1
|
Chen D, Wang J, Cao J, Zhu G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell Signal 2024; 122:111311. [PMID: 39059755 DOI: 10.1016/j.cellsig.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is derived from the conversion of adenosine triphosphate catalysed by adenylyl cyclase (AC). Protein kinase A (PKA), the main effector of cAMP, is a dimeric protein kinase consisting of two catalytic subunits and two regulatory subunits. When cAMP binds to the regulatory subunits of PKA, it leads to the dissociation and activation of PKA, which allows the catalytic subunit of PKA to phosphorylate target proteins, thereby regulating various physiological functions and metabolic processes in cellular function. Recent researches also implicate the involvement of cAMP-PKA signaling in the pathologenesis of anxiety disorder. However, there are still debates on the prevention and treatment of anxiety disorders from this signaling pathway. To review the function of cAMP-PKA signaling in anxiety disorder, we searched the publications with the keywords including "cAMP", "PKA" and "Anxiety" from Pubmed, Embase, Web of Science and CNKI databases. The results showed that the number of publications on cAMP-PKA pathway in anxiety disorder tended to increase. Bioinformatics results displayed a close association between the cAMP-PKA pathway and the occurrence of anxiety. Mechanistically, cAMP-PKA signaling could influence brain-derived neurotrophic factor and neuropeptide Y and participate in the regulation of anxiety. cAMP-PKA signaling could also oppose the dysfunctions of gamma-aminobutyric acid (GABA), intestinal flora, hypothalamic-pituitary-adrenal axis, neuroinflammation, and signaling proteins (MAPK and AMPK) in anxiety. In addition, chemical agents with the ability to activate cAMP-PKA signaling demonstrated therapy potential against anxiety disorders. This review emphasizes the central roles of cAMP-PKA signaling in anxiety and the targets of the cAMP-PKA pathway would be potential candidates for treatment of anxiety. Nevertheless, more laboratory investigations to improve the therapeutic effect and reduce the adverse effect, and continuous clinical research will warrant the drug development.
Collapse
Affiliation(s)
- Daokang Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jian Cao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Wei R, Zong F, Dong J, Zhao W, Zhang F, Wang W, Zhao S, Wang Z, Zhang F, Zhang HT. Identification of Phosphodiesterase-7A (PDE7A) as a Novel Target for Reducing Ethanol Consumption in Mice. Int J Neuropsychopharmacol 2024; 27:pyae032. [PMID: 39099166 PMCID: PMC11348009 DOI: 10.1093/ijnp/pyae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Ethanol elicits a rapid stimulatory effect and a subsequent, prolonged sedative response, which are potential predictors of EtOH consumption by decreasing adenosine signaling; this phenomenon also reflects the obvious sex difference. cAMP (cyclic Adenosine Monophosphate)-PKA (Protein Kinase A) signaling pathway modulation can influence the stimulatory and sedative effects induced by EtOH in mice. This study's objective is to clarify the role of phosphodiesterase (PDE) in mediating the observed sex differences in EtOH responsiveness between male and female animals. METHODS EtOH was administered i.p. for 7 days to identify the changes in PDE isoforms in response to EtOH treatment. Additionally, EtOH consumption and preference of male and female C57BL/6J mice were assessed using the drinking-in-the-dark and 2-bottle choice tests. Further, pharmacological inhibition of PDE7A heterozygote knockout mice was performed to investigate its effects on EtOH-induced stimulation and sedation in both male and female mice. Finally, Western blotting analysis was performed to evaluate the alterations in cAMP-PKA/Epac2 pathways. RESULTS EtOH administration resulted in an immediate upregulation in PDE7A expression in female mice, indicating a strong association between PDE7A and EtOH stimulation. Through the pharmacological inhibition of PDE7A KD mice, we have demonstrated for the first time, to our knowledge, that PDE7A selectively attenuates EtOH responsiveness and consumption exclusively in female mice, whichmay be associated with the cAMP-PKA/Epac2 pathway and downstream phosphorylation of CREB and ERK1/2. CONCLUSIONS Inhibition or knockdown of PDE7A attenuates EtOH responsivenessand consumption exclusively in female mice, which is associated with alterations in the cAMP-PKA/Epac2 signaling pathways, thereby highlighting its potential as a novel therapeutic target for alcohol use disorder.
Collapse
Affiliation(s)
- Ran Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
- Weifang Chinese Medical Hospital, Shandong Second Medical University, Weifang, China
| | - Fangjiao Zong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Jiahao Dong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
- Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Wei Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Fangfang Zhang
- Institude of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Wei Wang
- Institude of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Shuang Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Ziqi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
3
|
Clites BL, Frohock B, Koury EJ, Andersen EC, Pierce JT. Natural variation in protein kinase D modifies alcohol sensitivity in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598102. [PMID: 38895441 PMCID: PMC11185769 DOI: 10.1101/2024.06.09.598102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Differences in naïve alcohol sensitivity between individuals are a strong predictor of later life alcohol use disorders (AUD). However, the genetic bases for alcohol sensitivity (beyond ethanol metabolism) and pharmacological approaches to modulate alcohol sensitivity remain poorly understood. We used a high-throughput behavioral screen to measure acute behavioral sensitivity to alcohol, a model of intoxication, in a genetically diverse set of over 150 wild strains of the nematode Caenorhabditis elegans. We performed a genome-wide association study to identify loci that underlie natural variation in alcohol sensitivity. We identified five quantitative trait loci (QTL) and further show that variants in the C. elegans ortholog of protein kinase D, dkf-2, likely underlie the chromosome V QTL. We found that resistance to intoxication was conferred by dkf-2 loss-of-function mutations as well as partly by a PKD inhibitor in a dkf-2-dependent manner. Protein kinase D might represent a conserved, druggable target to modify alcohol sensitivity with application towards AUD.
Collapse
Affiliation(s)
- Benjamin L Clites
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Brooke Frohock
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Emily J Koury
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Jonathan T Pierce
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| |
Collapse
|
4
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
5
|
McCarthy W, Huq SN, Allen K, Scally L, Petri A, Wujek M, Sachs BD. Chronic, but not sub-chronic, stress increases binge-like alcohol consumption in male and female c57BL6 mice. Front Behav Neurosci 2022; 16:958342. [PMID: 36204485 PMCID: PMC9530781 DOI: 10.3389/fnbeh.2022.958342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Stress is known to contribute to mental illness and alcohol use disorders, which are highly prevalent and lead to considerable disability. These stress-related disorders are characterized by significant sex differences, which remain poorly understood. Preclinical research comparing the effects of stress in males and females has the potential to provide new insights into the neurobiology of these conditions. The current study compared the effects of chronic and sub-chronic exposure to variable environmental stressors on binge-like alcohol consumption using the drinking-in-the-dark model in male and female c57BL6 mice. The results reveal that chronic, but not sub-chronic, exposure to variable stress increases alcohol intake in both sexes. Stress-induced alterations in gene expression were also compared in the nucleus accumbens, a brain region widely known to play a key role in stress susceptibility and reward processing. Real-time PCR data indicate that chronic, but not sub-chronic, environmental stress leads to downregulation of adenosine 2A (A2A) receptor mRNA. By contrast, sub-chronic stress increased CREB expression, while chronic stress did not. Several sex differences in the effects of stress on gene expression were also noted. Our results demonstrate that reductions in A2A receptor mRNA in the nucleus accumbens are associated with the increased binge drinking of chronically stressed animals, but future work will be required to determine the functional importance of this gene expression change. Continuing to define the molecular alterations associated with stress-induced increases in alcohol intake has the potential to provide insights into the development and progression of stress-related disorders.
Collapse
|
6
|
Yao Y, Hu Y, Yang J, Zhang C, He Y, Qi H, Zeng Y, Zhang A, Liu X, Zhu X. Inhibition of neuronal nitric oxide synthase protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in temporal lobe epilepsy mice. Free Radic Biol Med 2022; 188:45-61. [PMID: 35714846 DOI: 10.1016/j.freeradbiomed.2022.06.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/23/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a pivotal role in the pathological process of neuronal injury in the development of epilepsy. Our previous study has demonstrated that nitric oxide (NO) derived from nNOS in the epileptic brain is neurotoxic due to its reaction with the superoxide radical with the formation of peroxynitrite. Neuropeptide Y (NPY) is widely expressed in the mammalian brain, which has been implicated in energy homeostasis and neuroprotection. Recent studies suggest that nNOS may act as a mediator of NPY signaling. Here in this study, we sought to determine whether NPY expression is regulated by nNOS, and if so, whether the regulation of NPY by nNOS is associated with the neuronal injuries in the hippocampus of epileptic brain. Our results showed that pilocarpine-induced temporal lobe epilepsy (TLE) mice exhibited an increased level of nNOS expression and a decreased level of NPY expression along with hippocampal neuronal injuries and cognition deficit. Genetic deletion of nNOS gene, however, significantly upregulated hippocampal NPY expression and reduced TLE-induced hippocampal neuronal injuries and cognition decline. Knockdown of NPY abolished nNOS depletion-induced neuroprotection and cognitive improvement in the TLE mice, suggesting that inhibition of nNOS protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in TLE mice. Targeting nNOS-NPY signaling pathway in the epileptic brain might provide clinical benefit by attenuating neuronal injuries and preventing cognitive deficits in epilepsy patients.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yang Hu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Canyu Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuqi He
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yu Zeng
- National Residents Clinical Skills Training Center, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Lundberg S, Roman E, Bell RL. Behavioral Profiles of Adolescent Alcohol-Preferring/Non-preferring (P/NP) and High/Low Alcohol-Drinking (HAD/LAD) Rats Are Dependent on Line but Not Sex. Front Neurosci 2022; 15:811401. [PMID: 35095406 PMCID: PMC8793359 DOI: 10.3389/fnins.2021.811401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Initial contact with alcohol generally occurs during adolescence, and high consumption during this period is associated with increased risk for later alcohol (AUDs) and/or substance use disorders (SUDs). Rodents selectively bred for high or low alcohol consumption are used to identify behavioral characteristics associated with a propensity for high or low voluntary alcohol intake. The multivariate concentric square field™ (MCSF) is a behavioral test developed to study rodents in a semi-naturalistic setting. Testing in the MCSF creates a comprehensive behavioral profile in a single trial. The current aim was to examine the behavioral profiles of adolescent, bidirectionally selectively bred male and female high alcohol-consuming (P and HAD1/2) and low alcohol-consuming (NP and LAD1/2) rat lines, and outbred Wistar rats. Alcohol-naïve rats were tested once in the MCSF at an age between postnatal days 30 and 35. No common behavioral profile was found for either high or low alcohol-consuming rat lines, and the effect of sex was small. The P/NP and HAD2/LAD2 lines showed within pair-dependent differences, while the HAD1/LAD1 lines were highly similar. The P rats displayed high activity and risk-associated behaviors, whereas HAD2 rats displayed low activity, high shelter-seeking behavior, and open area avoidance. The results from P rats parallel clinical findings that denser family history and risk-taking behavior are strong predictors of future AUDs, often with early onset. Contrarily, the HAD2 behavioral profile was similar to individuals experiencing negative emotionality, which also is associated with a vulnerability to develop, often with a later onset, AUDs and/or SUDs.
Collapse
Affiliation(s)
- Stina Lundberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Richard L. Bell
- Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Lv X, Gao F, Li TP, Xue P, Wang X, Wan M, Hu B, Chen H, Jain A, Shao Z, Cao X. Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY. eLife 2021; 10:e70324. [PMID: 34468315 PMCID: PMC8439655 DOI: 10.7554/elife.70324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023] Open
Abstract
The central nervous system regulates activity of peripheral organs through interoception. In our previous study, we have demonstrated that PGE2/EP4 skeleton interception regulate bone homeostasis. Here, we show that ascending skeleton interoceptive signaling downregulates expression of hypothalamic neuropeptide Y (NPY) and induce lipolysis of adipose tissue for osteoblastic bone formation. Specifically, the ascending skeleton interoceptive signaling induces expression of small heterodimer partner-interacting leucine zipper protein (SMILE) in the hypothalamus. SMILE binds to pCREB as a transcriptional heterodimer on Npy promoters to inhibit NPY expression. Knockout of EP4 in sensory nerve increases expression of NPY causing bone catabolism and fat anabolism. Importantly, inhibition of NPY Y1 receptor (Y1R) accelerated oxidation of free fatty acids in osteoblasts and rescued bone loss in AvilCre:Ptger4fl/fl mice. Thus, downregulation of hypothalamic NPY expression lipolyzes free fatty acids for anabolic bone formation through a neuroendocrine descending interoceptive regulation.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Tuo Peter Li
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Peng Xue
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Bo Hu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Hao Chen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Amit Jain
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, and Department of Biomedical Engineering, The Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
9
|
Brocato E, Wolstenholme JT. Neuroepigenetic consequences of adolescent ethanol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:45-84. [PMID: 34696879 DOI: 10.1016/bs.irn.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical developmental period characterized by ongoing brain maturation processes including myelination and synaptic pruning. Adolescents experience heightened reward sensitivity, sensation seeking, impulsivity, and diminished inhibitory self-control, which contribute to increased participation in risky behaviors, including the initiation of alcohol use. Ethanol exposure in adolescence alters memory and cognition, anxiety-like behavior, and ethanol sensitivity as well as brain myelination and dendritic spine morphology, with effects lasting into adulthood. Emerging evidence suggests that epigenetic modifications may explain these lasting effects. Focusing on the amygdala, prefrontal cortex and hippocampus, we review studies investigating the epigenetic consequences of adolescent ethanol exposure. Ethanol metabolism globally increases donor substrates for histone acetylation and histone and DNA methylation, and this chapter discusses how this can further impact epigenetic programming of the adolescent brain. Elucidation of the mechanisms through which ethanol can alter the epigenetic code at specific transcripts may provide therapeutic targets for intervention.
Collapse
Affiliation(s)
- Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
10
|
Dulman RS, Zhang H, Banerjee R, Krishnan HR, Dong B, Hungund BL, Vinod KY, Pandey SC. CB1 receptor neutral antagonist treatment epigenetically increases neuropeptide Y expression and decreases alcohol drinking. Neuropharmacology 2021; 195:108623. [PMID: 34048869 DOI: 10.1016/j.neuropharm.2021.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Alcohol consumption is mediated by several important neuromodulatory systems, including the endocannabinoid and neuropeptide Y (NPY) systems in the limbic brain circuitry. However, molecular mechanisms through which cannabinoid-1 (CB1) receptors regulate alcohol consumption are still unclear. Here, we investigated the role of the CB1 receptor-mediated downstream regulation of NPY via epigenetic mechanisms in the amygdala. Alcohol drinking behavior was measured in adult male C57BL/6J mice treated with a CB1 receptor neutral antagonist AM4113 using a two-bottle choice paradigm while anxiety-like behavior was assessed in the light-dark box (LDB) test. The CB1 receptor-mediated changes in the protein levels of phosphorylated cAMP-responsive element binding protein (pCREB), CREB binding protein (CBP), H3K9ac, H3K14ac and NPY, and the mRNA levels of Creb1, Cbp, and Npy were measured in amygdaloid brain structures. Npy-specific changes in the levels of acetylated histone (H3K9/14ac) and CBP in the amygdala were also measured. We found that the pharmacological blockade of CB1 receptors with AM4113 reduced alcohol consumption and, in an ethanol-naïve cohort, reduced anxiety-like behavior in the LDB test. Treatment with AM4113 also increased the mRNA levels of Creb1 and Cbp in the amygdala as well as the protein levels of pCREB, CBP, H3K9ac and H3K14ac in the central and medial nucleus of amygdala, but not in the basolateral amygdala. Additionally, AM4113 treatment increased occupancy of CBP and H3K9/14ac at the Npy gene promoter, leading to an increase in both mRNA and protein levels of NPY in the amygdala. These novel findings suggest that CB1 receptor-mediated CREB signaling plays an important role in the modulation of NPY function through an epigenetic mechanism and further support the potential use of CB1 receptor neutral antagonists for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ritabrata Banerjee
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Bin Dong
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Basalingappa L Hungund
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; New York State Psychiatric Institute, New York, NY, 10032, USA
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; Emotional Brain Institute, Orangeburg, NY, 10962, USA; Department of Child and Adolescent Psychiatry, New York School of Medicine, New York, NY, 10016, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Xu H, Li H, Liu D, Wen W, Xu M, Frank JA, Chen J, Zhu H, Grahame NJ, Luo J. Chronic Voluntary Alcohol Drinking Causes Anxiety-like Behavior, Thiamine Deficiency, and Brain Damage of Female Crossed High Alcohol Preferring Mice. Front Pharmacol 2021; 12:614396. [PMID: 33767622 PMCID: PMC7985542 DOI: 10.3389/fphar.2021.614396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water alone at the age of 60-day-old. The mice were exposed to alcohol for 7 months then subjected to neurobehavioral tests including open field (OF), elevated plus maze (EPM), and Morris water maze (MWM). Results from OF and EPM tests suggested that chronic voluntary drinking caused anxiety-like behaviors. After behavior tests, mice were sacrificed, and brain tissues were processed for biochemical analyses. Alcohol altered the levels of several neurotransmitters and neurotrophic factors in the brain including gamma-Aminobutyric acid (GABA), corticotropin-releasing factor, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor. Alcohol increased the expression of neuroinflammation markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-C chemokine receptor 2 (CCR2). Alcohol also induced cleaved caspase-3 and glial fibrillary acidic protein, indicative of neurodegeneration and gliosis. In addition, alcohol inhibited the expression of thiamine transporters in the brain and reduced thiamine levels in the blood. Alcohol also caused oxidative stress and endoplasmic reticulum (ER) stress, and stimulated neurogenesis.
Collapse
Affiliation(s)
- Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, China
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
12
|
Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021; 157:1615-1643. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The central nucleus of the amygdala (CeA) is widely implicated as a structure that integrates both appetitive and aversive stimuli. While intrinsic CeA microcircuits primarily consist of GABAergic neurons that regulate amygdala output, a notable feature of the CeA is the heterogeneity of neuropeptides and neuropeptide/neuromodulator receptors that it expresses. There is growing interest in the role of the CeA in mediating psychopathologies, including stress and anxiety states and their interactions with alcohol use disorders. Within the CeA, neuropeptides and neuromodulators often exert pro- or anti- stress actions, which can influence anxiety and alcohol associated behaviours. In turn, alcohol use can cause adaptions within the CeA, which may render an individual more vulnerable to stress which is a major trigger of relapse to alcohol seeking. This review examines the neurocircuitry, neurochemical phenotypes and how pro- and anti-stress peptide systems act within the CeA to regulate anxiety and alcohol seeking, focusing on preclinical observations from animal models. Furthermore, literature exploring the targeting of genetically defined populations or neuronal ensembles and the role of the CeA in mediating sex differences in stress x alcohol interactions are explored.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
13
|
Coker CR, Keller BN, Arnold AC, Silberman Y. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Front Behav Neurosci 2021; 14:601111. [PMID: 33574742 PMCID: PMC7870708 DOI: 10.3389/fnbeh.2020.601111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
The prevalence of psychiatry disorders such as anxiety and depression has steadily increased in recent years in the United States. This increased risk for anxiety and depression is associated with excess weight gain, which is often due to over-consumption of western diets that are typically high in fat, as well as with binge eating disorders, which often overlap with overweight and obesity outcomes. This finding suggests that diet, particularly diets high in fat, may have important consequences on the neurocircuitry regulating emotional processing as well as metabolic functions. Depression and anxiety disorders are also often comorbid with alcohol and substance use disorders. It is well-characterized that many of the neurocircuits that become dysregulated by overconsumption of high fat foods are also involved in drug and alcohol use disorders, suggesting overlapping central dysfunction may be involved. Emerging preclinical data suggest that high fat diets may be an important contributor to increased susceptibility of binge drug and ethanol intake in animal models, suggesting diet could be an important aspect in the etiology of substance use disorders. Neuroinflammation in pivotal brain regions modulating metabolic function, food intake, and binge-like behaviors, such as the hypothalamus, mesolimbic dopamine circuits, and amygdala, may be a critical link between diet, ethanol, metabolic dysfunction, and neuropsychiatric conditions. This brief review will provide an overview of behavioral and physiological changes elicited by both diets high in fat and ethanol consumption, as well as some of their potential effects on neurocircuitry regulating emotional processing and metabolic function.
Collapse
Affiliation(s)
- Caitlin R. Coker
- Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Bailey N. Keller
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Amy C. Arnold
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
14
|
Pascual M, López‐Hidalgo R, Montagud‐Romero S, Ureña‐Peralta JR, Rodríguez‐Arias M, Guerri C. Role of mTOR-regulated autophagy in spine pruning defects and memory impairments induced by binge-like ethanol treatment in adolescent mice. Brain Pathol 2021; 31:174-188. [PMID: 32876364 PMCID: PMC8018167 DOI: 10.1111/bpa.12896] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adolescence is a brain maturation developmental period during which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. Different mechanism participates in adolescent brain maturation, including autophagy that plays a role in synaptic development and plasticity. Alcohol is a neurotoxic compound and its abuse in adolescence induces neuroinflammation, synaptic and myelin alterations, neural damage and behavioral impairments. Changes in synaptic plasticity and its regulation by mTOR have also been suggested to play a role in the behavioral dysfunction of binge ethanol drinking in adolescence. Therefore, by considering the critical role of mTOR in both autophagy and synaptic plasticity in the developing brain, the present study aims to evaluate whether binge ethanol treatment in adolescence would induce dysfunctions in synaptic plasticity and cognitive functions and if mTOR inhibition with rapamycin is capable of restoring both effects. Using C57BL/6 adolescent female and male mice (PND30) treated with ethanol (3 g/kg) on two consecutive days at 48-hour intervals over 2 weeks, we show that binge ethanol treatment alters the density and morphology of dendritic spines, effects that are associated with learning and memory impairments and changes in the levels of both transcription factor CREB phosphorylation and miRNAs. Rapamycin administration (3 mg/kg) prior to ethanol administration restores ethanol-induced changes in both plasticity and behavior dysfunctions in adolescent mice. These results support the critical role of mTOR/autophagy dysfunctions in the dendritic spines alterations and cognitive alterations induced by binge alcohol in adolescence.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
- Department of PhysiologySchool of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Rosa López‐Hidalgo
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Juan R. Ureña‐Peralta
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| |
Collapse
|
15
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Bohnsack JP, Pandey SC. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:1-62. [PMID: 33461661 DOI: 10.1016/bs.irn.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of morbidity and mortality. Despite AUD's substantial contributions to lost economic productivity and quality of life, there are only a limited number of approved drugs for treatment of AUD in the United States. This chapter will update progress made on the epigenetic basis of AUD, with particular focus on histone post-translational modifications and DNA methylation and how these two epigenetic mechanisms interact to contribute to neuroadaptive processes leading to initiation, maintenance and progression of AUD pathophysiology. We will also evaluate epigenetic therapeutic strategies that have arisen from preclinical models of AUD and epigenetic biomarkers that have been discovered in human populations with AUD.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
17
|
Paltian JJ, Dos Reis AS, de Oliveira RL, da Fonseca CAR, Domingues WB, Dellagostin EN, Campos VF, Kruger R, Alves D, Luchese C, Wilhelm EA. The anxiolytic effect of a promising quinoline containing selenium with the contribution of the serotonergic and GABAergic pathways: Modulation of parameters associated with anxiety in mice. Behav Brain Res 2020; 393:112797. [PMID: 32649976 DOI: 10.1016/j.bbr.2020.112797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Recently, we demonstrated the promising anxiolytic action of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) in mice. For this reason, the objective of this study was to expand our previous findings by investigating the contribution of serotoninergic and GABAergic systems to the anxiolytic action of this compound. Pretreatment with different serotoninergic antagonists (pindolol, WAY100635 and ketanserin) blocked the anxiolytic effect caused by 4-PSQ (50 mg/kg, per oral) in the elevated plus maze (EPM) test. The contribution of the GABAergic system was investigated by pretreatment with pentylenetetrazole (a GABAA receptor antagonist) (PTZ). 4-PSQ diminished the PTZ-induced anxiety, and did not modify the locomotor, exploratory and motor activities of mice. Later, this group of animals was euthanized and the blood was removed to determine the levels of corticosterone, and cerebral cortex and hippocampus to determine the mRNA expression levels of cAMP response element binding protein (CREB), brain derived neurotrophic factor (BDNF) and nuclear factor kappa B (NF-κB), as well as the Na+, K+ ATPase activity and reactive species (RS) levels. 4-PSQ was able to significantly reverse the increase in RS and corticosterone levels, as well as the decrease of CREB and BDNF expression in the cerebral structures and increase of NF-κB expression in the hippocampus. Finally, 4-PSQ restored the Na+, K+ ATPase activity in the cerebral structures evaluated. Here, we showed that the modulation of serotonergic and GABAergic systems, factors related to neurogenesis, oxidative status and Na+, K+ ATPase activity contributes to the anxiolytic effect of 4-PSQ and reinforces the therapeutical potential of this compound for the treatment of anxiety.
Collapse
Affiliation(s)
- Jaini J Paltian
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Angélica S Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Renata L de Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caren A R da Fonseca
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William B Domingues
- Programa de Pós-graduação em Biotecnologia, Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo N Dellagostin
- Programa de Pós-graduação em Biotecnologia, Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinícius F Campos
- Programa de Pós-graduação em Biotecnologia, Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roberta Kruger
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa (LaSOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Diego Alves
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa (LaSOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
18
|
Knight CP, Hauser SR, Waeiss RA, Molosh AI, Johnson PL, Truitt WA, McBride WJ, Bell RL, Shekhar A, Rodd ZA. The Rewarding and Anxiolytic Properties of Ethanol within the Central Nucleus of the Amygdala: Mediated by Genetic Background and Nociceptin. J Pharmacol Exp Ther 2020; 374:366-375. [PMID: 32527792 PMCID: PMC7430446 DOI: 10.1124/jpet.119.262097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/15/2020] [Indexed: 01/20/2023] Open
Abstract
In humans, alcohol is consumed for its rewarding and anxiolytic effects. The central nucleus of the amygdala (CeA) is considered a neuronal nexus that regulates fear, anxiety, and drug self-administration. Manipulations of the CeA alter ethanol (EtOH) consumption under numerous EtOH self-administration models. The experiments determined whether EtOH is reinforcing/anxiolytic within the CeA, whether selective breeding for high alcohol consumption alters the rewarding properties of EtOH in the CeA, and whether the reinforcing/anxiolytic effects of EtOH in the CeA are mediated by the neuropeptides corticotropin-releasing factor (CRF) and nociceptin. The reinforcing properties of EtOH were determined by having male Wistar and Taconic alcohol-preferring (tP) rats self-administer EtOH directly into the CeA. The expression of anxiety-like behaviors was assessed through multiple behavioral models (social interaction, acoustic startle, and open field). Coadministration of EtOH and a CRF1 antagonist (NBI35965) or nociceptin on self-administration into the CeA and anxiety-like behaviors was determined. EtOH was self-administered directly into the lateral CeA, and tP rats self-administered a lower concentration of EtOH than Wistar rats. EtOH microinjected into the lateral CeA reduced the expression of anxiety-like behaviors, indicating an anxiolytic effect. Coadministration of NBI35965 failed to alter the rewarding/anxiolytic properties of EtOH in the CeA. In contrast, coadministration of the nociceptin enhanced both EtOH reward and anxiolysis in the CeA. Overall, the data indicate that the lateral CeA is a key anatomic location that mediates the rewarding and anxiolytic effects of EtOH, and local nociceptin receptors, but not local CRF1 receptors, are involved in these behaviors. SIGNIFICANCE STATEMENT: Alcohol is consumed for the stimulatory, rewarding, and anxiolytic properties of the drug of abuse. The current data are the first to establish that alcohol is reinforcing and anxiolytic within the lateral central nucleus of the amygdala (CeA) and that the nociceptin system regulates these effects of alcohol within the CeA.
Collapse
Affiliation(s)
- Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - R Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Philip L Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - William A Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
19
|
Dulman RS, Wandling GM, Pandey SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder. CURRENT PATHOBIOLOGY REPORTS 2020; 8:61-73. [PMID: 33747641 DOI: 10.1007/s40139-020-00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Chronic alcohol use is a worldwide problem with multifaceted consequences including multiplying medical costs and sequelae, societal effects like drunk driving and assault, and lost economic productivity. These large-scale outcomes are driven by the consumption of ethanol, a small permeable molecule that has myriad effects in the human body, particularly in the liver and brain. In this review, we have summarized effects of acute and chronic alcohol consumption on epigenetic mechanisms that may drive pathobiology of Alcohol Use Disorder (AUD) while identifying areas of need for future research. Recent findings Epigenetics has emerged as an interesting field of biology at the intersection of genetics and the environment, and ethanol in particular has been identified as a potent modulator of the epigenome with various effects on DNA methylation, histone modifications, and non-coding RNAs. These changes alter chromatin dynamics and regulate gene expression that contribute to behavioral and physiological changes leading to the development of AUD psychopathology and cancer pathology. Summary Evidence and discussion presented here from preclinical results and available translational studies have increased our knowledge of the epigenetic effects of alcohol consumption. These studies have identified targets that can be used to develop better therapies to reduce chronic alcohol abuse and mitigate its societal burden and pathophysiology.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Sanchez-Marin L, Gavito AL, Decara J, Pastor A, Castilla-Ortega E, Suarez J, de la Torre R, Pavon FJ, Rodriguez de Fonseca F, Serrano A. Impact of intermittent voluntary ethanol consumption during adolescence on the expression of endocannabinoid system and neuroinflammatory mediators. Eur Neuropsychopharmacol 2020; 33:126-138. [PMID: 32057593 DOI: 10.1016/j.euroneuro.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
The adolescent brain displays high vulnerability to the deleterious effects of ethanol, including greater risk of developing alcohol use disorder later in life. Here, we characterized the gene expression of the endocannabinoid system (ECS) and relevant signaling systems associated with neuroinflammation and emotional behaviors in the brain of young adult control and ethanol-exposed (EtOH) rats. We measured mRNA levels of candidate genes using quantitative real time PCR in the medial prefrontal cortex (mPFC), amygdala and hippocampus. EtOH rats were generated by maintenance on an intermittent and voluntary ethanol consumption during adolescence using the two-bottle choice paradigm (4 days/week for 4 weeks) followed by 2 week-withdrawal, a time-point of withdrawal with no physical symptoms. Mean differences and effect sizes were calculated using t-test and Cohen's d values. In the mPFC and hippocampus, EtOH rats had significantly higher mRNA expression of endocannabinoid-signaling (mPFC: Ppara, Dagla, Daglb and Napepld; and hippocampus: Cnr2, Dagla and Mgll) and neuroinflammation-associated genes (mPFC: Gfap; and hippocampus: Aif1) than in controls. Moreover, EtOH rats had significantly higher mRNA expression of neuropeptide Y receptor genes (Npy1r, Npy2r and Npy5r) in the hippocampus. Finally, EtOH rats also displayed higher plasma endocannabinoid levels than controls. In conclusion, these results suggest that adolescent ethanol exposure can lead to long-term alterations in the gene expression of the ECS and other signaling systems involved in neuroinflammation and regulation of emotional behaviors in key brain areas for the development of addiction.
Collapse
Affiliation(s)
- L Sanchez-Marin
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A L Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A Pastor
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - E Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Suarez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - R de la Torre
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - F J Pavon
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain; Unidad Gestión Clínica del Corazón, IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - F Rodriguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| | - A Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| |
Collapse
|
21
|
Guarino S, Conrad SE, Papini MR. Frustrative nonreward: Chemogenetic inactivation of the central amygdala abolishes the effect of reward downshift without affecting alcohol intake. Neurobiol Learn Mem 2020; 169:107173. [PMID: 32001338 DOI: 10.1016/j.nlm.2020.107173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
The role of the central amygdala (CeA) in the adjustment to a 32-to-2% sucrose downshift in the consummatory successive negative contrast (cSNC) task and in a free-choice 10% alcohol-water preference task (PT) was studied using chemogenetic inactivation. cSNC is a model of frustrative nonreward that enhances alcohol consumption. In Experiment 1, sessions 1-10 involved 5-min access to 32% sucrose and sessions 11-12 involved access to 2% sucrose. Vehicle or clozapine N-oxide (CNO; 1 or 3 mg/kg, ip), used later to activate the inhibitory designer receptor, was administered 30 min before sessions 11-12. There was no evidence that CNO affected consummatory behavior after the sucrose downshift. In Experiment 2, all animals received an infusion of the inhibitory designer receptor hM4D(Gi) into the CeA. After recovery, animals received access to either 32% or 2% sucrose on sessions 1-10, followed by 2% sucrose on sessions 11-12. Immediately after each 5-min sucrose session, animals received a 2-bottle, 1-h PT with 10% alcohol and water. CNO (3 mg/kg, ip) or vehicle was administered 30 min before sessions 11-12. CeA inactivation prior to sucrose downshift eliminated the cSNC effect, which was observed in vehicle controls. However, there was no evidence that CeA inactivation affected preference for 10% alcohol over water. These results support the hypothesis that CeA activity is critical for cSNC effect, an outcome consistent with the view that the amygdala plays a central role in frustrative nonreward.
Collapse
Affiliation(s)
- Sara Guarino
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Shannon E Conrad
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, USA.
| |
Collapse
|
22
|
Aurelian L, Balan I. GABA AR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology (Berl) 2019; 236:3023-3043. [PMID: 31030249 DOI: 10.1007/s00213-019-05220-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands and are increasingly recognized for their impact on homeostasis and its dysregulation in the nervous system. TLR signaling participates in brain injury and addiction, but its role in the alcohol-seeking behavior, which initiates alcohol drinking, is still poorly understood. In this review, we discuss our findings designed to elucidate the potential contribution of the activated TLR4 signal located in neurons, on impulsivity and the predisposition to initiate alcohol drinking (binge drinking). RESULTS Our findings indicate that the TLR4 signal is innately activated in neurons from alcohol-preferring subjects, identifying a genetic contribution to the regulation of impulsivity and the alcohol-seeking propensity. Signal activation is through the non-canonical, previously unknown, binding of TLR4 to the α2 subunit of the γ-aminobutyric 2 acid A receptor (GABAAR α2). Activation is sustained by the stress hormone corticotrophin-releasing factor (CRF) and additional still poorly recognized ligand/scaffold proteins. Focus is on the effect of TLR4 signal activation on the balance between pro- and anti-inflammatory chemokines [chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-X3-C motif) ligand 1 (CX3CL1)] and its effect on binge drinking. CONCLUSION The results are discussed within the context of current findings on the distinct activation and functions of TLR signals located in neurons, as opposed to immune cells. They indicate that the balance between pro- and anti-inflammatory TLR4 signaling plays a major role in binge drinking. These findings have major impact on future basic and translational research, including the development of potential therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Stanford University School of Medicine OFDD, Stanford, CA, 94305, USA.
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
23
|
Sakharkar AJ, Kyzar EJ, Gavin DP, Zhang H, Chen Y, Krishnan HR, Grayson DR, Pandey SC. Altered amygdala DNA methylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. Neuropharmacology 2019; 157:107679. [PMID: 31229451 PMCID: PMC6681823 DOI: 10.1016/j.neuropharm.2019.107679] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 01/04/2023]
Abstract
Binge drinking during adolescence increases the risk for neuropsychiatric disorders including alcoholism in adulthood. DNA methylation in post-mitotic neurons is an important epigenetic modification that plays a crucial role in neurodevelopment. We examined the effects of intermittent ethanol exposure during adolescence on adult behavior and whether DNA methylation changes provide a plausible explanation for the lasting effects of this developmental insult. One hour after last adolescent intermittent ethanol (AIE), growth arrest and DNA damage inducible protein 45 (Gadd45a, Gadd45b, and Gadd45g) mRNA expression was increased and DNA methyltransferase (DNMT) activity and Dnmt3b expression was decreased in the amygdala as compared to adolescent intermittent saline (AIS) rats. However, AIE rats 24 h after last exposure displayed increased DNMT activity but normalized Gadd45 and Dnmt3b mRNA expression compared to AIS rats. In adulthood, rats exposed to AIE show increased Dnmt3b mRNA expression and DNMT activity, along with decreased Gadd45g mRNA expression in the amygdala. DNA methylation of neuropeptide Y (Npy) and brain-derived neurotrophic factor (Bdnf) exon IV is increased in the AIE adult amygdala compared to AIS adult rats. Treatment with the DNMT inhibitor 5-azacytidine (5-azaC) at adulthood normalizes the AIE-induced DNA hypermethylation of Npy and Bdnf exon IV with concomitant reversal of AIE-induced anxiety-like and alcohol-drinking behaviors. These results suggest that binge-like ethanol exposure during adolescence leads to dysregulation in DNA methylation mechanisms in the amygdala which may contribute to behavioral phenotypes of anxiety and alcohol use in adulthood.
Collapse
Affiliation(s)
- Amul J Sakharkar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - David P Gavin
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ying Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
24
|
Amancio-Belmont O, Becerril Meléndez AL, Ruiz-Contreras AE, Méndez-Díaz M, Prospéro-García O. Opposed cannabinoid 1 receptor (CB1R) expression in the prefrontal cortex vs. nucleus accumbens is associated with alcohol consumption in male rats. Brain Res 2019; 1725:146485. [PMID: 31568767 DOI: 10.1016/j.brainres.2019.146485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/23/2022]
Abstract
Abusive alcohol consumption is a health problem, worldwide. There is extensive literature indicating that cannabinoid 1 receptor (CB1R) plays a crucial role in mediating alcohol's reward effects. Maternal care deprivation (MCD) is a reliable rodent model of early life stress that leads to high levels of anxiety and alterations in motivation, which may increase vulnerability to alcohol consumption. The present study researched whether anxiety-like behaviors and the level of motivation for a natural reward, and CB1R expression in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) can predict alcohol consumption in non-MCD and MCD male rats. Results indicate that MCD increases anxiety-like behaviors, i.e., reduces time in open arms in the elevated plus maze and increases alcohol intake. In turn, the motivation for a palatable reward, i.e., a chocolate flavored pellet, was not affected by MCD. MCD reduces CB1R expression in the PFC and increases it in the NAcc. Hence, both higher anxiety-like behaviors and higher CB1R expression in the NAcc and lower CB1R expression in the PFC are associated with higher alcohol intake. These results suggest that early life adverse experiences induce a reprogramming of the brain's endocannabinoid system that very likely contributes to making the brain vulnerable to develop alcohol abuse and dependence.
Collapse
Affiliation(s)
- Octavio Amancio-Belmont
- Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alline L Becerril Meléndez
- Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra E Ruiz-Contreras
- Grupo de Neurociencias, Laboratorio de Neurogenómica Cognitiva, Departamento de Psicofisiología, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | - Mónica Méndez-Díaz
- Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Oscar Prospéro-García
- Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
25
|
Malakhova AV, Rudko OI, Sobolev VV, Tretiakov AV, Naumova EA, Kokaeva ZG, Azimova JE, Klimov EA. PDE4B gene polymorphism in Russian patients with panic disorder. AIMS GENETICS 2019; 6:55-63. [PMID: 31663033 PMCID: PMC6803789 DOI: 10.3934/genet.2019.3.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/03/2019] [Indexed: 01/16/2023]
Abstract
Background Panic disorder is a complex disease of unclear etiology but with an apparent genetic component. PDE4B gene product is involved in many cell processes owing to its function-regulation of the level of a second messenger cAMP. PDE4B gene polymorphism has been shown to be associated with some mental disorders including panic disorder. Aims The goal of our study was to evaluate the role of 3 SNPs in the PDE4B gene in the development of panic disorder. Methods 94 patients diagnosed with panic disorder according to the DSM-IV criteria were enrolled in the study. The population control group included 192 subjects. Genotyping was carried out by real-time PCR with TaqMan probes. Results The investigated substitutions are not associated with panic disorder in general and in female/male cohorts (p > 0.05). The analysis of complex genotypes demonstrated two protective complex genotypes (rs1040716:A, T + rs10454453:A + rs502958:A and rs1040716:A, T + rs502958:A) associated with panic disorder in general regardless of the patient's gender (p < 0.05). These genotypes did not correlate with the patient's sex. Conclusions We found two complex protective genotypes associated with panic disorder. This can be due to the fact that predisposition to the disease are associated with other genes, while PDE4B gene polymorphism reduces their effect.
Collapse
Affiliation(s)
- Alena V Malakhova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Olga I Rudko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Vladimir V Sobolev
- I.I. Mechnikov Research Institute for Vaccines and Sera, Laboratory of molecular immunology, Moscow, Russia.,University Diagnostic Laboratory LLC, Moscow, Russia.,Centre of Theoretical Problems of Physico-Chemical Pharmacology, Laboratory of Physicochemical and Genetic Problems of Dermatology, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena A Naumova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Zarema G Kokaeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Julia E Azimova
- University headache clinic LLC, Moscow, Russia.,The Institute of General Pathology and Pathophysiology, Laboratory of Fundamental and Applied Pain Problems, Moscow, Russia
| | - Eugene A Klimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia.,University Diagnostic Laboratory LLC, Moscow, Russia.,Center of Experimental Embryology and Reproductive Biotechnologies, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Schreiber AL, McGinn MA, Edwards S, Gilpin NW. Predator odor stress blunts alcohol conditioned aversion. Neuropharmacology 2019; 144:82-90. [PMID: 30336151 PMCID: PMC6286202 DOI: 10.1016/j.neuropharm.2018.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 12/18/2022]
Abstract
Alcohol use disorder is highly co-morbid with traumatic stress disorders in humans, and dually diagnosed individuals cite negative affective symptoms as a primary reason for drinking alcohol. Therefore, it is reasonable to hypothesize that traumatic stress history increases the rewarding properties and/or blunts the aversive properties of alcohol. We used a place conditioning procedure to test the rewarding/aversive properties of alcohol in adult male Wistar rats with or without a traumatic stress (i.e., predator odor exposure) history, and with or without an alcohol drinking history. Because extended amygdala regions have documented roles in stress, reward, and stress-induced changes in reward, we also tested the effect of acute alcohol on CREB phosphorylation (pCREB) and striatal-enriched protein tyrosine phosphatase (STEP) expression in central amygdala (CeA) and bed nucleus of stria terminalis (BNST). Our results show that a moderate alcohol dose (1.0 g/kg) produces conditioned place aversion (CPA) that is blunted by stress history but is not affected by alcohol drinking history, and this effect differed in pair-housed versus single-housed rats. Stress history reduced pCREB expression in BNST of rats with and without an alcohol drinking history. Finally, acute alcohol effects on pCREB and STEP expression in CeA were positively associated with preference for the alcohol-paired chamber. These data suggest that stress history reduces the aversive properties of moderate alcohol doses, and that alcohol aversion is associated with acute alcohol effects on pCREB and STEP expression in the extended amygdala.
Collapse
Affiliation(s)
- Allyson L Schreiber
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, United States
| | - M Adrienne McGinn
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, United States
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, United States; Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, 70112, United States
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, United States; Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, 70112, United States.
| |
Collapse
|
27
|
Berkel TDM, Zhang H, Teppen T, Sakharkar AJ, Pandey SC. Essential Role of Histone Methyltransferase G9a in Rapid Tolerance to the Anxiolytic Effects of Ethanol. Int J Neuropsychopharmacol 2018; 22:292-302. [PMID: 30590608 PMCID: PMC6441132 DOI: 10.1093/ijnp/pyy102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/08/2018] [Accepted: 12/23/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tolerance to ethanol-induced anxiolysis promotes alcohol intake, thus contributing to alcohol use disorder development. Recent studies implicate histone deacetylase-mediated histone H3K9 deacetylation in regulating neuropeptide Y expression during rapid ethanol tolerance to the anxiolytic effects of ethanol. Furthermore, the histone methyltransferase, G9a, and G9a-mediated H3K9 dimethylation (H3K9me2) have recently emerged as regulators of addiction and anxiety; however, their role in rapid ethanol tolerance is unknown. Therefore, we investigated the role of G9a-mediated H3K9me2 in neuropeptide Y expression during rapid ethanol tolerance. METHODS Adult male rats were administered one injection of n-saline followed by single acute ethanol injection (1 g/kg) 24 hours later (ethanol group) or 2 injections (24 hours apart) of either n-saline (saline group) or ethanol (tolerance group). Anxiety-like behaviors and global and Npy-specific G9a and H3K9me2 levels in the amygdala were measured. Effects of G9a inhibitor (UNC0642) treatment on behavioral and epigenetic measures were also examined. RESULTS Acute ethanol produced anxiolysis and decreased global H3K9me2 and G9a protein levels in the central and medial nucleus of the amygdala as well as decreased occupancy levels of H3K9me2 and G9a near a putative binding site for cAMP-response element binding protein on the Npy gene. Two identical doses of ethanol produced no behavioral or epigenetic changes relative to controls, indicating development of rapid ethanol tolerance. Interestingly, treatment with UNC0642, before the second ethanol dose reversed rapid ethanol tolerance, decreased global H3K9me2 and increased neuropeptide Y levels in the central and medial nucleus of the amygdala. CONCLUSIONS These results implicate amygdaloid G9a-mediated H3K9me2 mechanisms in regulating rapid tolerance to the anxiolytic effects of ethanol via neuropeptide Y expression regulation.
Collapse
Affiliation(s)
- Tiffani D M Berkel
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Tara Teppen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Amul J Sakharkar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois,Correspondence: Subhash C. Pandey, PhD, Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago; and Jesse Brown Veterans Affairs Medical Center, 1601 West Taylor Street (m/c 912), Chicago, IL 60612 ()
| |
Collapse
|
28
|
Yu H, Zhong J, Niu B, Zhong Q, Xiao J, Xie J, Lin M, Zhou Z, Xu J, Wang H. Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behaviors and Prevents Dendritic Spine Loss in Mice Hippocampi. Int J Neuropsychopharmacol 2018; 22:143-156. [PMID: 30407503 PMCID: PMC6377503 DOI: 10.1093/ijnp/pyy092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Phosphodiesterase 4 is a promising target for developing novel antidepressants. However, prototype phosphodiesterase 4 inhibitors show severe side effects, including nausea and vomiting. N-Isopropyl-3-(cyclopropylmethoxy)-4-difluoromethoxy benzamide (FCPR03) is a novel phosphodiesterase 4 inhibitor with little emetic potential. In the present study, we investigated the inhibitory effect of FCPR03 on chronic unpredictable mild stress-induced, depressive-like behaviors in mice and explored the underlying mechanisms. METHODS The depression model of mice was established by chronic unpredictable mild stress. Forced swim test, tail suspension test, and sucrose preference test were used to assess depressive-like behaviors. Golgi-staining was utilized to analyze dendritic morphology and spine density. The level of cAMP was measured by enzyme-linked immnosorbent assay assay. Western blot was used to evaluate protein levels of phosphorylated cAMP-response element binding protein, protein kinase B, glycogen synthase kinase-3β, and brain derived neurotrophic factor in both hippocampus and prefrontal cortex. Postsynaptic density protein 95 and synapsin 1 were also detected by western blot in the hippocampi. RESULTS Treatment with FCPR03 (0.5-1.0 mg/kg, i.p.) increased consumption of sucrose in the sucrose preference test in mice exposed to chronic unpredictable mild stress. FCPR03 shortened the immobility time in forced swim test and tail suspension test without affecting locomotor activity. Furthermore, chronic unpredictable mild stress decreased the dendritic spine density and dendritic length in the hippocampus. This change was accompanied by decreased expression of postsynaptic density protein 95 and synapsin 1. Interestingly, FCPR03 prevented dendritic spine loss and increased synaptic protein levels. Moreover, the levels of cAMP, phosphorylated cAMP-response element binding protein, and brain derived neurotrophic factor were elevated in chronic unpredictable mild stress-challenged mice after treatment with FCPR03. In addition, FCPR03 also enhanced the phosphorylation of both protein kinase B and glycogen synthase kinase-3β in mice exposed to chronic unpredictable mild stress. CONCLUSION The present study suggests that FCPR03 could prevent both depressive-like behaviors and spine loss induced by chronic unpredictable mild stress in the mice hippocampi.
Collapse
Affiliation(s)
- Hui Yu
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Jiahong Zhong
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Bo Niu
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Qiuping Zhong
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Jiao Xiao
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Jinfeng Xie
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Manna Lin
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Zhongzhen Zhou
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University, Guangzhou, China,School of Pharmaceutical Sciences, and Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University, Guangzhou, China,School of Pharmaceutical Sciences, and Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University, Guangzhou, China,School of Pharmaceutical Sciences, and Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China,Correspondence: Haitao Wang, PhD, Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China ()
| |
Collapse
|
29
|
Zhang H, Kyzar EJ, Bohnsack JP, Kokare DM, Teppen T, Pandey SC. Adolescent alcohol exposure epigenetically regulates CREB signaling in the adult amygdala. Sci Rep 2018; 8:10376. [PMID: 29991681 PMCID: PMC6039491 DOI: 10.1038/s41598-018-28415-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Binge alcohol drinking in adolescence leads to increased risk for alcohol use and other psychiatric disorders in adulthood. The transcription factor cAMP-response element binding (CREB) protein is involved in the neuronal response to adult ethanol exposure, but its role in the enduring effects of adolescent alcohol exposure in adulthood is unknown. We exposed male rats to adolescent intermittent ethanol (AIE) or saline (AIS) during post-natal days 28-41 and evaluated the epigenetic regulation of CREB dynamics in the adult amygdala. A subset of these adult rats was exposed to an acute ethanol challenge. AIE decreased CREB, phosphorylated CREB, CREB-binding protein (CBP) and p300 protein levels in adult amygdaloid brain structures. AIE exposure also causes deficits in Creb1, Cbp, and p300 mRNA expression in the amygdala of AIE adult rats which are normalized after acute ethanol exposure. Interestingly, occupancy of acetylated histone H3K9/14 proteins at specific locations in the Creb1, Cbp, and p300 gene promoter regions was decreased in the amygdala of AIE adult rats and was normalized by acute ethanol exposure. These results suggest that AIE exposure epigenetically reduces CREB and other related transcriptional activators in the amygdala in adulthood that may be associated with the behavioral effects of adolescent alcohol exposure.
Collapse
Affiliation(s)
- Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Dadasaheb M Kokare
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Tara Teppen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA.
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| |
Collapse
|
30
|
Sydsjö G, Agnafors S, Bladh M, Josefsson A. Anxiety in women - a Swedish national three-generational cohort study. BMC Psychiatry 2018; 18:168. [PMID: 29866128 PMCID: PMC5987656 DOI: 10.1186/s12888-018-1712-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Findings from animal and human studies indicate that anxiety and stress have a negative influence on the child and mother. The aim of this study was to explore the risk for having an anxiety diagnosis and the impact of the diagnosis in a three generational perspective. METHODS The information was retrieved from Swedish population-based registries. All women who gave birth between 1973 and 1977 (n 169,782), their daughters (n 244,152), and subsequently also the offspring of the daughters (n 381,953) were followed until 2013. RESULTS We found that 4% of the mothers and 6% of the grandmothers had been diagnosed with anxiety. Women who had mothers with an anxiety disorder were more than twice as likely to have an anxiety disorder themselves compared to all other women (OR = 2.20, 95% CI = 2.04-2.30). In the third generation, the children born to mothers with an anxiety disorder, the odds ratio of being diagnosed with anxiety was more than twice as high than for the rest of the population (OR = 2.54, 95% CI = 2.01-3.20). If both the mother and the grandmother had had an anxiety disorder the odds ratio for the child having a diagnosis of anxiety was three times higher (OR = 3.11, 95% CI = 2.04-4.75). Anxiety diagnosis in the two previous generations also increased the likelihood of the child having either more than two inpatient visits or more than 10 outpatient visits (OR = 2.64, 95% CI = 2.40-2.91 and OR = 2.21, 95% CI = 2.01-2.43, respectively). CONCLUSIONS The intergenerational effect on anxiety is high. In order to minimize the risk for further transmission of anxiety disorders, increased awareness and generous use of effective treatment regimes might be of importance.
Collapse
Affiliation(s)
- Gunilla Sydsjö
- Department of Obstetrics and Gynaecology and Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Sara Agnafors
- Department of Child and Adolescent Psychiatry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Bladh
- Department of Obstetrics and Gynaecology and Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Ann Josefsson
- Department of Obstetrics and Gynaecology and Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
31
|
Wen RT, Zhang FF, Zhang HT. Cyclic nucleotide phosphodiesterases: potential therapeutic targets for alcohol use disorder. Psychopharmacology (Berl) 2018; 235:1793-1805. [PMID: 29663017 PMCID: PMC5949271 DOI: 10.1007/s00213-018-4895-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD), which combines the criteria of both alcohol abuse and dependence, contributes as an important causal factor to multiple health and social problems. Given the limitation of current treatments, novel medications for AUD are needed to better control alcohol consumption and maintain abstinence. It has been well established that the intracellular signal transduction mediated by the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) crucially underlies the genetic predisposition, rewarding properties, relapsing features, and systemic toxicity of compulsive alcohol consumption. On this basis, the upstream modulators phosphodiesterases (PDEs), which critically control intracellular levels of cyclic nucleotides by catalyzing their degradation, are proposed to play a role in modulating alcohol abuse and dependent process. Here, we highlight existing evidence that correlates cAMP and cGMP signal cascades with the regulation of alcohol-drinking behavior and discuss the possibility that PDEs may become a novel class of therapeutic targets for AUD.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China.
- Departments of Behavioral Medicine and Psychiatry and Physiology, Pharmacology and Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
32
|
Balan I, Warnock KT, Puche A, Gondre-Lewis MC, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun 2018; 69:139-153. [PMID: 29146239 PMCID: PMC5857415 DOI: 10.1016/j.bbi.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/25/2022] Open
Abstract
Cognitive impulsivity is a heritable trait believed to represent the behavior that defines the volition to initiate alcohol drinking. We have previously shown that a neuronal Toll-like receptor 4 (TLR4) signal located in the central amygdala (CeA) and ventral tegmental area (VTA) controls the initiation of binge drinking in alcohol-preferring P rats, and TLR4 expression is upregulated by alcohol-induced corticotropin-releasing factor (CRF) at these sites. However, the function of the TLR4 signal in the nucleus accumbens shell (NAc-shell), a site implicated in the control of reward, drug-seeking behavior and impulsivity and the contribution of other signal-associated genes, are still poorly understood. Here we report that P rats have an innately activated TLR4 signal in NAc-shell neurons that co-express the α2 GABAA receptor subunit and CRF prior to alcohol exposure. This signal is not present in non-alcohol drinking NP rats. The TLR4 signal is sustained by a CRF amplification loop, which includes TLR4-mediated CRF upregulation through PKA/CREB activation and CRF-mediated TLR4 upregulation through the CRF type 1 receptor (CRFR1) and the MAPK/ERK pathway. NAc-shell Infusion of a neurotropic, non-replicating herpes simplex virus vector for TLR4-specific small interfering RNA (pHSVsiTLR4) inhibits TLR4 expression and cognitive impulsivity, implicating the CRF-amplified TLR4 signal in impulsivity regulation.
Collapse
Affiliation(s)
- Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaitlin T Warnock
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Adam Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marjorie C Gondre-Lewis
- Department of Anatomy, Laboratory for Neurodevelopment, Howard University College of Medicine, Washington, DC, USA
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Wen RT, Liang JH, Zhang HT. Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence. ADVANCES IN NEUROBIOLOGY 2018; 17:413-444. [PMID: 28956341 DOI: 10.1007/978-3-319-58811-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substance dependence is a chronic relapsing brain disorder associated with adaptational changes in synaptic plasticity and neuronal functions. The high levels of substance consumption and relapse rate suggest more reliable medications are in need to better address the underlying causes of this disease. It has been well established that the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) and their signaling systems play an important role in the molecular mechanisms of substance taking behaviors. On this basis, the phosphodiesterase (PDE) superfamily, which crucially controls cyclic nucleotide levels by catalyzing their hydrolysis, has been proposed as a novel class of therapeutic targets for substance use disorders. This chapter reviews the expression patterns of PDEs in the brain with regard to neural structures underlying the dependent process and highlights available evidence for a modulatory role of PDEs in substance dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
34
|
|
35
|
Savarese AM, Lasek AW. Transcriptional Regulators as Targets for Alcohol Pharmacotherapies. Handb Exp Pharmacol 2018; 248:505-533. [PMID: 29594350 PMCID: PMC6242703 DOI: 10.1007/164_2018_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing brain disease that currently afflicts over 15 million adults in the United States. Despite its prevalence, there are only three FDA-approved medications for AUD treatment, all of which show limited efficacy. Because of their ability to alter expression of a large number of genes, often with great cell-type and brain-region specificity, transcription factors and epigenetic modifiers serve as promising new targets for the development of AUD treatments aimed at the neural circuitry that underlies chronic alcohol abuse. In this chapter, we will discuss transcriptional regulators that can be targeted pharmacologically and have shown some efficacy in attenuating alcohol consumption when targeted. Specifically, the transcription factors cyclic AMP-responsive element binding protein (CREB), peroxisome proliferator-activated receptors (PPARs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and glucocorticoid receptor (GR), as well as the epigenetic enzymes, the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), will be discussed.
Collapse
Affiliation(s)
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago,Corresponding author: 1601 West Taylor Street, MC 912, Chicago, IL 60612, Tel: (312) 355-1593,
| |
Collapse
|
36
|
Abstract
Animal models provide rapid, inexpensive assessments of an investigational drug's therapeutic potential. Ideally, they support the plausibility of therapeutic efficacy and provide a rationale for further investigation. Here, I discuss how the absence of clear effective-ineffective categories for alcohol use disorder (AUD) medications and biases in the clinical and preclinical literature affect the development of predictive preclinical alcohol dependence (AD) models. Invoking the analogical argument concept from the philosophy of science field, I discuss how models of excessive alcohol drinking support the plausibility of clinical pharmacotherapy effects. Even though these models are not likely be completely discriminative, they are sensitive to clinically effective medications and have revealed dozens of novel medication targets. In that context, I discuss recent preclinical work on GLP-1 receptor agonists, phosphodiesterase inhibitors, glucocorticoid receptor antagonists, nociception agonists and antagonists, and CRF1 antagonists. Clinically approved medications are available for each of these drug classes. I conclude by advocating a translational approach in which drugs are evaluated highly congruent preclinical models and human laboratory studies. Once translation is established, I suggest the burden is to develop hypothesis-based therapeutic interventions maximizing the impact of the confirmed pharmacotherapeutic effects in the context of additional variables falling outside the model.
Collapse
Affiliation(s)
- Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Gong MF, Wen RT, Xu Y, Pan JC, Fei N, Zhou YM, Xu JP, Liang JH, Zhang HT. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents. Psychopharmacology (Berl) 2017; 234:3143-3151. [PMID: 28748375 DOI: 10.1007/s00213-017-4697-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022]
Abstract
RATIONALE Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. OBJECTIVE The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. METHODS Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. RESULTS Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. CONCLUSIONS These results provide the first demonstration for that PDE4 plays a role in modulating the development of negative emotional reactions associated with ethanol abstinence, including anxiety and depression. PDE4 inhibitors may be a novel class of drugs for treatment of alcoholism.
Collapse
Affiliation(s)
- Mei-Fang Gong
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Rui-Ting Wen
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Ying Xu
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jian-Chun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Fei
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, Shandong, 271016, China.
| |
Collapse
|
38
|
Rotermund C, Reolon GK, Leixner S, Boden C, Bilbao A, Kahle PJ. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein. J Neurochem 2017; 143:294-305. [PMID: 28833174 DOI: 10.1111/jnc.14151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022]
Abstract
α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD.
Collapse
Affiliation(s)
- Carola Rotermund
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases, Tübingen, Germany
| | - Gustavo K Reolon
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Sarah Leixner
- Behavioral Genetics Research Group, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Cindy Boden
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases, Tübingen, Germany
| | - Ainhoa Bilbao
- Behavioral Genetics Research Group, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases, Tübingen, Germany.,Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017; 122:115-126. [PMID: 28431971 PMCID: PMC5497303 DOI: 10.1016/j.neuropharm.2017.04.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Stress is commonly regarded as an important trigger for relapse and a significant factor that promotes increased motivation to drink in some individuals. However, the relationship between stress and alcohol is complex, likely changing in form during the transition from early moderated alcohol use to more heavy uncontrolled alcohol intake. A growing body of evidence indicates that prolonged excessive alcohol consumption serves as a potent stressor, producing persistent dysregulation of brain reward and stress systems beyond normal homeostatic limits. This progressive dysfunctional (allostatic) state is characterized by changes in neuroendocrine and brain stress pathways that underlie expression of withdrawal symptoms that reflect a negative affective state (dysphoria, anxiety), as well as increased motivation to self-administer alcohol. This review highlights literature supportive of this theoretical framework for alcohol addiction. In particular, evidence for stress-related neural, physiological, and behavioral changes associated with chronic alcohol exposure and withdrawal experience is presented. Additionally, this review focuses on the effects of chronic alcohol-induced changes in several pro-stress neuropeptides (corticotropin-releasing factor, dynorphin) and anti-stress neuropeptide systems (nocicepton, neuropeptide Y, oxytocin) in contributing to the stress, negative emotional, and motivational consequences of chronic alcohol exposure. Studies involving use of animal models have significantly increased our understanding of the dynamic stress-related physiological mechanisms and psychological underpinnings of alcohol addiction. This, in turn, is crucial for developing new and more effective therapeutics for treating excessive, harmful drinking, particularly stress-enhanced alcohol consumption. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Medical University of South Carolina, RHJ Department of Veterans Affairs, Charleston, SC 29464, USA.
| |
Collapse
|
40
|
Robinson SL, Thiele TE. The Role of Neuropeptide Y (NPY) in Alcohol and Drug Abuse Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:177-197. [PMID: 29056151 DOI: 10.1016/bs.irn.2017.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y (NPY) is a neuromodulator that is widely expressed throughout the central nervous system (CNS) and which is cosecreted with classic neurotransmitters including GABA and glutamate. There is a long history of research implicating a role for NPY in modulating neurobiological responses to alcohol (ethanol) as well as other drugs of abuse. Both ethanol exposure and withdrawal from chronic ethanol have been shown to produce changes in NPY and NPY receptor protein levels and mRNA expression in the CNS. Importantly, manipulations of NPY Y1 and Y2 receptor signaling have been shown to alter ethanol consumption and self-administration in a brain region-specific manner, with Y1 receptor activation and Y2 receptor blockade in regions of the extended amygdala promoting robust reductions of ethanol intake. Similar observations have been made in studies examining neurobiological responses to nicotine, psychostimulants, and opioids. When taken together with observations of potential genetic linkage between the NPY system and the human alcohol abuse disorders, NPY represents a promising target for treating problematic alcohol and drug use, and in protecting individuals from relapse during abstinence.
Collapse
Affiliation(s)
- Stacey L Robinson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd E Thiele
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
41
|
The phosphodiesterase-4 inhibitor roflumilast decreases ethanol consumption in C57BL/6J mice. Psychopharmacology (Berl) 2017; 234:2409-2419. [PMID: 28477089 DOI: 10.1007/s00213-017-4631-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Alcohol use disorders have become one of the most damaging psychiatric disorders in the world; however, there are no ideal treatments in clinic. Phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes intracellular cyclic AMP (cAMP), has been involved in alcohol use disorders. Roflumilast is the first PDE4 inhibitor approved for treatment of chronic obstructive pulmonary diseases in clinic. It was of particular interest to researchers to determine whether roflumilast altered ethanol consumption. OBJECTIVES The present study tried to determine the effects of roflumilast on ethanol intake and preference. METHODS We used the two-bottle choice paradigm to assess ethanol intake and preference in C57BL/6J mice treated with roflumilast (1, 3, or 10 mg/kg) or rolipram (0.5 mg/kg; positive control). The effect of roflumilast was verified using the ethanol drinking-in-dark (DID) test. Locomotor activity was examined using the open-field test. Intake of sucrose or quinine was also tested to determine whether natural reward preference and aversive stimuli were involved in the effect of PDE4 inhibitors. RESULTS Similar to rolipram, roflumilast decreased ethanol intake and preference in two-bottle choice and DID tests in a dose-dependent manner, with significant changes at the dose of 10 mg/kg; in contrast, roflumilast did not affect sucrose or quinine drinking, although it decreased locomotor activity at the high dose within 3 h of treatment. CONCLUSIONS These data provide novel demonstration for the effect of roflumilast on ethanol consumption and suggest that roflumilast may be beneficial for treatment of alcoholism.
Collapse
|
42
|
Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol 2017; 60:7-18. [PMID: 28477725 DOI: 10.1016/j.alcohol.2017.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022]
Abstract
Stress-related disorders, such as anxiety, early life stress, and posttraumatic stress disorder appear to be important factors in promoting alcoholism, as alcohol consumption can temporarily attenuate the negative affective symptoms of these disorders. Several molecules involved in signaling pathways may contribute to the neuroadaptation induced during alcohol dependence and stress disorders, and among these, brain-derived neurotrophic factor (BDNF), corticotropin releasing factor (CRF), neuropeptide Y (NPY) and opioid peptides (i.e., nociceptin and dynorphin) are involved in the interaction of stress and alcohol. In fact, alterations in the expression and function of these molecules have been associated with the pathophysiology of stress-related disorders and alcoholism. In recent years, various studies have focused on the epigenetic mechanisms that regulate chromatin architecture, thereby modifying gene expression. Interestingly, epigenetic modifications in specific brain regions have been shown to be associated with the neurobiology of psychiatric disorders, including alcoholism and stress. In particular, the enzymes responsible for chromatin remodeling (i.e., histone deacetylases and methyltransferases, DNA methyltransferases) have been identified as common molecular mechanisms for the interaction of stress and alcohol and have become promising therapeutic targets to treat or prevent alcoholism and associated emotional disorders.
Collapse
|
43
|
Berkel TDM, Pandey SC. Emerging Role of Epigenetic Mechanisms in Alcohol Addiction. Alcohol Clin Exp Res 2017; 41:666-680. [PMID: 28111764 DOI: 10.1111/acer.13338] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
Alcohol use disorder (AUD) is a complex brain disorder with an array of persistent behavioral and neurochemical manifestations. Both genetic and environmental factors are known to contribute to the development of AUD, and recent studies on alcohol exposure and subsequent changes in gene expression suggest the importance of epigenetic mechanisms. In particular, histone modifications and DNA methylation have emerged as important regulators of gene expression and associated phenotypes of AUD. Given the therapeutic potential of epigenetic targets, this review aims to summarize the role of epigenetic regulation in our current understanding of AUD by evaluating known epigenetic signatures of brain regions critical to addictive behaviors in both animal and human studies throughout various stages of AUD. More specifically, the effects of acute and chronic alcohol exposure, tolerance, and postexposure withdrawal on epigenetically induced changes to gene expression and synaptic plasticity within key brain regions and the associated behavioral phenotypes have been discussed. Understanding the contribution of epigenetic regulation to crucial signaling pathways may prove vital for future development of novel biomarkers and treatment agents in ameliorating or preventing AUD.
Collapse
Affiliation(s)
- Tiffani D M Berkel
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
44
|
Valdés-Moreno MI, Alcántara-Alonso V, Estrada-Camarena E, Mengod G, Amaya MI, Matamoros-Trejo G, de Gortari P. Phosphodiesterase-7 inhibition affects accumbal and hypothalamic thyrotropin-releasing hormone expression, feeding and anxiety behavior of rats. Behav Brain Res 2017; 319:165-173. [PMID: 27864049 DOI: 10.1016/j.bbr.2016.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Thyrotropin-releasing hormone (TRH) has anorexigenic and anxiolytic functions when injected intraventricularly. Nucleus accumbens (NAcc) is a possible brain region involved, since it expresses proTRH. TRH from hypothalamic paraventricular nucleus (PVN) has a food intake-regulating role. TRHergic pathways of NAcc and PVN are implicated in anxiety and feeding. Both behaviors depend on cAMP and phosphorylated-cAMP response element binding protein (pCREB) intracellular levels. Intracellular levels of cAMP are controlled by the degrading activity of phosphodiesterases (PDEs). Since TRH transcription is activated by pCREB, a specific inhibitor of PDE7B may regulate TRH-induced effects on anxiety and feeding. We evaluated the effectiveness of an intra-accumbal and intraperitoneal (i.p.) administration of a PDE7 inhibitor (BRL-50481) on rats' anxiety-like behavior and food intake; also on TRH mRNA and protein expression in NAcc and PVN to define its mediating role on the PDE7 inhibitor-induced behavioral changes. Accumbal injection of 4μg/0.3μL of PDE7 inhibitor decreased rats' anxiety. The i.p. injection of 0.2mg/kg of the inhibitor was able to increase the PVN TRH mRNA expression and to decrease feeding but did not change animals' anxiety levels; in contrast, 2mg/kg b.w inhibitor enhanced accumbal TRH mRNA, induced anxiolysis with no change in food intake. PDE7 inhibitor induced anxiolytic and anorexigenic like behavior depending on the dose used. Results supported hypothalamic TRH mediated feeding-reduction effects, and accumbal TRH mediation of inhibitor-induced anxiolysis. Thus, an i.p dose of this inhibitor might be reducing anxiety with no change in feeding, which could be useful for obese patients.
Collapse
Affiliation(s)
- M I Valdés-Moreno
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico; School of Dietetics and Nutrition ISSSTE, Callejón Vía San Fernando 12, Col. San Pedro Apóstol, 14070 México City, Mexico
| | - V Alcántara-Alonso
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - E Estrada-Camarena
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - G Mengod
- Department of Neurochemistry and Neuropharmachology, Institut d'Investigacions Biòmediques de Barcelona, CSIC, IDIBAPS, CIBERNED, c/Rosselló 161, 6a, E 08036 Barcelona, Spain
| | - M I Amaya
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - G Matamoros-Trejo
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico
| | - P de Gortari
- Department of Neuroscience Research, National Institute of Psychiatry RFM, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México City, Mexico.
| |
Collapse
|
45
|
Pandey SC, Kyzar EJ, Zhang H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology 2017; 122:74-84. [PMID: 28174112 DOI: 10.1016/j.neuropharm.2017.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Alcoholism is a complex brain disease characterized by three distinct stages of the addiction cycle that manifest as neuroadaptive changes in the brain. One such stage of the addiction cycle is alcohol withdrawal and the negative affective states that promote drinking and maintain addiction. Repeated alcohol use, genetic predisposition to alcoholism and anxiety, and alcohol exposure during crucial developmental periods all contribute to the development of alcohol-induced withdrawal and negative affective symptoms. Epigenetic modifications within the amygdala have provided a molecular basis of these negative affective symptoms, also known as the dark side of addiction. Here, we propose that allostatic change within the epigenome in the amygdala is a prime mechanism of the biological basis of negative affective states resulting from, and contributing to, alcoholism. Acute alcohol exposure produces an anxiolytic response which is associated with the opening of chromatin due to increased histone acetylation, increased CREB binding protein (CBP) levels, and histone deacetylase (HDAC) inhibition. After chronic ethanol exposure, these changes return to baseline along with anxiety-like behaviors. However, during withdrawal, histone acetylation decreases due to increased HDAC activity and decreased CBP levels in the amygdala circuitry leading to the development of anxiety-like behaviors. Additionally, innately higher expression of the HDAC2 isoform leads to a deficit in global and gene-specific histone acetylation in the amygdala that is associated with a decrease in the expression of several synaptic plasticity-associated genes and maintaining heightened anxiety-like behavior and excessive alcohol intake. Adolescent alcohol exposure also leads to higher expression of HDAC2 and a deficit in histone acetylation leading to decreased expression of synaptic plasticity-associated genes and high anxiety and drinking behavior in adulthood. All these studies indicate that the epigenome can undergo allostatic reprogramming in the amygdaloid circuitry during various stages of alcohol exposure. Furthermore, opening the chromatin by inhibiting HDACs using pharmacological or genetic manipulations can lead to the attenuation of anxiety as well as alcohol intake. Chromatin remodeling provides a clear biological basis for the negative affective states seen during alcohol addiction and presents opportunities for novel drug development and treatment options. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
46
|
Teppen TL, Krishnan HR, Zhang H, Sakharkar AJ, Pandey SC. The Potential Role of Amygdaloid MicroRNA-494 in Alcohol-Induced Anxiolysis. Biol Psychiatry 2016; 80:711-719. [PMID: 26786313 PMCID: PMC4882267 DOI: 10.1016/j.biopsych.2015.10.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND The antianxiety effects of ethanol appear to be a crucial factor in promoting alcohol intake. Regulation of gene expression by microRNA (miRNA) is an important epigenetic mechanism that affects neuronal pathways and behaviors. We investigated the role of miRNAs underlying the mechanisms of ethanol-induced anxiolysis. METHODS Acute ethanol-induced anxiolysis was measured in adult rats, and amygdaloid tissues were used for miRNA profiling by microarray analysis. The expression of miR-494 and its target genes in the amygdala was measured using real-time quantitative polymerase chain reaction. The direct role of miR-494 in the anxiety phenotype was also investigated via infusion of a miR-494 antagomir into the central nucleus of amygdala. RESULTS Microarray profiling of miRNAs in the amygdala showed significant alteration of several miRNA expression levels by acute ethanol exposure. Expression of miR-494 was significantly decreased, whereas expression of the binding protein of cyclic adenosine monophosphate response element binding protein (CBP), p300, and Cbp/p300-interacting transactivator 2 (Cited2) was increased in the amygdala during ethanol-induced anxiolysis. Inhibition of miR-494 in the central nucleus of amygdala, through infusion of a specific antagomir, provoked anxiolysis, mimicking the action of ethanol. Also, expression of Cited2, CBP, and p300 as well as histone H3-lysine 9 acetylation was significantly increased by miR-494 antagomir infusion, indicating their regulation by miR-494 in the amygdala. CONCLUSIONS These novel results suggest that acute ethanol-induced reduction in miR-494 expression in the amygdala can serve as a key regulatory mechanism for chromatin remodeling possibly leading to anxiolysis.
Collapse
Affiliation(s)
- Tara L. Teppen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Harish R. Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Amul J. Sakharkar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Anatomy and Cell Biology, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| |
Collapse
|
47
|
McGinn MA, Paulsen RI, Itoga CA, Farooq MA, Reppel JE, Edwards KN, Whitaker AM, Gilpin NW, Edwards S. Withdrawal from Chronic Nicotine Exposure Produces Region-Specific Tolerance to Alcohol-Stimulated GluA1 Phosphorylation. Alcohol Clin Exp Res 2016; 40:2537-2547. [PMID: 27796078 DOI: 10.1111/acer.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nicotine use increases alcohol drinking, suggesting that the combination of these drugs may produce synergistic effects in activating reward circuitry. Alternatively, use of either of these drugs may facilitate the development of cross-tolerance to the other to promote intake escalation. METHODS In this study, adult male Wistar rats were chronically exposed to room air or chronic, intermittent nicotine vapor, which has been shown to produce symptoms of nicotine dependence as evidenced by elevated nicotine self-administration and a host of somatic and motivational withdrawal symptoms. We examined regional neuroadaptations in nicotine-experienced versus nonexperienced animals, focusing on changes in phosphorylation of the AMPA glutamate channel subunit GluA1 in reward-related brain regions as excitatory neuroadaptations are heavily implicated in both alcohol and nicotine addiction. RESULTS During withdrawal, nicotine exposure and alcohol challenge (1 g/kg) interactively produced neuroadaptations in GluA1 phosphorylation in a brain region-dependent manner. Alcohol robustly increased protein kinase A-mediated phosphorylation of GluA1 at serine 845 in multiple regions. However, this neuroadaptation was largely absent in 3 areas (dorsomedial prefrontal cortex, dorsal striatum, and central amygdala) in nicotine-experienced animals. This interactive effect suggests a molecular tolerance to alcohol-stimulated phosphorylation of GluA1 in the context of nicotine dependence. CONCLUSIONS Nicotine may modify the rewarding or reinforcing effects of alcohol by altering glutamate signaling in a region-specific manner, thereby leading to increased drinking in heavy smokers.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Rod I Paulsen
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Christy A Itoga
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Muhammad A Farooq
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jonathan E Reppel
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kimberly N Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Annie M Whitaker
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
48
|
Abstract
The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways.
Collapse
Affiliation(s)
- Dorit Ron
- Corresponding author: Dorit Ron, 675 Nelson Rising Lane, BOX 0663, San Francisco, CA 94143-0663,
| | - Segev Barak
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
49
|
Qiu B, Bell RL, Cao Y, Zhang L, Stewart RB, Graves T, Lumeng L, Yong W, Liang T. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. J Genet Genomics 2016; 43:421-30. [PMID: 27461754 PMCID: PMC5055068 DOI: 10.1016/j.jgg.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in a 26-bp deletion in the Npy gene. RT-PCR, Western blotting and immunohistochemistry confirmed the absence of Npy mRNA and protein in KO rats. Alcohol consumption was increased in Npy(+/-) but not Npy(-/-) rats, while Npy(-/-) rats displayed significantly lower body weight when compared to Npy(+/+) rats. In whole brain tissue, expression levels of Npy-related and other alcohol-associated genes, Npy1r, Npy2r, Npy5r, Agrp, Mc3r, Mc4r, Crh and Crh1r, were significantly greater in Npy(-/-) rats, whereas Pomc and Crhr2 expressions were highest in Npy(+/-) rats. These findings suggest that the NPY-system works in close coordination with the melanocortin (MC) and corticotropin-releasing hormone (CRH) systems to modulate alcohol intake and body weight.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Robert B Stewart
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202, USA
| | - Tamara Graves
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawrence Lumeng
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Tiebing Liang
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Zhang J, Cai CY, Wu HY, Zhu LJ, Luo CX, Zhu DY. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors. Sci Rep 2016; 6:29551. [PMID: 27404655 PMCID: PMC4941576 DOI: 10.1038/srep29551] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/17/2016] [Indexed: 02/03/2023] Open
Abstract
Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Li-Juan Zhu
- Institute of Neuroscience, Soochow University, Su zhou, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China.,The key laboratory of human functional genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|