1
|
Zabielska-Kaczorowska MA, Stawarska K, Kawecka A, Urbanowicz K, Smolenski RT, Kutryb-Zajac B. Nucleotide depletion in hypoxia experimental models of mouse myocardial slices. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-13. [PMID: 39047183 DOI: 10.1080/15257770.2024.2381791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES Experimental models to test the effective protection against cardiac ischemia injury are still challenging in pre-clinical studies. The use of myocardial slices creates a special link between testing isolated cardiomyocytes and whole-heart research. In this work, we investigated the effects of oxygen deprivation in a hypoxic chamber and treatment with cobalt chloride (CoCl2) on the nucleotide profile in isolated mouse myocardial slices. METHODS 200 μm-thick left ventricle myocardial slices were obtained from 3-month-old male C57Bl/6J mice using an oscillatory microtome. Slices were then exposed to 1% O2 atmosphere or 100 μM CoCl2 at 37 °C for 45 min and used for nucleotide measurements using ultra-high-performance liquid chromatography. The effects of two short-term experimental models of hypoxia were compared to 2'-deoxyglucose with oligomycin (2-DG + OLIGO) treatment, which inhibited both glycolysis and mitochondrial ATP synthesis. KEY FINDINGS A significant effect of hypoxia with 1% O2 was observed on adenosine triphosphate (ATP) and total adenine nucleotide (TAN) concentrations as well as on adenylate energy charge (AEC), ATP/ADP and ATP/AMP ratios. Oxygen deprivation caused changes almost as profound as 2-DG + OLIGO, emphasizing the critical role of mitochondrial oxidative phosphorylation in the energy metabolism of cultured heart slices. CoCl2 treatment that elicits hypoxia-like responses via HIF-1α stabilization only slightly affected nucleotide levels. This suggests that mechanisms induced by cobalt ions require more time to change the cardiac energy metabolism. CONCLUSIONS A short-term culture of myocardial slices in a hypoxic chamber seems to be an appropriate model of cardiac ischemia for testing new pharmacological approaches based on modulating the energy metabolism of cardiac cells.
Collapse
Affiliation(s)
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
2
|
Pisanski A, Prostebby M, Dickson CT, Pagliardini S. Mapping responses to focal injections of bicuculline in the lateral parafacial region identifies core regions for maximal generation of active expiration. eLife 2024; 13:RP94276. [PMID: 39017665 PMCID: PMC11254382 DOI: 10.7554/elife.94276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The lateral parafacial area (pFL) is a crucial region involved in respiratory control, particularly in generating active expiration through an expiratory oscillatory network. Active expiration involves rhythmic abdominal (ABD) muscle contractions during late-expiration, increasing ventilation during elevated respiratory demands. The precise anatomical location of the expiratory oscillator within the ventral medulla's rostro-caudal axis is debated. While some studies point to the caudal tip of the facial nucleus (VIIc) as the oscillator's core, others suggest more rostral areas. Our study employed bicuculline (a γ-aminobutyric acid type A [GABA-A] receptor antagonist) injections at various pFL sites (-0.2 mm to +0.8 mm from VIIc) to investigate the impact of GABAergic disinhibition on respiration. These injections consistently elicited ABD recruitment, but the response strength varied along the rostro-caudal zone. Remarkably, the most robust and enduring changes in tidal volume, minute ventilation, and combined respiratory responses occurred at more rostral pFL locations (+0.6/+0.8 mm from VIIc). Multivariate analysis of the respiratory cycle further differentiated between locations, revealing the core site for active expiration generation with this experimental approach. Our study advances our understanding of neural mechanisms governing active expiration and emphasizes the significance of investigating the rostral pFL region.
Collapse
Affiliation(s)
| | - Mitchell Prostebby
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Clayton T Dickson
- Department of Physiology, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Department of Psychology, University of AlbertaEdmontonCanada
- Department of Anesthesiology and Pain Medicine, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - Silvia Pagliardini
- Department of Physiology, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Department of Anesthesiology and Pain Medicine, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| |
Collapse
|
3
|
Alzaabi MA, Abdelsalam A, Alhammadi M, Bani Hani H, Almheiri A, Al Matrooshi N, Al Zaman K. Evaluating Biomarkers as Tools for Early Detection and Prognosis of Heart Failure: A Comprehensive Review. Card Fail Rev 2024; 10:e06. [PMID: 38915376 PMCID: PMC11194781 DOI: 10.15420/cfr.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/19/2024] [Indexed: 06/26/2024] Open
Abstract
There is a high prevalence of heart failure (HF) worldwide, which has significant consequences for healthcare costs, patient death and quality of life. Therefore, there has been much focus on finding and using biomarkers for early diagnosis, prognostication and therapy of HF. This overview of the research presents a thorough examination of the current state of HF biomarkers and their many uses. Their function in diagnosing HF, gauging its severity and monitoring its response to therapy are all discussed. Particularly promising in HF diagnosis and risk stratification are the cardiac-specific biomarkers, B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide. Markers of oxidative stress, extracellular matrix, renal function, inflammation and cardiac peptides have shown promise in evaluating HF severity and prognosis. MicroRNAs and insulin-like growth factor are two emerging biomarkers that have shown potential in helping with HF diagnosis and prognosis.
Collapse
Affiliation(s)
- Moza A Alzaabi
- Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic Abu DhabiAbu Dhabi, United Arab Emirates
| | - Amin Abdelsalam
- Department of Cardiology, Al Qassemi HospitalSharjah, United Arab Emirates
| | - Majid Alhammadi
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| | - Hasan Bani Hani
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| | - Ali Almheiri
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| | - Nadya Al Matrooshi
- Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic Abu DhabiAbu Dhabi, United Arab Emirates
| | - Khaled Al Zaman
- Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic Abu DhabiAbu Dhabi, United Arab Emirates
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| |
Collapse
|
4
|
She H, Hao Y, Song G, Luo X, Lei F, Zhai W, Qu Y. Gene expression plasticity followed by genetic change during colonization in a high-elevation environment. eLife 2024; 12:RP86687. [PMID: 38470231 DOI: 10.7554/elife.86687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Phenotypic plasticity facilitates organismal invasion of novel environments, and the resultant phenotypic change may later be modified by genetic change, so called 'plasticity first.' Herein, we quantify gene expression plasticity and regulatory adaptation in a wild bird (Eurasian Tree Sparrow) from its original lowland (ancestral stage), experimentally implemented hypoxia acclimation (plastic stage), and colonized highland (colonized stage). Using a group of co-expressed genes from the cardiac and flight muscles, respectively, we demonstrate that gene expression plasticity to hypoxia tolerance is more often reversed than reinforced at the colonized stage. By correlating gene expression change with muscle phenotypes, we show that colonized tree sparrows reduce maladaptive plasticity that largely associated with decreased hypoxia tolerance. Conversely, adaptive plasticity that is congruent with increased hypoxia tolerance is often reinforced in the colonized tree sparrows. Genes displaying large levels of reinforcement or reversion plasticity (i.e. 200% of original level) show greater genetic divergence between ancestral and colonized populations. Overall, our work demonstrates that gene expression plasticity at the initial stage of high-elevation colonization can be reversed or reinforced through selection-driven adaptive modification.
Collapse
Affiliation(s)
- Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xu Luo
- Faculty of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wang Z, Liu Q, Wang X, Wang P, Wang Z, Zhang F. Empagliflozin improves cardiac function in rats with chronic heart failure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1037-1044. [PMID: 37566305 DOI: 10.1007/s00210-023-02655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
The objective of this study is to examine the effect of empagliflozin on cardiac function in rats with chronic heart failure and the possible mechanism. Forty 6-week-old male SD rats were randomly divided into the control group, empagliflozin treatment group, and sham-operated group. SD rats in the control group and empagliflozin treatment group were subjected to ligation of the anterior descending coronary artery to induce an acute myocardial infarction model. SD rats in the sham-operated group were only subjected to threading of the anterior descending branch of the coronary artery without ligation. On the second day after surgery, the control group and sham operation group were given physiological saline by gavage, while the empagliflozin treatment group was given empagliflozin (30 mg/kg/day) by gavage. Sixteen weeks later, cardiac function, intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), serum brain natriuretic peptide, hypersensitive C-reactive protein (hs-CRP), iNOS expression levels, and myocardial morphological changes were observed. Compared with that in the control group, heart function in the empagliflozin-treated group was significantly improved, MMP was increased, intracellular ROS levels were decreased, and NT-proBNP and hs-CRP were significantly reduced, and HE staining showed that the cell oedema was less than that in the control group, tissue arrangement was more orderly, and iNOS expression was inhibited. Empagliflozin can improve cardiac function in rats with chronic heart failure, and the mechanism may involve inhibiting inflammation, reducing myocardial oxidative stress, and improving myocardial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), No. 317, Dong Cheng Nan Yi Road, Dongying, 257091, Shandong Province, China.
| | - Qian Liu
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), No. 317, Dong Cheng Nan Yi Road, Dongying, 257091, Shandong Province, China
| | - Xiaofang Wang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), No. 317, Dong Cheng Nan Yi Road, Dongying, 257091, Shandong Province, China
| | - Pengpeng Wang
- Department of Obstetrics, Dezhou Municipal Hospital, Dezhou, Shandong Province, China
| | - Zhuwen Wang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), No. 317, Dong Cheng Nan Yi Road, Dongying, 257091, Shandong Province, China
| | - Fenglei Zhang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), No. 317, Dong Cheng Nan Yi Road, Dongying, 257091, Shandong Province, China
| |
Collapse
|
6
|
Della Rocca Y, Diomede F, Konstantinidou F, Trubiani O, Soundara Rajan T, Pierdomenico SD, Gatta V, Stuppia L, Marconi GD, Pizzicannella J. Protective effect of oral stem cells extracellular vesicles on cardiomyocytes in hypoxia-reperfusion. Front Cell Dev Biol 2024; 11:1260019. [PMID: 38288344 PMCID: PMC10823008 DOI: 10.3389/fcell.2023.1260019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Hypoxia signaling plays an important role in physiological and pathological conditions. Hypoxia in the heart tissue can produce different consequences depending on the duration of exposure to the hypoxic state. While acute hypoxic exposure leads to a reversible acclimatization in heart tissue with normal systemic oxygen supply, chronic hypoxia exacerbates cardiac dysfunction, leads to a destruction of the tissue. Extracellular vesicles (EVs) are small membrane vesicles that act as mediators of intercellular communication. EVs are secreted by different cell types and those produced by oral cavity-derived mesenchymal stem cells (MSCs), including human gingival MSCs (hGMSCs), have pro-angiogenic and anti-inflammatory effects and showed therapeutic role in tissue regeneration. The aim of the present work was to evaluate the potential protective and regenerative role of EVs produced by hGMSCs, in an in vitro model of hypoxia-conditioned HL-1 cardiomyocytes through the expression analysis of following inflammatory, oxidative stress, angiogenesis, cell survival and apoptotic markers: HIF-1α, P300, NFkB, CCL2, IL1B, IL6, NRF2, CASP-3, BAX and VEGF. Results showed that hGMSCs-derived EVs exerted protection HL-1 cardiomyocytes exposed to both pre and post hypoxic conditions. Moreover, modulation of CASP3 and BAX expression demonstrated that EVs reduced the apoptosis. The analysis of microRNAs in EVs derived from hGMSCs was performed to assess the epigenetic regulation of the presented markers. The following microRNAs: hsa-miR-138-5p, hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-21-5p, hsa-miR-324-5p, hsa-miR-133a-3p, hsa-miR-150-5p, hsa-miR-199a-5p, hsa-miR-128-3p and hsa-miR-221-3p can directly or indirectly target the studied genes by determining their modulation obtained in our study. The data from this study suggested that EVs obtained from hGMSCs may be considered for the cell free treatment option in hypoxia-driven cardiac tissue dysfunction.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Fanì Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Sante D. Pierdomenico
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. D’ Annunzio” Chieti-Pescara, Pescara, Italy
| |
Collapse
|
7
|
Silva JMA, Antonio EL, Dos Santos LFN, Serra AJ, Feliciano RS, Junior JAS, Ihara SSM, Tucci PJF, Moises VA. Hypertrophy of the right ventricle by pulmonary artery banding in rats: a study of structural, functional, and transcriptomics alterations in the right and left ventricles. Front Physiol 2023; 14:1129333. [PMID: 37576341 PMCID: PMC10414540 DOI: 10.3389/fphys.2023.1129333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Right ventricular remodeling with subsequent functional impairment can occur in some clinical conditions in adults and children. The triggering factors, molecular mechanisms, and, especially, the evolution over time are still not well known. Left ventricular (LV) changes associated with right ventricular (RV) remodeling are also poorly understood. Objectives: The study aimed to evaluate RV morphological, functional, and gene expression parameters in rats submitted to pulmonary artery banding compared to control rats, with the temporal evolution of these parameters, and to analyze the influence of RV remodeling by pulmonary artery banding in rats and their controls over time on LV geometry, histology, gene expression, and functional performance. Methods: Healthy 6-week-old male Wistar-EPM rats weighing 170-200 g were included. One day after the echocardiogram, depending on the animals undergoing the pulmonary artery banding (PAB) procedure or not (control group), they were then randomly divided into subgroups according to the follow-up time: 72 h, or 2, 4, 6, or 8 weeks. In each subgroup, the following were conducted: a new echocardiogram, a hemodynamic study, the collection of material for morphological analysis (hypertrophy and fibrosis), and molecular biology (gene expression). The results were presented as the mean ± standard deviation of the mean. A two-way ANOVA and Tukey post-test compared the variables of the subgroups and evolution follow-up times. The adopted significance level was 5%. Results: There was no significant difference among the subgroups in the percentage of water in both the lungs and the liver (the percentage of water in the lungs ranged from 76% to 78% and that of the liver ranged from 67% to 71%). The weight of the right chambers was significantly higher in PAB animals in all subgroups (RV PAB weighed from 0.34 to 0.48 g, and control subjects, from 0.17 to 0.20 g; right atrium (RA) with PAB from 0.09 to 0.14 g; and control subjects from 0.02 to 0.03 g). In the RV of PAB animals, there was a significant increase in myocyte nuclear volume (97 μm3-183.6 μm3) compared to control subjects (34.2 μm3-57.2 μm3), which was more intense in subgroups with shorter PAB follow-up time, and the fibrosis percentage (5.9%-10.4% vs. 0.96%-1.18%) was higher as the PAB follow-up time was longer. In the echocardiography result, there was a significant increase in myocardial thickness in all PAB groups (0.09-0.11 cm compared to control subjects-0.04-0.05 cm), but there was no variation in RV diastolic diameter. From 2 to 8 weeks of PAB, the S-wave (S') (0.031 cm/s and 0.040 cm/s), and fractional area change (FAC) (51%-56%), RV systolic function parameters were significantly lower than those of the respective control subjects (0.040 cm/s to 0.050 cm/s and 61%-67%). Furthermore, higher expression of genes related to hypertrophy and extracellular matrix in the initial subgroups and apoptosis genes in the longer follow-up PAB subgroups were observed in RV. On the other hand, LV weight was not different between animals with and without PAB. The nuclear volume of the PAB animals was greater than that of the control subjects (74 μm3-136 μm3; 40.8 μm3-46.9 μm3), and the percentage of fibrosis was significantly higher in the 4- and 8-week PAB groups (1.2% and 2.2%) compared to the control subjects (0.4% and 0.7%). Echocardiography showed that the diastolic diameter and LV myocardial thickness were not different between PAB animals and control subjects. Measurements of isovolumetric relaxation time and E-wave deceleration time at the echocardiography were different between PAB animals and control subjects in all subgroups, but there were no changes in diastolic function in the hemodynamic study. There was also increased expression of genes related to various functions, particularly hypertrophy. Conclusion: 1) Rats submitted to pulmonary artery banding presented RV remodeling compatible with hypertrophy. Such alterations were mediated by increased gene expression and functional alterations, which coincide with the onset of fibrosis. 2) Structural changes of the RV, such as weight, myocardial thickness, myocyte nuclear volume, and degree of fibrosis, were modified according to the time of exposure to pulmonary artery banding and related to variations in gene expression, highlighting the change from an alpha to a beta pattern from early to late follow-up times. 3) The study suggests that the left ventricle developed histological alterations accompanied by gene expression modifications simultaneously with the alterations found in the right ventricle.
Collapse
Affiliation(s)
| | - Ednei Luiz Antonio
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Andrey Jorge Serra
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Fujiyama S, Okui T, Kato T. Detection of hypoxia in the pulmonary tissues of Xenopus laevis over repeated dives. Dev Growth Differ 2023; 65:94-99. [PMID: 36637347 DOI: 10.1111/dgd.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
The oxygen environment in African clawed frogs (Xenopus laevis) continuously changes during their development, which involves a rapid increase in the body size, metamorphosis, and transition to adulthood. Nevertheless, there are limited reports on experimental models that are available for studying fluctuations in the oxygen environment in X. laevis. Thus, this study aimed to develop an experimental model on intermittent hypoxia in X. laevis and evaluate hypoxia and oxidative stress in the same. X. laevis were submerged in water with a dissolved oxygen concentration of 2 mg/L for 30 min; they were then removed from the water and allowed to freely absorb oxygen for 5 min. Immunostaining of pimonidazole-containing frozen tissue sections of the lung and liver using anti-pimonidazole antibodies as the hypoxia probes revealed that more than 95% of the submerged X. laevis cells were pimonidazole positive, providing direct evidence of tissue hypoxia. When the amount of oxidative stress in the lungs and liver was evaluated in terms of the amount of lipid peroxides, the diving group showed a 2.08-fold and 3.20-fold increase over the normal group, respectively. Following hypoxia exposure, the dry-to-wet weight ratios of the lung tissues was 1.27 times higher (p < .05), while the liver tissues was 1.06 times higher (although not significant). Thus, the degree of damage depended on the tissues affected. In the future, we believe that this model will be a promising option for analyzing the physiological responses of X. laevis to hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Shingo Fujiyama
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University, Tokyo, Japan
| | - Takehito Okui
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University, Tokyo, Japan
| | - Takashi Kato
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University, Tokyo, Japan.,Department of Biology, School of Education, Waseda University, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in energy homeostasis that protects against the development of obesity and diabetes in animal models. Its level is elevated in atherosclerotic cardiovascular diseases (CVD) in humans. However, little is known about the role of FGF21 in heart failure (HF). HF is a major global health problem with a prevalence that is predicted to rise, especially in ageing populations. Despite improved therapies, mortality due to HF remains high, and given its insidious onset, prediction of its development is challenging for physicians. The emergence of cardiac biomarkers to improve prediction, diagnosis, and prognosis of HF has received much attention over the past decade. Recent studies have suggested FGF21 is a promising biomarker candidate for HF. Preclinical research has shown that FGF21 is involved in the pathophysiology of HF through the prevention of oxidative stress, cardiac hypertrophy, and inflammation in cardiomyocytes. However, in the available clinical literature, FGF21 levels appear to be paradoxically raised in HF, potentially implying a FGF21 resistant state as occurs in obesity. Several potential confounding variables complicate the verdict on whether FGF21 is of clinical value as a biomarker. Further research is thus needed to evaluate whether FGF21 has a causal role in HF, and whether circulating FGF21 can be used as a biomarker to improve the prediction, diagnosis, and prognosis of HF. This review draws from preclinical and clinical studies to explore the role of FGF21 in HF.
Collapse
Affiliation(s)
- William Tucker
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bradley Tucker
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Yamashita K, Haraguchi M, Yano M. Knockdown of TMEM160 leads to an increase in reactive oxygen species generation and the induction of the mitochondrial unfolded protein response. FEBS Open Bio 2022; 12:2179-2190. [PMID: 36217717 PMCID: PMC9714381 DOI: 10.1002/2211-5463.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/04/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
Transmembrane protein 160 (TMEM160) was recently reported to be localized to the mitochondrial inner membrane, but mitochondrial function was noted to be unaffected by loss of TMEM160. In contrast to these previously published findings, we report here that the absence of TMEM160 influences intracellular responses. After confirming that TMEM160 is localized in the inner mitochondrial membrane, we knocked down TMEM160 in human cultured cells and analyzed the changes in cellular responses. TMEM160 depletion led to an upregulation of the mitochondrial chaperone HSPD1, suggesting that depletion induced the mitochondrial unfolded protein response (UPRmt ). Indeed, the expression of key transcription factors that induce the UPRmt (ATF4, ATF5, and DDIT3) was increased following TMEM160 depletion. Expression of the mitochondrial protein import-receptors TOMM22 and TOMM20 was also enhanced. In addition, we observed a significant increase in reactive oxygen species (ROS) generation following TMEM160 depletion. Glutathione S-transferases, which detoxify the products of oxidative stress, were also upregulated in TMEM160-depleted cells. Immunoblot analysis was performed to detect proteins modified by 4-hydroxynonenal (which is released after the peroxidation of lipids by ROS): the expression patterns of 4-hydroxynonenal-modified proteins were altered after TMEM160 depletion, suggesting that depletion enhanced degradation of these proteins. HSPD1, TOMM22, ATF4, ATF5, and DDIT3 remained upregulated after ROS was scavenged by N-acetylcysteine, suggesting that once the UPRmt is induced by TMEM160 depletion, it is not suppressed by the subsequent detoxification of ROS. These findings suggest that TMEM160 may suppress ROS generation and stabilize mitochondrial protein(s).
Collapse
Affiliation(s)
- Kosei Yamashita
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityJapan
| | - Misa Haraguchi
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityJapan
| | - Masato Yano
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityJapan
| |
Collapse
|
11
|
Li J, Zhu Y, Zhao X, Zhao L, Wang Y, Yang Z. Screening of anti-heart failure active compounds from fangjihuangqi decoction in verapamil-induced zebrafish model by anti-heart failure index approach. Front Pharmacol 2022; 13:999950. [PMID: 36278179 PMCID: PMC9585168 DOI: 10.3389/fphar.2022.999950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022] Open
Abstract
Heart failure is the end stage of various cardiovascular diseases. Fangjihuangqi Decoction (FJHQD) is a famous traditional Chinese medicine (TCM) formula, which is clinically effective in the treatment of chronic heart failure. However, the anti-heart failure ingredients of FJHQD have not been clarified, and the related mechanisms of action are rarely studied. In the present study, through quantification analysis of heart rate and ventricular area changes, a heart failure model and cardiac function evaluation system in cardiomyocytes-labelled Tg (cmlc2: eGFP) transgenic zebrafish larvae were constructed, and the anti-heart failure index (AHFI) that can comprehensively evaluate the cardiac function of zebrafish was proposed. Based on this model, FJHQD, its mainly botanical drugs, components and ingredients were evaluated for the anti-heart failure effects. The results showed that FJHQD and its botanical drugs exhibited potent anti-heart failure activity. Furthermore, total alkaloids from Stephania tetrandra S. Moore, total flavonoids from Astragalus mongholicus Bunge and total flavonoids from Glycyrrhiza uralensis Fisch. ex DC. were identified to be the main components exerting the anti-heart failure activity of FJHQD. Then, we screened the main ingredients of these components, and glycyrrhizic acid, licochalcone A and calycosin were found to exhibit excellent cardioprotective effects. Finally, we found that FJHQD, glycyrrhizic acid, licochalcone A and calycosin may improve cardiac function in zebrafish by regulating oxidative stress, inflammatory response and apoptosis-related pathways. Taken together, our findings offer biological evidences toward the anti-heart failure effect of FJHQD, and provide guidance for the clinical application of FJHQD.
Collapse
Affiliation(s)
- Jun Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Zhenzhong Yang, ; Xiaoping Zhao,
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, China
| | - Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, China
- *Correspondence: Zhenzhong Yang, ; Xiaoping Zhao,
| |
Collapse
|
12
|
Sharma S, Rana AK, Sharma A, Singh D. Inhibition of Mammalian Target of Rapamycin Attenuates Recurrent Seizures Associated Cardiac Damage in a Zebrafish Kindling Model of Chronic Epilepsy. J Neuroimmune Pharmacol 2022; 17:334-349. [PMID: 34537895 DOI: 10.1007/s11481-021-10021-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is primarily linked with the cardiac irregularities that occur due to recurrent seizures. Our previous studies found a role of mTOR pathway activation in seizures-linked cardiac damage in a rat model. In continuation to the earlier work, the present study was devised to explore the role of rapamycin (mTOR inhibitor and clinically used immunosuppressive agent) in a zebrafish kindling model and associated cardiac damage. Adult zebrafish were incubated with increasing concentrations of rapamycin (1, 2 and, 4 μM), followed by pentylenetetrazole (PTZ) exposure to record seizure latency and severity. In another experiment, zebrafish were subjected to a standardized PTZ kindling protocol. The kindled fish were treated daily with rapamycin for up to 25 days, along with PTZ to record seizure severity. At the end, zebrafish heart was excised for carbonylation assay, gene expression, and protein quantification studies. In the acute PTZ convulsion test, treatment with rapamycin showed a significant increase in seizure latency and decreased seizure severity without any change in seizure incidence. Treatment with rapamycin also reduced the severity of seizures in kindled fish. The cardiac expressions of gpx, nppb, kcnh2, scn5a, mapk8, stat3, rps6 and ddit were decreased, whereas the levels of trxr2 and beclin 1 were increased following rapamycin treatment in kindled fish. Furthermore, rapamycin treatment also decreased p-mTOR expression and protein carbonyls level in the fish cardiac tissue. The present study concluded that rapamycin reduces seizures and associated cardiac damage by inhibiting mTOR activation in the zebrafish kindling model.
Collapse
Affiliation(s)
- Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditi Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
13
|
Kawakami R, Sunaga H, Iso T, Kaneko R, Koitabashi N, Obokata M, Harada T, Matsui H, Yokoyama T, Kurabayashi M. Ketone body and FGF21 coordinately regulate fasting-induced oxidative stress response in the heart. Sci Rep 2022; 12:7338. [PMID: 35513524 PMCID: PMC9072431 DOI: 10.1038/s41598-022-10993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ketone body β-hydroxybutyrate (βOHB) and fibroblast growth factor-21 (FGF21) have been proposed to mediate systemic metabolic response to fasting. However, it remains elusive about the signaling elicited by ketone and FGF21 in the heart. Stimulation of neonatal rat cardiomyocytes with βOHB and FGF21 induced peroxisome proliferator-activated receptor α (PPARα) and PGC1α expression along with the phosphorylation of LKB1 and AMPK. βOHB and FGF21 induced transcription of peroxisome proliferator-activated receptor response element (PPRE)-containing genes through an activation of PPARα. Additionally, βOHB and FGF21 induced the expression of Nrf2, a master regulator for oxidative stress response, and catalase and Ucp2 genes. We evaluated the oxidative stress response gene expression after 24 h fast in global Fgf21-null (Fgf21-/-) mice, cardiomyocyte-specific FGF21-null (cmFgf21-/-) mice, wild-type (WT), and Fgf21fl/fl littermates. Fgf21-/- mice but not cmFgf21-/- mice had unexpectedly higher serum βOHB levels, and higher expression levels of PPARα and oxidative stress response genes than WT mice or Fgf21fl/fl littermates. Notably, expression levels of oxidative stress response genes were significantly correlated with serum βOHB and PGC1α levels in both WT and Fgf21-/- mice. These findings suggest that fasting-induced βOHB and circulating FGF21 coordinately regulate oxidative stress response gene expression in the heart.
Collapse
Affiliation(s)
- Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Center for Liberal Arts and Sciences, Ashikaga University, 268-1 Omae-machi, Ashikaga, Tochigi, 326-8558, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan.,Osaka University, Graduate School of Frontier Biosciences, 1-3 Yamadaoka, Suita, Osaka, Japan
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tomonari Harada
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
14
|
Liu J, Tang M, Li T, Su Z, Zhu Z, Dou C, Liu Y, Pei H, Yang J, Ye H, Chen L. Honokiol Ameliorates Post-Myocardial Infarction Heart Failure Through Ucp3-Mediated Reactive Oxygen Species Inhibition. Front Pharmacol 2022; 13:811682. [PMID: 35264952 PMCID: PMC8899544 DOI: 10.3389/fphar.2022.811682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 01/31/2023] Open
Abstract
Post-myocardial infarction heart failure (post-MI HF) is one of the leading global causes of death, and current prevention and treatment methods still cannot avoid the increasing incidence. Honokiol (HK) has previously been reported to improve myocardial ischemia/reperfusion injury and reverse myocardial hypertrophy by activating Sirt1 and Sirt3. We suspect that HK may also have a therapeutic effect on post-MI HF. In this study, we aimed to investigate the efficacy and mechanism of HK in the treatment of post-MI HF. We found that HK inhibited myocardial reactive oxygen species (ROS) production, reduced myocardial fibrosis, and improved cardiac function in mice after MI. HK also reduced the abnormality of mitochondrial membrane potential (MMP) and apoptosis of cardiomyocytes caused by peroxide in neonatal cardiomyocytes. RNAseq results revealed that HK restored the transcriptome changes to a certain extent and significantly enhanced the expression of mitochondrial inner membrane uncoupling protein isoform 3 (Ucp3), a protein that inhibits the production of mitochondrial ROS, protects cardiomyocytes, and relieves heart failure after myocardial infarction (MI). In cardiomyocytes with impaired Ucp3 expression, HK cannot protect against the damage caused by peroxide. More importantly, in Ucp3 knockout mice, HK did not change the increase in the ROS level and cardiac function damage after MI. Taken together, our results suggest that HK can increase the expression of the cardioprotective protein Ucp3 and maintain MMP, thereby inhibiting the production of ROS after MI and ameliorating heart failure.
Collapse
Affiliation(s)
- Jianyu Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- West China-Washington Mitochondria and Metabolism Center, Department of Anesthesiology, Laboratory of Anesthesiology and Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengying Su
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zejiang Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Caixia Dou
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lijuan Chen,
| |
Collapse
|
15
|
Toro R, Pérez-Serra A, Mangas A, Campuzano O, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Alcalá M, Carrera E, García-Padilla C, Franco D, Bonet F. miR-16-5p Suppression Protects Human Cardiomyocytes against Endoplasmic Reticulum and Oxidative Stress-Induced Injury. Int J Mol Sci 2022; 23:ijms23031036. [PMID: 35162959 PMCID: PMC8834785 DOI: 10.3390/ijms23031036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress, defined as the excess production of reactive oxygen species (ROS) relative to antioxidant defense, plays a significant role in the development of cardiovascular diseases. Endoplasmic reticulum (ER) stress has emerged as an important source of ROS and its modulation could be cardioprotective. Previously, we demonstrated that miR-16-5p is enriched in the plasma of ischemic dilated cardiomyopathy (ICM) patients and promotes ER stress-induced apoptosis in cardiomyocytes in vitro. Here, we hypothesize that miR-16-5p might contribute to oxidative stress through ER stress induction and that targeting miR-16-5p may exert a cardioprotective role in ER stress-mediated cardiac injury. Analysis of oxidative markers in the plasma of ICM patients demonstrates that oxidative stress is associated with ICM. Moreover, we confirm that miR-16-5p overexpression promotes oxidative stress in AC16 cardiomyoblasts. We also find that, in response to tunicamycin-induced ER stress, miR-16-5p suppression decreases apoptosis, inflammation and cardiac damage via activating the ATF6-mediated cytoprotective pathway. Finally, ATF6 is identified as a direct target gene of miR-16-5p by dual-luciferase reporter assays. Our results indicate that miR-16-5p promotes ER stress and oxidative stress in cardiac cells through regulating ATF6, suggesting that the inhibition of miR-16-5p has potential as a therapeutic approach to protect the heart against ER and oxidative stress-induced injury.
Collapse
Affiliation(s)
- Rocío Toro
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain;
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Correspondence: (R.T.); (F.B.)
| | - Alexandra Pérez-Serra
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain;
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain;
| | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain;
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain;
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department Hospital Cruz Roja, Alfonso X University, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
| | - Mónica Ramos
- Cardiology Department Hospital Cruz Roja, Alfonso X University, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
| | - Martin Alcalá
- Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28668 Madrid, Spain; (M.A.); (E.C.)
| | - Esther Carrera
- Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28668 Madrid, Spain; (M.A.); (E.C.)
| | - Carlos García-Padilla
- Departamento de Anatomia, Embriologia y Zoologia, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Diego Franco
- Departamento de Biologia Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Fernando Bonet
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain;
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Correspondence: (R.T.); (F.B.)
| |
Collapse
|
16
|
Saini JK, Janes TA, MacLean JE, Pagliardini S. Expiratory activity during sleep in children. J Sleep Res 2021; 31:e13539. [PMID: 34921704 DOI: 10.1111/jsr.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
Sleep irregularities and respiratory events (apnea, O2 desaturation or a combination thereof) are often present in the infant population. While inspiration is the main active process in the act of breathing, expiration is generally thought to occur passively. Although commonly considered as quiet during sleep, expiratory abdominal muscles have been proposed to be recruited to promote ventilation, facilitate gas exchange, and reduce the work of breathing during conditions of increased respiratory drive, exercise, or airway obstruction. In this study, we investigated the occurrence of expiratory abdominal muscle activity in polysomnographic studies of subjects (aged 0-2 years) suspected of sleep disordered breathing. Our results indicate that abdominal muscle activation occurs during sleep, most frequently during non-rapid eye movement and rapid-eye movement states compared to slow-wave sleep. Furthermore, abdominal muscle activity was present during regular breathing or associated with respiratory events (apneas or O2 desaturation). In the latter case, abdominal muscle recruitment more frequently followed the onset of respiratory events and terminated with recovery from blood O2 desaturation events. We conclude that expiratory abdominal muscle activity contributes to the pattern of respiratory muscle recruitment during sleep in infants and given its temporal relationship with respiratory events, we propose that its recruitment could facilitate proper ventilation by counteracting airway resistance and O2 desaturation in infancy across different stages of sleep.
Collapse
Affiliation(s)
- Jasmeen K Saini
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Tara A Janes
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Joanna E MacLean
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada.,Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Activation of the Hippo Pathway in Rana sylvatica: Yapping Stops in Response to Anoxia. Life (Basel) 2021; 11:life11121422. [PMID: 34947952 PMCID: PMC8708225 DOI: 10.3390/life11121422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
Wood frogs (Rana sylvatica) display well-developed anoxia tolerance as one component of their capacity to endure prolonged whole-body freezing during the winter months. Under anoxic conditions, multiple cellular responses are triggered to efficiently cope with stress by suppressing gene transcription and promoting activation of mechanisms that support cell survival. Activation of the Hippo signaling pathway initiates a cascade of protein kinase reactions that end with phosphorylation of YAP protein. Multiple pathway components of the Hippo pathway were analyzed via immunoblotting, qPCR or DNA-binding ELISAs to assess the effects of 24 h anoxia and 4 h aerobic recovery, compared with controls, on liver and heart metabolism of wood frogs. Immunoblot results showed significant increases in the relative levels of multiple proteins of the Hippo pathway representing an overall activation of the pathway in both organs under anoxia stress. Upregulation of transcript levels further confirmed this. A decrease in YAP and TEAD protein levels in the nuclear fraction also indicated reduced translocation of these proteins. Decreased DNA-binding activity of TEAD at the promoter region also suggested repression of gene transcription of its downstream targets such as SOX2 and OCT4. Furthermore, changes in the protein levels of two downstream targets of TEAD, OCT4 and SOX2, established regulated transcriptional activity and could possibly be associated with the activation of the Hippo pathway. Increased levels of TAZ in anoxic hearts also suggested its involvement in the repair mechanism for damage caused to cardiac muscles during anoxia. In summary, this study provides the first insights into the role of the Hippo pathway in maintaining cellular homeostasis in response to anoxia in amphibians.
Collapse
|
18
|
COVID-19, the Pandemic of the Century and Its Impact on Cardiovascular Diseases. CARDIOLOGY DISCOVERY 2021; 1:233-258. [PMID: 34888547 PMCID: PMC8638821 DOI: 10.1097/cd9.0000000000000038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely ranks among the deadliest diseases in human history. As with other coronaviruses, SARS-CoV-2 infection damages not only the lungs but also the heart and many other organs that express angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2. COVID-19 has upended lives worldwide. Dietary behaviors have been altered such that they favor metabolic and cardiovascular complications, while patients have avoided hospital visits because of limited resources and the fear of infection, thereby increasing out-hospital mortality due to delayed diagnosis and treatment. Clinical observations show that sex, age, and race all influence the risk for SARS-CoV-2 infection, as do hypertension, obesity, and pre-existing cardiovascular conditions. Many hospitalized COVID-19 patients suffer cardiac injury, acute coronary syndromes, or cardiac arrhythmia. SARS-CoV-2 infection may lead to cardiomyocyte apoptosis and necrosis, endothelial cell damage and dysfunction, oxidative stress and reactive oxygen species production, vasoconstriction, fibrotic and thrombotic protein expression, vascular permeability and microvascular dysfunction, heart inflammatory cell accumulation and activation, and a cytokine storm. Current data indicate that COVID-19 patients with cardiovascular diseases should not discontinue many existing cardiovascular therapies such as ACE inhibitors, angiotensin receptor blockers, steroids, aspirin, statins, and PCSK9 inhibitors. This review aims to furnish a framework relating to COVID-19 and cardiovascular pathophysiology.
Collapse
|
19
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
20
|
Jacobs PJ, Hart DW, Suess T, Janse van Vuuren AK, Bennett NC. The Cost of Reproduction in a Cooperatively Breeding Mammal: Consequences of Seasonal Variation in Rainfall, Reproduction, and Reproductive Suppression. Front Physiol 2021; 12:780490. [PMID: 34867486 PMCID: PMC8640211 DOI: 10.3389/fphys.2021.780490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022] Open
Abstract
Biological investments, such as reproduction, are influenced by both biotic and abiotic factors and their interactions. The trade-off between reproduction and survival has been well established. Seasonally breeding species, therefore, may exhibit variations in these trade-offs, but there is a dearth of knowledge concerning this. This study investigated the physiological cost of reproduction (measured through oxidative stress) across seasons in the cooperatively breeding highveld mole-rat (Cryptomys hottentotus pretoriae), one of the few seasonal breeding mole-rats. Oxidative stress indicates elevated reactive oxygen species (ROS) levels, which can overwhelm antioxidant defences resulting in damaged proteins, lipids and DNA, which overall can reduce longevity and compromise reproduction. Oxidative markers such as total oxidant status (TOS-measure of total peroxides present), total antioxidant capacity (TAC), oxidative stress index (OSI), and malondialdehyde (MDA) are utilised to measure oxidative stress. In this study, breeding and non-breeding male (NBM) and female mole-rats were captured during the dry season (breeding period) and wet season (non-breeding period). There was an apparent cost of reproduction in the highveld mole-rat; however, the seasonality pattern to the cost of reproduction varied between the sexes. Breeding females (BFs) had significantly higher MDA during the breeding period/dry season in comparison to the non-breeding period/wet season; this is possibly a consequence of bearing and nursing offspring. Contrastingly, breeding males (BMs) showed increased oxidative damage in the non-breeding/wet season compared to the breeding/dry season, possibly due to increased activities of protecting their mating rights for the next breeding/dry season, but this was not significant. Interestingly, during the non-breeding period/wet season, non-breeding females (NBFs) are released from their reproductive suppression, which resulted in increases in TOS and OSI, which again indicated that just the mere ability to be able to breed results in a cost (oxidative stress). Therefore we can speculate that highveld mole-rats exhibited seasonal variation in redox balance brought about by variation in abiotic variables (e.g., rainfall), physiology and behaviour. We conclude that physiological changes associated with reproduction are sufficient to induce significant acute oxidative stress in the plasma of female highveld mole-rats, which become alleviated following transition to the non-breeding season/wet period suggesting a possible hormetic effect.
Collapse
|
21
|
Tang XH, Gambardella J, Jankauskas S, Wang X, Santulli G, Gudas LJ, Levi R. A Retinoic Acid Receptor β 2 Agonist Improves Cardiac Function in a Heart Failure Model. J Pharmacol Exp Ther 2021; 379:182-190. [PMID: 34389654 PMCID: PMC8626778 DOI: 10.1124/jpet.121.000806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated that the selective retinoic acid receptor (RAR) β 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. We hypothesized that by decreasing oxidative stress and consequent fibrogenesis, AC261066 could attenuate the development of contractile dysfunction in post-ischemic heart failure (HF). We tested this hypothesis in vivo using an established murine model of myocardial infarction (MI), obtained by permanent occlusion of the left anterior descending coronary artery. Treating mice with AC261066 in drinking water significantly attenuated the post-MI deterioration of echocardiographic indices of cardiac function, diminished remodeling, and reduced oxidative stress, as evidenced by a decrease in malondialdehyde level and p38 mitogen-activated protein kinase expression in cardiomyocytes. The effects of AC261066 were also associated with a decrease in interstitial fibrosis, as shown by a marked reduction in collagen deposition and α-smooth muscle actin expression. In cardiac murine fibroblasts subjected to hypoxia, AC261066 reversed hypoxia-induced decreases in superoxide dismutase 2 and angiopoietin-like 4 transcriptional levels as well as the increase in NADPH oxidase 2 mRNA, demonstrating that the post-MI cardioprotective effects of AC261066 are associated with an action at the fibroblast level. Thus, AC261066 alleviates post-MI cardiac dysfunction by modulating a set of genes involved in the oxidant/antioxidant balance. These AC261066 responsive genes diminish interstitial fibrogenesis and remodeling. Since MI is a recognized major cause of HF, our data identify RARβ 2 as a potential pharmacological target in the treatment of HF. SIGNIFICANCE STATEMENT: A previous report showed that the selective retinoic acid receptor (RAR) β 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. This study shows that AC261066 attenuates the development of contractile dysfunction and maladaptive remodeling in post-ischemic heart failure (HF) by modulating a set of genes involved in oxidant/antioxidant balance. Since myocardial infarction is a recognized major cause of HF, these data identify RARβ 2 as a potential pharmacological target in the treatment of HF.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Jessica Gambardella
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Stanislovas Jankauskas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Xujun Wang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Gaetano Santulli
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| |
Collapse
|
22
|
Sahu I, Mali SM, Sulkshane P, Xu C, Rozenberg A, Morag R, Sahoo MP, Singh SK, Ding Z, Wang Y, Day S, Cong Y, Kleifeld O, Brik A, Glickman MH. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat Commun 2021; 12:6173. [PMID: 34702852 PMCID: PMC8548400 DOI: 10.1038/s41467-021-26427-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sachitanand M Mali
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Roni Morag
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Sumeet K Singh
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Zhanyu Ding
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sharleen Day
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Ashraf Brik
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
23
|
Wang H, Zheng B, Che K, Han X, Li L, Wang H, Liu Y, Shi J, Sun S. Protective effects of safranal on hypoxia/reoxygenation-induced injury in H9c2 cardiac myoblasts via the PI3K/AKT/GSK3β signaling pathway. Exp Ther Med 2021; 22:1400. [PMID: 34675994 PMCID: PMC8524664 DOI: 10.3892/etm.2021.10836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Safranal (SFR), an active ingredient extracted from saffron, exhibits a protective effect on the cardiovascular system. However, the mechanism of SFR against hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury has previously not been investigated in vitro. The aim of the present study was therefore to observe the protective effects of SFR on H/R-induced cardiomyocyte injury and to explore its mechanisms. A H/R injury model of H9c2 cardiac myoblasts was established by administering 800 µmol/l CoCl2 to H9c2 cells for 24 h and reoxygenating the cells for 4 h to induce hypoxia. H9c2 cardiac myoblasts were pretreated with SFR for 12 h to evaluate the associated protective effects. A Cell Counting Kit-8 assay was used for cell viability detection, and the expression levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), glutathione peroxidase (GSH-px), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and caspase-3, and the intracellular Ca2+ concentration were measured using the corresponding commercial kits. Levels of reactive oxygen species (ROS) in the cells were detected using 2,7-dichlorodihydrofluorescein diacetate. Flow cytometry was used to determine the degree of apoptosis and the level of mitochondrial membrane potential (MMP). Moreover, the expression levels of phosphorylated (p-)PI3K, AKT, p-AKT, glycogen synthase kinase 3β (GSK3β), p-GSK3β, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blot analysis. Results of the present study demonstrated that the H9c2 cardiac myoblasts treated with SFR exhibited significantly improved levels of viability and significantly reduced levels of ROS, compared with the H/R group. Furthermore, compared with the H/R group, SFR treatment significantly increased the MMP levels and antioxidant enzyme levels, including CAT, SOD and GSH-px; whereas the levels of CK-MB, LDH, MDA and intracellular Ca2+ concentration were significantly decreased. Moreover, the results of the present study demonstrated that SFR significantly reduced caspase-3, cleaved caspase-3 and Bax protein expression levels, but upregulated the Bcl-2 protein expression levels. SFR also increased the protein expressions of PI3K/AKT/GSK3β. In summary, the results suggested that SFR may exert a protective effect against H/R-induced cardiomyocyte injury, which occurs in connection with the inhibition of oxidative stress and apoptosis via regulation of the PI3K/AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Hefei Wang
- Department of Traditional Chinese Medicine and Medical History Literature, School of Basic Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Bin Zheng
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Kaimeng Che
- Department of Traditional Chinese Medicine and Medical History Literature, School of Basic Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- Department of Traditional Chinese Medicine and Medical History Literature, School of Basic Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Li
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050200, P.R. China
| | - Hongfang Wang
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yanshuang Liu
- Department of Diagnostics, Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jing Shi
- Department of Scientific Research Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shijiang Sun
- Department of Hospital Management and Medical History Literature, Hebei Province Hospital of Chinese Medicine, The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
24
|
Chen K, Sun Z. Estrogen inhibits renal Na-Pi Co-transporters and improves klotho deficiency-induced acute heart failure. Redox Biol 2021; 47:102173. [PMID: 34678656 PMCID: PMC8577443 DOI: 10.1016/j.redox.2021.102173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/06/2023] Open
Abstract
Objective and hypothesis Klotho is an aging-suppressor gene. Mutation of Klotho gene causes hyperphosphatemia and acute heart failure. However, the relationship of hyperphosphatemia and acute heart failure is unclear. We hypothesize that hyperphosphatemia mediates Klotho deficiency-induced acute heart failure and further that therapeutic reduction of hyperphosphatemia prevents acute heart failure in Klotho mutant (KL(−/−)) mice. Methods and results A significant elevation of serum phosphorus levels and a large reduction of heart function were found in KL(−/−) mice by six weeks of age. Normalization of serum phosphorus levels by low phosphate diet (LPD) rescued Klotho deficiency-induced heart failure and extended lifespan in male mice. Klotho deficiency impaired cardiac mitochondrial respiratory enzyme function and increased superoxide production, oxidative stress, and cardiac cell apoptosis in male KL(−/−) mice which can be eliminated by LPD. LPD, however, did not rescue hyperphosphatemia or heart failure in female KL(−/−) mice. LPD did not affect estrogen depletion in female KL(−/−) mice. Normalization of serum estrogen levels by treatment with 17β-estradiol prevented hyperphosphatemia and heart failure in female KL(−/−) mice. Mechanistically, treatment with 17β-estradiol rescued hyperphosphatemia via inhibiting renal Na-Pi co-transporter expression. Normalization of serum phosphorus levels by treatment with 17β-estradiol also abolished cardiac mitochondrial respiratory enzyme dysfunction, ROS overproduction, oxidative stress and cardiac cell apoptosis in female KL(−/−) mice. Conclusion Klotho deficiency causes acute heart failure via hyperphosphatemia in male mice which can be prevented by LPD. 17β-estradiol prevents Klotho deficiency-induced hyperphosphatemia and heart failure by eliminating upregulation of renal Na-Pi co-transporter expression in female mice.
Collapse
Affiliation(s)
- Kai Chen
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
25
|
Gonzaléz-Candia A, Arias PV, Aguilar SA, Figueroa EG, Reyes RV, Ebensperger G, Llanos AJ, Herrera EA. Melatonin Reduces Oxidative Stress in the Right Ventricle of Newborn Sheep Gestated under Chronic Hypoxia. Antioxidants (Basel) 2021; 10:antiox10111658. [PMID: 34829529 PMCID: PMC8614843 DOI: 10.3390/antiox10111658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension of newborns (PAHN) constitutes a critical condition involving both severe cardiac remodeling and right ventricle dysfunction. One main cause of this condition is perinatal hypoxia and oxidative stress. Thus, it is a public health concern for populations living above 2500 m and in cases of intrauterine chronic hypoxia in lowlands. Still, pulmonary and cardiac impairments in PAHN lack effective treatments. Previously we have shown the beneficial effects of neonatal melatonin treatment on pulmonary circulation. However, the cardiac effects of this treatment are unknown. In this study, we assessed whether melatonin improves cardiac function and modulates right ventricle (RV) oxidative stress. Ten lambs were gestated, born, and raised at 3600 m. Lambs were divided in two groups. One received daily vehicle as control, and another received daily melatonin (1 mg·kg-1·d-1) for 21 days. Daily cardiovascular measurements were recorded and, at 29 days old, cardiac tissue was collected. Melatonin decreased pulmonary arterial pressure at the end of the experimental period. In addition, melatonin enhanced manganese superoxide dismutase and catalase (CAT) expression, while increasing CAT activity in RV. This was associated with a decrease in superoxide anion generation at the mitochondria and NADPH oxidases in RV. Finally, these effects were associated with a marked decrease of oxidative stress markers in RV. These findings support the cardioprotective effects of an oral administration of melatonin in newborns that suffer from developmental chronic hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzaléz-Candia
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- Institute of Health Sciences, University of O’Higgins, Libertador Bernardo O’Higgins 611, Rancagua 2820000, Chile
| | - Pamela V. Arias
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Simón A. Aguilar
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Esteban G. Figueroa
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Roberto V. Reyes
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Germán Ebensperger
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Aníbal J. Llanos
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
| | - Emilio A. Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
- Correspondence: ; Tel.: +56-2-2977-0543
| |
Collapse
|
26
|
Manousek J, Kala P, Lokaj P, Ondrus T, Helanova K, Miklikova M, Brazdil V, Tomandlova M, Parenica J, Pavkova Goldbergova M, Hlasensky J. Oxidative Stress in Takotsubo Syndrome-Is It Essential for an Acute Attack? Indirect Evidences Support Multisite Impact Including the Calcium Overload-Energy Failure Hypothesis. Front Cardiovasc Med 2021; 8:732708. [PMID: 34738019 PMCID: PMC8562109 DOI: 10.3389/fcvm.2021.732708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022] Open
Abstract
Indirect evidences in reviews and case reports on Takotsubo syndrome (TTS) support the fact that the existence of oxidative stress (OS) might be its common feature in the pre-acute stage. The sources of OS are exogenous (environmental factors including pharmacological and toxic influences) and endogenous, the combination of both may be present, and they are being discussed in detail. OS is associated with several pathological conditions representing TTS comorbidities and triggers. The dominant source of OS electrones are mitochondria. Our analysis of drug therapy related to acute TTS shows many interactions, e.g., cytostatics and glucocorticoids with mitochondrial cytochrome P450 and other enzymes important for OS. One of the most frequently discussed mechanisms in TTS is the effect of catecholamines on myocardium. Yet, their metabolic influence is neglected. OS is associated with the oxidation of catecholamines leading to the synthesis of their oxidized forms - aminochromes. Under pathological conditions, this pathway may dominate. There are evidences of interference between OS, catecholamine/aminochrome effects, their metabolism and antioxidant protection. The OS offensive may cause fast depletion of antioxidant protection including the homocystein-methionine system, whose activity decreases with age. The alteration of effector subcellular structures (mitochondria, sarco/endoplasmic reticulum) and subsequent changes in cellular energetics and calcium turnover may also occur and lead to the disruption of cellular function, including neurons and cardiomyocytes. On the organ level (nervous system and heart), neurocardiogenic stunning may occur. The effects of OS correspond to the effect of high doses of catecholamines in the experiment. Intensive OS might represent "conditio sine qua non" for this acute clinical condition. TTS might be significantly more complex pathology than currently perceived so far.
Collapse
Affiliation(s)
- Jan Manousek
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
| | - Petr Kala
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Lokaj
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Ondrus
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Katerina Helanova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marie Miklikova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
| | - Vojtech Brazdil
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marie Tomandlova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiri Parenica
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Jiri Hlasensky
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
27
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
28
|
Jacobs PJ, Hart DW, Bennett NC. Plasma oxidative stress in reproduction of two eusocial African mole-rat species, the naked mole-rat and the Damaraland mole-rat. Front Zool 2021; 18:45. [PMID: 34535150 PMCID: PMC8447654 DOI: 10.1186/s12983-021-00430-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most prominent life-history trade-offs involves the cost of reproduction. Oxidative stress has been proposed to be involved in this trade-off and has been associated with reduced life span. There is currently an unclear relationship between oxidative cost and the reproduction-longevity trade-off. The current study, using a non-lethal and minimally invasive (only a single blood sample and no euthanasia) method, investigated whether an oxidative cost (oxidative stress) to reproduction would be apparent in two long-lived eusocial mole-rats, the naked mole-rat (NMR), Heterocephalus glaber, and the Damaraland mole-rat (DMR), Fukomys damarensis, where breeding colony members live longer than non-breeder conspecifics. We measured the direct redox balance in plasma by measuring the oxidative stress index (OSI) based on the ratio of total oxidant status and total antioxidant activity in breeders and non-breeders of both sexes, in the two species. NMR had significantly higher OSI between breeders and non-breeders of each sex, whereas DMR showed no significant differences except for total antioxidant capacity (TAC). The mode of reproductive suppression and the degree of reproductive investment in NMR may explain to some degree the redox balance difference between breeders and non-breeders. DMR show minimal physiological changes between breeders and non-breeders except for the mode of reproduction, which may explain some variations in TAC and TOS values, but similar OSI between breeders and non-breeders.
Collapse
Affiliation(s)
- Paul Juan Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Daniel William Hart
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0002, South Africa
| | - Nigel Charles Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
29
|
Huynh GT, Kesarwani V, Walker JA, Frith JE, Meagher L, Corrie SR. Review: Nanomaterials for Reactive Oxygen Species Detection and Monitoring in Biological Environments. Front Chem 2021; 9:728717. [PMID: 34568279 PMCID: PMC8461210 DOI: 10.3389/fchem.2021.728717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) and dissolved oxygen play key roles across many biological processes, and fluorescent stains and dyes are the primary tools used to quantify these species in vitro. However, spatio-temporal monitoring of ROS and dissolved oxygen in biological systems are challenging due to issues including poor photostability, lack of reversibility, and rapid off-site diffusion. In particular, ROS monitoring is hindered by the short lifetime of ROS molecules and their low abundance. The combination of nanomaterials and fluorescent detection has led to new opportunities for development of imaging probes, sensors, and theranostic products, because the scaffolds lead to improved optical properties, tuneable interactions with cells and media, and ratiometric sensing robust to environmental drift. In this review, we aim to critically assess and highlight recent development in nanosensors and nanomaterials used for the detection of oxygen and ROS in biological systems, and their future potential use as diagnosis tools.
Collapse
Affiliation(s)
- Gabriel T. Huynh
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Vidhishri Kesarwani
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Julia A. Walker
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Jessica E. Frith
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| |
Collapse
|
30
|
Hannemann J, Cordts K, Seniuk A, Choe CU, Schmidt-Hutten L, Duque Escobar J, Weinberger F, Böger R, Schwedhelm E. Arginine:Glycine Amidinotransferase Is Essential for Creatine Supply in Mice During Chronic Hypoxia. Front Physiol 2021; 12:703069. [PMID: 34483959 PMCID: PMC8416470 DOI: 10.3389/fphys.2021.703069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: Chronic hypoxia induces pulmonary and cardiovascular pathologies, including pulmonary hypertension (PH). L-arginine:glycine amidinotransferase (AGAT) is essential for homoarginine (hArg) and guanidinoacetate synthesis, the latter being converted to creatine by guanidinoacetate methyltransferase. Low hArg concentrations are associated with cardiovascular morbidity and predict mortality in patients with PH. We therefore aimed to investigate the survival and cardiac outcome of AGAT knockout (Agat−/−) mice under hypoxia and a possible rescue of the phenotype. Methods:Agat−/− mice and wild-type (WT) littermates were subjected to normoxia or normobaric hypoxia (10% oxygen) for 4 weeks. A subgroup of Agat−/− mice was supplemented with 1% creatine from weaning. Survival, hematocrit, blood lactate and glucose, heart weight-to-tibia length (HW/TL) ratio, hArg plasma concentration, and Agat and Gamt expression in lung, liver, and kidneys were evaluated. Results: After 6 h of hypoxia, blood lactate was lower in Agat−/−-mice as compared to normoxia (p < 0.001). Agat−/− mice died within 2 days of hypoxia, whereas Agat−/− mice supplemented with creatine and WT mice survived until the end of the study. In WT mice, hematocrit (74 ± 4 vs. 55 ± 2%, mean ± SD, p < 0.001) and HW/TL (9.9 ± 1.3 vs. 7.3 ± 0.7 mg/mm, p < 0.01) were higher in hypoxia, while hArg plasma concentration (0.25 ± 0.06 vs. 0.38 ± 0.12 μmol/L, p < 0.01) was lower. Agat and Gamt expressions were differentially downregulated by hypoxia in lung, liver, and kidneys. Conclusion:Agat and Gamt are downregulated in hypoxia. Agat−/− mice are nonviable in hypoxia. Creatine rescues the lethal phenotype, but it does not reduce right ventricular hypertrophy of Agat−/− mice in hypoxia.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| | - Kathrin Cordts
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Seniuk
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Cellular and Integrative Physiology, University Medical Center Hamburg, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Schmidt-Hutten
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jorge Duque Escobar
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Florian Weinberger
- Insitute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
31
|
Shen Z, Liu T, Xu T. Accurate Identification of Antioxidant Proteins Based on a Combination of Machine Learning Techniques and Hidden Markov Model Profiles. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5770981. [PMID: 34413898 PMCID: PMC8369162 DOI: 10.1155/2021/5770981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/19/2023]
Abstract
Antioxidant proteins (AOPs) play important roles in the management and prevention of several human diseases due to their ability to neutralize excess free radicals. However, the identification of AOPs by using wet-lab experimental techniques is often time-consuming and expensive. In this study, we proposed an accurate computational model, called AOP-HMM, to predict AOPs by extracting discriminatory evolutionary features from hidden Markov model (HMM) profiles. First, auto cross-covariance (ACC) variables were applied to transform the HMM profiles into fixed-length feature vectors. Then, we performed the analysis of variance (ANOVA) method to reduce the dimensionality of the raw feature space. Finally, a support vector machine (SVM) classifier was adopted to conduct the prediction of AOPs. To comprehensively evaluate the performance of the proposed AOP-HMM model, the 10-fold cross-validation (CV), the jackknife CV, and the independent test were carried out on two widely used benchmark datasets. The experimental results demonstrated that AOP-HMM outperformed most of the existing methods and could be used to quickly annotate AOPs and guide the experimental process.
Collapse
Affiliation(s)
- Zhehan Shen
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Xu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
32
|
Chitosan and Curcumin Nanoformulations against Potential Cardiac Risks Associated with Hydroxyapatite Nanoparticles in Wistar Male Rats. Int J Biomater 2021; 2021:3394348. [PMID: 34373695 PMCID: PMC8349268 DOI: 10.1155/2021/3394348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Nanoparticle-induced cardiovascular diseases have attracted much attention. Upon entering the blood circulation system, these particles have the potency to induce cardiomyocytes, leading to cardiac failure or myocardial ischemia, and the molecular mechanism remains to be completely clarified. In this study, the cardiac toxicity of rats orally exposed to hydroxyapatite nanoparticles (HAPNPs) has been observed through an increase in myocardial infarction serum markers including CK-MB and alterations in routine blood factors, expression of apoptosis-related protein P53, and increased levels of serum inflammatory markers represented by the tumor necrosis factor alpha and Interleukin-6, as well as a decline in heart antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed, as well as notable histological and histochemical alterations in the heart of these animals. mRNA and protein expressions of vascular endothelial growth factor (VEGF-A), cyclooxygenase-2 (COX-2), and atrial natriuretic factor (ANF) were elevated in the myocardium. However, the coadministration of chitosan nanoparticles (CsNPs) and/or curcumin nanoparticles (CurNPs) successfully modulated these alterations and induced activation in antioxidant parameters. The present data suggest that HAPNPs-induced apoptosis via the mitochondrial pathway may play a crucial role in cardiac tissue damage and the early treatment with CsNPs and CurNPs may protect the heart from infarction induced by HAPNPs toxic effect.
Collapse
|
33
|
Luo Y, Li Z, Ge P, Guo H, Li L, Zhang G, Xu C, Chen H. Comprehensive Mechanism, Novel Markers and Multidisciplinary Treatment of Severe Acute Pancreatitis-Associated Cardiac Injury - A Narrative Review. J Inflamm Res 2021; 14:3145-3169. [PMID: 34285540 PMCID: PMC8286248 DOI: 10.2147/jir.s310990] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is one of the common acute abdominal inflammatory diseases in clinic with acute onset and rapid progress. About 20% of the patients will eventually develop into severe acute pancreatitis (SAP) characterized by a large number of inflammatory cells infiltration, gland flocculus flaky necrosis and hemorrhage, finally inducing systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Pancreatic enzyme activation, intestinal endotoxemia (IETM), cytokine activation, microcirculation disturbance, autonomic nerve dysfunction and autophagy dysregulation all play an essential role in the occurrence and progression of SAP. Organ dysfunction is the main cause of early death in SAP. Acute kidney injury (AKI) and acute lung injury (ALI) are common, while cardiac injury (CI) is not, but the case fatality risk is high. Many basic studies have observed obvious ultrastructure change of heart in SAP, including myocardial edema, cardiac hypertrophy, myocardial interstitial collagen deposition. Moreover, in clinical practice, patients with SAP often presented various abnormal electrocardiogram (ECG) and cardiac function. Cases complicated with acute myocardial infarction and pericardial tamponade have also been reported and even result in stress cardiomyopathy. Due to the molecular mechanisms underlying SAP-associated cardiac injury (SACI) remain poorly understood, and there is no complete, unified treatment and sovereign remedy at present, this article reviews reports referring to the pathogenesis, potential markers and treatment methods of SACI in recent years, in order to improve the understanding of cardiac injury in severe pancreatitis.
Collapse
Affiliation(s)
- YaLan Luo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - ZhaoXia Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Peng Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - HaoYa Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - GuiXin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - CaiMing Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - HaiLong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
34
|
Aydemir D, Salman N, Karimzadehkhouei M, Alaca BE, Turan B, Ulusu NN. Evaluation of the Effects of Aging on the Aorta Stiffness in Relation with Mineral and Trace Element Levels: an Optimized Method via Custom-Built Stretcher Device. Biol Trace Elem Res 2021; 199:2644-2652. [PMID: 32918713 DOI: 10.1007/s12011-020-02380-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023]
Abstract
Aortic stiffness represents the major cause of aging and tightly associated with hypertension, atherosclerosis, cardiovascular diseases, and increased mortality. Mechanical characteristics of the aorta play a vital role in the blood flow, circulation, systolic pressure, and aortic stiffness; however, the correlation of trace element and mineral levels with aortic stiffness has not been studied before. Balance in the trace elements and minerals is vital for the biological functions; however, natural aging may alter this balance. Thus, after measuring aortic stiffness of aged and young rat aortas by a custom-built stretcher device, trace element and mineral levels were evaluated via ICP-MS. Also, biomarkers of aging including blood pressure, arterial pressure glucose, insulin levels, and histochemical parameters were investigated as well. Aortic stiffness, blood glucose, plasma insulin, systolic, diastolic, and mean arterial pressure significantly increased by aging in the aorta of aged rats compared with the young ones. Also, Fe, Al, Co, Ni, Zn, Sr, Na, Mg, and K levels increased in the aged aorta samples compared with the young aorta samples of rats. Increased levels of the indicated elements may be correlated with the development and progression of aortic stiffness and vascular complications. Thus, possible mechanisms correlating aortic stiffness with the imbalance in the trace element and mineral levels should be further investigated.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koç University, Sariyer, 34450, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - Naveed Salman
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Mehrdad Karimzadehkhouei
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - B Erdem Alaca
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
- Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, 06100, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koç University, Sariyer, 34450, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
35
|
Zheng B, Qi J, Liu P, Zhang M, Zhang Y, Xue Y, Han X, Xu S, Chu L. 10-Gingerol alleviates hypoxia/reoxygenation-induced cardiomyocyte injury through inhibition of the Wnt5a/Frizzled-2 pathway. Food Sci Nutr 2021; 9:3917-3931. [PMID: 34262748 PMCID: PMC8269582 DOI: 10.1002/fsn3.2381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022] Open
Abstract
10-Gingerol (10-Gin), an active ingredient extracted from ginger, has been reported to have beneficial effects on the cardiovascular system. However, 10-Gin has not been proved to offer protection against cardiomyocyte injury induced by hypoxia/reoxygenation (H/R). This study aimed to investigate the protective effects of 10-Gin against H/R-induced injury and its potential mechanisms in cardiomyocytes. A H/R injury model of H9c2 cardiomyocytes was established using 600 μmol/L CoCl2 to induce hypoxia in the cells for 24 hr and then reoxygenated for 3 hr. 10-Gin was pretreated with H9c2 cardiomyocytes for 24 hr to assess its cardiomyocyte protection. Our results showed that 10-Gin improved the viability of H9c2 cardiomyocytes in the H/R model and decreased the activities of creatine kinase, lactate dehydrogenase, and the generation of reactive oxygen species. By intracellular Ca2+ ([Ca2+]i) fluorescence, we found that 10-Gin could significantly reduce the [Ca2+]i concentration. 10-Gin administration increased the activities of antioxidase and reduced malondialdehyde content and inflammatory cytokine levels. 10-Gin also reduced the apoptosis levels. Importantly, 10-Gin administration decreased the gene and protein expressions of Wnt5a and Frizzled-2. In conclusion, 10-Gin alleviates H/R-induced cardiomyocyte injury, which is associated with the antioxidation, anti-inflammation, antiapoptosis action, and reduction of [Ca2+]i overload by suppressing the Wnt5a/Frizzled-2 pathway.
Collapse
Affiliation(s)
- Bin Zheng
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Jiaying Qi
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Panpan Liu
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Muqing Zhang
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Yuanyuan Zhang
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Yucong Xue
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Xue Han
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Shan Xu
- Affiliated HospitalHebei University of Chinese MedicineShijiazhuangChina
| | - Li Chu
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐cerebrovascular DiseaseShijiazhuangChina
| |
Collapse
|
36
|
Impaired Autophagy Induced by oxLDL/ β2GPI/anti- β2GPI Complex through PI3K/AKT/mTOR and eNOS Signaling Pathways Contributes to Endothelial Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6662225. [PMID: 34221236 PMCID: PMC8219424 DOI: 10.1155/2021/6662225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Endothelial cell dysfunction plays a fundamental role in the pathogenesis of atherosclerosis (AS), and endothelial autophagy has protective effects on the development of AS. Our previous study had shown that oxidized low-density lipoprotein/β2-glycoprotein I/anti-β2-glycoprotein I antibody (oxLDL/β2GPI/anti-β2GPI) complex could promote the expressions of inflammatory cytokines and enhance the adhesion of leukocytes to endothelial cells. In the present study, we aimed to assess the effects of oxLDL/β2GPI/anti-β2GPI complex on endothelial autophagy and explore the associated potential mechanisms. Human umbilical vein endothelial cells (HUVECs) and mouse brain endothelial cell line (bEnd.3) were used as models of the vascular endothelial cells. Autophagy was evaluated by examining the expressions of autophagic proteins using western blotting analysis, autophagosome accumulation using transmission electron microscopy, and RFP-GFP-LC3 adenoviral transfection and autophagic flux using lysosome inhibitor chloroquine. The expressions of phospho-PI3K, phospho-AKT, phospho-mTOR, and phospho-eNOS were determined by western blotting analysis. 3-Methyladenine (3-MA) and rapamycin were used to determine the role of autophagy in oxLDL/β2GPI/anti-β2GPI complex-induced endothelial cell dysfunction. We showed that oxLDL/β2GPI/anti-β2GPI complex suppressed the autophagy, evidenced by an increase in p62 protein, a decrease in LC3-II and Beclin1, and a reduction of autophagosome generation in endothelial cells. Moreover, inhibition of autophagy was associated with PI3K/AKT/mTOR and eNOS signaling pathways. Rapamycin attenuated oxLDL/β2GPI/anti-β2GPI complex-induced endothelial inflammation, oxidative stress, and apoptosis, whereas 3-MA alone induced the endothelial injury. Our results suggested that oxLDL/β2GPI/anti-β2GPI complex inhibited endothelial autophagy via PI3K/AKT/mTOR and eNOS signaling pathways and further contributed to endothelial cell dysfunction. Collectively, our findings provided a novel mechanism for vascular endothelial injury in AS patients with an antiphospholipid syndrome (APS) background.
Collapse
|
37
|
Wang L, Ren C, Li Y, Gao C, Li N, Li H, Wu D, He X, Xia C, Ji X. Remote ischemic conditioning enhances oxygen supply to ischemic brain tissue in a mouse model of stroke: Role of elevated 2,3-biphosphoglycerate in erythrocytes. J Cereb Blood Flow Metab 2021; 41:1277-1290. [PMID: 32933360 PMCID: PMC8142126 DOI: 10.1177/0271678x20952264] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygen supply for ischemic brain tissue during stroke is critical to neuroprotection. Remote ischemic conditioning (RIC) treatment is effective for stroke. However, it is not known whether RIC can improve brain tissue oxygen supply. In current study, we employed a mouse model of stroke created by middle cerebral artery occlusion (MCAO) to investigate the effect of RIC on oxygen supply to the ischemic brain tissue using a hypoxyprobe system. Erythrocyte oxygen-carrying capacity and tissue oxygen exchange were assessed by measuring oxygenated hemoglobin and oxygen dissociation curve. We found that RIC significantly mitigated hypoxic signals and decreased neural cell death, thereby preserving neurological functions. The tissue oxygen exchange was markedly enhanced, along with the elevated hemoglobin P50 and right-shifted oxygen dissociation curve. Intriguingly, RIC markedly elevated 2,3-biphosphoglycerate (2,3-BPG) levels in erythrocyte, and the erythrocyte 2,3-BPG levels were highly negatively correlated with the hypoxia in the ischemic brain tissue. Further, adoptive transfusion of 2,3-BPG-rich erythrocytes prepared from RIC-treated mice significantly enhanced the oxygen supply to the ischemic tissue in MCAO mouse model. Collectively, RIC protects against ischemic stroke through improving oxygen supply to the ischemic brain tissue where the enhanced tissue oxygen delivery and exchange by RIC-induced 2,3-BPG-rich erythrocytes may play a role.
Collapse
Affiliation(s)
- Lin Wang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yang Li
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changqing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Geriatric Medical Research Center, Beijing, China.,Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| |
Collapse
|
38
|
Kobara M, Nessa N, Toba H, Nakata T. Induction of autophagy has protective roles in imatinib-induced cardiotoxicity. Toxicol Rep 2021; 8:1087-1097. [PMID: 34136360 PMCID: PMC8176231 DOI: 10.1016/j.toxrep.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiotoxicity is one of the severe adverse effects of chemotherapeutic agents. Imatinib was previously reported to induce cardiotoxicity. Autophagy is an intracellular bulk protein and organelle degradation process, but its roles in cardiac diseases are unclear. We examined whether imatinib induces cardiomyocyte autophagy, and the role of autophagy in imatinib-induced cardiotoxicity using in vitro and in vivo experiments. In in vitro experiments, neonatal rat cardiomyocytes were treated with imatinib (1, 5, or 10 μM; 6 h). Myocyte autophagy was assessed by microtubule-associated protein light chain (LC) 3-II, beclin 1, mature cathepsin D, and acridine orange-stained mature autolysosome expression. Imatinib increased their expression, suggesting that it induced autophagy. Consequently, imatinib altered the production of mitochondria-derived reactive oxygen species (ROS) and loss of mitochondrial membrane potential, which were assessed by the fluorescent indicator MitoSOX and JC-1, respectively, leading to cardiomyocyte apoptosis. 3-methyl-adenine (3MA), an autophagic inhibitor, exacerbated imatinib-induced apoptosis by 30 %. In in vivo experiments, C57BL/6 mice were treated with imatinib (50 and 200 mg/kg/day) for 5 weeks in the presence or absence of 3MA. Echocardiographic measurement revealed that imatinib (200 mg) caused dilatation of the left ventricle (LV) and reduced LV fractional shortening. Apoptosis and LC3-II expression in cardiac tissue were increased by imatinib. Co-treatment with 3MA and imatinib further impaired imatinib-induced cardiac apoptosis and LV dysfunction. This study suggests that imatinib induces cardiomyocyte apoptosis, leading to cardiac dysfunction. Imatinib increases cardiomyocyte autophagy as a consequence of apoptosis and autophagy has a pro-survival role in imatinib-induced cardiac impairment.
Collapse
Affiliation(s)
- Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Naseratun Nessa
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuo Nakata
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
39
|
Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol 2021; 9:672935. [PMID: 34095143 PMCID: PMC8169986 DOI: 10.3389/fcell.2021.672935] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.
Collapse
Affiliation(s)
- Farhad Khosravi
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
40
|
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants. Antioxidants (Basel) 2021; 10:antiox10050760. [PMID: 34064823 PMCID: PMC8150787 DOI: 10.3390/antiox10050760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/11/2023] Open
Abstract
Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.
Collapse
|
41
|
Buelna-Chontal M, García-Niño WR, Silva-Palacios A, Enríquez-Cortina C, Zazueta C. Implications of Oxidative and Nitrosative Post-Translational Modifications in Therapeutic Strategies against Reperfusion Damage. Antioxidants (Basel) 2021; 10:749. [PMID: 34066806 PMCID: PMC8151040 DOI: 10.3390/antiox10050749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications based on redox reactions "switch on-off" the biological activity of different downstream targets, modifying a myriad of processes and providing an efficient mechanism for signaling regulation in physiological and pathological conditions. Such modifications depend on the generation of redox components, such as reactive oxygen species and nitric oxide. Therefore, as the oxidative or nitrosative milieu prevailing in the reperfused heart is determinant for protective signaling, in this review we defined the impact of redox-based post-translational modifications resulting from either oxidative/nitrosative signaling or oxidative/nitrosative stress that occurs during reperfusion damage. The role that cardioprotective conditioning strategies have had to establish that such changes occur at different subcellular levels, particularly in mitochondria, is also presented. Another section is devoted to the possible mechanism of signal delivering of modified proteins. Finally, we discuss the possible efficacy of redox-based therapeutic strategies against reperfusion damage.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (M.B.-C.); (W.R.G.-N.); (A.S.-P.); (C.E.-C.)
| |
Collapse
|
42
|
Shenxian-Shengmai Oral Liquid Improves Sinoatrial Node Dysfunction through the PKC/NOX-2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5572140. [PMID: 33936239 PMCID: PMC8055400 DOI: 10.1155/2021/5572140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022]
Abstract
Sick sinus syndrome (SSS) is one of the common causes of cardiac syncope and sudden death; the occurrence of SSS is associated with the accumulation of ROS in the sinoatrial node (SAN). Shenxian-shengmai (SXSM) is a traditional Chinese medicine available as oral liquid that causes a significant increase in heart rate. The objective of this study is to observe the improvement of SXSM on SAN function in SSS mice and explore its potential mechanism. In the current study, SSS was simulated in mice by inducing SAN dysfunction using a micro-osmotic pump to inject angiotensin II (Ang II). The mouse model with SSS was used to determine the effect of SXSM on SAN function and to explore its potential mechanism. Furthermore, the HL-1 cell line, derived from mouse atrial myocytes, was used to simulate SAN pacemaker cells. Our results indicated that SXSM significantly increased the heart rate of SSS mice by reducing the AngII-induced accumulation of ROS in the SAN and by inhibiting the expression of HDAC4, thereby reducing the loss of HCN4, a critical component of the cardiac conduction system. MASSON staining revealed a reduction of SAN damage in SSS mice that were treated with SXSM compared with controls. In vitro experiments showed that AngII treatment caused an upregulation of the PKC/NOX-2 signaling pathway in HL-1 cells which could be prevented by pretreatment with SXSM. The protective effect of SXSM was attenuated upon treatment with the PCK agonist PMA. In conclusion, SXSM reduced the AngII-induced accumulation of ROS in the SAN through the PKC/NOX2 signaling pathway, improving the functioning of the SAN and preventing the decrease of heart rate in SSS mice.
Collapse
|
43
|
Matrine regulates H2O2-induced oxidative stress through long non-coding RNA HOTAIR/miR-106b-5p axis via AKT and STAT3 pathways. Biosci Rep 2021; 40:224115. [PMID: 32395744 PMCID: PMC7251328 DOI: 10.1042/bsr20192560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Matrine is a main active constituent of Chinese herb Sophora flavescens Ait (Kushen), which has shown various pharmacological effects, and has been reported to exhibit protective effects in heart failure. In the present study, the underlying mechanism of matrine was explored in H2O2-induced H9c2 cell line. It was confirmed that matrine could alleviate H2O2-induced injury in H9c2 cells. And the down-regulation of long non-coding RNA HOTAIR induced by H2O2 could be reversed by treating with matrine. Moreover, overexpression of HOTAIR promoted cell viability and superoxide dismutase (SOD) level, but inhibited cell apoptosis and lactate dehydrogenase (LDH) level. We found that miR-106b-5p was a target of HOTAIR and negatively regulated by HOTAIR. Moreover, up-regulation of miR-106b-5p restored the effects of HOTAIR overexpression on cell viability, apoptosis, and the levels of LDH and SOD. In addition, matrine protected H9c2 cells from H2O2-induced injury through HOTAIR/miR-106b-5p axis. Furthermore, we discovered that matrine exerted protective effects on H2O2-induced H9c2 cells through activating STAT3 and AKT pathway. In brief, matrine modulated H2O2-induced myocardial oxidative stress repair through HOTAIR/miR-106b-5p axis via AKT and STAT3 signaling pathway. Our study may provide a therapeutic target for the therapy of oxidative stress heart diseases.
Collapse
|
44
|
Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments. Sci Rep 2021; 11:5064. [PMID: 33658614 PMCID: PMC7930030 DOI: 10.1038/s41598-021-84652-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Amur ide (Leuciscus waleckii), a Cyprinid species, is broadly distributed in Northeast Asia. Different from its freshwater counterparts, the population in Lake Dali Nor has a strong alkalinity tolerance and can adapt to extremely alkali-saline water with bicarbonate over 50 mmol/L. To uncover the genetic basis of its alkaline adaptation, three populations, including one alkali form from Lake Dali Nor (DL), one freshwater form from its adjacent sister Lake Ganggeng Nor (GG), and one freshwater form from its historical origin, namely, the Songhua River (SH), were analyzed using genome resequencing technology. A total of 679.82 Gb clean data and 38,091,163 high-quality single-nucleotide polymorphism (SNP) loci were detected in the three populations. Nucleotide diversity and population structure analysis revealed that the DL and GG populations have lower nucleotide diversities and different genetic structures than those of the SH population. Selective sweeping showed 21 genes involved in osmoregulatory regulation (DLG1, VIPR1, AKT1, and GNAI1), inflammation and immune responses (DLG1, BRINP1, CTSL, TRAF6, AKT1, STAT3, GNAI1, SEC22b, and PSME4b), and cardiorespiratory development (TRAF6, PSME4b, STAT3, AKT1, and COL9A1) to be associated with alkaline adaption of the DL population. Interestingly, selective pressure (CodeML, MEME, and FEL) methods identified two functional codon sites of VIPR1 to be under positive selection in the DL population. The subsequent 3D protein modeling confirmed that these selected sites will incur changes in protein structure and function in the DL population. In brief, this study provides molecular evidence of population divergence and alkaline adaptation, which will be very useful for revealing the genetic basis of alkaline adaptation in Amur ide.
Collapse
|
45
|
Kim M, Lee EJ, Lim KM. Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress. Biomol Ther (Seoul) 2021; 29:205-210. [PMID: 33024059 PMCID: PMC7921853 DOI: 10.4062/biomolther.2020.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Over 30 million prescriptions of NSAIDs (non-steroidal anti-inflammatory drugs) are issued every year. Considering that these drugs are available without a prescription as over the counter (OTC) drugs, their use will be astronomical. With the increasing use of NSAIDs, their adverse effects are drawing attention. Especially, stomach bleeding, kidney toxicity, liver toxicity, and neurological toxicity are reported as common. Ibuprofen, one of the extensively used NSAIDs along with aspirin, can also induce liver toxicity, but few studies are addressing this point. Here we examined the liver toxicity of ibuprofen and investigated whether co-exposure to ethanol can manifest synergistic effects. We employed 2D and 3D cultured human hepatoma cells, HepG2 to examine the synergistic hepatotoxicity of ibuprofen and alcohol concerning cell viability, morphology, and histology of 3D spheroids. As a result, ibuprofen and alcohol provoked synergistic hepatotoxicity against hepatocytes, and their toxicity increased prominently in 3D culture upon extended exposure. Oxidative stress appeared to be the mechanisms underlying the synergistic toxicity of ibuprofen and alcohol as evidenced by increased production of ROS and expression of the endogenous antioxidant system. Collectively, this study has demonstrated that ibuprofen and EtOH can induce synergistic hepatotoxicity, providing a line of evidence for caution against the use of ibuprofen in combination with alcohol.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 37060, Republic of Korea
| | - Eugenia Jin Lee
- Department of Biological Sciences, Columbia College, Columbia University, NY 10027, USA
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 37060, Republic of Korea
| |
Collapse
|
46
|
Pap R, Pandur E, Jánosa G, Sipos K, Agócs A, Deli J. Lutein Exerts Antioxidant and Anti-Inflammatory Effects and Influences Iron Utilization of BV-2 Microglia. Antioxidants (Basel) 2021; 10:antiox10030363. [PMID: 33673707 PMCID: PMC7997267 DOI: 10.3390/antiox10030363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lutein is a tetraterpene carotenoid, which has been reported as an important antioxidant and it is widely used as a supplement. Oxidative stress participates in many human diseases, including different types of neurodegenerative disorders. Microglia, the primary immune effector cells in the central nervous system, are implicated in these disorders by producing harmful substances such as reactive oxygen species (ROS). The protective mechanisms which scavenge ROS include enzymes and antioxidant substances. The protective effects of different carotenoids against oxidative stress have been described previously. Our study focuses on the effects of lutein on antioxidant enzymes, cytokines and iron metabolism under stress conditions in BV-2 microglia. We performed cell culture experiments: BV-2 cells were treated with lutein and/or with H2O2; the latter was used for inducing oxidative stress in microglial cells. Real-time PCR was performed for gene expression analyses of antioxidant enzymes, and ELISA was used for the detection of pro- and anti-inflammatory cytokines. Our results show that the application of lutein suppressed the H2O2-induced ROS (10′: 7.5 ng + 10 µM H2O2, p = 0.0002; 10 ng/µL + 10 µM H2O2, p = 0.0007), influenced iron utilization and changed the anti-inflammatory and pro-inflammatory cytokine secretions in BV-2 cells. Lutein increased the IL-10 secretions compared to control (24 h: 7.5 ng/µL p = 0.0274; 10 ng/µL p = 0.0008) and to 10 µM H2O2-treated cells (24 h: 7.5 ng/µL + H2O2, p = 0.0003; 10 ng/µL + H2O2, p = 0.0003), while it decreased the TNFα secretions compared to H2O2 treated cells (24 h: 7.5 ng/µL + H2O2, p < 0.0001; 10 ng/µL + H2O2, p < 0.0001). These results contribute to understanding the effects of lutein, which may help in preventing or suppressing ROS-mediated microglia activation, which is related to neuronal degeneration in oxidative stress scenario.
Collapse
Affiliation(s)
- Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Attila Agócs
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
| | - József Deli
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
47
|
In-Depth AGE and ALE Profiling of Human Albumin in Heart Failure: Ex Vivo Studies. Antioxidants (Basel) 2021; 10:antiox10030358. [PMID: 33673523 PMCID: PMC7997412 DOI: 10.3390/antiox10030358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), particularly carboxymethyl-lysine (CML), have been largely proposed as factors involved in the establishment and progression of heart failure (HF). Despite this evidence, the current literature lacks the comprehensive identification and characterization of the plasma AGEs/ALEs involved in HF (untargeted approach). This work provides the first ex vivo high-resolution mass spectrometry (HR-MS) profiling of AGEs/ALEs occurring in human serum albumin (HSA), the most abundant protein in plasma, characterized by several nucleophilic sites and thus representing the main protein substrate for AGE/ALE formation. A set of AGE/ALE adducts in pooled HF-HSA samples was defined, and a semi-quantitative analysis was carried out in order to finally select those presenting in increased amounts in the HF samples with respect to the control condition. These adducts were statistically confirmed by monitoring their content in individual HF samples by applying a targeted approach. Selected AGEs/ALEs proved to be mostly CML derivatives on Lys residues (i.e., CML-Lys12, CML-Lys378, CML-Lys402), and one deoxy-fructosyl derivative on the Lys 389 (DFK-Lys 389). The nature of CML adducts was finally confirmed using immunological methods and in vitro production of such adducts further confirmed by mass spectrometry.
Collapse
|
48
|
Preconditioning with Short-term Dietary Restriction Attenuates Cardiac Oxidative Stress and Hypertrophy Induced by Chronic Pressure Overload. Nutrients 2021; 13:nu13030737. [PMID: 33652586 PMCID: PMC7996575 DOI: 10.3390/nu13030737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Left ventricular (LV) hypertrophy and associated heart failure are becoming a more prevalent and critical public health issue with the aging of society, and are exacerbated by reactive oxygen species (ROS). Dietary restriction (DR) markedly inhibits senescent changes; however, prolonged DR is difficult. We herein investigated whether preconditioning with short-term DR attenuates chronic pressure overload-induced cardiac hypertrophy and associated oxidative stress. Male c57BL6 mice were randomly divided into an ad libitum (AL) diet or 40% restricted diet (DR preconditioning, DRPC) group for 2 weeks prior to ascending aortic constriction (AAC), and all mice were fed ad libitum after AAC surgery. Two weeks after surgery, pressure overload by AAC increased LV wall thickness in association with LV diastolic dysfunction and promoted myocyte hypertrophy and cardiac fibrosis in the AL+AAC group. Oxidative stress in cardiac tissue and mitochondria also increased in the AL+AAC group in association with increments in cardiac NADPH oxidase-derived and mitochondrial ROS production. LV hypertrophy and associated cardiac dysfunction and oxidative stress were significantly attenuated in the DRPC+AAC group. Moreover, less severe mitochondrial oxidative damage in the DRPC+AAC group was associated with the suppression of mitochondrial permeability transition and cardiac apoptosis. These results indicate that chronic pressure overload-induced cardiac hypertrophy in association with cardiac and mitochondrial oxidative damage were attenuated by preconditioning with short-term DR.
Collapse
|
49
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
50
|
Chen T, Qiao X, Cheng L, Liu M, Deng Y, Zhuo X. LGR4 silence aggravates ischemic injury by modulating mitochondrial function and oxidative stress via ERK signaling pathway in H9c2 cells. J Mol Histol 2021; 52:363-371. [PMID: 33559814 DOI: 10.1007/s10735-021-09957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022]
Abstract
It is reported that LGR4 (leucine-rich repeat domain containing G protein-coupled receptor 4) plays a crucial role in the physiological function of many organs. However, few data are available on the function and mechanism of LGR4 in myocardial ischemia-reperfusion (I/R) injury. The aim of this study was to explore the function and mechanism of LGR4 in I/R injury. We incubated H9c2 cells in simulating ischemia buffer and then re-incubated them in normal culture medium to establish a model of I/R injury in vitro. The expression of LGR4 was evaluated by RT-PCR and western blot. Besides, the cell apoptosis was evaluated by flow cytometric analysis and the content of ROS, SOD, MDA, LDH, CK, ATP, cyt c were detected by special commercial kits. The expression of mitochondrial function-related proteins were detected by western blot. Then, the roles of ERK signaling pathway was determined with TBHQ (ERK activator) treatment. Our data have demonstrated that I/R boosted the expression of LGR4 in H9c2 cells. Knockdown of LGR4 increased the apoptosis rate of H9c2 cells and led to excessed oxidant stress and impaired mitochondrial function by increasing the levels of ROS, MDA, LDH, CK and cyt c and inhibiting SOD activity, ATP production. In addition, LGR4 silence inhibited the activation of ERK pathway. And TBHQ partially reversed the effects of LGR4 knockdown on H9c2 cells. To conclude, our study indicated that LGR4 regulated mitochondrial dysfunction and oxidative stress by ERK signaling pathways, which provides a potential cardiac protective target against I/R.
Collapse
Affiliation(s)
- Tao Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiangrui Qiao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lele Cheng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mengping Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yangyang Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiaozhen Zhuo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|