arrest to irreversible senescence. Recently we demonstrated that hyper-induction of cyclin D1 during geroconversion was mostly dependent on MEK, whereas rapamycin only partially inhibited cyclin D1 accumulation. Here we show that, while not affecting cyclin D1, siRNA for p70S6K partially prevented loss of RP (replicative/regenerative potential) during p21-induced cell cycle arrest. Similarly, an inhibitor of p70 S6 kinase (PF-4708671) partially inhibited phosphorylation of S6 and preserved RP, while only marginally prevented cyclin D1 induction. Thus S6K and MEK play different roles in geroconversion.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology; Roswell Park Cancer Institute; Buffalo, NY USA
| | | | | |
Collapse
|
42
|
Mowla SN, Perkins ND, Jat PS. Friend or foe: emerging role of nuclear factor kappa-light-chain-enhancer of activated B cells in cell senescence. Onco Targets Ther 2013; 6:1221-9. [PMID: 24043947 PMCID: PMC3772761 DOI: 10.2147/ott.s36160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) proteins are a family of ubiquitously expressed transcription factors that regulate the response to cellular stress. They mediate innate and adaptive immunity through the initiation of an inflammatory response to pro-inflammatory signals. The role of persistent inflammation in aiding tumor development has led to the NF-κB family of transcription factors being strongly implicated in promoting cancer. However, recent studies have now revealed that NF-κB can also function as a tumor suppressor through the induction of cellular senescence. Cellular senescence is a stable cell cycle arrest that normal cells undergo in response to a variety of intrinsic and extrinsic stimuli including: progressive telomere shortening, changes in telomeric structure, or other forms of genotoxic stress. Senescence can compromise tissue repair and regeneration, contributing to tissue and organismal aging via the accumulation of senescent cells, depletion of stem/progenitor cells and secretion of an array of inflammatory cytokines, chemokines, and matrix metalloproteinases. Senescence can also lead to the removal of potentially cancerous cells, thereby acting as a potent tumor suppressor mechanism. Herein, we review the evidence indicating a role for NF-κB in tumor suppression via cellular senescence and suggest that depending upon the subunit expressed, the biological context, and the type and intensity of the signal, NF-κB can indeed promote senescence growth arrest.
Collapse
Affiliation(s)
- Sophia N Mowla
- Department of Neurodegenerative Disease and MRC Prion Unit, UCL institute of Neurology, Queen Square, London, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Parmjit S Jat
- Department of Neurodegenerative Disease and MRC Prion Unit, UCL institute of Neurology, Queen Square, London, UK
| |
Collapse
|
43
|
Abstract
The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of proinflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has farreaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad.
Collapse
Affiliation(s)
- Jennifer P Chou
- Dept of Pathology &Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | |
Collapse
|
44
|
Scheers I, Lombard C, Paganelli M, Campard D, Najimi M, Gala JL, Decottignies A, Sokal E. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 2013; 8:e71374. [PMID: 23951150 PMCID: PMC3739759 DOI: 10.1371/journal.pone.0071374] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Umbilical cord matrix stem cells (UCMSC) have generated great interest in various therapeutic approaches, including liver regeneration. This article aims to analyze the specific characteristics and the potential occurrence of premalignant alterations of UCMSC during long-term expansion, which are important issues for clinical applications. UCMSC were isolated from the umbilical cord of 14 full-term newborns and expanded in vitro until senescence. We examined the long-term growth potential, senescence characteristics, immunophenotype and multilineage differentiation capacity of these cells. In addition, their genetic stability was assessed through karyotyping, telomerase maintenance mechanisms and analysis of expression and functionality of cell cycle regulation genes. The tumorigenic potential was also studied in immunocompromised mice. In vitro, UCMSC reached up to 33.7±2.1 cumulative population doublings before entering replicative senescence. Their immunophenotype and differentiation potential, notably into hepatocyte-like cells, remained stable over time. Cytogenetic analyses did not reveal any chromosomal abnormality and the expression of oncogenes was not induced. Telomere maintenance mechanisms were not activated. Just as UCMSC lacked transformed features in vitro, they could not give rise to tumors in vivo. UCMSC could be expanded in long-term cultures while maintaining stable genetic features and endodermal differentiation potential. UCMSC therefore represent safe candidates for liver regenerative medicine.
Collapse
Affiliation(s)
- Isabelle Scheers
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
MEK drives cyclin D1 hyperelevation during geroconversion. Cell Death Differ 2013; 20:1241-9. [PMID: 23852369 DOI: 10.1038/cdd.2013.86] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/26/2022] Open
Abstract
When the cell cycle becomes arrested, MTOR (mechanistic Target of Rapamycin) converts reversible arrest into senescence (geroconversion). Hyperexpression of cyclin D1 is a universal marker of senescence along with hypertrophy, beta-Gal staining and loss of replicative/regenerative potential (RP), namely, the ability to restart proliferation when the cell cycle is released. Inhibition of MTOR decelerates geroconversion, although only partially decreases cyclin D1. Here we show that in p21- and p16-induced senescence, inhibitors of mitogen-activated/extracellular signal-regulated kinase (MEK) (U0126, PD184352 and siRNA) completely prevented cyclin D1 accumulation, making it undetectable. We also used MEL10 cells in which MEK inhibitors do not inhibit MTOR. In such cells, U0126 by itself induced senescence that was remarkably cyclin D1 negative. In contrast, inhibition of cyclin-dependent kinase (CDK) 4/6 by PD0332991 caused cyclin D1-positive senescence in MEL10 cells. Both types of senescence were suppressed by rapamycin, converting it into reversible arrest. We confirmed that the inhibitor of CDK4/6 caused cyclin D1 positive senescence in normal RPE cells, whereas U0126 prevented cyclin D1 expression. Elimination of cyclin D1 by siRNA did not prevent other markers of senescence that are consistent with the lack of its effect on MTOR. Our data confirmed that a mere inhibition of the cell cycle was sufficient to cause senescence, providing MTOR was active, and inhibition of MEK partially inhibited MTOR in a cell-type-dependent manner. Second, hallmarks of senescence may be dissociated, and hyperelevated cyclin D1, a marker of hyperactivation of senescent cells, did not necessarily determine other markers of senescence. Third, inhibition of MEK was sufficient to eliminate cyclin D1, regardless of MTOR.
Collapse
|
46
|
Posttraumatic stress disorder and not depression is associated with shorter leukocyte telomere length: findings from 3,000 participants in the population-based KORA F4 study. PLoS One 2013; 8:e64762. [PMID: 23843935 PMCID: PMC3700974 DOI: 10.1371/journal.pone.0064762] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background A link between severe mental stress and shorter telomere length (TL) has been suggested. We analysed the impact of Posttraumatic Stress Disorder (PTSD) on TL in the general population and postulated a dose-dependent TL association in subjects suffering from partial PTSD compared to full PTSD. Methods Data are derived from the population-based KORA F4 study (2006–2008), located in southern Germany including 3,000 individuals (1,449 men and 1,551 women) with valid and complete TL data. Leukocyte TL was measured using a quantitative PCR-based technique. PTSD was assessed in a structured interview and by applying the Posttraumatic Diagnostic Scale (PDS) and the Impact of Event Scale (IES). A total of 262 (8.7%) subjects qualified for having partial PTSD and 51 (1.7%) for full PTSD. To assess the association of PTSD with the average TL, linear regression analyses with adjustments for potential confounding factors were performed. Results The multiple model revealed a significant association between partial PTSD and TL (beta = −0.051, p = 0.009) as well as between full PTSD and shorter TL (beta = −0.103, p = 0.014) indicating shorter TL on average for partial and full PTSD. An additional adjustment for depression and depressed mood/exhaustion gave comparable beta estimations. Conclusions Participants with partial and full PTSD had significantly shorter leukocyte TL than participants without PTSD. The dose-dependent variation in TL of subjects with partial and full PTSD exceeded the chronological age effect, and was equivalent to an estimated 5 years in partial and 10 years in full PTSD of premature aging.
Collapse
|
47
|
Resveratrol induces premature senescence in lung cancer cells via ROS-mediated DNA damage. PLoS One 2013; 8:e60065. [PMID: 23533664 PMCID: PMC3606183 DOI: 10.1371/journal.pone.0060065] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/20/2013] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (RV) is a natural component of red wine and grapes that has been shown to be a potential chemopreventive and anticancer agent. However, the molecular mechanisms underlying RV's anticancer and chemopreventive effects are incompletely understood. Here we show that RV treatment inhibits the clonogenic growth of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Interestingly, the tumor-suppressive effect of low dose RV was not associated with any significant changes in the expression of cleaved PARP and activated caspase-3, suggesting that low dose RV treatment may suppress tumor cell growth via an apoptosis-independent mechanism. Subsequent studies reveal that low dose RV treatment induces a significant increase in senescence-associated β–galactosidase (SA-β-gal) staining and elevated expression of p53 and p21 in NSCLC cells. Furthermore, we show that RV-induced suppression of lung cancer cell growth is associated with a decrease in the expression of EF1A. These results suggest that RV may exert its anticancer and chemopreventive effects through the induction of premature senescence. Mechanistically, RV-induced premature senescence correlates with increased DNA double strand breaks (DSBs) and reactive oxygen species (ROS) production in lung cancer cells. Inhibition of ROS production by N-acetylcysteine (NAC) attenuates RV-induced DNA DSBs and premature senescence. Furthermore, we show that RV treatment markedly induces NAPDH oxidase-5 (Nox5) expression in both A549 and H460 cells, suggesting that RV may increase ROS generation in lung cancer cells through upregulating Nox5 expression. Together, these findings demonstrate that low dose RV treatment inhibits lung cancer cell growth via a previously unappreciated mechanism, namely the induction of premature senescence through ROS-mediated DNA damage.
Collapse
|
48
|
Chou JP, Effros RB. T cell replicative senescence in human aging. Curr Pharm Des 2013; 19:1680-98. [PMID: 23061726 PMCID: PMC3749774 DOI: 10.2174/138161213805219711] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of proinflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has farreaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad.
Collapse
Affiliation(s)
- Jennifer P Chou
- Dept of Pathology &Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | |
Collapse
|
49
|
Preventive effects of epigallocatechin-3-O-gallate against replicative senescence associated with p53 acetylation in human dermal fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:850684. [PMID: 23259030 PMCID: PMC3506918 DOI: 10.1155/2012/850684] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/17/2012] [Accepted: 10/08/2012] [Indexed: 01/03/2023]
Abstract
Considering the various pharmacological activities of epigallocatechin-3-O-gallate (EGCG) including anticancer, and anti-inflammatory, antidiabetic, and so forth, relatively less attention has been paid to the antiaging effect of EGCG on primary cells. In this study, the preventive effects of EGCG against serial passage-induced senescence were investigated in primary cells including rat vascular smooth muscle cells (RVSMCs), human dermal fibroblasts (HDFs), and human articular chondrocytes (HACs). The involvement of Sirt1 and acetylated p53 was examined as an underlying mechanism for the senescence preventive activity of EGCG in HDFs. All cells were employed with the initial passage number (PN) between 3 and 7. For inducing senescence, the cells were serially passaged at the predetermined times and intervals in the absence or presence of EGCG (50 or 100 μM). Serial passage-induced senescence in RVSMCs and HACs was able to be significantly prevented at 50 μM EGCG, while in HDFs, 100 μM EGCG could significantly prevent senescence and recover their cell cycle progression close to the normal level. Furthermore, EGCG was found to prevent serial passage- and H(2)O(2)-induced senescence in HDFs by suppressing p53 acetylation, but the Sirt1 activity was unaffected. In addition, proliferating HDFs showed similar cellular uptake of FITC-conjugated EGCG into the cytoplasm with their senescent counterparts but different nuclear translocation of it from them, which would partly account for the differential responses to EGCG in proliferating versus senescent cells. Taking these results into consideration, it is suggested that EGCG may be exploited to craft strategies for the development of an antiaging or age-delaying agent.
Collapse
|
50
|
Cui YB, Wu J. Research progress on the negative factors of corneal endothelial cells proliferation. Int J Ophthalmol 2012; 5:614-9. [PMID: 23166875 DOI: 10.3980/j.issn.2222-3959.2012.05.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/18/2012] [Indexed: 12/13/2022] Open
Abstract
The human corneal endothelium forms a boundary layer between anterior chamber and corneal stoma. The corneal endothelial cells are responsible for maintaining cornea transparency, which is very vital for our visual acuity, via its pump and barrier functions. The adult corneal endothelial cells in vivo lack proliferation in response to the cell loss caused by outer damages and diseases. As a result, in order to compensate for cell loss, corneal endothelial cells migrate and enlarge while not via dividing to increase the endothelial cell density. Therefore, it is not capable for corneal endothelium to restore the corneal clarity. Some researches have proved that in vitro the corneal endothelial maintained proliferation ability. This review describes the current research progress regarding the negative factors that inhibit proliferation of the corneal endothelial cells. This review will mainly present several genes and proteins that inhibit the proliferation of the corneal endothelial cells, of course including some other factors like enzymes and position.
Collapse
Affiliation(s)
- Yu-Bo Cui
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | | |
Collapse
|