1
|
Garfinkle EAR, Nallagatla P, Sahoo B, Dang J, Balood M, Cotton A, Franke C, Mitchell S, Wilson T, Gruber TA. CBFA2T3-GLIS2 mediates transcriptional regulation of developmental pathways through a gene regulatory network. Nat Commun 2024; 15:8747. [PMID: 39384814 PMCID: PMC11464917 DOI: 10.1038/s41467-024-53158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
CBFA2T3-GLIS2 is a fusion oncogene found in pediatric acute megakaryoblastic leukemia that is associated with a poor prognosis. We establish a model of CBFA2T3-GLIS2 driven acute megakaryoblastic leukemia that allows the distinction of fusion specific changes from those that reflect the megakaryoblast lineage of this leukemia. Using this model, we map fusion genome wide binding that in turn imparts the characteristic transcriptional signature. A network of transcription factor genes bound and upregulated by the fusion are found to have downstream effects that result in dysregulated signaling of developmental pathways including NOTCH, Hedgehog, TGFβ, and WNT. Transcriptional regulation is mediated by homo-dimerization and binding of the ETO transcription factor through the nervy homology region 2. Loss of nerve homology region 2 abrogated the development of leukemia, leading to downregulation of JAK/STAT, Hedgehog, and NOTCH transcriptional signatures. These data contribute to the understanding of CBFA2T3-GLIS2 mediated leukemogenesis and identify potential therapeutic vulnerabilities for future studies.
Collapse
Affiliation(s)
| | - Pratima Nallagatla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Binay Sahoo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinjun Dang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad Balood
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anitria Cotton
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Camryn Franke
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharnise Mitchell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taylor Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Wu D, Piao L, Wang G. Tescalcin modulates bone marrow-derived mesenchymal stem cells osteogenic differentiation via the Wnt/β-catenin signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1836-1846. [PMID: 38124301 DOI: 10.1002/tox.24070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Bone mesenchymal stem cells (BMSCs) are recognized for their intrinsic capacity for self-renewal and differentiation into osteoblasts, adipocytes, and chondrocytes, making them pivotal entities within the field of bone research. Tescalcin (TESC) is known to play a role in specific cellular processes related to proliferation and differentiation. However, the precise involvement of TESC in the regulation of BMSCs remains unclear. The present study was designed to verify the functional implications of TESC in BMSCs. METHODS An adenovirus vector was engineered to downregulate TESC expression, and the Wnt/β-catenin signaling pathway was activated using BML-284. The assessment of mRNA was conducted by quantitative real-time polymerase chain reaction (qRT-PCR). The assessment of protein expression was conducted by Western blotting and immunofluorescence techniques (IF), respectively. Alkaline phosphatase (ALP) staining and activity assays were performed to verify ALP changes, while Alizarin Red S (ARS) staining and quantitative analysis were employed to assess mineralization capacity. RESULTS Initially, we observed an upregulation of TESC expression during osteogenic differentiation. Subsequently, TESC knockdown was demonstrated to decrease the osteogenic-related genes expression and diminish BMSCs mineralization. Concomitantly, we identified the inhibition of Wnt/β-catenin signaling following the TESC knockdown. Furthermore, the administration of BML-284 effectively activated the Wnt/β-catenin pathway, successfully rescuing the compromised TESC-mediated osteogenic differentiation. CONCLUSION Our findings indicate that TESC knockdown exerts an inhibitory effect on the osteogenic differentiation of BMSCs through the modulation of the Wnt/β-catenin signaling pathway. This study unveils a novel target with potential applications for enhancing the regenerative potential of BMSCs in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Dong Wu
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Longhuan Piao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Guangbin Wang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Dong Y, Fan B, Li M, Zhang J, Xie S, Di S, Jia Q, Gong T. TESC acts as a prognostic factor and promotes epithelial-mesenchymal transition progression in esophageal squamous carcinoma. Pathol Res Pract 2024; 253:154964. [PMID: 38000203 DOI: 10.1016/j.prp.2023.154964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Tescalcin (TESC) is a critical regulator of cell differentiation and growth, promoting malignant progression in various tumors. However, the role of TESC in esophageal squamous carcinoma (ESCC) remains unclear. METHODS Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were utilized to identify the difference in TESC expression between ESCC tissues and normal tissues adjacent to the carcinoma. The relationship between TESC and several clinicopathological features was shown by the chi-square test. Log-rank analysis and Cox regression were used to detect the relationship between TESC and the prognosis in ESCC. Clone formation and cell count kit-8 (CCK-8) were applied to detect the impact of TESC on ESCC proliferation. Wound healing assay and transwell assay were used to confirm the influence of TESC on the invasion and migration. Spearman correlation coefficient was used to describe the correlation between TESC and epithelial-mesenchymal transition (EMT)-related protein expression in ESCC. Western blot was used to detect the effect of TESC on the expression of E-cadherin, N-cadherin, and Vimentin as well as AKT signaling pathway. Xenograft tumors were developed to test the pro-tumorigenic impacts of TESC in vivo. RESULTS TESC was upregulated expression in ESCC tissues and was linked to poorer prognosis and worse tumor infiltration, TNM stage, and lymph node metastasis. Meanwhile, TESC was able to act as an independent prognostic factor in ESCC. TESC promoted tumor cell proliferation, invasion, migration, EMT progression, and activated the phosphorylation of the AKT pathway. Furthermore, TESC knockdown inhibited the growth of carcinoma in vivo. CONCLUSION TESC is a predictive factor for poor prognosis in ESCC and may provide a new strategy for ESCC treatment.
Collapse
Affiliation(s)
- Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Boshi Fan
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shun Xie
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Shouyin Di
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Guo Y, Cai Y, Song F, Zhu L, Hu Y, Liu Y, Ma W, Ge J, Zeng Q, Ding L, Li L, Zheng G, Ge M. TESC promotes differentiated thyroid cancer development by activating ERK and weakening NIS and radioiodine uptake. Endocrine 2023; 81:503-512. [PMID: 37020077 DOI: 10.1007/s12020-023-03350-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/05/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE Most differentiated thyroid cancer (DTC) patients have a good prognosis after surgery, but radioiodine refractory differentiated thyroid cancer (RAIR-DTC) patients have a significantly reduced 5-year survival rate (<60%) and a significantly increased recurrence rate (>30%). This study aimed to clarify the tescalcin (TESC) role in promoting the malignant PTC progression and providing a potential target for RAIR-DTC treatment. METHODS We analyzed TESC expression and clinicopathological characteristics using the Cancer Genome Atlas (TCGA) and performed qRT-PCR on tissue samples. TPC-1 and IHH-4 proliferation, migration, and invasion were detected after transfection with TESC-RNAi. Using Western blot (WB), several EMT-related indicators were detected. Moreover, iodine uptake of TPC-1 and IHH-4 after transfection with TESC-RNAi was detected. Finally, NIS, ERK1/2, and p-ERK1/2 levels were determined by WB. RESULTS TESC was significantly upregulated in DTC tissues and positively correlated with BRAF V600E mutation based on data analysis from TCGA and our center. Reduced expression of TESC in both IHH-4 (BRAF V600E mutation) and TPC-1 (BRAF V600E wild type) cells significantly inhibited cell proliferation, migration, and invasion. It downregulated the EMT pathway markers Vimentin and N-cadherin, and increased E- cadherin. Moreover, TESC knockdown significantly inhibited ERK1/2 phosphorylation and decreased NIS expression in DTC cells, with a remarkably increased iodine uptake rate. CONCLUSIONS TESC was highly expressed in DTC tissues and may have promoted metastasis through EMT and induced iodine resistance by downregulating NIS in DTC cells.
Collapse
Affiliation(s)
- Yawen Guo
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
| | - Yefeng Cai
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, 310053, China
| | - Fahuan Song
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
| | - Lei Zhu
- Department of Thyroid Surgery, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui Central Hospital, Zhejiang Province, Lishui, 323000, China
| | - Yiqun Hu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, 310053, China
| | - Yunye Liu
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Wenli Ma
- Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qian Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lingling Ding
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Lebao Li
- School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Guowan Zheng
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
| | - Minghua Ge
- Otolaryngology& Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
5
|
Huang YF, Su SC, Chuang HY, Chen HH, Twu YC. Histone deacetylation-regulated cell surface Siglec-7 expression promoted megakaryocytic maturation and enhanced platelet-like particle release. J Thromb Haemost 2023; 21:329-343. [PMID: 36700509 DOI: 10.1016/j.jtha.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Functioning as important hematologic cells for hemostasis, wound healing and immune defense platelets are produced before being released into the blood by cytoplasmic fragmentation at the end of the megakaryocyte (MK) differentiation, during which the involvement of both apoptosis and autophagy has been reported. Inhibitory sialic acid-binding immunoglobulin-like lectin-7 gene (Siglec-7) can be expressed on platelets and induce apoptosis on activation for uncharacterized function. OBJECTIVE We aimed to investigate the regulatory mechanism for Siglec-7 activation along MK differentiation and its physiologic role during the MK maturation and platelet formation. METHODS By using 2 well-established MK differentiation models (HEL and K562) and human primary CD34+ cell, we examined the upregulations of transcript and protein levels of Siglec-7 during MK differentiation, and the effect of Siglec-7 surface presence on MK differentiation and platelet-like particles (PLPs) release. RESULTS We show that both transcripts and surface Siglec-7 were elevated during MK differentiation, and the histone deacetylase 1 (HDAC1) acted as a negative regulator for Siglec-7 activation. By increasing Siglec-7 surface expression, we found that increased presence of Siglec-7 not only enhanced MK maturation but also the release of PLPs by activating caspase 3-dependent signaling, as evidenced in the observation of more CD41, polyploidy, and platelet factor 4 transcript formations. CONCLUSION In this study, we demonstrated that Siglec-7 activation was subjected to epigenetic regulation, and the resulting induced expression of surface Siglec-7 played an important regulatory role in promoting MK differentiation, maturation, and PLP formation.
Collapse
Affiliation(s)
- Yun-Fei Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Han Chen
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J. Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 2023; 13:1025945. [PMID: 36685543 PMCID: PMC9845629 DOI: 10.3389/fimmu.2022.1025945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Platelets, generated from precursor megakaryocytes (MKs), are central mediators of hemostasis and thrombosis. The process of thrombopoiesis is extremely complex, regulated by multiple factors, and related to many cellular events including apoptosis. However, the role of apoptosis in thrombopoiesis has been controversial for many years. Some researchers believe that apoptosis is an ally of thrombopoiesis and platelets production is apoptosis-dependent, while others have suggested that apoptosis is dispensable for thrombopoiesis, and is even inhibited during this process. In this review, we will focus on this conflict, discuss the relationship between megakaryocytopoiesis, thrombopoiesis and apoptosis. In addition, we also consider why such a vast number of studies draw opposite conclusions of the role of apoptosis in thrombopoiesis, and try to figure out the truth behind the mystery. This review provides more comprehensive insights into the relationship between megakaryocytopoiesis, thrombopoiesis, and apoptosis and finds some clues for the possible pathological mechanisms of platelet disorders caused by abnormal apoptosis.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Zou X, Zhou Q, Nie Y, Gou J, Yang J, Zhu J, Li Z, Gong Y. Tescalcin promotes highly invasive papillary thyroid microcarcinoma by regulating FOS/ERK signaling pathway. BMC Cancer 2022; 22:595. [PMID: 35641944 PMCID: PMC9158259 DOI: 10.1186/s12885-022-09643-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
Background Part of papillary thyroid microcarcinoma (PTMC) has a high risk of tumor invasion and metastasis, which may occur in the regional lymph node metastasis or distant metastasis, severely threatening the life of patients. Invasion and metastasis are tightly involved in the proliferation, migration and invasion in cancer. This study aimed to investigate the role of tescalcin (TESC) in the proliferation, migration and invasion of PTMC. Methods The expressions of TESC in PTMC tissues and cells were detected by immunohistochemistry or qRT-PCR. Then, TPC-1 and BHT101 cells transfected with TESC-RNAi were used for the transcriptome sequencing. The proliferation, apoptosis, migration and invasion of TPC-1 and BHT101 cells were detected by CCK-8, colony formation, flow cytometric assay, transwell migration and scratch test. Moreover, TESC-RNAi transfected TPC-1 and BHT101 cells were subcutaneously injected into mice. Tumor volume and weight were calculated, and the positive rate of Ki-67 was determined by immunohistochemistry. Finally, the levels of c-Fos, ERK1/2 and p-ERK1/2 were determined by western blot. Results The expressions of TESC in PTMC tissues and cell lines were prominently enhanced. Transcriptome sequencing results showed that c-Fos was decreased in TPC-1 and BHT101 cells transfected with TESC-RNAi, which was associated with multiple different signaling pathways including the MAPK signaling pathway. Furthermore, TESC promoted the progress of PTMC by regulating the expression of c-Fos, which might be associated with the ERK signaling pathway. Conclusions TESC promoted the growth and metastasis of PTMC through regulating c-Fos/ERK1/2.
Collapse
Affiliation(s)
- Xiuhe Zou
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qian Zhou
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yan Nie
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Junhe Gou
- Department of pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Jingqiang Zhu
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yanping Gong
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Poscablo DM, Worthington AK, Smith-Berdan S, Forsberg EC. Megakaryocyte progenitor cell function is enhanced upon aging despite the functional decline of aged hematopoietic stem cells. Stem Cell Reports 2021; 16:1598-1613. [PMID: 34019813 PMCID: PMC8190594 DOI: 10.1016/j.stemcr.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Age-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. Although young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared with young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging. Reconstitution deficit by old HSCs was observed by chimerism and absolute cell numbers Young HSCs did not outcompete resident HSCs in aged recipient mice Old MkPs display remarkable capacity to engraft, expand, and reconstitute platelets Aging is associated with changes in MkP genome-wide expression signatures
Collapse
Affiliation(s)
- Donna M Poscablo
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA; Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Atesh K Worthington
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA; Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA; Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
9
|
Hsieh CH, Chu CY, Lin SE, Yang YCS, Chang HS, Yen Y. TESC Promotes TGF-α/EGFR-FOXM1-Mediated Tumor Progression in Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12051105. [PMID: 32365487 PMCID: PMC7281536 DOI: 10.3390/cancers12051105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma is a relatively uncommon but highly lethal malignancy. Improving outcomes in patients depends on earlier diagnosis and appropriate treatment; however, no satisfactory diagnostic biomarkers or targeted therapies are currently available. To address this shortcoming, we analyzed the transcriptomic datasets of cholangiocarcinoma from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and found that TESC is highly expressed in cholangiocarcinoma. Elevated cellular levels of TESC are correlated with larger tumor size and predict a poor survival outcome for patients. Knockdown of TESC via RNA interference suppresses tumor growth. RNA-sequencing analysis showed that silencing of TESC decreases the level of FOXM1, leading to cell cycle arrest. Correlation analysis revealed that the cellular level of TESC is correlated with that of FOXM1 in cholangiocarcinoma patients. We further observed that upon TGF-α induction, TESC is upregulated through the EGFR-STAT3 pathway and mediates TGF-α-induced tumor cell proliferation. In vivo experiments revealed that knockdown of TESC significantly attenuates tumor cell growth. Therefore, our data provide novel insight into TESC-mediated oncogenesis and reveal that TESC is a potential biomarker or serves as a therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Cheng-Han Hsieh
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Ying Chu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- CRISPR Gene Targeting Core Lab, Taipei Medical University, Taipei 110, Taiwan
| | - Sey-En Lin
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Shu Chang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Cancer Center, Taipei Municipal Wanfang Hospital, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 1588); Fax: +886-2-2378-7795
| |
Collapse
|
10
|
Luo AJ, Tan J, He LY, Jiang XZ, Jiang ZQ, Zeng Q, Yao K, Xue J. Suppression of Tescalcin inhibits growth and metastasis in renal cell carcinoma via downregulating NHE1 and NF-kB signaling. Exp Mol Pathol 2018; 107:110-117. [PMID: 30594602 DOI: 10.1016/j.yexmp.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the most common form of kidney cancer. Recent studies reported that Tescalcin was overexpressed in various tumor types. However, the status of Tescalcin protein expression in RCC and its biological function is uncertain. This study was designed to investigate the expression of Tescalcin in human RCC and its biological function. METHODS shRNA transfection was performed to abrogates the expression of Tescalcin. Quantitative real time PCR and western blotting assays were used to determine mRNA and protein expression levels, respectively. The cell viability was analyzed by MTT and colony formation. Cell flow cytometry was used to assess pHi value and cell apoptosis. Cell invasive and migratory ability was measured with modified Boyden chamber assay. Xenograft model was setup to evaluate tumor growth. RESULTS Tescalcin was overexpressed in RCC tissues compared with matched normal tissues. It was also overexpressed in RCC cell lines relative that of normal cells. Suppression Tescalcin with specific shRNA resulted in the inhibition of cell proliferation, migration, invasion and apoptosis of RCC cells. Additionally, silencing of Tescalcin also caused the inhibition of the tumor growth in nude mice. Mechanistic study showed that Tescalcin regulated cell proliferation, migration and invasion via NHE1/pHi axis as well as AKT/NF-κB signaling pathway. CONCLUSIONS These findings demonstrate that atopic expression of Tescalcin facilitates the survival, migration and invasion of RCC cells via NHE1/pHi axis as well as AKT/ NF-κB signaling pathway, providing new perspectives for the future study of Tescalcin as a therapeutic target for RCC.
Collapse
Affiliation(s)
- Ai-Jing Luo
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Jing Tan
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Le-Ye He
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Xian-Zhen Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Zhi-Qiang Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Qing Zeng
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Kun Yao
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Juan Xue
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
11
|
Ogishima J, Taguchi A, Kawata A, Kawana K, Yoshida M, Yoshimatsu Y, Sato M, Nakamura H, Kawata Y, Nishijima A, Fujimoto A, Tomio K, Adachi K, Nagamatsu T, Oda K, Kiyono T, Osuga Y, Fujii T. The oncogene KRAS promotes cancer cell dissemination by stabilizing spheroid formation via the MEK pathway. BMC Cancer 2018; 18:1201. [PMID: 30509235 PMCID: PMC6278087 DOI: 10.1186/s12885-018-4922-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 10/09/2018] [Indexed: 12/30/2022] Open
Abstract
Background Peritoneal dissemination is a critical prognostic factor in ovarian cancer. Although stabilized spheroid formation promotes cancer cell peritoneal dissemination in ovarian cancer, the associated oncogenes are unknown. In this study, we assessed the role of the KRAS oncogene in ovarian cancer cell dissemination, focusing on the stability of cells in spheroid condition, as well as the modulation of intracellular signaling following spheroid transformation. Methods We used ID8, a murine ovarian cancer cell line, and ID8-KRAS, an oncogenic KRAS (G12 V)-transduced ID8 cell line in this study. Spheroid-forming (3D) culture and cell proliferation assays were performed to evaluate the growth characteristics of these cells. cDNA microarray analysis was performed to identify genes involved in KRAS-associated signal transduction in floating condition. A MEK inhibitor was used to evaluate the effect on cancer peritoneal dissemination. Results Cell viability and proliferation in monolayer (2D) cultures did not differ between ID8 and ID8-KRAS cells. However, the proportions of viable and proliferating ID8-KRAS cells in 3D culture were approximately 2-fold and 5-fold higher than that of ID8, respectively. Spheroid-formation was increased in ID8-KRAS cells. Analysis of peritoneal floating cells obtained from mice intra-peritoneally injected with cancer cells revealed that the proportion of proliferating cancer cells was approximately 2-fold higher with ID8-KRAS than with ID8 cells. Comprehensive cDNA microarray analysis revealed that pathways related to cell proliferation, and cell cycle checkpoint and regulation were upregulated specifically in ID8-KRAS cells in 3D culture, and that some genes partially regulated by the MEK-ERK pathway were upregulated only in ID8-KRAS cells in 3D culture. Furthermore, a MEK inhibitor, trametinib, suppressed spheroid formation in 3D culture of ID8-KRAS cells, although trametinib did not affect 2D-culture cell proliferation. Finally, we demonstrated that trametinib dramatically improved the prognosis for mice with ID8-KRAS tumors in an in vivo mouse model. Conclusions Our data indicated that KRAS promoted ovarian cancer dissemination by stabilizing spheroid formation and that the MEK pathway is important for stabilized spheroid formation. Disruption of spheroid formation by a MEK inhibitor could be a therapeutic target for cancer peritoneal dissemination. Electronic supplementary material The online version of this article (10.1186/s12885-018-4922-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juri Ogishima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nihon University, 30-1 Otaniguchi Uemachi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuki Yoshimatsu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshiko Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
12
|
Tescalcin/c-Src/IGF1Rβ-mediated STAT3 activation enhances cancer stemness and radioresistant properties through ALDH1. Sci Rep 2018; 8:10711. [PMID: 30013043 PMCID: PMC6048049 DOI: 10.1038/s41598-018-29142-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Tescalcin (TESC; also known as calcineurin B homologous protein 3, CHP3) has recently reported as a regulator of cancer progression. Here, we showed that the elevation of TESC in non-small cell lung cancer (NSCLC) intensifies epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, consequently enhancing the cellular resistance to γ-radiation. TESC expression and the phosphorylation (consequent activation) of signal transducer and activator of transcription 3 (STAT3) were upregulated in CSC-like ALDH1high cells than in ALDH1low cells sorted from A549 NSCLC cells. Knockdown of TESC suppressed CSC-like properties as well as STAT3 activation through inhibition of insulin-like growth factor 1 receptor (IGF1R), a major signaling pathway of lung cancer stem cells. TESC activated IGF1R by the direct recruitment of proto-oncogene tyrosine kinase c-Src (c-Src) to IGF1Rβ complex. Treatment of IGF1R inhibitor, AG1024, also suppressed c-Src activation, implicating that TESC mediates the mutual activation of c-Src and IGF1R. STAT3 activation by TESC/c-Src/IGF1R signaling pathway subsequently upregulated ALDH1 expression, which enhanced EMT-associated CSC-like properties. Chromatin immunoprecipitation and luciferase assay demonstrated that STAT3 is a potential transcription activator of ALDH1 isozymes. Ultimately, targeting TESC can be a potential strategy to overcome therapeutic resistance in NSCLC caused by augmented EMT and self-renewal capacity.
Collapse
|
13
|
Weidle UH, Birzele F, Kollmorgen G, Rüger R. Long Non-coding RNAs and their Role in Metastasis. Cancer Genomics Proteomics 2017; 14:143-160. [PMID: 28446530 PMCID: PMC5420816 DOI: 10.21873/cgp.20027] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023] Open
Abstract
The perception of long non-coding RNAs as chunk RNA and transcriptional noise has been steadily replaced by their role as validated targets for a diverse set of physiological processes in the past few years. However, for the vast majority of lncRNAs their precise mode of action and physiological function remain to be uncovered. A large body of evidence has revealed their essential role in all stages of cancirogenesis and metastasis. In this review we focus on the role of lncRNAs in metastasis. We grouped selected lncRNAs into three categories based on in vitro and in vivo mode of action-related studies and clinical relevance for metastasis. Grouped according to their mode of action, in category I we discuss lncRNAs such as CCAT2, DREH, LET, NKILA, treRNA, HOTAIR, H19, FENDRR, lincROR, MALAT, GClnc1, BCAR4, SCHLAP1 and lncRNA ATP, all lncRNAs with in vitro and in vivo metastasis-related data and clinical significance. In category II we discuss lncRNAs CCAT1, PCAT1, PTENgp1, GPLINC, MEG3, ZEB2-AS, LCT13, ANRIL, NBAT1 and lncTCF7 all characterized by their mode of action in vitro and clinical significance, but pending or preliminary in vivo data. Finally, under category III, we discuss lncRNAs BANCR, FRLnc1, SPRY4-IT1 and LIMT with partially or poorly-resolved mode of action and varying degree of validation in clinical metastasis. Finally we discuss metastasis-related translational aspects of lncRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Gwen Kollmorgen
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Rüdiger Rüger
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
14
|
Kolobynina K, Solovyeva V, Gomzikova M, Tazetdinova L, Rizvanov A. Generation of Human Adipose-Derived Stem Cell Lines with Expression of TESC Gene. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Wijayarathna R, Sarraj MA, Genovese R, Girling JE, Michel V, Ludlow H, Loveland KL, Meinhardt A, de Kretser DM, Hedger MP. Activin and follistatin interactions in the male reproductive tract: activin expression and morphological abnormalities in mice lacking follistatin 288. Andrology 2017; 5:578-588. [PMID: 28235253 DOI: 10.1111/andr.12337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/12/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022]
Abstract
Activin A is an important regulator of testicular and epididymal development and function, as well as inflammation and immunity. In the adult murine reproductive tract, activin A mRNA (Inhba) expression levels are highest in the caput epididymis and decrease progressively towards the distal vas deferens. The activin-binding protein, follistatin (FST), shows the opposite expression pattern, with exceptionally high levels of the Fst288 mRNA variant in the vas deferens. This unique pattern of expression suggests that activin A and follistatin, in particular FST288, play region-specific roles in regulating the epididymis and vas deferens. The cellular distribution of activin and follistatin and structural organization of the male reproductive tract was examined in wild-type and transgenic (TghFST315) mice lacking FST288. Compared to wild-type littermates, TghFST315 mice showed a 50% reduction in serum follistatin and a significant elevation of both activin A and B. Testicular, epididymal and seminal vesicle weights were reduced, but intra-testicular testosterone was normal. A decrease in the epididymal duct diameter in the corpus and thickening of the peritubular smooth muscle in the cauda, together with increased coiling of the proximal vas deferens, were observed in TghFST315 mice. No immune cell infiltrates were detected. Immunohistochemistry indicated that epithelial cells are the main source of activins and follistatin in the epididymis and vas deferens. Activin A, but not activin B, was also localized to sperm heads in the lumen of the epididymis and vas deferens. Expression of Inhba and another immunoregulatory gene, indoleamine-2,3-dioxygenase (Ido-1), was increased approximately twofold in the TghFST315 caput epididymis, but several other genes associated with immunoregulation, inflammation or fibrosis were unaffected. Our novel data indicate that disruption of follistatin expression has significant effects on the testis and epididymis, and suggest an association between activin A and indoleamine-2,3-dioxygenase in the caput epididymis, with implications for the epididymal immunoenvironment.
Collapse
Affiliation(s)
- R Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - M A Sarraj
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - R Genovese
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - J E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, VIC, Australia
| | - V Michel
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - H Ludlow
- Oxford Brookes University, Oxford, UK
| | - K L Loveland
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, VIC, Australia
| | - A Meinhardt
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - D M de Kretser
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - M P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
Han SH, Kim J, Her Y, Seong I, Park S, Bhattarai D, Jin G, Lee K, Chung G, Hwang S, Bae YS, Kim J. Phytosphingosine promotes megakaryocytic differentiation of myeloid leukemia cells. BMB Rep 2016; 48:691-5. [PMID: 26077028 PMCID: PMC4791325 DOI: 10.5483/bmbrep.2015.48.12.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure. [BMB Reports 2015; 48(12): 691-695]
Collapse
Affiliation(s)
- Sang Hee Han
- Departments of 1Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jusong Kim
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Yerim Her
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Ikjoo Seong
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Sera Park
- Bio-informatics Science, Ewha Womans University, Seoul 03760, Korea
| | - Deepak Bhattarai
- BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Guanghai Jin
- BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Kyeong Lee
- BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | | | | | - Yun Soo Bae
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jaesang Kim
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
17
|
Kolobynina KG, Solovyova VV, Levay K, Rizvanov AA, Slepak VZ. Emerging roles of the single EF-hand Ca2+ sensor tescalcin in the regulation of gene expression, cell growth and differentiation. J Cell Sci 2016; 129:3533-3540. [PMID: 27609838 DOI: 10.1242/jcs.191486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tescalcin (TESC, also known as calcineurin-homologous protein 3, CHP3) is a 24-kDa EF-hand Ca2+-binding protein that has recently emerged as a regulator of cell differentiation and growth. The TESC gene has also been linked to human brain abnormalities, and high expression of tescalcin has been found in several cancers. The expression level of tescalcin changes dramatically during development and upon signal-induced cell differentiation. Recent studies have shown that tescalcin is not only subjected to up- or down-regulation, but also has an active role in pathways that drive cell growth and differentiation programs. At the molecular level, there is compelling experimental evidence showing that tescalcin can directly interact with and regulate the activities of the Na+/H+ exchanger NHE1, subunit 4 of the COP9 signalosome (CSN4) and protein kinase glycogen-synthase kinase 3 (GSK3). In hematopoetic precursor cells, tescalcin has been shown to couple activation of the extracellular signal-regulated kinase (ERK) cascade to the expression of transcription factors that control cell differentiation. The purpose of this Commentary is to summarize recent efforts that have served to characterize the biochemical, genetic and physiological attributes of tescalcin, and its unique role in the regulation of various cellular functions.
Collapse
Affiliation(s)
- Ksenia G Kolobynina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Valeria V Solovyova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
18
|
Kang J, Kang YH, Oh BM, Uhm TG, Park SY, Kim TW, Han SR, Lee SJ, Lee Y, Lee HG. Tescalcin expression contributes to invasive and metastatic activity in colorectal cancer. Tumour Biol 2016; 37:13843-13853. [DOI: 10.1007/s13277-016-5262-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 11/28/2022] Open
|
19
|
Bulayeva K, Lesch KP, Bulayev O, Walsh C, Glatt S, Gurgenova F, Omarova J, Berdichevets I, Thompson PM. Genomic structural variants are linked with intellectual disability. J Neural Transm (Vienna) 2015; 122:1289-301. [PMID: 25626716 PMCID: PMC4517986 DOI: 10.1007/s00702-015-1366-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/11/2015] [Indexed: 10/24/2022]
Abstract
Mutations in more than 500 genes have been associated with intellectual disability (ID) and related disorders of cognitive function, such as autism and schizophrenia. Here we aimed to unravel the molecular epidemiology of non-specific ID in a genetic isolate using a combination of population and molecular genetic approaches. A large multigenerational pedigree was ascertained within a Dagestan Genetic Heritage research program in a genetic isolate of indigenous ethnics. Clinical characteristics of the affected members were based on combining diagnoses from regional psychiatric hospitals with our own clinical assessment, using a Russian translation of the structured psychiatric interviews, the Diagnostic Interview for Genetic Studies and the Family Interview for Genetic Studies, based on DSM-IV criteria. Weber/CHLC 9.0 STRs set was used for multipoint parametric linkage analyses (Simwalk2.91). Next, we checked CNVs and LOH (based on Affymetrix SNP 5.0 data) in the linked with ID genomic regions with the aim to identify candidate genes associated with mutations in linked regions. The number of statistically significant (p ≤ 0.05) suggestive linkage peaks with 1.3 < LOD < 3.0 we detected in a total of 10 genomic regions: 1q41, 2p25.3-p24.2, 3p13-p12.1, 4q13.3, 10p11, 11q23, 12q24.22-q24.31, 17q24.2-q25.1, 21q22.13 and 22q12.3-q13.1. Three significant linkage signals with LOD >3 were obtained at 2p25.3-p24.2 under the dominant model, with a peak at 21 cM flanked by loci D2S2976 and D2S2952; at 12q24.22-q24.31 under the recessive model, with a peak at -120 cM flanked by marker D12S2070 and D12S395 and at 22q12.3 under the dominant model, with a peak at 32 cM flanked by marker D22S683 and D22S445. After a set of genes had been designated as possible candidates in these specific chromosomal regions,we conducted an exploratory search for LOH and CNV based on microarray data to detect structural genomic variants within five ID-linked regions with LOD scores between 2.0 and 3.9. In these selected regions we obtained 173 ROH segments and 98 CN segments. Further analysis of region 2p25.3-p24.2 revealed deletions within genes encoding MYTL, SNTG2 and TPO among five of 21 affected cases at 2p25.3-p24.2. In the ID-linked region at 12q24.22-12q24.31 19 out of 21 ID cases carried segmental CNV and 20 of 21 them displayed ROH segments with mean size lengths for ID cases 2512 kb (500-6,472 kb) and for healthy control 682 kb (531-986 kb), including the genes MED13L, HRK, FBXW8, TESC, CDK2AP1 and SBNO1. Seven of 21 affected pedigree members displayed segmental deletions at 22q12.3 that includes the gene LARGE. Eight affected pedigree members carried ROH segments and 6 CN segments at 10p11.23-p11.21 containing the genes ZEB1, c10orf68 and EPC1. Our linkage and structural genomic variation analyses in a remote highland genetic isolate with aggregation of ID demonstrated that even highly isolated single kindred ID has oligo/polygenic pathogenesis. The results obtained implicate 10 genomic regions linked with ID that contain some of previously reported candidate genes, including HRK, FBXW8, TESC, CDK2AP1 and SBNO1 at 12q24 that were shown in recent studies as associated with brain measures derived from MRI scans.
Collapse
Affiliation(s)
- Kazima Bulayeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin str. 3, Moscow, 119991, Russia,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fan J, Xing Y, Wen X, Jia R, Ni H, He J, Ding X, Pan H, Qian G, Ge S, Hoffman AR, Zhang H, Fan X. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol 2015; 16:139. [PMID: 26169368 PMCID: PMC4499915 DOI: 10.1186/s13059-015-0705-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are not translated into proteins and were initially considered to be part of the 'dark matter' of the genome. Recently, it has been shown that lncRNAs play a role in the recruitment of chromatin modifying complexes and can influence gene expression. However, it is unknown if lncRNAs function in a similar way in cancer. RESULTS Here, we show that the lncRNA ROR occupies and activates the TESC promoter by repelling the histone G9A methyltransferase and promoting the release of histone H3K9 methylation. Suppression of ROR in tumors results in silencing of TESC expression, and G9A-mediated histone H3K9 methylation in the TESC promoter is restored, which significantly reduces tumor growth and metastasis. Without ROR silencing, TESC knockdown presents consistent and significant reductions in tumor progression. CONCLUSIONS Our results reveal a novel mechanism by which ROR may serve as a decoy oncoRNA that blocks binding surfaces, preventing the recruitment of histone modifying enzymes, thereby specifying a new pattern of histone modifications that promote tumorigenesis.
Collapse
Affiliation(s)
- Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yue Xing
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xuyang Wen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Renbin Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hongyan Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xia Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hui Pan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Guanxiang Qian
- Department of Biochemistry and Molecular Biology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Andrew R Hoffman
- VA Palo Alto Health Care System, Stanford University Medical School, Palo Alto, CA, 94304, USA
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
21
|
Kobayashi S, Nakamura TY, Wakabayashi S. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation. J Mol Cell Cardiol 2015; 84:133-42. [PMID: 25935310 DOI: 10.1016/j.yjmcc.2015.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β.
Collapse
Affiliation(s)
- Soushi Kobayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Tomoe Y Nakamura
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan.
| |
Collapse
|
22
|
Abstract
Tescalcin (TESC) is an EF-hand calcium binding protein that is differentially expressed in several tissues, however it is not reported that the expression and functional roles of TESC in colorectal cancer. Levels of messenger RNA (mRNA) and protein expression of TESC in colorectal cancer tissues were assessed using RT-PCR, real time PCR, immunohistochemistry, and clinicopathologic analyses. Quantitative analysis of TESC levels in serum specimens was performed using sandwich ELISA. Colorectal cancer cells transfected with TESC small interfering RNA and short hairpin RNA were examined in cell proliferation assays, phospho-MAPK array, and mouse xenograft models. Here we demonstrated that TESC is overexpressed in colorectal cancer (CRC), but was not expressed in normal mucosa and premalignant dysplastic lesions. Furthermore, serum TESC levels were elevated in patients with CRC. Knockdown of TESC inhibited the Akt-dependent NF-κB pathway and decreased cell survival in vitro. Depletion of TESC reduced tumor growth in a CRC xenograft model. Thus, TESC is a potential diagnostic marker and oncotarget in colorectal cancer.
Collapse
|
23
|
A novel tescalcin-sodium/hydrogen exchange axis underlying sorafenib resistance in FLT3-ITD+ AML. Blood 2014; 123:2530-9. [DOI: 10.1182/blood-2013-07-512194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Key Points
A novel TESC-NEH1 pathway is involved in FLT3-ITD+ AML pathogenesis. Inhibition of NHE1 overcomes sorafenib resistance in FLT3-ITD+AML.
Collapse
|
24
|
Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling. Blood Cancer J 2014; 4:e198. [PMID: 24681962 PMCID: PMC3972703 DOI: 10.1038/bcj.2014.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation.
Collapse
|
25
|
Levay K, Slepak VZ. Regulation of Cop9 signalosome activity by the EF-hand Ca2+-binding protein tescalcin. J Cell Sci 2014; 127:2448-59. [PMID: 24659803 DOI: 10.1242/jcs.139592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ca(2+)-binding protein tescalcin is known to be involved in hematopoietic cell differentiation; however, this mechanism is poorly understood. Here, we identify CSN4 (subunit 4 of the COP9 signalosome) as a novel binding partner of tescalcin. The COP9 signalosome (CSN) is a multiprotein complex that is essential for development in all eukaryotes. This interaction is selective, Ca(2+)-dependent and involves the PCI domain of CSN4 subunit. We then investigated tescalcin and CSN activity in human erythroleukemia HEL and promyelocytic leukemia K562 cells and find that phorbol 12-myristate 13-acetate (PMA)-induced differentiation, resulting in the upregulation of tescalcin, coincides with reduced deneddylation of cullin-1 (Cul1) and stabilization of p27(Kip1) - molecular events that are associated with CSN activity. The knockdown of tescalcin led to an increase in Cul1 deneddylation, expression of F-box protein Skp2 and the transcription factor c-Jun, whereas the levels of cell cycle regulators p27(Kip1) and p53 decreased. These effects are consistent with the hypothesis that tescalcin might play a role as a negative regulator of CSN activity towards Cul1 in the process of induced cell differentiation.
Collapse
Affiliation(s)
- Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
26
|
Kong XZ, Yin RH, Ning HM, Zheng WW, Dong XM, Yang Y, Xu FF, Li JJ, Zhan YQ, Yu M, Ge CH, Zhang JH, Chen H, Li CY, Yang XM. Effects of THAP11 on erythroid differentiation and megakaryocytic differentiation of K562 cells. PLoS One 2014; 9:e91557. [PMID: 24637716 PMCID: PMC3956667 DOI: 10.1371/journal.pone.0091557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/13/2014] [Indexed: 12/16/2022] Open
Abstract
Hematopoiesis is a complex process regulated by sets of transcription factors in a stage-specific and context-dependent manner. THAP11 is a transcription factor involved in cell growth, ES cell pluripotency, and embryogenesis. Here we showed that THAP11 was down-regulated during erythroid differentiation but up-regulated during megakaryocytic differentiation of cord blood CD34+ cells. Overexpression of THAP11 in K562 cells inhibited the erythroid differentiation induced by hemin with decreased numbers of benzidine-positive cells and decreased mRNA levels of α-globin (HBA) and glycophorin A (GPA), and knockdown of THAP11 enhanced the erythroid differentiation. Conversely, THAP11 overexpression accelerated the megakaryocytic differentiation induced by phorbol myristate acetate (PMA) with increased percentage of CD41+ cells, increased numbers of 4N cells, and elevated CD61 mRNA levels, and THAP11 knockdown attenuated the megakaryocytic differentiation. The expression levels of transcription factors such as c-Myc, c-Myb, GATA-2, and Fli1 were changed by THAP11 overexpression. In this way, our results suggested that THAP11 reversibly regulated erythroid and megakaryocytic differentiation.
Collapse
Affiliation(s)
- Xiang-Zhen Kong
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rong-Hua Yin
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing, China
| | - Wei-Wei Zheng
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Ming Dong
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
| | - Yang Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Fei-Fei Xu
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian-Jie Li
- Department of Pulmonary Neoplasms Internal Medicine, Affiliated Hospital to Academy of Military Medicine Sciences, Beijing, China
| | - Yi-Qun Zhan
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Miao Yu
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang-Hui Ge
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian-Hong Zhang
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Chen
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang-Yan Li
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing, China
- * E-mail: (XMY); (CYL)
| | - Xiao-Ming Yang
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing, China
- * E-mail: (XMY); (CYL)
| |
Collapse
|
27
|
Functional impact of a recently identified quantitative trait locus for hippocampal volume with genome-wide support. Transl Psychiatry 2013; 3:e287. [PMID: 23880882 PMCID: PMC3731789 DOI: 10.1038/tp.2013.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/12/2022] Open
Abstract
In a large brain-imaging study, a multinational consortium has recently identified a common genetic variation in rs7294919 being associated with hippocampal volume. Here, we explored whether this quantitative trait locus also affects hippocampal function using a previously established reliable neuroimaging paradigm. We observed a significant effect of rs7294919 variation in the right hippocampus showing that hippocampal activation increased with the number of risk alleles. Furthermore, the risk allele was associated with decreased performance in a verbal learning and memory task. By showing that this single-nucleotide polymorphism also relates to behavioral difference and underlying brain activation in memory, our findings support the idea that rs7294919 may affect the individual capacity to resist disease in terms of diminishing or boosting hippocampal resources.
Collapse
|
28
|
MR-1 blocks the megakaryocytic differentiation and transition of CML from chronic phase to blast crisis through MEK dephosphorylation. Blood Cancer J 2013; 3:e107. [PMID: 23542180 PMCID: PMC3615218 DOI: 10.1038/bcj.2013.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic myelogenous leukemia (CML) evolves from a chronic phase characterized by the Philadelphia chromosome as the sole genetic abnormality and the accumulation of mature cells in peripheral blood into blast crisis, which is characterized by the rapid expansion of myeloid- or lymphoid-differentiation-arrested blast cells. Although ample studies have been conducted on the disease progress mechanisms, the underlying molecular mechanisms of the malignant phenotype transition are still unclear. In this study, we have shown that myofibrillogenesis regulator-1 (MR-1) was overexpressed in blast crisis patients and leukemic cells, but there was little trace expressed in healthy individuals and in most patients in CML chronic phase. MR-1 could inhibit the differentiation of myeloid cells into megakaryocytic lineages and accelerate cell proliferation. The molecular mechanism responsible for these effects was the interaction of MR-1 with MEK, which blocked the MEK/ERK signaling pathway by dephosphorylating MEK. Our results provide compelling and important evidence that MR-1 might act as a diagnostic marker and potential target of CML progression from chronic phase to blast crisis.
Collapse
|
29
|
Nissou MF, Brocard J, El Atifi M, Guttin A, Andrieux A, Berger F, Issartel JP, Wion D. The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis 2013; 35:553-64. [PMID: 23455988 PMCID: PMC3962683 DOI: 10.3233/jad-122005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Seasonal or chronic vitamin D deficiency and/or insufficiency is highly prevalent in the human population. Receptors for 1,25-dihydroxyvitamin D3, the hormonal metabolite of vitamin D, are found throughout the brain. To provide further information on the role of this hormone on brain function, we analyzed the transcriptomic profiles of mixed neuron-glial cell cultures in response to 1,25-dihydroxyvitamin D3. 1,25-dihydroxyvitamin D3 treatment increases the mRNA levels of 27 genes by at least 1.9 fold. Among them, 17 genes were related to neurodegenerative and psychiatric diseases, or brain morphogenesis. Notably, 10 of these genes encode proteins potentially limiting the progression of Alzheimer's disease. These data provide support for a role of 1,25-dihydroxyvitamin D3 in brain disease prevention. The possible consequences of circannual or chronic vitamin D insufficiencies on a tissue with a low regenerative potential such as the brain should be considered.
Collapse
Affiliation(s)
- Marie-France Nissou
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Jacques Brocard
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Michèle El Atifi
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Audrey Guttin
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Annie Andrieux
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
- GPC-GIN, Groupe Physiopathologie du Cytosquelette
INSERM : U836CEA : DSV/IRTSV/GPCUniversité Joseph Fourier - Grenoble IUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - François Berger
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Jean-Paul Issartel
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Didier Wion
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| |
Collapse
|
30
|
Limb JK, Song D, Jeon M, Han SY, Han G, Jhon GJ, Bae YS, Kim J. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells. J Tissue Eng Regen Med 2012; 9:435-46. [PMID: 23166016 DOI: 10.1002/term.1628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 07/12/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022]
Abstract
In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia.
Collapse
Affiliation(s)
- Jin-Kyung Limb
- Division of Life and Pharmaceutical Sciences and Centre for Cell Signalling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea; Department of Chemistry and Division of Nano Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zaun HC, Shrier A, Orlowski J. N-myristoylation and Ca2+ binding of calcineurin B homologous protein CHP3 are required to enhance Na+/H+ exchanger NHE1 half-life and activity at the plasma membrane. J Biol Chem 2012; 287:36883-95. [PMID: 22984264 DOI: 10.1074/jbc.m112.394700] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calcineurin B homologous proteins (CHP) are N-myristoylated, EF-hand Ca(2+)-binding proteins that regulate multiple cellular processes, including intracellular pH homeostasis. Previous work has shown that the heart-enriched isoform, CHP3, regulates the plasmalemmal Na(+)/H(+) exchanger NHE1 isoform by enhancing its rate of oligosaccharide maturation and exocytosis as well as its half-life and transport activity at the cell surface (Zaun, H. C., Shrier, A., and Orlowski, J. (2008) J. Biol. Chem. 283, 12456-12467). However, the molecular basis for this effect is not well understood. In this report, we investigated whether the N-myristoylation and Ca(2+)-binding domains of CHP3 are important elements for regulating NHE1. Mutation of residues essential for either N-myristoylation (G2A) or calcium binding (D123A) did not prevent the interaction of CHP3 with NHE1, although the D123A mutant no longer showed elevated binding to NHE1 in the presence of Ca(2+) when assessed using in vitro binding assays. Disruption of either site also did not impair the ability of CHP3 to stimulate the biosynthetic processing and trafficking of NHE1 to the plasma membrane nor did it affect the H(+) sensitivity of the exchanger. However, they did significantly reduce the cell surface half-life and near maximal transport velocity of NHE1 to a similar extent. Simultaneous mutation of both sites (G2A/D123A) gave results identical to the individual substitutions. This finding suggests that both domains in CHP3 are interdependent and may function cooperatively as a Ca(2+)-myristoyl switch mechanism to selectively stabilize the NHE1·CHP3 complex at the cell surface in a conformation that promotes optimal transport activity.
Collapse
Affiliation(s)
- Hans C Zaun
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
32
|
Abstract
Abstract
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein–coupled APELIN receptor (APLNR). APLNR-positive cells, identified by binding of the fluoresceinated peptide ligand, APELIN (APLN), or an anti-APLNR mAb, were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs), increased the expression of hematoendothelial genes in differentiating hESCs, and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore, APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
Collapse
|
33
|
Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann Ø, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, Lourdusamy A, Mattingsdal M, Mohnke S, Maniega SM, Nho K, Nugent AC, O'Brien C, Papmeyer M, Pütz B, Ramasamy A, Rasmussen J, Rijpkema M, Risacher SL, Roddey JC, Rose EJ, Ryten M, Shen L, Sprooten E, Strengman E, Teumer A, Trabzuni D, Turner J, van Eijk K, van Erp TGM, van Tol MJ, Wittfeld K, Wolf C, Woudstra S, Aleman A, Alhusaini S, Almasy L, Binder EB, Brohawn DG, Cantor RM, Carless MA, Corvin A, Czisch M, Curran JE, Davies G, de Almeida MAA, Delanty N, Depondt C, Duggirala R, Dyer TD, Erk S, Fagerness J, Fox PT, Freimer NB, Gill M, Göring HHH, Hagler DJ, Hoehn D, Holsboer F, Hoogman M, Hosten N, Jahanshad N, Johnson MP, Kasperaviciute D, Kent JW, Kochunov P, Lancaster JL, Lawrie SM, Liewald DC, Mandl R, Matarin M, Mattheisen M, Meisenzahl E, Melle I, Moses EK, Mühleisen TW, Nauck M, Nöthen MM, Olvera RL, Pandolfo M, Pike GB, Puls R, Reinvang I, Rentería ME, Rietschel M, Roffman JL, Royle NA, Rujescu D, Savitz J, Schnack HG, Schnell K, Seiferth N, Smith C, Steen VM, Valdés Hernández MC, Van den Heuvel M, van der Wee NJ, Van Haren NEM, Veltman JA, Völzke H, Walker R, Westlye LT, Whelan CD, Agartz I, Boomsma DI, Cavalleri GL, Dale AM, Djurovic S, Drevets WC, Hagoort P, Hall J, Heinz A, Jack CR, Foroud TM, Le Hellard S, Macciardi F, Montgomery GW, Poline JB, Porteous DJ, Sisodiya SM, Starr JM, Sussmann J, Toga AW, Veltman DJ, Walter H, Weiner MW, Bis JC, Ikram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, DeCarli C, Seshadri S, Andreassen OA, Apostolova LG, Bastin ME, Blangero J, Brunner HG, Buckner RL, Cichon S, Coppola G, de Zubicaray GI, Deary IJ, Donohoe G, de Geus EJC, Espeseth T, Fernández G, Glahn DC, Grabe HJ, Hardy J, Hulshoff Pol HE, Jenkinson M, Kahn RS, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Meyer-Lindenberg A, Morris DW, Müller-Myhsok B, Nichols TE, Ophoff RA, Paus T, Pausova Z, Penninx BW, Potkin SG, Sämann PG, Saykin AJ, Schumann G, Smoller JW, Wardlaw JM, Weale ME, Martin NG, Franke B, Wright MJ, Thompson PM. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 2012; 44:552-61. [PMID: 22504417 PMCID: PMC3635491 DOI: 10.1038/ng.2250] [Citation(s) in RCA: 524] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 03/19/2012] [Indexed: 02/06/2023]
Abstract
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10(-16)) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10(-12)). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10(-7)).
Collapse
Affiliation(s)
- Jason L Stein
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Megakaryocyte development is normal in mice with targeted disruption of Tescalcin. Exp Cell Res 2012; 318:662-9. [PMID: 22285131 DOI: 10.1016/j.yexcr.2012.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/30/2011] [Accepted: 01/05/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tescalcin is an EF-hand calcium-binding protein that interacts with the Na+/H+ exchanger 1 (NHE1). Levay and Slepak recently proposed a role for tescalcin in megakaryopoiesis that was independent of NHE1 activity. Their studies using K562 and HEL cell lines, and human CD34+ hematopoietic stem cells suggested an essential role for tescalcin in megakaryocyte differentiation. OBJECTIVE To study the role of tescalcin in megakaryocyte development using a murine model of megakaryopoiesis. METHODS We generated a mouse with targeted disruption of tescalcin and investigated megakaryocyte development. RESULTS Tescalcin-deficient mice had a normal number of megakaryocytes and platelets. The morphology, polyploidization profile, and expression of Fli-1 in bone marrow-derived megakaryocytes were also normal. CONCLUSION Tescalcin does not appear to be necessary for normal megakaryocyte development.
Collapse
|
35
|
Aliahmad P, Kadavallore A, de la Torre B, Kappes D, Kaye J. TOX is required for development of the CD4 T cell lineage gene program. THE JOURNAL OF IMMUNOLOGY 2011; 187:5931-40. [PMID: 22021617 DOI: 10.4049/jimmunol.1101474] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The factors that regulate thymic development of the CD4(+) T cell gene program remain poorly defined. The transcriptional regulator ThPOK is a dominant factor in CD4(+) T cell development, which functions primarily to repress the CD8 lineage fate. Previously, we showed that nuclear protein TOX is also required for murine CD4(+) T cell development. In this study, we sought to investigate whether the requirement for TOX was solely due to a role in ThPOK induction. In apparent support of this proposition, ThPOK upregulation and CD8 lineage repression were compromised in the absence of TOX, and enforced ThPOK expression could restore some CD4 development. However, these "rescued" CD4 cells were defective in many aspects of the CD4(+) T cell gene program, including expression of Id2, Foxo1, and endogenous Thpok, among others. Thus, TOX is necessary to establish the CD4(+) T cell lineage gene program, independent of its influence on ThPOK expression.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Research Division of Immunology, Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
36
|
Perera EM, Bao Y, Kos L, Berkovitz G. Structural and functional characterization of the mouse tescalcin promoter. Gene 2010; 464:50-62. [PMID: 20540995 DOI: 10.1016/j.gene.2010.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 02/06/2023]
Abstract
Tescalcin, an EF-hand calcium binding protein that regulates the Na(+)/H(+) exchanger 1 (NHE1), is highly expressed in various mouse tissues such as heart and brain. Despite its potentially important role in cell physiology, the mechanisms that regulate tescalcin gene (Tesc) expression are unknown. In this study, we report two new Tesc mRNA variants (V2 and V3) and characterize the mouse Tesc promoter. The V2 and V3 transcripts result from alternative splicing of intron 5. Our results show that Tesc mRNA variants are expressed in various mouse tissues. Primer extension analysis located the transcription start site at 94 nucleotides upstream of the translation start codon. The DNA nucleotide sequence of the 5'-flanking region contained a CpG island spanning the promoter region from nucleotides -372 to +814, a canonical TATA box (-38/-32), and putative transcription factor binding sites for Sp1, EGR1, ZBP-89, KLF3, MZF1, AP2, ZF5, and CDF-1. Transient transfection of the Y1 and msc-1 cell lines with a series of 5'-deleted promoter constructs indicated that the minimal promoter region was between nucleotides -130 and -40. Electrophoresis mobility shift assays, supershift assays, and mutation studies demonstrated that Sp1 and Sp3 bind to the GC-rich motifs, a CACCC box and three GC boxes, located within the Tesc proximal promoter. Nonetheless, mutations that abolished interaction of Sp1 and Sp3 with the GC-rich motifs located within the minimal promoter region did not abrogate promoter activity in Y1 cells. Mithramycin A, an inhibitor of Sp1-DNA interaction, reduced Tesc promoter activity in msc-1 cells in a dose-dependent manner. Sp3 was a weaker transactivator compared to Sp1 in Drosophila D.mel-2 cells. However, when Sp1 and Sp3 were coexpressed, they transactivated the Tesc promoter in a synergistic manner. In Y1 cells, mutation analysis of a putative ZF5 motif located within the Tesc minimal promoter indicated that this motif was critical for activity of Tesc promoter. Taken together, the data demonstrated that Sp1 and Sp3 transcription factors cooperate positively in the regulation of Tesc promoter, and that the putative ZF5 motif is critical for its activation.
Collapse
Affiliation(s)
- Erasmo M Perera
- Department of Pediatrics, Endocrinology Division, University of Miami, Leonard Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
37
|
Levay K, Slepak VZ. Up- or downregulation of tescalcin in HL-60 cells is associated with their differentiation to either granulocytic or macrophage-like lineage. Exp Cell Res 2010; 316:1254-62. [PMID: 20060826 DOI: 10.1016/j.yexcr.2010.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/17/2009] [Accepted: 01/02/2010] [Indexed: 11/15/2022]
Abstract
Tescalcin is a 25-kDa EF-hand Ca(2+)-binding protein that is differentially expressed in several mammalian tissues. Previous studies demonstrated that expression of this protein is essential for differentiation of hematopoietic precursor cell lines and primary stem cells into megakaryocytes. Here we show that tescalcin is expressed in primary human granulocytes and is upregulated in human promyelocytic leukemia HL-60 cells that have been induced to differentiate along the granulocytic lineage. However, during induced macrophage-like differentiation of HL-60 cells the expression of tescalcin is downregulated. The decrease in expression is associated with a rapid drop in tescalcin mRNA level, whereas upregulation occurs via a post-transcriptional mechanism. Tescalcin is necessary for HL-60 differentiation into granulocytes as its knockdown by shRNA impairs the ability of HL-60 cells to acquire the characteristic phenotypes such as phagocytic activity and generation of reactive oxygen species measured by respiratory burst assay. Both up- and downregulation of tescalcin require activation of the MEK/ERK cascade. It appears that commitment of HL-60 cells toward granulocytic versus macrophage-like lineage correlates with expression of tescalcin and kinetics of ERK activation. In retinoic acid-induced granulocytic differentiation, the activation of ERK and upregulation of tescalcin occurs slowly (16-48 h). In contrast, in PMA-induced macrophage-like differentiation the activation of ERK is rapid (15-30 min) and tescalcin is downregulated. These studies indicate that tescalcin is one of the key gene products that is involved in switching differentiation program in some cell types.
Collapse
Affiliation(s)
- Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-6189, USA.
| | | |
Collapse
|
38
|
Séverin S, Ghevaert C, Mazharian A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 2010; 8:17-26. [PMID: 19874462 DOI: 10.1111/j.1538-7836.2009.03658.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Megakaryopoiesis is a process by which bone marrow progenitor cells develop into mature megakaryocytes (MKs), which in turn produce platelets required for normal hemostasis. The mitogen-activated protein kinases (MAPKs) family comprises four main groups of proteins: extracellular signal-related kinases (ERKs) (ERK1/2 or p44/p42), ERK5, p38MAPKs (alpha, beta, gamma, delta) and c-Jun amino-terminal kinases (JNKs) (JNK 1, 2, 3). These intracellular signaling pathways play a pivotal role in many essential cellular processes including proliferation and differentiation. The purpose of this review is to summarize our current knowledge on the role of MAPKs in MKs, specifically regarding differentiation in immortalized cell lines and primary MKs. A critical role of the MEK (MAPK kinase)-ERK1/2 pathway in MK development has been demonstrated although the details remain controversial. There is at present no functional evidence for a role of p38MAPKs whereas the role of JNKs and ERK5 in MK development is not known. Characterization of these molecular event cascades remains crucial for the understanding of the megakaryopoiesis process.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
39
|
Itman C, Small C, Griswold M, Nagaraja AK, Matzuk MM, Brown CW, Jans DA, Loveland KL. Developmentally regulated SMAD2 and SMAD3 utilization directs activin signaling outcomes. Dev Dyn 2009; 238:1688-700. [PMID: 19517569 DOI: 10.1002/dvdy.21995] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activin is required for testis development. Activin signals via phosphorylation and nuclear accumulation of SMAD2 and SMAD3. We present novel findings of developmentally regulated activin signaling leading to specific transcriptional outcomes in testicular Sertoli cells. In immature, proliferating, Sertoli cells, activin A induces nuclear accumulation of SMAD3, but not SMAD2, although both proteins become phosphorylated. In postmitotic differentiating cells, both SMAD proteins accumulate in the nucleus. Furthermore, immature Sertoli cells are sensitive to activin dosage; higher concentrations induce maximal SMAD3 nuclear accumulation and a small increase in nuclear SMAD2. Microarray analysis identified distinct transcriptional outcomes correlating with differential SMAD utilization and new activin target genes, including Gja1 and Serpina5, which are essential for Sertoli cell development and male fertility. In transgenic mice with altered activin bioactivity that display fertility phenotypes, Gja1 and Serpina5 are significantly altered. Thus, differential SMAD utilization in response to activin features during Sertoli cell maturation.
Collapse
Affiliation(s)
- Catherine Itman
- Department of Biochemistry &Molecular Biology, Monash University, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Seeger FH, Chen L, Spyridopoulos I, Altschmied J, Aicher A, Haendeler J. Downregulation of ETS rescues diabetes-induced reduction of endothelial progenitor cells. PLoS One 2009; 4:e4529. [PMID: 19225563 PMCID: PMC2639694 DOI: 10.1371/journal.pone.0004529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 01/23/2009] [Indexed: 01/09/2023] Open
Abstract
Background Transplantation of vasculogenic progenitor cells (VPC) improves neovascularization after ischemia. However, patients with type 2 diabetes mellitus show a reduced VPC number and impaired functional activity. Previously, we demonstrated that p38 kinase inhibition prevents the negative effects of glucose on VPC number by increasing proliferation and differentiation towards the endothelial lineage in vitro. Moreover, the functional capacity of progenitor cells is reduced in a mouse model of metabolic syndrome including type 2 diabetes (Leprdb) in vivo. Findings The aim of this study was to elucidate the underlying signalling mechanisms in vitro and in vivo. Therefore, we performed DNA-protein binding arrays in the bone marrow of mice with metabolic syndrome, in blood-derived progenitor cells of diabetic patients as well as in VPC ex vivo treated with high levels of glucose. The transcriptional activation of ETS transcription factors was increased in all samples analyzed. Downregulation of ETS1 expression by siRNA abrogated the reduction of VPC number induced by high-glucose treatment. In addition, we observed a concomitant suppression of the non-endothelial ETS-target genes matrix metalloproteinase 9 (MMP9) and CD115 upon short term lentiviral delivery of ETS-specific shRNAs. Long term inhibition of ETS expression by lentiviral infection increased the number of cells with the endothelial markers CD144 and CD105. Conclusion These data demonstrate that diabetes leads to dysregulated activation of ETS, which blocks the functional activity of progenitor cells and their commitment towards the endothelial cell lineage.
Collapse
Affiliation(s)
- Florian Hartmut Seeger
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany
| | - Linping Chen
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany
| | - Ioakim Spyridopoulos
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany
| | - Joachim Altschmied
- Cell Biology & Molecular Aging Research, IUF (Institut für Umweltmedizinische Forschung) at the University of Duesseldorf gGmbH, Duesseldorf, Germany
| | - Alexandra Aicher
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany
| | - Judith Haendeler
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany
- Cell Biology & Molecular Aging Research, IUF (Institut für Umweltmedizinische Forschung) at the University of Duesseldorf gGmbH, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
41
|
Zaun HC, Shrier A, Orlowski J. Calcineurin B homologous protein 3 promotes the biosynthetic maturation, cell surface stability, and optimal transport of the Na+/H+ exchanger NHE1 isoform. J Biol Chem 2008; 283:12456-67. [PMID: 18321853 DOI: 10.1074/jbc.m800267200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcineurin B homologous protein (CHP) 1 and 2 are Ca(2+)-binding proteins that modulate several cellular processes, including cytoplasmic pH by positively regulating plasma membrane-type Na(+)/H(+) exchangers (NHEs). Recently another CHP-related protein, termed tescalcin or CHP3, was also shown to interact with the ubiquitous NHE1 isoform, but seemingly suppressed its activity. However, the precise physical and functional nature of this association was not examined in detail. In this study, biochemical and cellular studies were undertaken to further delineate this relationship. Glutathione S-transferase-NHE1 fusion protein pulldown assays revealed that full-length CHP3 binds directly to the proximal juxtamembrane C-terminal region (amino acids 505-571) of rat NHE1 in the same region that binds CHP1 and CHP2. The interaction was further validated by coimmunoprecipitation and coimmunolocalization experiments using full-length CHP3 and wild-type NHE1 in transfected Chinese hamster ovary AP-1 cells. Simultaneous mutation of four hydrophobic residues within this region ((530)FLDHLL(535)) to either Ala, Gln, or Arg (FL-A, FL-Q, or FL-R) abrogated this interaction both in vitro and in intact cells. The NHE1 mutants were sorted properly to the cell surface but showed markedly reduced (FL-A) or minimal (FL-R and FL-Q) activity. Interestingly, and contrary to an earlier finding, ectopic coexpression of CHP3 up-regulated the cell surface activity of wild-type NHE1. This stimulation was not observed with the CHP3 binding-defective mutants. Mechanistically, overexpression of CHP3 did not alter the H(+) sensitivity of wild-type NHE1 but rather promoted its biosynthetic maturation and half-life at the cell surface, thereby increasing the steady-state abundance of functional NHE1 protein.
Collapse
Affiliation(s)
- Hans C Zaun
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|