1
|
Viveiros MMH, Zucoloto LH, Shiguematsu ÁI, Rainho CA, Schellini SA. Comparison of techniques for corneal epithelium cell culture for the collection of conditioned medium. Arq Bras Oftalmol 2024; 87:e2022. [PMID: 38655938 PMCID: PMC11619711 DOI: 10.5935/0004-2749.2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 04/26/2024] Open
Abstract
PURPOSES To determine the best protocol in obtaining the higher yield of conditioned culture medium to be used for the bone marrow mesenchymal stem cell differentiation into corneal epithelial cells, five techniques for the primary culture of human corneal epithelial cells were evaluated. METHODS The studied culture techniques of corneal epithelial cells were: explants in culture flasks with and without hydrophilic surface treatment, on amniotic membrane, with enzymatic digestion, and by corneal scraping. The conditioned culture medium collected from these cultures was used to differentiate human bone marrow mesenchymal stem cells into corneal epithelial cells, which were characterized using flow cytometry with pan-cytokeratin and the corneal-specific markers, cytokeratin 3 and cytokeratin 12. RESULTS The culture technique using flasks with hydrophilic surface treatment resulted in the highest yield of conditioned culture medium. Flasks without surface treatment resulted to a very low success rate. Enzymatic digestion and corneal scraping showed contamination with corneal fibroblasts. The culture on amniotic membranes only allowed the collection of culture medium during the 1st cell confluence. The effectiveness of cell differentiation was confirmed by cytometry analysis using the collected conditioned culture medium, as demonstrated by the expressions of cytokeratin 3 (95.3%), cytokeratin 12 (93.4%), and pan-cytokeratin (95.3%). CONCLUSION The culture of corneal epithelial cell explants in flasks with hydrophilic surface treatment is the best technique for collecting a higher yield of conditioned culture medium to be used to differentiate mesenchymal stem cells.
Collapse
Affiliation(s)
- Magda Massae Hata Viveiros
- Department of Ophthalmology, Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista “Júlio de Mesquita Filho,” Botucatu, SP,
Brazil
| | - Luís Henrique Zucoloto
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista
“Júlio de Mesquita Filho,” Botucatu, SP, Brazil
| | - Álvio Issao Shiguematsu
- Department of Ophthalmology, Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista “Júlio de Mesquita Filho,” Botucatu, SP,
Brazil
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Instituto de
Biociências de Botucatu, Universidade Estadual Paulista “Júlio de
Mesquita Filho” Botucatu, SP, Brazil
| | - Silvana Artioli Schellini
- Department of Ophthalmology, Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista “Júlio de Mesquita Filho,” Botucatu, SP,
Brazil
| |
Collapse
|
2
|
Chandrababu K, Radhakrishnan V, Anjana AS, Rajan R, Sivan U, Krishnan S, Baby Chakrapani PS. Unravelling the Parkinson's puzzle, from medications and surgery to stem cells and genes: a comprehensive review of current and future management strategies. Exp Brain Res 2024; 242:1-23. [PMID: 38015243 DOI: 10.1007/s00221-023-06735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and regulatory concerns before scaling them to clinical use.
Collapse
Affiliation(s)
- Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - A S Anjana
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Rahul Rajan
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Unnikrishnan Sivan
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India.
- Centre for Excellence in Neurodegeneration and Brain Health (CENBH), Kochi, Kerala, India.
| |
Collapse
|
3
|
Myers MI, Hines KJ, Gray A, Spagnuolo G, Rosenwasser R, Iacovitti L. Intracerebral Transplantation of Autologous Mesenchymal Stem Cells Improves Functional Recovery in a Rat Model of Chronic Ischemic Stroke. Transl Stroke Res 2023:10.1007/s12975-023-01208-7. [PMID: 37917400 DOI: 10.1007/s12975-023-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
While treatments exist for the acute phase of stroke, there are limited options for patients with chronic infarcts and long-term disability. Allogenic mesenchymal stem cells (alloMSCs) show promise for the treatment of stroke soon after ischemic injury. There is, however, no information on the use of autologous MSCs (autoMSCs), delivered intracerebrally in rats with a chronic infarct. In this study, rats underwent middle cerebral artery occlusion (MCAO) to induce stroke followed by bone marrow aspiration and MSC expansion in a closed bioreactor. Four weeks later, brain MRI was obtained and autoMSCs (1 × 106, 2.5 × 106 or 5 × 106; n = 6 each) were stereotactically injected into the peri-infarct and compared to controls (MCAO only; MCAO + PBS; n = 6-9). Behavior was assessed using the modified neurological severity score (mNSS). For comparison, an additional cohort of MCAO rats were implanted with 2.5 × 106 alloMSCs generated from a healthy rat. All doses of autoMSCs produced significant improvement (54-70%) in sensorimotor function 60 days later. In contrast, alloMSCs improved only 31.7%, similar to that in PBS controls 30%. Quantum dot-labeled auto/alloMSCs were found exclusively at the implantation site throughout the post-transplantation period with no tumor formation on MRI or Ki67 staining of engrafted MSCs. Small differences in stroke volume and no differences in corpus callosum width were observed after MSC treatment. Stroke-induced glial reactivity in the peri-infarct was long-lasting and unabated by auto/alloMSC transplantation. These studies suggest that intracerebral transplantation of autoMSCs as compared to alloMSCs may be a promising treatment in chronic stroke.
Collapse
Affiliation(s)
- Max I Myers
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Kevin J Hines
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Andrew Gray
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Gabrielle Spagnuolo
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Robert Rosenwasser
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
Palermi S, Gnasso R, Belviso I, Iommazzo I, Vecchiato M, Marchini A, Corsini A, Vittadini F, Demeco A, De Luca M, Tarantino D, Romano V, Sacco A, Sirico F. Stem cell therapy in sports medicine: current applications, challenges and future perspectives. J Basic Clin Physiol Pharmacol 2023; 34:699-706. [PMID: 37682309 DOI: 10.1515/jbcpp-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Stem cells have demonstrated significant potential for tissue repair and regeneration, making them a promising therapeutic avenue in sports medicine. This review aims to provide a comprehensive overview of the current state of research on the application of stem cells in sports medicine. We will discuss the types of stem cells used, their mechanisms of action, and the clinical outcomes of stem cell therapy in different sports-related injuries. Furthermore, we will delve into the challenges and ethical considerations associated with stem cell therapy, as well as future directions and potential applications of stem cells in sports medicine.
Collapse
Affiliation(s)
- Stefano Palermi
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Rossana Gnasso
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Immacolata Belviso
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Irene Iommazzo
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Marco Vecchiato
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | | | | | | | - Andrea Demeco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mariarosaria De Luca
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | | | - Veronica Romano
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Annamaria Sacco
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Felice Sirico
- Public Health Department, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Unnisa A, Dua K, Kamal MA. Mechanism of Mesenchymal Stem Cells as a Multitarget Disease- Modifying Therapy for Parkinson's Disease. Curr Neuropharmacol 2023; 21:988-1000. [PMID: 35339180 PMCID: PMC10227913 DOI: 10.2174/1570159x20666220327212414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, affecting the basal nuclei, causing impairment of motor and cognitive functions. Loss of dopaminergic (DAergic) neurons or their degeneration and the aggregation of Lewy bodies is the hallmark of this disease. The medications used to treat PD relieve the symptoms and maintain quality of life, but currently, there is no cure. There is a need for the development of therapies that can cease or perhaps reverse neurodegeneration effectively. With the rapid advancements in cell replacement therapy techniques, medical professionals are trying to find a cure by which restoration of dopamine neurotransmitters can occur. Researchers have started focusing on cell-based therapies using mesenchymal stem cells (MSCs) due to their abundance in the body, the ability of proliferation, and immunomodulation. Here we review the MSC-based treatment in Parkinson's disease and the various mechanisms it repairs DAergic neurons in parkinsonian patients.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom Saudi Arabia
| | - Kamal Dua
- Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
6
|
Banerjee A, Rowlo P, Jothimani G, Duttaroy AK, Pathak S. Wnt Signalling Inhibitors Potently Drive Trans-differentiation Potential of Mesenchymal Stem Cells Towards Neuronal Lineage. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Guo Z, Sun C, Yang H, Gao H, Liang N, Wang J, Hu S, Ren N, Pang J, Wang J, Meng N, Han L, Liu H. Regulation of Neural Differentiation of ADMSCs using Graphene-Mediated Wireless-Localized Electrical Signals Driven by Electromagnetic Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104424. [PMID: 35152569 PMCID: PMC9109060 DOI: 10.1002/advs.202104424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Although adipose-derived mesenchymal stem cells (ADMSCs) isolated from patients' fat are considered as the most important autologous stem cells for tissue repair, significant difficulties in the neural differentiation of ADMSCs still impede stem cell therapy for neurodegenerative diseases. Herein, a wireless-electrical stimulation method is proposed to direct the neural differentiation of ADMSCs based on the electromagnetic effect using a graphene film as a conductive scaffold. By placing a rotating magnet on the top of a culture system without any inducer, the ADMSCs cultured on graphene differentiate into functional neurons within 15 days. As a conductive biodegradable nanomaterial, graphene film acts as a wireless electrical signal generator driven by the electromagnetic induction, and millivolt-level voltage generated in situ provokes ADMSCs to differentiate into neurons, proved by morphological variation, extremely high levels of neuron-specific genes, and proteins. Most importantly, Ca2+ intracellular influx is observed in these ADMSC-derived neurons once exposure to neurotransmitters, indicating that these cells are functional neurons. This research enhances stem cell therapy for neurodegenerative diseases using autologous ADMSCs and overcomes the lack of neural stem cells. This nanostructure-mediated physical-signal simulation method is inexpensive, safe, and localized, and has a significant impact on neural regeneration.
Collapse
Affiliation(s)
- Zhijie Guo
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Haoyang Gao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Jian Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Shuang Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Ning Meng
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Lin Han
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandong266200P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| |
Collapse
|
8
|
Peripheral Nerve Regeneration Using Different Germ Layer-Derived Adult Stem Cells in the Past Decade. Behav Neurol 2021; 2021:5586523. [PMID: 34539934 PMCID: PMC8448597 DOI: 10.1155/2021/5586523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are some of the most common types of traumatic lesions affecting the nervous system. Although the peripheral nervous system has a higher regenerative ability than the central nervous system, delayed treatment is associated with disturbances in both distal sensory and functional abilities. Over the past decades, adult stem cell-based therapies for peripheral nerve injuries have drawn attention from researchers. This is because various stem cells can promote regeneration after peripheral nerve injuries by differentiating into neural-line cells, secreting various neurotrophic factors, and regulating the activity of in situ Schwann cells (SCs). This article reviewed research from the past 10 years on the role of stem cells in the repair of PNIs. We concluded that adult stem cell-based therapies promote the regeneration of PNI in various ways.
Collapse
|
9
|
Suzuki H, Sakai T. Current Concepts of Stem Cell Therapy for Chronic Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22147435. [PMID: 34299053 PMCID: PMC8308009 DOI: 10.3390/ijms22147435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in clinical trials. In addition, several more are coming down the translational pipeline. Among ongoing and completed trials are those reporting the use of mesenchymal stem cells, neural stem/progenitor cells, induced pluripotent stem cells, olfactory ensheathing cells, and Schwann cells. The advancements in stem cell technology, combined with the powerful neuroimaging modalities, can now accelerate the pathway of promising novel therapeutic strategies from bench to bedside. Various combinations of different molecular therapies have been combined with supportive scaffolds to facilitate favorable cell–material interactions. In this review, we summarized some of the most recent insights into the preclinical and clinical studies using stem cells and other supportive drugs to unlock the microenvironment in chronic SCI to treat patients with this condition. Successful future therapies will require these stem cells and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, loss of structural framework, and immunorejection.
Collapse
|
10
|
Aslam N, Abusharieh E, Abuarqoub D, Alhattab D, Jafar H, Alshaer W, Masad RJ, Awidi AS. An In Vitro Comparison of Anti-Tumoral Potential of Wharton's Jelly and Bone Marrow Mesenchymal Stem Cells Exhibited by Cell Cycle Arrest in Glioma Cells (U87MG). Pathol Oncol Res 2021; 27:584710. [PMID: 34257532 PMCID: PMC8262206 DOI: 10.3389/pore.2021.584710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) for various malignancies is currently under investigation due to their unique properties. However, many discrepancies regarding their anti-tumoral or pro-tumoral properties have raised uncertainty about their application for anti-cancer therapies. To investigate, if the anti-tumoral or pro-tumoral properties are subjective to the type of MSCs under different experimental conditions we set out these experiments. Three treatments namely cell lysates (CL), serum-free conditioned media and FBS conditioned media (FBSCM) from each of Wharton’s Jelly MSCs and Bone Marrow-MSCs were applied to evaluate the anti-tumoral or pro-tumoral effect on the glioma cells (U87MG). The functional analysis included; Morphological evaluation, proliferation and migration potential, cell cycle analysis, and apoptosis for glioma cells. The fibroblast cell line was added to investigate the stimulatory or inhibitory effect of treatments on the proliferation of the normal cell. We found that cell lysates induced a generalized inhibitory effect on the proliferation of the glioma cells and the fibroblasts from both types of MSCs. Similarly, both types of conditioned media from two types of MSCs exerted the same inhibitory effect on the proliferation of the glioma cells. However, the effect of two types of conditioned media on the proliferation of fibroblasts was stimulatory from BM-MSCs and variable from WJ-MSCs. Moreover, all three treatments exerted a likewise inhibitory effect on the migration potential of the glioma cells. Furthermore, we found that the cell cycle was arrested significantly at the G1 phase after treating cells with conditioned media which may have led to inhibit the proliferative and migratory abilities of the glioma cells (U87MG). We conclude that cell extracts of MSCs in the form of secretome can induce specific anti-tumoral properties in serum-free conditions for the glioma cells particularly the WJ-MSCs and the effect is mediated by the cell cycle arrest at the G1 phase.
Collapse
Affiliation(s)
- Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Elham Abusharieh
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Pharmaceutical science, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra. Amman, Jordan
| | - Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Laboratory for Nanomedicine, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Razan J Masad
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Medicine, School of Medicine, The University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, The University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int J Mol Sci 2021; 22:ijms22073576. [PMID: 33808241 PMCID: PMC8036553 DOI: 10.3390/ijms22073576] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology.
Collapse
Affiliation(s)
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
| | - Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| |
Collapse
|
12
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
13
|
Notch signaling-modified mesenchymal stem cells improve tissue perfusion by induction of arteriogenesis in a rat hindlimb ischemia model. Sci Rep 2021; 11:2543. [PMID: 33510394 PMCID: PMC7844258 DOI: 10.1038/s41598-021-82284-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/15/2021] [Indexed: 01/27/2023] Open
Abstract
Notch signaling-modified human mesenchymal stem cell, SB623 cell, is a promising cell therapy product for ischemic stroke. With the aim to expand indications for their use for critical limb-threatening ischemia (CLTI), we hypothesized that SB623 cells improved tissue perfusion by inducing angiogenesis or arteriogenesis in a hindlimb ischemia model rat. In Sprague–Dawley rats, hindlimb ischemia was generated by femoral artery removal, then seven days after ischemic induction 1 × 105 SB623 cells or PBS was injected into the ischemic adductor muscle. As compared with the PBS group, tissue perfusion was significantly increased in the SB623 group. While capillary density did not vary between the groups, αSMA- and vWF-positive arterioles with a diameter > 15 μm were significantly increased in the SB623 group. Whole transcriptome analysis of endothelial cells co-cultured with SB623 cells showed upregulation of the Notch signaling pathway as well as several other pathways potentially leading to arteriogenesis. Furthermore, rat muscle treated with SB623 cells showed a trend for higher ephrin-B2 and significantly higher EphB4 expression, which are known as arteriogenic markers. In the hindlimb ischemia model, SB623 cells improved tissue perfusion by inducing arteriogenesis, suggesting a promising cell source for treatment of CLTI.
Collapse
|
14
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
15
|
Liu J, He J, Huang Y, Hu Z. Effect of Bone Marrow Stromal Cells in Parkinson's Disease Rodent Model: A Meta-Analysis. Front Aging Neurosci 2020; 12:539933. [PMID: 33362527 PMCID: PMC7759665 DOI: 10.3389/fnagi.2020.539933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bone marrow stromal cells (BMSCs) has been reported to have beneficial effects in improving behavioral deficits, and rescuing dopaminergic neuron loss in rodent models of Parkinson's disease (PD). However, their pooled effects for dopaminergic neuron have yet to be described. Objective: To review the neuroprotective effect of naïve BMSCs in rodent models of PD. Methods: The PubMed, EMBASE, and Web of Science databases were searched up to September 30, 2020. Inclusion criteria according to PICOS criteria were as follows: (1) population: rodents; (2) intervention: unmodified BMSCs; (3) comparison: not specified; (4) primary outcome: tyrosine hydroxylase level in the substantia nigra pars compacta and rotational behavior; secondary outcome: rotarod test, and limb function; (5) study: experimental studies. Multiple prespecified subgroup and meta-regression analysis were conducted. Following quality assessment, random effects models were used for this meta-analysis. Results: Twenty-seven animal studies were included. The median quality score was 4.7 (interquartile range, 2–8). Overall standardized mean difference between animals treated with naïve BMSCs and controls was 2.79 (95% confidence interval: 1.70, 3.87; P < 0.001) for densitometry of tyrosine hydroxylase-positive staining; −1.54 (95% confidence interval: −2.11, −0.98; P < 0.001) for rotational behavior. Significant heterogeneity among studies was observed. Conclusions: Results of this meta-analysis suggest that naïve BMSCs therapy increased dopaminergic neurons and ameliorated behavioral deficits in rodent models of PD.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Pesaresi M, Bonilla-Pons SA, Sebastian-Perez R, Di Vicino U, Alcoverro-Bertran M, Michael R, Cosma MP. The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina. Mol Ther 2020; 29:804-821. [PMID: 33264643 DOI: 10.1016/j.ymthe.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy approaches hold great potential for treating retinopathies, which are currently incurable. This study addresses the problem of inadequate migration and integration of transplanted cells into the host retina. To this end, we have identified the chemokines that were most upregulated during retinal degeneration and that could chemoattract mesenchymal stem cells (MSCs). The results were observed using a pharmacological model of ganglion/amacrine cell degeneration and a genetic model of retinitis pigmentosa, from both mice and human retinae. Remarkably, MSCs overexpressing Ccr5 and Cxcr6, which are receptors bound by a subset of the identified chemokines, displayed improved migration after transplantation in the degenerating retina. They also led to enhanced rescue of cell death and to preservation of electrophysiological function. Overall, we show that chemokines released from the degenerating retinae can drive migration of transplanted stem cells, and that overexpression of chemokine receptors can improve cell therapy-based regenerative approaches.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc Alcoverro-Bertran
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona 08021, Spain; Centro de Oftalmología Barraquer, Barcelona 08021, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Passeig de Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
17
|
Yokokawa K, Iwahara N, Hisahara S, Emoto MC, Saito T, Suzuki H, Manabe T, Matsumura A, Matsushita T, Suzuki S, Kawamata J, Sato-Akaba H, Fujii HG, Shimohama S. Transplantation of Mesenchymal Stem Cells Improves Amyloid-β Pathology by Modifying Microglial Function and Suppressing Oxidative Stress. J Alzheimers Dis 2020; 72:867-884. [PMID: 31640102 PMCID: PMC6918908 DOI: 10.3233/jad-190817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) are increasingly being studied as a source of cell therapy for neurodegenerative diseases, and several groups have reported their beneficial effects on Alzheimer’s disease (AD). In this study using AD model mice (APdE9), we found that transplantation of MSC via the tail vein improved spatial memory in the Morris water maze test. Using electron paramagnetic resonance imaging to evaluate the in vivo redox state of the brain, we found that MSC transplantation suppressed oxidative stress in AD model mice. To elucidate how MSC treatment ameliorates oxidative stress, we focused on amyloid-β (Aβ) pathology and microglial function. MSC transplantation reduced Aβ deposition in the cortex and hippocampus. Transplantation of MSC also decreased Iba1-positive area in the cortex and reduced activated ameboid shaped microglia. On the other hand, MSC transplantation accelerated accumulation of microglia around Aβ deposits and prompted microglial Aβ uptake and clearance as shown by higher frequency of Aβ-containing microglia. MSC transplantation also increased CD14-positive microglia in vivo, which play a critical role in Aβ uptake. To confirm the effects of MSC on microglia, we co-cultured the mouse microglial cell line MG6 with MSC. Co-culture with MSC enhanced Aβ uptake by MG6 cells accompanied by upregulation of CD14 expression. Additionally, co-culture of MG6 cells with MSC induced microglial phenotype switching from M1 to M2 and suppressed production of proinflammatory cytokines. These data indicate that MSC treatment has the potential to ameliorate oxidative stress through modification of microglial functions, thereby improving Aβ pathology in AD model mice.
Collapse
Affiliation(s)
- Kazuki Yokokawa
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Naotoshi Iwahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan.,Department of Pharmacology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Miho C Emoto
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Taro Saito
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Hiromi Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Tatsuo Manabe
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Akihiro Matsumura
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Takashi Matsushita
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Syuuichirou Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Jun Kawamata
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideo Sato-Akaba
- Department of System Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hirotada G Fujii
- Cancer Preventive Institute, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Shun Shimohama
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
18
|
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease variably associated with motor, nonmotor, and autonomic symptoms, resulting from putaminal and cerebellar degeneration and associated with glial cytoplasmic inclusions enriched with α-synuclein in oligodendrocytes and neurons. Although symptomatic treatment of MSA can provide significant improvements in quality of life, the benefit is often partial, limited by adverse effects, and fails to treat the underlying cause. Consistent with the multisystem nature of the disease and evidence that motor symptoms, autonomic failure, and depression drive patient assessments of quality of life, treatment is best achieved through a coordinated multidisciplinary approach driven by the patient's priorities and goals of care. Research into disease-modifying therapies is ongoing with a particular focus on synuclein-targeted therapies among others. This review focuses on both current management and emerging therapies for this devastating disease.
Collapse
Affiliation(s)
- Matthew R. Burns
- Norman Fixel Institute for Neurological Diseases at UFHealth, Movement Disorders Division, Department of Neurology, University of Florida, 3009 SW Williston Rd, Gainesville, FL 32608 USA
| | - Nikolaus R. McFarland
- Norman Fixel Institute for Neurological Diseases at UFHealth, Movement Disorders Division, Department of Neurology, University of Florida, 3009 SW Williston Rd, Gainesville, FL 32608 USA
| |
Collapse
|
19
|
Yao P, Zhou L, Zhu L, Zhou B, Yu Q. Mesenchymal Stem Cells: A Potential Therapeutic Strategy for Neurodegenerative Diseases. Eur Neurol 2020; 83:235-241. [PMID: 32690856 DOI: 10.1159/000509268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
Neurodegenerative disease is a kind of chronic, progressive nervous system disease characterized by neuron degeneration or apoptosis. Current treatments cannot prevent the development of the disease. Possible alternative treatments include cell therapy, especially with the use of mesenchymal stem cells (MSCs). MSCs are pluripotent stem cells with capacities for self-renewal and multidirectional differentiation. MSCs may serve as a reliable source of neural cells for potential cell replacement therapy or regenerative medicine treatment. Here, we summarized the therapeutic mechanisms of MSCs and how they can contribute to the development of treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Panpan Yao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lujie Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Binjie Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China,
| |
Collapse
|
20
|
Improvement of Impaired Motor Functions by Human Dental Exfoliated Deciduous Teeth Stem Cell-Derived Factors in a Rat Model of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21113807. [PMID: 32471263 PMCID: PMC7312764 DOI: 10.3390/ijms21113807] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a long-term degenerative disease of the central nervous system (CNS) that primarily affects the motor system. So far there is no effective treatment for PD, only some drugs, surgery, and comprehensive treatment can alleviate the symptoms of PD. Stem cells derived from human exfoliated deciduous teeth (SHED), mesenchymal stem cells derived from dental pulp, may have promising potential in regenerative medicine. In this study, we examine the therapeutic effect of SHED-derived conditioned medium (SHED-CM) in a rotenone-induced PD rat model. Intravenous administration of SHED-CM generated by standardized procedures significantly improved the PD symptoms accompanied with increased tyrosine hydroxylase amounts in the striatum, and decreased α-synuclein levels in both the nigra and striatum, from rotenone-treated rats. In addition, this SHED-CM treatment decreased both Iba-1 and CD4 levels in these brain areas. Gene ontology analysis indicated that the biological process of genes affected by SHED-CM was primarily implicated in neurodevelopment and nerve regeneration. The major constituents of SHED-CM included insulin-like growth factor binding protein-6 (IGFBP-6), tissue inhibitor of metalloproteinase (TIMP)-2, TIMP-1, and transforming growth factor 1 (TGF-1). RNA-sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) revealed that these factors may ameliorate PD symptoms through modulating the cholinergic synapses, calcium signaling pathways, serotoninergic synapses, and axon guidance. In conclusion, our data indicate that SHED-CM contains active constituents that may have promising efficacy to alleviate PD.
Collapse
|
21
|
Centella asiatica (L.)-Neurodifferentiated Mesenchymal Stem Cells Promote the Regeneration of Peripheral Nerve. Tissue Eng Regen Med 2020; 17:237-251. [PMID: 32036567 DOI: 10.1007/s13770-019-00235-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Centella asiatica (L.) is a plant with neuroprotective and neuroregenerative properties; however, its effects on the neurodifferentiation of mesenchymal stem cells (MSCs) and on peripheral nerve injury are poorly explored. This study aimed to investigate the effects of C. asiatica (L.)-neurodifferentiated MSCs on the regeneration of peripheral nerve in a critical-size defect animal model. METHODS Nerve conduit was developed using decellularised artery seeded with C. asiatica-neurodifferentiated MSCs (ndMSCs). A 1.5 cm sciatic nerve injury in Sprague-Dawley rat was bridged with reversed autograft (RA) (n = 3, the gold standard treatment), MSC-seeded conduit (MC) (n = 4) or ndMSC-seeded conduit (NC) (n = 4). Pinch test and nerve conduction study were performed every 2 weeks for a total of 12 weeks. At the 12th week, the conduits were examined by histology and transmission electron microscopy. RESULTS NC implantation improved the rats' sensory sensitivity in a similar manner to RA. At the 12th week, nerve conduction velocity was the highest in NC compared with that of RA and MC. Axonal regeneration was enhanced in NC and RA as shown by the expression of myelin basic protein (MBP). The average number of myelinated axons was significantly higher in NC than in MC but significantly lower than in RA. The myelin sheath thickness was higher in NC than in MC but lower than in RA. CONCLUSION NC showed promising effects on nerve regeneration and functional restoration similar to those of RA. These findings revealed the neuroregenerative properties of C. asiatica and its potential as an alternative strategy for the treatment of critical size nerve defect.
Collapse
|
22
|
A Pilot Study of Parameter-Optimized Low-Intensity Pulsed Ultrasound Stimulation for the Bone Marrow Mesenchymal Stem Cells Viability Improvement. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:8386024. [PMID: 31662789 PMCID: PMC6791242 DOI: 10.1155/2019/8386024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/23/2019] [Indexed: 11/30/2022]
Abstract
To investigate how a back propagation neural network based on genetic algorithm (GA-BPNN) optimizes the low-intensity pulsed ultrasound (LIPUS) stimulation parameters to improve the bone marrow mesenchymal stem cells (BMSCs) viability further. The LIPUS parameters were set at various frequencies (0.6, 0.8, 1.0, and 1.2 MHz), voltages (5, 6, 7, and 8 V), and stimulation durations (3, 6, and 9 minutes). As only some discrete points can be set up in the experiments, the optimal LIPUS stimulation parameter may not be in the value of these settings. The GA-BPNN algorithm is used to optimize parameters of LIPUS to increase the BMSCs viability further. The BMSCs viability of the LIPUS-treated group was improved up to 19.57% (P < 0.01). With the optimization via the GA-BPNN algorithm, the viability of BMSCs was further improved by about 5.36% (P < 0.01) under the optimized condition of 6.92 V, 1.02 MHz, and 7.3 min. LIPUS is able to improve the BMSCs viability, which can be improved further by LIPUS with parameter optimization via GA-BPNN algorithm.
Collapse
|
23
|
Borlongan CV. Concise Review: Stem Cell Therapy for Stroke Patients: Are We There Yet? Stem Cells Transl Med 2019; 8:983-988. [PMID: 31099181 PMCID: PMC6708064 DOI: 10.1002/sctm.19-0076] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Four decades of preclinical research demonstrating survival, functional integration, and behavioral effects of transplanted stem cells in experimental stroke models have provided ample scientific basis for initiating limited clinical trials of stem cell therapy in stroke patients. Although safety of the grafted cells has been overwhelmingly documented, efficacy has not been forthcoming. Two recently concluded stroke clinical trials on mesenchymal stem cells (MSCs) highlight the importance of strict adherence to the basic science findings of optimal transplant regimen of cell dose, timing, and route of delivery in enhancing the functional outcomes of cell therapy. Echoing the Stem Cell Therapeutics as an Emerging Paradigm for Stroke and Stroke Treatment Academic Industry Roundtable call for an NIH‐guided collaborative consortium of multiple laboratories in testing the safety and efficacy of stem cells and their derivatives, not just as stand‐alone but preferably in combination with approved thrombolytic or thrombectomy, may further increase the likelihood of successful fruition of translating stem cell therapy for stroke clinical application. The laboratory and clinical experience with MSC therapy for stroke may guide the future translational research on stem cell‐based regenerative medicine in neurological disorders. stem cells translational medicine2019;8:983&988
Collapse
Affiliation(s)
- Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
24
|
Differentiation of Bone Marrow Mesenchymal Stem Cells into Neural Lineage Cells Induced by bFGF-Chitosan Controlled Release System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5086297. [PMID: 31032349 PMCID: PMC6457308 DOI: 10.1155/2019/5086297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
Bone marrow mesenchymal stem cells undergo differentiation to different lineages with different efficiencies when induced by different factors. We added a bFGF-chitosan controlled release system (bFGF-CCRS) as an inducer into conditioned medium to facilitate the oriented differentiation of BMSCs into neural lineage cells (eventually mature neurons); furthermore, we synchronized BMSCs to the G0/G1 phase via serum starvation to observe the effect of the inducer on the differentiation direction and efficiency. The nonsynchronized group, chitosan alone (not loaded with bFGF) group, soluble bFGF group, and conditioned medium group served as controls, and we observed the dynamic process of differentiation of BMSCs into neural lineage cells at different time points after the beginning of coculture. We analyzed the binding patterns of bFGF and chitosan and assayed the expression differences of key factors (FGFR1, ERK, and c-fos) and molecular switches (BTG2) that regulate the transformation from cell proliferation to differentiation. We also investigated the potential molecular mechanism of BMSC differentiation into neural lineage cells at a high percentage when induced by bFGF-CCRS.
Collapse
|
25
|
Yu H, Yuan X, Liu L, Wang T, Gong D. Treatment of multiple system atrophy - the past, present and future. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:88-94. [PMID: 30498625 PMCID: PMC6261842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 06/09/2023]
Abstract
Multiple system atrophy is a sporadic progressive degenerative disease which is characterized by multiple central nervous systems involved. So far, there is no effective medicine to cure MSA. The main research direction of treatment includes immunization transplantation and cytotherapy. Human umbilical cord blood is the residue of blood in the placenta and umbilical cord after fetal delivery. It is the most abundant cell bank and its usage is not limited to treat hematological diseases. The researches about hUCB-MNC treatment on MSA are increasing gradually. The potential of other MSC is also discussed. Lateral atlanto-occipital space puncture is an ingenious way created by Professor Dianrong Gong. More than 30 cases of MSA have been treated by this method with fine clinical effect and without serious complications. It indicates that stem cells treatment is a valid method for refractory nerve system diseases.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| | - Xiaoling Yuan
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| | - Lifeng Liu
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| | - Tian Wang
- Taishan Medical UniversityLiaocheng, PR China
| | - Dianrong Gong
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| |
Collapse
|
26
|
Sun Y, Selvaraj S, Pandey S, Humphrey KM, Foster JD, Wu M, Watt JA, Singh BB, Ohm JE. MPP + decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep 2018; 8:11715. [PMID: 30082759 PMCID: PMC6079049 DOI: 10.1038/s41598-018-29528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons (DNs), with currently available therapeutics, such as L-Dopa, only able to relieve some symptoms. Stem cell replacement is an attractive therapeutic option for PD patients, and DNs derived by differentiating patient specific stem cells under defined in-vitro conditions may present a viable opportunity to replace dying neurons. We adopted a previously published approach to differentiate Mesenchymal Stem Cells (MSCs) into DN using a 12-day protocol involving FGF-2, bFGF, SHH ligand and BDNF. While MSC-derived DNs have been characterized for neuronal markers and electrophysiological properties, we investigated store-operated calcium entry (SOCE) mechanisms of these DNs under normal conditions, and upon exposure to environmental neurotoxin, 1-methyl, 4-phenyl pyridinium ion (MPP+). Overall, we show that MSC-derived DNs are functional with regard to SOCE mechanisms, and MPP+ exposure dysregulates calcium signaling, making them vulnerable to neurodegeneration. Since in-vitro differentiation of MSCs into DNs is an important vehicle for PD disease modeling and regenerative medicine, the results of this study may help with understanding of the pathological mechanisms underlying PD.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Senthil Selvaraj
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Sumali Pandey
- Biosciences Department, Minnesota State University, Moorhead, Moorhead, MN, USA
| | - Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - James D Foster
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, TX, 78229, San Antonio, USA.
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| |
Collapse
|
27
|
Oliveira Miranda C, Marcelo A, Silva TP, Barata J, Vasconcelos-Ferreira A, Pereira D, Nóbrega C, Duarte S, Barros I, Alves J, Sereno J, Petrella LI, Castelhano J, Paiva VH, Rodrigues-Santos P, Alves V, Nunes-Correia I, Nobre RJ, Gomes C, Castelo-Branco M, Pereira de Almeida L. Repeated Mesenchymal Stromal Cell Treatment Sustainably Alleviates Machado-Joseph Disease. Mol Ther 2018; 26:2131-2151. [PMID: 30087083 DOI: 10.1016/j.ymthe.2018.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3, the most common dominant spinocerebellar ataxia (SCA) worldwide, is caused by over-repetition of a CAG repeat in the ATXN3/MJD1 gene, which translates into a polyglutamine tract within the ataxin-3 protein. There is no treatment for this fatal disorder. Despite evidence of the safety and efficacy of mesenchymal stromal cells (MSCs) in delaying SCA disease progression in exploratory clinical trials, unanticipated regression of patients to the status prior to treatment makes the investigation of causes and solutions urgent and imperative. In the present study, we compared the efficacy of a single intracranial injection with repeated systemic MSC administration in alleviating the MJD phenotype of two strongly severe genetic rodent models. We found that a single MSC transplantation only produces transient effects, whereas periodic administration promotes sustained motor behavior and neuropathology alleviation, suggesting that MSC therapies should be re-designed to get sustained beneficial results in clinical practice. Furthermore, MSC promoted neuroprotection, increased the levels of GABA and glutamate, and decreased the levels of Myo-inositol, which correlated with motor improvements, indicating that these metabolites may serve as valid neurospectroscopic biomarkers of disease and treatment. This study makes important contributions to the design of new clinical approaches for MJD and other SCAs/polyglutamine disorders.
Collapse
Affiliation(s)
- Catarina Oliveira Miranda
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Adriana Marcelo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Teresa Pereira Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Barata
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Vasconcelos-Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Doctoral Programme of Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Dina Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, CNC - University of Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504 Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sónia Duarte
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Inês Barros
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Alves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - José Sereno
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lorena Itatí Petrella
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Castelhano
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Vitor Hugo Paiva
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, 3004-504, Portugal; Center of Investigation in Environment, Genetics and Oncobiology, Apartado 9015, 3001-301, Coimbra, Portugal
| | - Vera Alves
- Immunology Institute, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, 3004-504, Portugal; Center of Investigation in Environment, Genetics and Oncobiology, Apartado 9015, 3001-301, Coimbra, Portugal
| | - Isabel Nunes-Correia
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
28
|
Stem Cells in Dentistry: Types of Intra- and Extraoral Tissue-Derived Stem Cells and Clinical Applications. Stem Cells Int 2018; 2018:4313610. [PMID: 30057624 PMCID: PMC6051054 DOI: 10.1155/2018/4313610] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated cells, capable of renewing themselves, with the capacity to produce different cell types to regenerate missing tissues and treat diseases. Oral facial tissues have been identified as a source and therapeutic target for stem cells with clinical interest in dentistry. This narrative review report targets on the several extraoral- and intraoral-derived stem cells that can be applied in dentistry. In addition, stem cell origins are suggested in what concerns their ability to differentiate as well as their particular distinguishing quality of convenience and immunomodulatory for regenerative dentistry. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. This review will also focus our attention on the clinical application of stem cells in dentistry. In recent years, a variety of articles reported the advantages of stem cell-based procedures in regenerative treatments. The regeneration of lost oral tissue is the target of stem cell research. Owing to the fact that bone imperfections that ensue after tooth loss can result in further bone loss which limit the success of dental implants and prosthodontic therapies, the rehabilitation of alveolar ridge height is prosthodontists' principal interest. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. In addition, a “dental stem cell banking” is available for regenerative treatments in the future. The main features of stem cells in the future of dentistry should be understood by clinicians.
Collapse
|
29
|
Han L, Zhou Y, Zhang R, Wu K, Lu Y, Li Y, Duan R, Yao Y, Zhu D, Jia Y. MicroRNA Let-7f-5p Promotes Bone Marrow Mesenchymal Stem Cells Survival by Targeting Caspase-3 in Alzheimer Disease Model. Front Neurosci 2018; 12:333. [PMID: 29872375 PMCID: PMC5972183 DOI: 10.3389/fnins.2018.00333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Widespread death of transplanted mesenchymal stem cells (MSCs) hampers the development of stem cell therapy for Alzheimer disease (AD). Cell pre-conditioning might help cope with this challenge. We tested whether let-7f-5p-modified MSCs could prolong the survival of MSCs after transplantation. When exposed to Aβ25−35in vitro, MSCs showed significant early apoptosis with decrease in the let-7f-5p levels and increased caspase-3 expression. Upregulating microRNA let-7f-5p in MSCs alleviated Aβ25−35-induced apoptosis by decreasing the caspase-3 levels. After computerized analysis and the luciferase reporter assay, we identified that caspases-3 was the target gene of let-7f-5p. In vivo, hematoxylin and eosin staining confirmed the success of MSCs transplantation into the lateral ventricles, and the let-7f-5p upregulation group showed the lowest apoptotic rate of MSCs detected by TUNEL immunohistochemistry analysis and immunofluorescence. Similarly, bioluminescent imaging showed that let-7f-5p upregulation moderately prolonged the retention of MSCs in brain. In summary, we identified the anti-apoptotic role of let-7f-5p in Aβ25−35-induced cytotoxicity, as well as the protective effect of let-7f-5p on survival of grafted MSCs by targeting caspase-3 in AD models. These findings show a promising approach of microRNA-modified MSCs transplantation as a therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Linlin Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaimin Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Shall G, Menosky M, Decker S, Nethala P, Welchko R, Leveque X, Lu M, Sandstrom M, Hochgeschwender U, Rossignol J, Dunbar G. Effects of Passage Number and Differentiation Protocol on the Generation of Dopaminergic Neurons from Rat Bone Marrow-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19030720. [PMID: 29498713 PMCID: PMC5877581 DOI: 10.3390/ijms19030720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023] Open
Abstract
Multiple studies have demonstrated the ability of mesenchymal stem cells (MSCs) to differentiate into dopamine-producing cells, in vitro and in vivo, indicating their potential to be used in the treatment of Parkinson’s disease (PD). However, there are discrepancies among studies regarding the optimal time (i.e., passage number) and method for dopaminergic induction, in vitro. In the current study, we compared the ability of early (P4) and later (P40) passaged bone marrow-derived MSCs to differentiate into dopaminergic neurons using two growth-factor-based approaches. A direct dopaminergic induction (DDI) was used to directly convert MSCs into dopaminergic neurons, and an indirect dopaminergic induction (IDI) was used to direct MSCs toward a neuronal lineage prior to terminal dopaminergic differentiation. Results indicate that both early and later passaged MSCs exhibited positive expression of neuronal and dopaminergic markers following either the DDI or IDI protocols. Additionally, both early and later passaged MSCs released dopamine and exhibited spontaneous neuronal activity following either the DDI or IDI. Still, P4 MSCs exhibited significantly higher spiking and bursting frequencies as compared to P40 MSCs. Findings from this study provide evidence that early passaged MSCs, which have undergone the DDI, are more efficient at generating dopaminergic-like cells in vitro, as compared to later passaged MSCs or MSCs that have undergone the IDI.
Collapse
Affiliation(s)
- Gabrielle Shall
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Megan Menosky
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Sarah Decker
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Priya Nethala
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ryan Welchko
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Xavier Leveque
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ming Lu
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Michael Sandstrom
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Humanities and Social and Behavioral Sciences, Psychology Department, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
- Field Neurosciences Institute, 4677 Towne Centre Rd. Suite 101, Saginaw, MI 48604, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Humanities and Social and Behavioral Sciences, Psychology Department, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
| |
Collapse
|
31
|
Borlongan CV. Preliminary Reports of Stereotaxic Stem Cell Transplants in Chronic Stroke Patients. Mol Ther 2018; 24:1710-1711. [PMID: 27818493 DOI: 10.1038/mt.2016.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| |
Collapse
|
32
|
Luzzi S, Crovace AM, Lacitignola L, Valentini V, Francioso E, Rossi G, Invernici G, Galzio RJ, Crovace A. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats. Surg Neurol Int 2018; 9:19. [PMID: 29497572 PMCID: PMC5806420 DOI: 10.4103/sni.sni_369_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Methods: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso–Beattie–Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Results: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Conclusions: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.
Collapse
Affiliation(s)
- Sabino Luzzi
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy.,Department of Neurosurgery, San Salvatore City Hospital, L'Aquila, Italy
| | | | - Luca Lacitignola
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Valerio Valentini
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Edda Francioso
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomo Rossi
- Animal Pathology Section, School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Gloria Invernici
- Department of Neurology, Public Health and Disability, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Juan Galzio
- Department of Neurosurgery, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
33
|
Colpo GD, Stertz L, Diniz BS, Teixeira AL. Potential Use of Stem Cells in Mood Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:87-96. [DOI: 10.1007/5584_2018_250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Cheng O, Tian X, Luo Y, Mai S, Yang Y, Kuang S, Chen Q, Ma J, Chen B, Li R, Yang L, Li H, Hu C, Zhang J, Chen Z, Li Y, Xia H, Xu Y, Yang J. Liver X receptors agonist promotes differentiation of rat bone marrow derived mesenchymal stem cells into dopaminergic neuron-like cells. Oncotarget 2017; 9:576-590. [PMID: 29416637 PMCID: PMC5787491 DOI: 10.18632/oncotarget.23076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 01/26/2023] Open
Abstract
Dopaminergic (DA) neurons derived from bone marrow derived mesenchymal stem cells (BMSCs) maybe a valuable source for cell replacement therapy in Parkinson disease. Recent studies showed that new functions of LXR and their ligands have been proposed to prevent PD in the adult nervous system. The present study was designed to observe the effect of liver X receptors (LXR) agonist on differentiation of rat BMSCs into DA neurons. Expressions of the neuronal markers (Tuj1 and Nestin), the specific marker of DA neurons (tyrosine hydroxylase, TH), LXR α and LXR β were measured by immunocytochemical assay and TH/Tuj1 positive cells were determined by quantitative cell count analyses. mRNA expressions of LXR α, LXR β, TH, DAT, Nurr1, Pitx3, En1 and Lmx1b were measured by qPCR. Compared with growth factors (GF) treated group, combined use of LXR and GF induced rat BMSCs to TH-expressing cells with 87.42% of efficiency in 6 days of period of induction. LXR agonist alone did not induce the differentiation. Compared with GF alone, combined use of LXR and GF increased expressions of LXR α and LXR β protein and mRNA and TH, DAT, Nurr1, and Pitx3 mRNA, decreased expressions of En1 and Lmx1b mRNA. Our experimental results indicated that LXR activation leads to improve induction efficiency and shorten induction period of rat BMSCs into DA neuron-like cells through regulating DA development-related genes expressions and that LXR can be considered as a candidate target for drug development to improve differentiation of BMSCs into DA neurons.
Collapse
Affiliation(s)
- Oumei Cheng
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.,Department of Neurology, The First Affiliated China Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyan Tian
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shaoshan Mai
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shengnan Kuang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qi Chen
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jie Ma
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Beibei Chen
- Department of Neurology, The First Affiliated China Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Li
- Department of Neurology, The First Affiliated China Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
35
|
Wang W, Li P, Li W, Jiang J, Cui Y, Li S, Wang Z. Osteopontin activates mesenchymal stem cells to repair skin wound. PLoS One 2017; 12:e0185346. [PMID: 28957406 PMCID: PMC5619734 DOI: 10.1371/journal.pone.0185346] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/11/2017] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for skin wound repair due to their capabilities of accumulating at wounds and differentiating into multiple types of skin cells. However, the underlying mechanisms responsible for these processes remain unclear. In this study, we found that osteopontin (OPN) stimulated the migration of MSCs in vitro, and observed the recruitment of endogenous MSCs to a skin wound and their differentiation into keratinocytes and endothelial cells. In OPN knock-out mice, the recruitment of MSCs to the skin wound was significantly inhibited, and wound closure was hampered after an intradermal injection of exogenous MSCs compared to wild-type mice. Consistent with these observations, the expressions of adhesion molecule CD44 and its receptor E-selectin were significantly decreased in the lesions of OPN knock-out mice compared with wild-type mice suggesting that OPN may regulate the migration of MSCs through its interactions with CD44 during skin wound recovery. In summary, our data demonstrated that OPN played a critical role in activating the migration of MSCs to injured sites and their differentiation into specific skin cell types during skin wound healing.
Collapse
Affiliation(s)
- Wenping Wang
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pei Li
- Department of Orthopedics, No.89 Hospital of People’s Liberation Army, Weifang, Shandong, China
| | - Wei Li
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junzi Jiang
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanyan Cui
- Department of Genetics and Cell Biology, Chongqing Medical University, Chongqing, China
| | - Shirong Li
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZW); (SL)
| | - Zhenxiang Wang
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZW); (SL)
| |
Collapse
|
36
|
Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell Therapy for Parkinson's Disease. Cell Transplant 2017; 26:1551-1559. [PMID: 29113472 PMCID: PMC5680961 DOI: 10.1177/0963689717735411] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Cell therapy for Parkinson's disease (PD) began in 1979 with the transplantation of fetal rat dopamine-containing neurons that improved motor abnormalities in the PD rat model with good survival of grafts and axonal outgrowth. Thirty years have passed since the 2 clinical trials using cell transplantation for PD patients were first reported. Recently, cell therapy is expected to develop as a realistic treatment option for PD patients owing to the advancement of biotechnology represented by pluripotent stem cells. Medication using levodopa, surgery including deep brain stimulation, and rehabilitation have all been established as current therapeutic strategies. Strong therapeutic effects have been demonstrated by these treatment methods, but they have been unable to stop the progression of the disease. Fortunately, cell therapy might be a key for true neurorestoration. This review article describes the historical development of cell therapy for PD, the current status of cell therapy, and the future direction of this treatment method.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
- Department of Psychology, Graduate School of Psychology, Kibi International University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
37
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
38
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 and extractvalue(5426,concat(0x5c,0x717a6a6b71,(select (elt(5426=5426,1))),0x71707a7a71))-- ncmy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
39
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
40
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
41
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 order by 1-- hpcc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
42
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
43
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
44
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
45
|
Magnetic resonance imaging tracking and assessing repair function of the bone marrow mesenchymal stem cells transplantation in a rat model of spinal cord injury. Oncotarget 2017; 8:58985-58999. [PMID: 28938612 PMCID: PMC5601708 DOI: 10.18632/oncotarget.19775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
The transplantation of bone marrow mesenchymal stem cells (BMSCs) to repair spinal cord injury (SCI) has become a promising therapy. However, there is still a lack of visual evidence directly implicating the transplanted cells as the source of the improvement of spinal cord function. In this study, BMSCs were labeled with NF-200 promoter and lipase-activated gadolinium-containing nanoparticles (Gd-DTPA-FA). Double labeled BMSCs were implanted into spinal cord transaction injury in rat models in situ, the function recovery was evaluated on 1st, 7th, 14th, 28 th days by MRI, Diffusion Tensor Imaing, CT imaging and post-processing, and histological observations. BBB scores were used for assessing function recovery. After transplantation of BMSCs, the hypersignal emerged in spinal cord in T1WI starting at day 7 that was focused at the injection site, which then increased and extended until day 14. Subsequently, the increased signal intensity area rapidly spread from the injection site to entire injured segment lasting four weeks. The diffusion tensor tractography and histological analysis both showed the nerve fibre from dividing to connecting partly. Immunofluorescence showed higher expression of NF-200 in Repaired group than Injury group. Electron microscopy showed detachment and loose of myelin lamellar getting better in Repaired group compared with the Injury group. BBB scores in Repaired group were significantly higher than those of injury animals. Our study suggests that the migration and distribution of Gd-DTPA-FA labeled BMSCs can be tracked using MRI. Transplantation of BMSCs represents a promising potential strategy for the repair of SCI.
Collapse
|
46
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
47
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 order by 1-- asnk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
48
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
49
|
Neuron-Specific Fluorescence Reporter-Based Live Cell Tracing for Transdifferentiation of Mesenchymal Stem Cells into Neurons by Chemical Compound. Stem Cells Int 2017; 2017:8452830. [PMID: 28808446 PMCID: PMC5541830 DOI: 10.1155/2017/8452830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Although transdifferentiation of mesenchymal stem cells (MSCs) into neurons increases the possibility of therapeutic use of MSCs for neurodevelopmental disorders, the use of MSCs has the limitation on differentiation efficiency to neuronal lineage and lack of an easy method to monitor the transdifferentiation. In this study, using time-lapse live cell imaging, we assessed the neuronal differentiation of MSCs induced by a small molecule “NHPDQC (N-hydroxy-2-oxo-3-(3-phenylprophyl)-1,2-dihydroquinoxaline-6-carboxamide, C18H17N3O3).” Plasmid vector containing red fluorescence reporter genes under the control of the tubulin α1 (Tα1) promoter (pTα1-DsRed2) traced the neuronal differentiation of MSCs. Two days after NHPDQC treatment, MSCs showed neuron-like phenotype with neurite outgrowth and high expression of neuron-specific markers in more than 95% cells. The fluorescence signals increased in the cytoplasm of pTα1-DsRed2-transfected MSCs after NHPDQC treatment. In vitro monitoring of MSCs along the time courses showed progressive increase of fluorescence till 30 h after treatment, corresponding with the increase in neurite length. We examined an efficient neuronal differentiation of MSCs by NHPDQC alone and monitored the temporal changes of neuronal differentiation by neuron-specific fluorescence reporter along time. This method would help further our understanding of the differentiation of MSCs to produce neurons by simple treatment of small molecule.
Collapse
|
50
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017; 35:1867-1880. [PMID: 28589621 DOI: 10.1002/stem.2651] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Per journal style, most nonstandard abbreviations must be used at least two times in the abstract to be retained; NTF was used once and thus has been deleted. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials. Stem Cells 2017;35:1867-1880.
Collapse
|