1
|
Filip P, Vojtíšek L, Jičínská AM, Valenta Z, Horák O, Hrunka M, Mangia S, Michaeli S, Jabandžiev P. Wide-spread brain alterations early after the onset of Crohn's disease in children in remission-a pilot study. Front Neurosci 2024; 18:1491770. [PMID: 39691628 PMCID: PMC11649648 DOI: 10.3389/fnins.2024.1491770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Background The research on possible cerebral involvement in Crohn's disease (CD) has been largely marginalized and failed to capitalize on recent developments in magnetic resonance imaging (MRI). Objective This cross-sectional pilot study searches for eventual macrostructural and microstructural brain affection in CD in remission and early after the disease onset. Methods 14 paediatric CD patients and 14 healthy controls underwent structural, diffusion weighted imaging and quantitative relaxation metrics acquisition, both conventional free precession and adiabatic rotating frame transverse and longitudinal relaxation time constants as markers of myelination, iron content and cellular loss. Results While no inter-group differences in cortical thickness and relaxation metrics were found, lower mean diffusivity and higher intracellular volume fraction were detected in CD patients over vast cortical regions essential for the regulation of the autonomous nervous system, sensorimotor processing, cognition and behavior, pointing to wide-spread cytotoxic oedema in the absence of demyelination, iron deposition or atrophy. Conclusion Although still requiring further validation in longitudinal projects enrolling larger numbers of subjects, this study provides an indication of wide-spread cortical oedema in CD patients very early after the disease onset and sets possible directions for further research.
Collapse
Affiliation(s)
- Pavel Filip
- Department of Neurology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czechia
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
- Department of Cybernetics, Czech Technical University in Prague, Prague, Czechia
| | - Lubomír Vojtíšek
- Central European Institute of Technology (CEITEC) Masaryk University Neuroscience Centre, Brno, Czechia
| | - Anna Marie Jičínská
- Department of Paediatric Neurology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Zdeněk Valenta
- Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Ondřej Horák
- Department of Paediatric Neurology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Matěj Hrunka
- Department of Paediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Petr Jabandžiev
- Department of Paediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| |
Collapse
|
2
|
Liu L, Jin YD, Fan YH. Progress in research of corticotropin-releasing hormone receptor 2 in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2024; 32:742-749. [DOI: 10.11569/wcjd.v32.i10.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Members of the corticotropin-releasing hormone family and their receptors are widely distributed in central and peripheral tissues and are involved in the regulation of the cardiovascular system, metabolism, immune function, and inflammatory response in the body. Corticotropin-releasing hormone receptor 2 (CRHR2), one of specific receptors for corticotropin releasing factor, attenuates stress-induced intestinal hypersensitivity, influences intestinal microbial composition and diversity, has strong anti-inflammatory capacity, and regulates the proliferation, migration, and apoptosis of intestinal epithelial cells, and promotes intestinal mucosal repair. In recent years, studies have shown that the levels of CRHR2 in the colon tissue of patients with inflammatory bowel disease (IBD) are significantly different from those in normal human intestinal tissue, and it has been suggested that CRHR2 may be a potential therapeutic target for IBD. This paper reviews the physiological functions of CRHR2 and its clinical relevance to IBD, with the aim of exploring its specific mechanism of action and potential clinical application in the treatment of IBD, so as to provide a basis for the development of more effective therapeutic means for IBD in the future.
Collapse
Affiliation(s)
- Liu Liu
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Dan Jin
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
3
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
4
|
Bonaz B. Enteric neuropathy and the vagus nerve: Therapeutic implications. Neurogastroenterol Motil 2024:e14842. [PMID: 38873822 DOI: 10.1111/nmo.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Enteric neuropathies are characterized by abnormalities of gut innervation, which includes the enteric nervous system, inducing severe gut dysmotility among other dysfunctions. Most of the gastrointestinal tract is innervated by the vagus nerve, the efferent branches of which have close interconnections with the enteric nervous system and whose afferents are distributed throughout the different layers of the digestive wall. The vagus nerve is a key element of the autonomic nervous system, involved in the stress response, at the interface of the microbiota-gut-brain axis, has anti-inflammatory and prokinetic properties, modulates intestinal permeability, and has a significant capacity of plasticity and regeneration. Targeting these properties of the vagus nerve, with vagus nerve stimulation (or non-stimulation/ pharmacological methods), could be of interest in the therapeutic management of enteric neuropathies.
Collapse
Affiliation(s)
- Bruno Bonaz
- Grenoble Institut des Neurosciences, Université Grenoble Alpes-Faculté de Médecine, Grenoble, France
| |
Collapse
|
5
|
Waemong A, Sattayachiti S, Cheaha D, Konthapakdee N. Effects of oral administration of ondansetron, a 5-HT 3 receptor antagonist, on anxiety-related behaviors and colonic hypercontractility in repeated stress-induced mice. Auton Neurosci 2024; 253:103178. [PMID: 38642511 DOI: 10.1016/j.autneu.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE Chronic psychological stress develops and exacerbates irritable bowel syndrome (IBS). 5-hydroxytryptamine (5-HT) via activation of intestinal 5-HT3 receptors involves impairment of intestinal functions. This study aimed to investigate the effects of ondansetron, a 5-HT3 receptor antagonist, on locomotor activity, anxiety-related behaviors, and colonic functions in repeated water avoidance stress. MATERIALS AND METHODS Food intake and fecal pellet output (FPO) of sham stress (SS), water avoidance stress (WS), and water avoidance stress with oral administration of ondansetron (1 mg/kg BW) (WA) groups were monitored along the water avoidance stress protocol for 10 consecutive days. On day 11, locomotor activity and anxiety-related behaviors were determined using an open field test. Contractile properties of colonic tissues in response to KCl and a cumulative dose of carbachol (CCh) were determined using in vitro organ bath technique. RESULTS FPO was significantly increased in the WS group after 7 days of water avoidance stress, which was reversed in WA group. WS group decreased unsupported rearing behavior compared to WS group, which was not altered in the WA group. The colon of the WS group had a higher tonic contraction in response to CCh than the SS and WA groups, which was reversed with ondansetron pre-incubation. CONCLUSIONS Oral administration of ondansetron prevented increased FPO but did not affect anxiety-related behavior in repeated stress model. Colonic hypercontractility in the stressed mice was related to increased responses to cholinergic-induced contractions, which involved 5-HT3 receptors. Our findings suggest the modulatory roles of 5-HT3 receptors to mediate stress-induced colonic dysfunction.
Collapse
Affiliation(s)
- Affan Waemong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunnuch Sattayachiti
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Dania Cheaha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nipaporn Konthapakdee
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
| |
Collapse
|
6
|
Wang S, Li M, Wang N, Song Y, Peng X, Chen M. Functional characterization of two DH44R genes associated with starvation and desiccation in Rhopalosiphum padi (Hemiptera: Aphididae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105902. [PMID: 38685224 DOI: 10.1016/j.pestbp.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
CRF-like diuretic hormone receptor (CRF/DHR), also known as DH44R in insects, are G-protein coupled receptors (GPCRs) that play a role in regulating osmotic balance in various insect species. These receptors have the potential to be targeted for the development of insecticides. However, our understanding of the role of DHR genes in aphids, including Rhopalosiphum padi, a major wheat pest, is currently limited. In this study, we isolated and characterized two R. padi DHRs (RpDHR1 and RpDHR2). The expression levels of RpDHR1 increased after starvation and were restored after re-feeding. The expression levels of RpDHR1 gene decreased significantly 24 h after injection of dsRNA targeting the gene. Knockdown of RpDHR1 increased aphid mortality under starvation conditions (24, 36, 48 and 60 h). Under starvation and desiccation condition, the aphid mortality decreased after knockdown of RpDHR1. This is the first study to report the role of DHR genes in the starvation and desiccation response of aphids. The results suggest that RpDHR1 is involved in the resistance of R. padi to starvation and dehydration, making it a potential target for insecticide development. Novel insecticides could be created by utilizing DHR agonists to disrupt the physiological processes of insect pests.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yue Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Bonaz B. Unmet needs of drugs for irritable bowel syndrome and inflammatory bowel diseases: interest of vagus nerve stimulation and hypnosis. Inflammopharmacology 2024; 32:1005-1015. [PMID: 38512653 DOI: 10.1007/s10787-024-01446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The gut and the brain communicate bidirectionally through the autonomic nervous system. The vagus nerve is a key component of this gut-brain axis, and has numerous properties such as anti-inflammatory, antinociceptive, anti-depressive effects. A perturbation of this gut-brain communication is involved in the pathogeny of functional digestive disorders, such as irritable bowel syndrome, and inflammatory bowel diseases. Stress plays a role in the pathogeny of these diseases, which are biopsychosocial models. There are presently unmet needs of pharmacological treatments of these chronic debilitating diseases. Treatments are not devoid of side effects, cost-effective, do not cure the diseases, can lose effects over time, thus explaining the poor satisfaction of patients, their lack of compliance, and their interest for non-drug therapies. The gut-brain axis can be targeted for therapeutic purposes in irritable bowel syndrome and inflammatory bowel disease through non-drug therapies, such as hypnosis and vagus nerve stimulation, opening up possibilities for responding to patient expectations.
Collapse
Affiliation(s)
- Bruno Bonaz
- Service d'hépato-Gastroentérologie, Grenoble Institut Neurosciences, Université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
8
|
Wang S, Zhou S, Han Z, Yu B, Xu Y, Lin Y, Chen Y, Jin Z, Li Y, Cao Q, Xu Y, Zhang Q, Wang YC. From gut to brain: understanding the role of microbiota in inflammatory bowel disease. Front Immunol 2024; 15:1384270. [PMID: 38576620 PMCID: PMC10991805 DOI: 10.3389/fimmu.2024.1384270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".
Collapse
Affiliation(s)
- Siyu Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuwei Zhou
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bin Yu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yalong Li
- Anorectal Department, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Qinhan Cao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Yunying Xu
- Clinical Medical School, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Qiang Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuan-Cheng Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
10
|
Sinen O, Akçalı İ, Akkan SS, Bülbül M. The role of hypothalamic Orexin-A in stress-induced gastric dysmotility: An agonistic interplay with corticotropin releasing factor. Neurogastroenterol Motil 2024; 36:e14719. [PMID: 38105366 DOI: 10.1111/nmo.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Central Orexin-A (OXA) modulates gastrointestinal (GI) functions and stress response. This study aimed to investigate whether OXA and CRF interact at hypothalamic level. METHODS Solid gastric emptying (GE), fecal output (FO), plasma corticosterone (CORT), and postprandial antro-pyloric motility were assessed in rats that underwent acute restraint stress (ARS) and pretreated with central OX1R and/or CRF receptor antagonists SB-334867 and alpha-helical CRF9,41 . Microdialysis was performed to assess ARS-induced release of OXA and CRF in PVN and LHA, respectively. Immunofluorescence labeling was performed to detect the stress-induced changes in OXA and to assess the hypothalamic distribution of OX1R and CRF1/2 receptors. ARS-induced c-Fos immunoreactivity was evaluated in PVN and LHA of rats received OX1R and CRF receptor antagonists. KEY RESULTS ARS delayed GE by disturbing the coordination of antro-pyloric contractions while stimulating FO and CORT secretion. ARS-induced alterations in GE, FO, plasma CORT, and antro-pyloric motility were attenuated by OX1R and/or CRF receptor antagonists, however, these changes were completely restored in rats received both antagonists. ARS stimulated release of OXA and CRF which were significantly attenuated by α-CRF9,41 and SB-334867, respectively. The OX1R was detected in CRF-immunoreactive cells, whereas dense expression of CRF2 receptor but not CRF1 was observed in LHA. ARS remarkably increased OXA immunoreactivity in LHA. ARS-induced c-Fos expression in LHA and PVN was abolished by α-CRF9,41 and SB-334867, respectively. CONCLUSIONS & INFERENCES Our findings suggest a reciprocal contribution of OXA and CRF which seems to be involved in the mediation of stress-induced alterations in neuroendocrine and GI motor functions.
Collapse
Affiliation(s)
- Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - İrem Akçalı
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Simla Su Akkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
11
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
12
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Bonaz B. Dysregulation of hypothalamic-vagal neurocircuits by perinatal high fat diet. J Physiol 2023; 601:2757-2758. [PMID: 37283028 DOI: 10.1113/jp284986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Gallo DM, Romero R, Bosco M, Gotsch F, Jaiman S, Jung E, Suksai M, Ramón Y Cajal CL, Yoon BH, Chaiworapongsa T. Meconium-stained amniotic fluid. Am J Obstet Gynecol 2023; 228:S1158-S1178. [PMID: 37012128 PMCID: PMC10291742 DOI: 10.1016/j.ajog.2022.11.1283] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 04/04/2023]
Abstract
Green-stained amniotic fluid, often referred to as meconium-stained amniotic fluid, is present in 5% to 20% of patients in labor and is considered an obstetric hazard. The condition has been attributed to the passage of fetal colonic content (meconium), intraamniotic bleeding with the presence of heme catabolic products, or both. The frequency of green-stained amniotic fluid increases as a function of gestational age, reaching approximately 27% in post-term gestation. Green-stained amniotic fluid during labor has been associated with fetal acidemia (umbilical artery pH <7.00), neonatal respiratory distress, and seizures as well as cerebral palsy. Hypoxia is widely considered a mechanism responsible for fetal defecation and meconium-stained amniotic fluid; however, most fetuses with meconium-stained amniotic fluid do not have fetal acidemia. Intraamniotic infection/inflammation has emerged as an important factor in meconium-stained amniotic fluid in term and preterm gestations, as patients with these conditions have a higher rate of clinical chorioamnionitis and neonatal sepsis. The precise mechanisms linking intraamniotic inflammation to green-stained amniotic fluid have not been determined, but the effects of oxidative stress in heme catabolism have been implicated. Two randomized clinical trials suggest that antibiotic administration decreases the rate of clinical chorioamnionitis in patients with meconium-stained amniotic fluid. A serious complication of meconium-stained amniotic fluid is meconium aspiration syndrome. This condition develops in 5% of cases presenting with meconium-stained amniotic fluid and is a severe complication typical of term newborns. Meconium aspiration syndrome is attributed to the mechanical and chemical effects of aspirated meconium coupled with local and systemic fetal inflammation. Routine naso/oropharyngeal suctioning and tracheal intubation in cases of meconium-stained amniotic fluid have not been shown to be beneficial and are no longer recommended in obstetrical practice. A systematic review of randomized controlled trials suggested that amnioinfusion may decrease the rate of meconium aspiration syndrome. Histologic examination of the fetal membranes for meconium has been invoked in medical legal litigation to time the occurrence of fetal injury. However, inferences have been largely based on the results of in vitro experiments, and extrapolation of such findings to the clinical setting warrants caution. Fetal defecation throughout gestation appears to be a physiologic phenomenon based on ultrasound as well as in observations in animals.
Collapse
Affiliation(s)
- Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Gynecology and Obstetrics, Universidad Del Valle, Cali, Colombia
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Sunil Jaiman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Carlos López Ramón Y Cajal
- Unit of Prenatal Diagnosis, Service of Obstetrics and Gynecology, Álvaro Cunqueiro Hospital, Vigo, Spain
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
15
|
Zhang T, Zhang B, Ma X, Zhang J, Wei Y, Wang F, Tang X. Research trends in the field of the gut-brain interaction: Functional dyspepsia in the spotlight – An integrated bibliometric and science mapping approach. Front Neurosci 2023; 17:1109510. [PMID: 36968499 PMCID: PMC10035075 DOI: 10.3389/fnins.2023.1109510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
ObjectivesThis study aims to perform a bibliometric analysis of functional dyspepsia (FD), which includes visualizing bibliographic information, in order to identify prevailing study themes, topics of interest, contributing journals, countries, institutions, and authors as well as co-citation patterns.MethodsThe Web of Science™ Core Collection Database was used to retrieve all peer-reviewed scientific publications related to FD research. The validated search terms were entered into the “title” and “author keywords” fields, and the results were sorted by publication year from 2006 to 2022. There were no restrictions on language. On 12 February 2023, a manual export of the complete metadata for each original publication and review article was performed. CiteSpace was used to reveal co-authorship, publication, and co-citation patterns to find prominent authors, organizations, countries, and journals in FD research as well as to identify author keywords with strong citation bursts, which could indicate an emerging research area. VOSviewer was used to build the co-occurrence indicator (co-word) to identify the main author keywords on which previous studies focused and to induce clustered scientific landscape for two consecutive periods to identify intriguing areas for future research.ResultsA search of the database retrieved 2,957 documents. There was a wave-like pattern in the number of publications until 2017, after which there was a spike in publication volume. The USA, China, and Japan provided the majority of contributions. In terms of institution, Mayo Clin, Univ Newcastle, and Katholieke Univ Leuven were found to be the prolific institutions. Additionally, the results indicate that eastern Asian researchers contributed significantly to the global knowledge of literature that led other countries; however, Canada, the USA, Australia, England, and Germany were found to have the highest degree of betweenness centrality. Nicholas J. Talley, Jan Tack, Gerald Holtmann, Michael Camilleri, Ken Haruma, and Paul Moayyedi occupied the top positions based on productivity and centrality indicators. Six thematic clusters emerged (Helicobacter pylori infection; pathophysiological mechanisms of FD; extraintestinal co-morbidities and overlap syndromes associated with FD; herbal medicine in FD; diabetic gastroparesis; and dietary factors in FD). “Acupuncture,” “duodenal eosinophilia,” “gut microbiota,” and others were among the author keywords with rising prevalence.ConclusionIn FD research, eastern Asian countries have established themselves as major contributors with the highest publishing productivity; however, research has primarily been driven by North America, Europe, and Australia, where cooperation is generally more active and highly influential scientific results are produced. Our analysis suggests that increased investments, training of human resources, improved infrastructures, and expanded collaborations are essential to improving the quality of FD research in Asia. The emerging author keyword analysis suggests that eosinophil-mast cell axis, gut microbiota, mental disorders, and acupuncture are the key areas that attract researchers’ attention as future research boulevards. There is a highly skewed distribution of research output across Asia, with most focus on complementary and alternative medicine (CAM) coming from Chinese, Japanese, and South Korean centers. However, CAM remains an underexplored area of research in the context of FD, and it deserves greater research efforts in order to obtain quality scientific evidence. Furthermore, we propose that the research framework of CAM should not be limited to dysmotility; rather, it could be interpreted within a more holistic context that includes the brain-gut-microbiota axis, as well as novel concepts such as duodenitis, increased mucosal permeability, and infiltration and activation of eosinophils and mast cells, among others. Overall, we provided bibliometrics-based overviews of relevant literature to researchers from different backgrounds and healthcare professionals to provide an in-depth overview of major trends in FD research.
Collapse
Affiliation(s)
- Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengyun Wang,
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xudong Tang,
| |
Collapse
|
16
|
Blin J, Gautier C, Aubert P, Durand T, Oullier T, Aymeric L, Naveilhan P, Masson D, Neunlist M, Bach-Ngohou K. Psychological stress induces an increase in cholinergic enteric neuromuscular pathways mediated by glucocorticoid receptors. Front Neurosci 2023; 17:1100473. [PMID: 36866332 PMCID: PMC9971731 DOI: 10.3389/fnins.2023.1100473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Repeated acute stress (RASt) is known to be associated with gastrointestinal dysfunctions. However, the mechanisms underlying these effects have not yet been fully understood. While glucocorticoids are clearly identified as stress hormones, their involvement in RASt-induced gut dysfunctions remains unclear, as does the function of glucocorticoid receptors (GR). The aim of our study was to evaluate the involvement of GR on RASt-induced changes in gut motility, particularly through the enteric nervous system (ENS). Methods Using a murine water avoidance stress (WAS) model, we characterized the impact of RASt upon the ENS phenotype and colonic motility. We then evaluated the expression of glucocorticoid receptors in the ENS and their functional impact upon RASt-induced changes in ENS phenotype and motor response. Results We showed that GR were expressed in myenteric neurons in the distal colon under basal conditions, and that RASt enhanced their nuclear translocation. RASt increased the proportion of ChAT-immunoreactive neurons, the tissue concentration of acetylcholine and enhanced cholinergic neuromuscular transmission as compared to controls. Finally, we showed that a GR-specific antagonist (CORT108297) prevented the increase of acetylcholine colonic tissue level and in vivo colonic motility. Discussion Our study suggests that RASt-induced functional changes in motility are, at least partly, due to a GR-dependent enhanced cholinergic component in the ENS.
Collapse
Affiliation(s)
- Justine Blin
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Nantes Université, CHU Nantes, Department of Biochemistry, Nantes, France,*Correspondence: Justine Blin,
| | - Camille Gautier
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Philippe Aubert
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Tony Durand
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Thibauld Oullier
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Laetitia Aymeric
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Université d’Angers, Department of Biology, Angers, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Damien Masson
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Nantes Université, CHU Nantes, Department of Biochemistry, Nantes, France
| | - Michel Neunlist
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Michel Neunlist,
| | - Kalyane Bach-Ngohou
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Nantes Université, CHU Nantes, Department of Biochemistry, Nantes, France,Kalyane Bach-Ngohou,
| |
Collapse
|
17
|
Atmani K, Wuestenberghs F, Baron M, Bouleté I, Guérin C, Bahlouli W, Vaudry D, do Rego JC, Cornu JN, Leroi AM, Coëffier M, Meleine M, Gourcerol G. Bladder-colon chronic cross-sensitization involves neuro-glial pathways in male mice. World J Gastroenterol 2022; 28:6935-6949. [PMID: 36632316 PMCID: PMC9827584 DOI: 10.3748/wjg.v28.i48.6935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/02/2022] [Accepted: 10/26/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome and bladder pain syndrome often overlap and are both characterized by visceral hypersensitivity. Since pelvic organs share common sensory pathways, it is likely that those syndromes involve a cross-sensitization of the bladder and the colon. The precise pathophysiology remains poorly understood.
AIM To develop a model of chronic bladder-colon cross-sensitization and to investigate the mech-anisms involved.
METHODS Chronic cross-organ visceral sensitization was obtained in C57BL/6 mice using ultrasound-guided intravesical injections of acetic acid under brief isoflurane anesthesia. Colorectal sensitivity was assessed in conscious mice by measuring intracolonic pressure during isobaric colorectal distensions. Myeloperoxidase, used as a marker of colorectal inflammation, was measured in the colon, and colorectal permeability was measured using chambers. c-Fos protein expression, used as a marker of neuronal activation, was assessed in the spinal cord (L6-S1 level) using immunohistochemistry. Green fluorescent protein on the fractalkine receptor-positive mice were used to identify and count microglia cells in the L6-S1 dorsal horn of the spinal cord. The expression of NK1 receptors and MAPK-p38 were quantified in the spinal cord using western blot.
RESULTS Visceral hypersensitivity to colorectal distension was observed after the intravesical injection of acetic acid vs saline (P < 0.0001). This effect started 1 h post-injection and lasted up to 7 d post-injection. No increased permeability or inflammation was shown in the bladder or colon 7 d post-injection. Visceral hypersensitivity was associated with the increased expression of c-Fos protein in the spinal cord (P < 0.0001). In green fluorescent protein on the fractalkine receptor-positive mice, intravesical acetic acid injection resulted in an increased number of microglia cells in the L6-S1 dorsal horn of the spinal cord (P < 0.0001). NK1 receptor and MAPK-p38 levels were increased in the spinal cord up to 7 d after injection (P = 0.007 and 0.023 respectively). Colorectal sensitization was prevented by intrathecal or intracerebroventricular injections of minocycline, a microglia inhibitor, by intracerebroventricular injection of CP-99994 dihydrochloride, a NK1 antagonist, and by intracerebroventricular injection of SB203580, a MAPK-p38 inhibitor.
CONCLUSION We describe a new model of cross-organ visceral sensitization between the bladder and the colon in mice. Intravesical injections of acetic acid induced a long-lasting colorectal hypersensitivity to distension, mediated by neuroglial interactions, MAPK-p38 phosphorylation and the NK1 receptor.
Collapse
Affiliation(s)
- Karim Atmani
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
| | - Fabien Wuestenberghs
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Department of Gastroenterology and Hepatology, Université Catholique de Louvain, CHU UCL Namur, Yvoir 5530, Belgium
- Department of Physiology, CHU Rouen, Université de Rouen Normandie, Rouen 76031, France
| | - Maximilien Baron
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Department of Urology, CHU Rouen, Université de Rouen Normandie, Rouen 76000, France
| | - Illona Bouleté
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
| | - Charlène Guérin
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
| | - Wafa Bahlouli
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
| | - David Vaudry
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Inserm, UMR 1245, Team Epigenetics and Pathophysiology of Neuro-developmental Disorders, Université de Rouen Normandie, Rouen 76000, France
| | - Jean Claude do Rego
- Behavioural Analysis Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
| | - Jean-Nicolas Cornu
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Department of Urology, CHU Rouen, Université de Rouen Normandie, Rouen 76000, France
| | - Anne-Marie Leroi
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Department of Physiology, CHU Rouen, Université de Rouen Normandie, Rouen 76031, France
| | - Moïse Coëffier
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Department of Nutrition, CHU Rouen, Université de Rouen Normandie, Rouen 76000, France
| | - Mathieu Meleine
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Inserm U1107, NeuroDol, Clermont Auvergne University, Clermont-Ferrand 63000, France
| | - Guillaume Gourcerol
- Nutrition, Gut and Brain Unit (Inserm U1073), Institute for Research and Innovation in Biomedicine, Université de Rouen Normandie, Rouen 76000, France
- Department of Physiology, CHU Rouen, Université de Rouen Normandie, Rouen 76031, France
| |
Collapse
|
18
|
Mechanism of Oxytocin-Induced Contraction in Rat Gastric Circular Smooth Muscle. Int J Mol Sci 2022; 24:ijms24010441. [PMID: 36613886 PMCID: PMC9820280 DOI: 10.3390/ijms24010441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Oxytocin produces an excitatory effect on gastric muscle through the activation of receptors present on stomach smooth muscle cells. However, the intracellular mechanisms that mediate oxytocin excitatory effects are still largely unknown. Therefore, we aimed to investigate the signaling pathways involved in oxytocin-induced contractions in gastric smooth muscle, shedding light on phospholipase C (PLC)-β1 signaling and its downstream molecules, including inositol 1,4,5- trisphosphate (IP3) and myosin light chain kinase (MLCK). The contractions of gastric smooth muscle from male rats were measured in an organ bath set up in response to exogenous oxytocin 10-7 M, in the presence and absence of inhibitors of the indicated signaling molecules. Oxytocin (10-9-10-5 M) induced dose-dependent stomach smooth muscle contraction. Pre-incubation with atosiban, an oxytocin receptor inhibitor, abolished the oxytocin-induced contraction. Moreover, PLC β1 inhibitor (U73122) and IP3 inhibitor Xestospongin C inhibited oxytocin-induced muscle contraction to various degrees. Verapamil, a calcium channel blocker, inhibited oxytocin-induced contraction, and pre-incubation of the strips, with both verapamil and Xestospongin C, further inhibited the excitatory effect of oxytocin. Chelation of intracellular calcium with BAPT-AM (1,2-bis-(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid) significantly inhibited the effect of oxytocin on muscle contraction. Finally, pre-incubation of the strips with the Ca2+/calmodulin-dependent protein kinase selective inhibitor STO-609 significantly inhibited the contraction induced by oxytocin. These results suggest that oxytocin directly stimulates its cell surface receptor to activate PLC β1, which in turn liberates IP3, which eventually elevates intracellular calcium, the prerequisite for smooth muscle contraction.
Collapse
|
19
|
Stapelberg NJC, Bui TA, Mansour V, Johnson S, Branjerdporn G, Adhikary S, Ashton K, Taylor N, Headrick JP. The pathophysiology of major depressive disorder through the lens of systems biology: Network analysis of the psycho-immune-neuroendocrine physiome. J Neuroimmunol 2022; 372:577959. [PMID: 36095861 DOI: 10.1016/j.jneuroim.2022.577959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The psycho-immune-neuroendocrine (PINE) network is a predominantly physiological (metabolomic) model constructed from the literature, inter-linking multiple biological processes associated with major depressive disorder (MDD), thereby integrating putative mechanistic pathways for MDD into a single network. MATERIAL AND METHODS Previously published metabolomic pathways for the PINE network based on literature searches conducted in 1991-2021 were used to construct an edge table summarizing all physiological pathways in pairs of origin nodes and target nodes. The Gephi software program was used to calculate network metrics from the edge table, including total degree and centrality measures, to ascertain key network nodes and construct a directed network graph. RESULTS An edge table and directional network graph of physiological relationships in the PINE network is presented. The network has properties consistent with complex biological systems, with analysis yielding key network nodes comprising pro-inflammatory cytokines (TNF- α, IL6 and IL1), glucocorticoids and corticotropin releasing hormone (CRH). These may represent central structural and regulatory elements in the context of MDD. CONCLUSION The identified hubs have a high degree of connection and are known to play roles in the progression from health to MDD. These nodes represent strategic targets for therapeutic intervention or prevention. Future work is required to build a weighted and dynamic simulation of the network PINE.
Collapse
Affiliation(s)
- Nicolas J C Stapelberg
- Bond University, Faculty of Health Sciences and Medicine, Robina, Australia; Gold Coast Health, Southport, Australia
| | | | - Verena Mansour
- Bond University, Faculty of Health Sciences and Medicine, Robina, Australia
| | | | - Grace Branjerdporn
- Gold Coast Health, Southport, Australia; Mater Young Adult Health Service, Mater Hospital, South Brisbane, Australia.
| | - Sam Adhikary
- Mater Young Adult Health Service, Mater Hospital, South Brisbane, Australia
| | - Kevin Ashton
- Bond University, Faculty of Health Sciences and Medicine, Robina, Australia
| | | | | |
Collapse
|
20
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
21
|
Hussain Z, Park H. Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options. J Neurogastroenterol Motil 2022; 28:517-530. [PMID: 36250359 PMCID: PMC9577567 DOI: 10.5056/jnm22100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Post-operative ileus (POI) is the transient cessation of coordinated gastrointestinal motility after abdominal surgical intervention. It decreases quality of life, prolongs length of hospital stay, and increases socioeconomic costs. The mechanism of POI is complex and multifactorial, and has been broadly categorized into neurogenic and inflammatory phase. Neurogenic phase mediated release of corticotropin-releasing factor (CRF) plays a central role in neuroinflammation, and affects both central autonomic response as well hypothalamic-pituitary-adrenal (HPA) axis. HPA-stress axis associated cortisol release adversely affects gut microbiota and permeability. Peripheral CRF (pCRF) is a key player in stress induced gastric emptying and colonic transit. It functions as a local effector and interacts with the CRF receptors on the mast cell to release chemical mediators of inflammation. Mast cells proteases disrupt epithelial barrier via protease activated receptor-2 (PAR-2). PAR-2 facilitates cytoskeleton contraction to reorient tight junction proteins such as occludin, claudins, junctional adhesion molecule, and zonula occludens-1 to open epithelial barrier junctions. Barrier opening affects the selectivity, and hence permeation of luminal antigens and solutes in the gastrointestinal tract. Translocation of luminal antigens perturbs mucosal immune system to further exacerbate inflammation. Stress induced dysbiosis and decrease in production of short chain fatty acids add to the inflammatory response and barrier disintegration. This review discusses potential mechanisms and factors involved in the pathophysiology of POI with special reference to inflammation and interlinked events such as epithelial barrier dysfunction and dysbiosis. Based on this review, we recommend CRF, mast cells, macrophages, and microbiota could be targeted concurrently for efficient POI management.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Bonaz B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction. Neurogastroenterol Motil 2022; 34:e14456. [PMID: 36097404 PMCID: PMC9787579 DOI: 10.1111/nmo.14456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/30/2022]
Abstract
The vagus nerve (VN), the longest nerve of the organism innervating the gastrointestinal tract, is a mixed nerve with anti-inflammatory properties through its afferents, activating the hypothalamic-pituitary adrenal axis, and its efferents through the cholinergic anti-inflammatory pathway inhibiting the release of pro-inflammatory cytokines (e.g., TNFα) by splenic and gut macrophages. In addition, the VN is also able to modulate the permeability of the intestinal barrier although the VN does not innervate directly the intestinal epithelium. Targeting the VN through VN stimulation (VNS) has been developed in experimental model of intestinal inflammation and in inflammatory bowel disease (IBD) and might be of interest to decrease intestinal permeability in gastrointestinal disorders with intestinal barrier defect such as IBD, irritable bowel syndrome (IBS), and celiac disease. In this issue of neurogastroenterology and motility, Mogilevski et al. report that a brief non-invasive transcutaneous auricular VNS in healthy volunteers consistently reduces the permeability of the small intestine induced by intravenous administration of the stress peptide corticotropin releasing hormone, known to increase intestinal permeability and to inhibit the VN. In this review, we outline the mechanistic underpinning the effect of stress, of the VN and VNS on intestinal permeability. In particular, the VN can act on intestinal permeability through enteric nerves, and/or cells such as enteric glial cells. We also review the existing evidence of the effects VNS on intestinal permeability in models such as burn intestinal injury and traumatic brain injury, which pave the way for future clinical trials in IBD, IBS, and celiac disease.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato‐GastroenterologyCentre Hospitalier Universitaire Grenoble AlpesGrenobleFrance,Grenoble Institute of Neurosciences, Inserm U1216University Grenoble AlpesGrenobleFrance
| |
Collapse
|
23
|
Jiang Y, Zimmerman JE, Browning KN, Travagli RA. Stress-induced neuroplasticity in the gastric response to brainstem oxytocin in male rats. Am J Physiol Gastrointest Liver Physiol 2022; 322:G513-G522. [PMID: 35170350 PMCID: PMC8993533 DOI: 10.1152/ajpgi.00347.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that pharmacological manipulations with stress-related hormones such as corticotropin-releasing factor and thyrotropin-releasing hormone induce neuroplasticity in brainstem vagal neurocircuits, which modulate gastric tone and motility. The prototypical antistress hormone oxytocin (OXT) has been shown to modulate gastric tone and motility via vagal pathways, and descending hypothalamic oxytocinergic inputs play a major role in the vagally dependent gastric-related adaptations to stress. The aim of this study was to investigate the possible cellular mechanisms through which OXT modulates central vagal brainstem and peripheral enteric neurocircuits of male Sprague-Dawley rats in response to chronic repetitive stress. After chronic (5 consecutive days) of homotypic or heterotypic stress load, the response to exogenous brainstem administration of OXT was examined using whole cell patch-clamp recordings from gastric-projecting vagal motoneurons and in vivo recordings of gastric tone and motility. GABAergic currents onto vagal motoneurons were decreased by OXT in stressed, but not in naïve rats. In naïve rats, microinjections of OXT in vagal brainstem nuclei-induced gastroinhibition via peripheral release of nitric oxide (NO). In stressed rats, however, the OXT-induced gastroinhibition was determined by the release of both NO and vasoactive intestinal peptide (VIP). Taken together, our data indicate that stress induces neuroplasticity in the response to OXT in the neurocircuits, which modulate gastric tone and motility. In particular, stress uncovers the OXT-mediated modulation of brainstem GABAergic currents and alters the peripheral gastric response to vagal stimulation.NEW & NOTEWORTHY The prototypical antistress hormone, oxytocin (OXT), modulates gastric tone and motility via vagal pathways, and descending hypothalamic-brainstem OXT neurocircuits play a major role in the vagally dependent adaptation of gastric motility and tone to stress. The current study suggests that in the neurocircuits, which modulate gastric tone and motility, stress induces neuroplasticity in the response to OXT and may reflect the dysregulation observed in stress-exacerbated functional motility disorders.
Collapse
Affiliation(s)
- Yanyan Jiang
- 1Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Kirsteen N. Browning
- 1Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - R. Alberto Travagli
- 1Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
24
|
Hong Y, Zhao J, Chen YR, Huang ZH, Hou LD, Shen B, Xin Y. Spinal anesthesia alleviates dextran sodium sulfate-induced colitis by modulating the gut microbiota. World J Gastroenterol 2022; 28:1239-1256. [PMID: 35431512 PMCID: PMC8968491 DOI: 10.3748/wjg.v28.i12.1239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic disease with recurrent intestinal inflammation. Although the exact etiology of IBD remains unknown, the accepted hypothesis of the pathogenesis to date is that abnormal immune responses to the gut microbiota are caused by environmental factors. The role of the gut microbiota, particularly the bidirectional interaction between the brain and gut microbiota, has gradually attracted more attention.
AIM To investigate the potential effect of spinal anesthesia on dextran sodium sulfate (DSS)-induced colitis mice and to detect whether alterations in the gut microbiota would be crucial for IBD.
METHODS A DSS-induced colitis mice model was established. Spinal anesthesia was administered on colitis mice in combination with the methods of cohousing and fecal microbiota transplantation (FMT) to explore the role of spinal anesthesia in IBD and identify the potential mechanisms involved.
RESULTS We demonstrated that spinal anesthesia had protective effects against DSS-induced colitis by alleviating clinical symptoms, including reduced body weight loss, decreased disease activity index score, improved intestinal permeability and colonic morphology, decreased inflammatory response, and enhanced intestinal barrier functions. Moreover, spinal anesthesia significantly increased the abundance of Bacteroidetes, which was suppressed in the gut microbiota of colitis mice. Interestingly, cohousing with spinal anesthetic mice and FMT from spinal anesthetic mice can also alleviate DSS-induced colitis by upregulating the abundance of Bacteroidetes. We further showed that spinal anesthesia can reduce the increase in noradrenaline levels induced by DSS, which might affect the gut microbiota.
CONCLUSION These data suggest that microbiota dysbiosis may contribute to IBD and provide evidence supporting the protective effects of spinal anesthesia on IBD by modulating the gut microbiota, which highlights a novel approach for the treatment of IBD.
Collapse
Affiliation(s)
- Yu Hong
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310012, Zhejiang Province, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310012, Zhejiang Province, China
| | - Ye-Ru Chen
- Department of Anaesthesiology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310012, Zhejiang Province, China
| | - Zi-Hao Huang
- College of Medicine, Zhejiang University, Hangzhou 310012, Zhejiang Province, China
| | - Li-Dan Hou
- Biomedical Research Center, Sir Run Run Shaw Hospital of Medical School, Zhejiang University, Hangzhou 310012, Zhejiang Province, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310012, Zhejiang Province, China
| | - Yu Xin
- Department of Anesthesiology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
25
|
Rupp SK, Stengel A. Bi-Directionality of the Microbiota-Gut-Brain Axis in Patients With Functional Dyspepsia: Relevance of Psychotherapy and Probiotics. Front Neurosci 2022; 16:844564. [PMID: 35295092 PMCID: PMC8919856 DOI: 10.3389/fnins.2022.844564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Functional dyspepsia is one of the most commonly diagnosed disorders of the gut-brain interaction worldwide. The precise pathogenesis of functional dyspepsia is complex and remains incompletely understood. Therefore, advances in the understanding of functional dyspepsia could change clinical practice. The aim of this review is to highlight the relevance of psychotherapy and probiotics in the context of the microbiota-gut-brain axis in the pathophysiology and especially in the treatment of functional dyspepsia. Therefore, studies which have been conducted to investigate the role of psychotherapy and probiotics in FD and the microbiota-gut-brain axis in the pathophysiology of functional dyspepsia were examined, and the outcomes of this research summarized. There might be a link between changes in the microbiome and functional dyspepsia. Even though, specific alterations in the microbiome that may be pathognomonic in functional dyspepsia remain unclear, the use of probiotics became a viable treatment option for patients with functional dyspepsia. Since mental illness also plays an important role in the pathophysiology of functional dyspepsia, psychotherapy is a useful treatment method, with additional study results indicating that psychotherapy may also shift the microbiome in a favorable direction. Moreover, other findings suggest that probiotics can be used not only to alleviate gastrointestinal symptoms in functional dyspepsia, but also to treat or even prevent mental disorders in these patients. In summary, in this review we highlight the bi-directionality of the microbiota-gut-brain axis in the pathophysiology of functional dyspepsia. Although there are multiple treatment approaches, the burden of disease in patients with functional dyspepsia is still enormous and a definitive therapy to cure this disease does not (yet) exist. Lastly, there is a lack of studies on the impact of dysbiosis, mental health and probiotics on pathophysiology and symptomatology in functional dyspepsia which should be investigated in future studies.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Andreas Stengel,
| |
Collapse
|
26
|
Nozu T, Okumura T. Pathophysiological Commonality Between Irritable Bowel Syndrome and Metabolic Syndrome: Role of Corticotropin-releasing Factor-Toll-like Receptor 4-Proinflammatory Cytokine Signaling. J Neurogastroenterol Motil 2022; 28:173-184. [PMID: 35189599 PMCID: PMC8978123 DOI: 10.5056/jnm21002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain with altered defecation. Most of the patients develop visceral hypersensitivity possibly resulting from impaired gut barrier and altered gut microbiota. We previously demonstrated that colonic hyperpermeability with visceral hypersensitivity in animal IBS models, which is mediated via corticotropin-releasing factor (CRF)-Toll-like receptor 4 (TLR4)-proinflammatory cytokine signaling. CRF impairs gut barrier via TLR4. Leaky gut induces bacterial translocation resulting in dysbiosis, and increases lipopolysaccharide (LPS). Activation of TLR4 by LPS increases the production of proinflammatory cytokines, which activate visceral sensory neurons to induce visceral hypersensitivity. LPS also activates CRF receptors to further increase gut permeability. Metabolic syndrome (MS) is a cluster of cardiovascular risk factors, including insulin resistance, obesity, dyslipidemia, and hypertension, and recently several researchers suggest the possibility that impaired gut barrier and dysbiosis with low-grade systemic inflammation are involved in MS. Moreover, TLR4-proinflammatory cytokine contributes to the development of insulin resistance and obesity. Thus, the existence of pathophysiological commonality between IBS and MS is expected. This review discusses the potential mechanisms of IBS and MS with reference to gut barrier and microbiota, and explores the possibility of existence of pathophysiological link between these diseases with a focus on CRF, TLR4, and proinflammatory cytokine signaling. We also review epidemiological data supporting this possibility, and discuss the potential of therapeutic application of the drugs used for MS to IBS treatment. This notion may pave the way for exploring novel therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
27
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
28
|
Zhao SB, Wu JY, He ZX, Song YH, Chang X, Xia T, Fang X, Li ZS, Xu C, Wang SL, Bai Y. Corticotropin releasing hormone promotes inflammatory bowel disease via inducing intestinal macrophage autophagy. Cell Death Dis 2021; 7:377. [PMID: 34873177 PMCID: PMC8648763 DOI: 10.1038/s41420-021-00767-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Psychosocial stress is a vital factor contributing to the pathogenesis and progression of inflammatory bowel disease (IBD). The contribution of intestinal macrophage autophagy to the onset and development of IBD has been widely studied. Herein, we investigated the underlying mechanism of psychosocial stress in an IBD mouse model pertaining to macrophage autophagy. Corticotropin releasing hormone (CRH) was peripherally administrated to induce psychosocial stress. For in vivo studies, dextran sulfate sodium (DSS) was used for the creation of our IBD mouse model. For in vitro studies, lipopolysaccharide (LPS) was applied on murine bone marrow-derived macrophages (BMDMs) as a cellular IBD-related challenge. Chloroquine was applied to inhibit autophagy. We found that CRH aggravated the severity of DSS-induced IBD, increasing overall and local inflammatory reactions and infiltration. The levels of autophagy in intestinal macrophages and murine BMDMs were increased under these IBD-related inflammatory challenges and CRH further enhanced these effects. Subsequent administration of chloroquine markedly attenuated the detrimental effects of CRH on IBD severity and inflammatory reactions via inhibition of autophagy. These findings illustrate the effects of peripheral administration of CRH on DSS-induced IBD via the enhancement of intestinal macrophage autophagy, thus providing a novel understanding as well as therapeutic target for the treatment of IBD.
Collapse
Affiliation(s)
- Sheng-Bing Zhao
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jia-Yi Wu
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yi-Hang Song
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xin Chang
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China ,grid.417279.eDepartment of Gastroenterology, General Hospital of Central Theater Command, Wuhan, China
| | - Tian Xia
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xue Fang
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
29
|
Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021; 11:jpm11101021. [PMID: 34683162 PMCID: PMC8541612 DOI: 10.3390/jpm11101021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of gut–brain interactions (DGBIs) are heterogeneous in nature and intertwine with diverse pathophysiological mechanisms. Regular functioning of the gut requires complex coordinated interplay between a variety of gastrointestinal (GI) cell types and their functions are regulated by multiple mechanisms at the transcriptional, post-transcriptional, translational, and post-translational levels. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by binding to specific mRNA targets to repress their translation and/or promote the target mRNA degradation. Dysregulation of miRNAs might impair gut physiological functions leading to DGBIs and gut motility disorders. Studies have shown miRNAs regulate gut functions such as visceral sensation, gut immune response, GI barrier function, enteric neuronal development, and GI motility. These biological processes are highly relevant to the gut where neuroimmune interactions are key contributors in controlling gut homeostasis and functional defects lead to DGBIs. Although extensive research has explored the pathophysiology of DGBIs, further research is warranted to bolster the molecular mechanisms behind these disorders. The therapeutic targeting of miRNAs represents an attractive approach for the treatment of DGBIs because they offer new insights into disease mechanisms and have great potential to be used in the clinic as diagnostic markers and therapeutic targets. Here, we review recent advances regarding the regulation of miRNAs in GI pacemaking cells, immune cells, and enteric neurons modulating pathophysiological mechanisms of DGBIs. This review aims to assess the impacts of miRNAs on the pathophysiological mechanisms of DGBIs, including GI dysmotility, impaired intestinal barrier function, gut immune dysfunction, and visceral hypersensitivity. We also summarize the therapeutic alternatives for gut microbial dysbiosis in DGBIs, highlighting the clinical insights and areas for further exploration. We further discuss the challenges in miRNA therapeutics and promising emerging approaches.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Correspondence: ; Tel.: +1-775-784-1462; Fax: +1-775-784-6903
| |
Collapse
|
30
|
Bülbül M, Sinen O, Bayramoğlu O. Central neuropeptide-S administration alleviates stress-induced impairment of gastric motor functions through orexin-A. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:65-72. [PMID: 32009616 DOI: 10.5152/tjg.2020.18626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS The novel brain peptide neuropeptide-S (NPS) is produced exclusively by a small group of cells adjacent to the noradrenergic locus coeruleus. The NPSR mRNA has been detected in several brain areas involved in stress response and autonomic outflow, such as amygdala and hypothalamus, suggesting that central NPS may play a regulatory role in stress-induced changes in gastrointestinal (GI) motor functions. In rodents, exogenous central NPS was shown to inhibit stress-stimulated fecal output. Moreover, exogenous NPS was demonstrated to activate hypothalamic neurons that produce orexin-A (OXA), which has been shown to stimulate postprandial gastric motor functions via central vagal pathways. Therefore, we tested whether OXA mediates the NPS-induced alterations in gastric motor functions under stressed conditions. MATERIALS AND METHODS We investigated the effect of central exogenous NPS on solid gastric emptying (GE) and gastric postprandial motility in acute restraint stress (ARS)-loaded conscious rats. The OXA receptor antagonist SB-334867 was administered centrally prior to the central NPS injection. The expression of NPSR in the hypothalamus and dorsal vagal complex was analyzed by immunofluorescence. RESULTS Central administration of NPS restored the ARS-induced delayed GE and uncoordinated postprandial antro-pyloric contractions. The alleviative effect of NPS on GE was abolished by pretreatment of the OX1R antagonist SB-334867. In addition to hypothalamus, NPSR was detected in the dorsal motor nucleus of vagus, which suggest a direct stimulatory action of exogenous NPS on gastric motility. CONCLUSION NPS may be a novel candidate for the treatment of stress-related gastric disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Onur Bayramoğlu
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
31
|
Choi YJ. Can the Combination of Famotidine and Prokinetics Have Additional Effects on Gastric Acid Suppression? THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Choi HS, Kim EJ, Kim MS, Myung JY, Yu MH, Kim YS, Lee MY. Effect of Combination Therapy of Oral Famotidine with Mosapride on Intragastric pH and Gastric Emptying in Rats. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background/Aims: Studies in healthy humans have reported that the addition of mosapride to acid suppressants resulted in higher intragastric pH than acid suppressant administration alone. We investigated the effect of the addition of mosapride to famotidine on the intragastric pH and gastric emptying rate (GER) in rats.Materials and Methods: Sixty male Wistar rats were used in this study. Experimental groups were divided into control, famotidine-only, mosapride-only, and famotidine with mosapride (combination). The first experiment was performed in non-stressed rats. Mosapride was administered by oral gavage 1 hour before the meal, and famotidine was administered just before the meal. The rats were provided with food for 30 minutes. The intragastric pH was measured under isoflurane anesthesia, and the GER was measured after harvesting the stomach. In the stress experiment, rats were exposed to 1-hour restraint stress immediately after mosapride administration and subjected to the same process as in the experiment with the non-stressed rats.Results: The famotidine-only and combination groups showed significantly higher gastric pH levels than the control group in non-stressed (P<0.01 and P<0.001, respectively) and stressed (P<0.001 and P<0.001, respectively) rats. The combination group also showed significantly higher intragastric pH levels than the famotidine-only group in non-stressed (P<0.01) and stressed (P<0.05) rats. Additionally, combination groups showed a significantly higher GER than the famotidine-only group in non-stressed (P<0.001) and stressed (P<0.01) rats.Conclusions: The combination of mosapride with famotidine significantly increased intragastric pH compared to famotidine alone in the non-stressed and stressed rats.
Collapse
|
33
|
Zejnelagic J, Ohlsson B. Chronic stress and poor sleeping habits are associated with self-reported IBS and poor psychological well-being in the general population. BMC Res Notes 2021; 14:280. [PMID: 34294119 PMCID: PMC8296624 DOI: 10.1186/s13104-021-05688-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
Objective The present population-based study aimed to examine the association of chronic stress and sleeping difficulties with self-reported irritable bowel syndrome (IBS), gastrointestinal (GI) symptoms past 2 weeks, and psychological well-being. Results The Malmö Offspring Study included subjects from the general population to complete a questionnaire regarding sociodemographic factors, lifestyle factors, and medical health. Experience of chronic stress during the past or past 5 years was reported. Sleeping patterns included sleeping quality, sleeping hours per day, sleeping onset difficulties, and wake-up frequency. The severity of GI symptoms was measured with the visual analog scale for IBS. Associations of stress and sleeping habits with IBS and GI symptoms were calculated by logistic regression and generalized linear model, adjusted for sociodemographic and lifestyle factors. After exclusion of organic GI disorders or missing values, 2648 participants remained. Participants with self-reported IBS (n = 316) and GI symptoms (n = 459) were often women and smokers. After full adjustment, chronic stress past year was associated with GI symptoms (OR: 1.347; 95% CI 1.030–1.762), whereas stress past 5 years (OR: 1.415; 95% CI 1.058–1.892) and sleeping onset difficulties ≥ 3 times weekly (OR: 2.153: 95% CI 1.228–3.774) were associated with IBS. Stress, poor sleeping quality, sleeping onset difficulties, and IBS/GI symptoms were all associated with poor psychological well-being (p < 0.001). Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05688-4.
Collapse
Affiliation(s)
- Jasmin Zejnelagic
- Department of Internal Medicine, Lund University, Skåne University Hospital, Jan Waldenström Street 15, Floor 5, 20502, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, Jan Waldenström Street 15, Floor 5, 20502, Malmö, Sweden.
| |
Collapse
|
34
|
Bülbül M, Sinen O. Sexual dimorphism in maternally separated rats: effects of repeated homotypic stress on gastrointestinal motor functions. Exp Brain Res 2021; 239:2551-2560. [PMID: 34160630 DOI: 10.1007/s00221-021-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Experiencing stressful events during early life has been considered as a risk factor for development of functional gastrointestinal disorders in adulthood. This study aimed to investigate the sex-related differences in stress-induced gastrointestinal (GI) dysmotility in rats exposed to neonatal maternal separation (MS). Newborn pups were removed from mothers for 180 min from postnatal day-1 to day-14. Experiments were performed in male and female offsprings at adulthood. Elevated plus maze (EPM) test was used to assess MS-induced anxiety-like behaviors. Ninety minute of restraint stress was applied for once or 5 consecutive days for acute stress (AS) or repeated homotypic stress (RHS), respectively. Measurement of fecal output (FO) and gastric emptying (GE), and hypothalamic microdialysis were performed. Both in males and females, MS produced anxiety-like behaviors. AS delayed GE and increased FO in all groups. In RHS-loaded MS females, AS-induced alterations in GE and FO were restored, however, no adaptation was observed in male counterparts. Regardless of sex and neonatal stress experience, AS significantly increased corticotropin-releasing factor (CRF) release from paraventricular nucleus of hypothalamus, whereas females were found more susceptible than males. Following RHS, AS-induced elevations in CRF release were attenuated only in MS females, but not in males. Both females and males seem to be prone to AS-induced alterations in hypothalamic CRF system and in GI motor functions. Neonatal MS disturbs chronic stress coping mechanisms in males. Conversely, females are likely to circumvent the deleterious effects of neonatal MS on GI functions through developing a habituation to prolonged stressed conditions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey.
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
35
|
Abdulkader ZM, Bali N, Vaz K, Yacob D, Di Lorenzo C, Lu PL. Predictors of Hospital Admission for Pediatric Cyclic Vomiting Syndrome. J Pediatr 2021; 232:154-158. [PMID: 33259858 DOI: 10.1016/j.jpeds.2020.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To identify predictors of hospitalization in pediatric patients presenting to an emergency department (ED) for a cyclic vomiting syndrome (CVS) attack. STUDY DESIGN We retrospectively reviewed patients with CVS seen at our institution between 2015 and 2018 and included those who met the Rome IV criteria for CVS. We identified all CVS-related ED visits and subsequently performed a case-control analysis, utilizing multivariate logistic regression, to identify clinical and demographic factors that may predict hospitalization. RESULTS In total, 219 patients with CVS (using International Statistical Classification of Diseases and Related Health Problems, 10th Revision) were identified, of which 65% met the inclusion criteria (median age 11 years). We identified 152 CVS-related ED visits, of which 62% resulted in hospitalization. Factors found to predict hospitalization using multivariate analyses included male sex (P = .04), younger age (P = .027), delayed presentation (>24 hours) to the ED (P < .001), and longer wait time prior treatment with antiemetics (P = .029). CONCLUSION One-quarter of all patients with CVS had presented to the ED and nearly two-thirds of these ED visits resulted in hospitalization. A delayed presentation to the ED following the onset of symptoms was the strongest independent predictor of hospital admission, alongside male sex, younger age, and longer ED wait times before treatment with antiemetics. These findings suggest that early intervention may be key to successfully mitigating the risk of hospitalization for a CVS attack.
Collapse
Affiliation(s)
- Zeyad M Abdulkader
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH.
| | - Neetu Bali
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH
| | - Karla Vaz
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH
| | - Desalegn Yacob
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH
| | - Carlo Di Lorenzo
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH
| | - Peter L Lu
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
36
|
Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021; 160:1486-1501. [PMID: 33493503 PMCID: PMC8634751 DOI: 10.1053/j.gastro.2020.10.066] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain axis plays an important role in maintaining homeostasis. Many intrinsic and extrinsic factors influence signaling along this axis, modulating the function of both the enteric and central nervous systems. More recently the role of the microbiome as an important factor in modulating gut-brain signaling has emerged and the concept of a microbiota-gut-brain axis has been established. In this review, we highlight the role of this axis in modulating enteric and central nervous system function and how this may impact disorders such as irritable bowel syndrome and disorders of mood and affect. We examine the overlapping biological constructs that underpin these disorders with a special emphasis on the neurotransmitter serotonin, which plays a key role in both the gastrointestinal tract and in the brain. Overall, it is clear that although animal studies have shown much promise, more progress is necessary before these findings can be translated for diagnostic and therapeutic benefit in patient populations.
Collapse
Affiliation(s)
- Kara G. Margolis
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY,Corresponding author:
| | - John F. Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland, APC Microbiome Ireland, University College Cork, Ireland
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vachte and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
37
|
Vecchiarelli HA, Morena M, Keenan CM, Chiang V, Tan K, Qiao M, Leitl K, Santori A, Pittman QJ, Sharkey KA, Hill MN. Comorbid anxiety-like behavior in a rat model of colitis is mediated by an upregulation of corticolimbic fatty acid amide hydrolase. Neuropsychopharmacology 2021; 46:992-1003. [PMID: 33452437 PMCID: PMC8115350 DOI: 10.1038/s41386-020-00939-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023]
Abstract
Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.
Collapse
Affiliation(s)
- Haley A. Vecchiarelli
- grid.22072.350000 0004 1936 7697Neuroscience Graduate Program, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Maria Morena
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Catherine M. Keenan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Vincent Chiang
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kaitlyn Tan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Min Qiao
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kira Leitl
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Alessia Santori
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Quentin J. Pittman
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Keith A. Sharkey
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Matthew N. Hill
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| |
Collapse
|
38
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
39
|
Yang Y, Yu H, Babygirija R, Shi B, Sun W, Zheng X, Zheng J. Electro-Acupuncture Attenuates Chronic Stress Responses via Up-Regulated Central NPY and GABA A Receptors in Rats. Front Neurosci 2021; 14:629003. [PMID: 33574739 PMCID: PMC7870494 DOI: 10.3389/fnins.2020.629003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Stress can increase the release of corticotropin-releasing factor (CRF) in the hypothalamus, resulting in attenuation of gastric motor functions. In contrast, central neuropeptide Y (NPY) can reduce the biological actions of CRF, and in turn weaken stress responses. Although electroacupuncture (EA) at stomach 36 (ST-36) has been shown to have anti-stress effects, its mechanism has not yet been investigated. The effect of EA at ST-36 on the hypothalamus-pituitary-adrenal (HPA) axis and gastrointestinal motility in chronic complicated stress (CCS) conditions have not been studied and the inhibitory mechanism of NPY on CRF through the gamma-aminobutyric acid (GABA)A receptor need to be further investigated. A CCS rat model was set up, EA at ST-36 was applied to the bilateral hind limbs every day prior to the stress loading. Further, a GABAA receptor antagonist was intracerebroventricularly (ICV) injected daily. Central CRF and NPY expression levels were studied, serum corticosterone and NPY concentrations were analyzed, and gastric motor functions were assessed. CCS rats showed significantly elevated CRF expression and corticosterone levels, which resulted in inhibited gastric motor functions. EA at ST-36 significantly increased central NPY mRNA expression and reduced central CRF mRNA expression as well as the plasma corticosterone level, helping to restore gastric motor function. However, ICV administration of the GABAA receptor antagonist significantly abolished these effects. EA at ST-36 upregulates the hypothalamic NPY system. NPY may, through the GABAA receptor, significantly antagonize the overexpressed central CRF and attenuate the HPA axis activities in CCS conditions, exerting influences and helping to restore gastric motor function.
Collapse
Affiliation(s)
- Yu Yang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Haijie Yu
- Department of Cardiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Reji Babygirija
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, WI, United States
| | - Bei Shi
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Weinan Sun
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaojiao Zheng
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Jun Zheng
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
40
|
CD36 deficiency affects depressive-like behaviors possibly by modifying gut microbiota and the inflammasome pathway in mice. Transl Psychiatry 2021; 11:16. [PMID: 33414380 PMCID: PMC7791141 DOI: 10.1038/s41398-020-01130-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Both inflammatory processes and gut microbiota have been implicated in the pathophysiology of depressive disorders. The class B scavenger receptor CD36 is involved in the cytotoxicity associated with inflammation. However, its role in depression has not yet been examined. In this study, we investigated whether CD36 affects depression by modulating the microbiota-gut-inflammasome-brain axis. We used CD36-/- (knockout) mice subjected to chronic social defeat stress, and measured the expression of CD36 in these depressed mice and in patients with depression. The hippocampus of CD36-/- mice was used to investigate changes in the NLRP3 inflammasome signaling pathway. The 16S rRNA gene sequence-based approach was used to compare the cecal microbial communities in CD36-/- and WT mice. The CD36 deficiency in CD36-/- mice alleviated chronic stress-induced depression-like behaviors. CD36 was upregulated in depressed mice as well as in depressed patients. Furthermore, the NLRP3 inflammasome signaling pathway was downregulated in the hippocampus of CD36-/- mice. The Simpson Diversity Index revealed increased cecal bacterial alpha-diversity in the CD36-/- mice. Among genera, Bacteroides, Rikenella, and Alloprevotella were significantly more abundant in the CD36-/- mice, whereas Allobaculum was less abundant, consistent with the attenuated inflammation in the hippocampus of CD36-/- mice. Our findings suggest that CD36 deficiency changes the gut microbiota composition, which in turn may impact depressive-like behaviors by affecting the inflammasome pathway.
Collapse
|
41
|
DeVuono MV, Hrelja KM, Petrie GN, Limebeer CL, Rock EM, Hill MN, Parker LA. Nausea-Induced Conditioned Gaping Reactions in Rats Produced by High-Dose Synthetic Cannabinoid, JWH-018. Cannabis Cannabinoid Res 2020; 5:298-304. [PMID: 33381644 DOI: 10.1089/can.2019.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction: Cannabinoid hyperemesis syndrome is becoming a more prominently reported side effect of cannabis containing high-dose Δ9-tetrahydrocannabinol (THC) and designer cannabinoid drugs such as "Spice." One active ingredient that has been found in "Spice" is 1-pentyl-3-(1-naphthoyl)indole (JWH-018), a synthetic full agonist of the cannabinoid 1 (CB1) receptor. In this study, we evaluated the potential of different doses of JWH-018 to produce conditioned gaping in rats, an index of nausea. Materials and Methods: Rats received 3 daily conditioning trials in which saccharin was paired with JWH-018 (0.0, 0.1, 1, and 3 mg/kg, intraperitoneal [i.p.]). Then the potential of pretreatment with the CB1 antagonist, rimonabant (SR), to prevent JWH-018-induced conditioned gaping was determined. To begin to understand the potential mechanism underlying JWH-018-induced nausea, serum collected from trunk blood was subjected to a corticosterone (CORT) analysis in rats receiving three daily injections with vehicle (VEH) or JWH-018 (3 mg/kg). Results: At doses of 1 and 3 mg/kg (i.p.), JWH-018 produced nausea-like conditioned gaping reactions. The conditioned gaping produced by 3 mg/kg JWH-018 was reversed by pretreatment with rimonabant, which did not modify gaping on its own. Treatment with JWH-018 elevated serum CORT levels compared to vehicle-treated rats. Conclusions: As we have previously reported with high-dose THC, JWH-018 produced conditioned gaping in rats, reflective of a nausea effect mediated by its action on CB1 receptors and accompanied by elevated CORT, reflective of hypothalamic-pituitary-adrenal (HPA) activation.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Kelly M Hrelja
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Gavin N Petrie
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Matthew N Hill
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
42
|
Raucci U, Borrelli O, Di Nardo G, Tambucci R, Pavone P, Salvatore S, Baldassarre ME, Cordelli DM, Falsaperla R, Felici E, Ferilli MAN, Grosso S, Mallardo S, Martinelli D, Quitadamo P, Pensabene L, Romano C, Savasta S, Spalice A, Strisciuglio C, Suppiej A, Valeriani M, Zenzeri L, Verrotti A, Staiano A, Villa MP, Ruggieri M, Striano P, Parisi P. Cyclic Vomiting Syndrome in Children. Front Neurol 2020; 11:583425. [PMID: 33224097 PMCID: PMC7667239 DOI: 10.3389/fneur.2020.583425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclic Vomiting Syndrome (CVS) is an underdiagnosed episodic syndrome characterized by frequent hospitalizations, multiple comorbidities, and poor quality of life. It is often misdiagnosed due to the unappreciated pattern of recurrence and lack of confirmatory testing. CVS mainly occurs in pre-school or early school-age, but infants and elderly onset have been also described. The etiopathogenesis is largely unknown, but it is likely to be multifactorial. Recent evidence suggests that aberrant brain-gut pathways, mitochondrial enzymopathies, gastrointestinal motility disorders, calcium channel abnormalities, and hyperactivity of the hypothalamic-pituitary-adrenal axis in response to a triggering environmental stimulus are involved. CVS is characterized by acute, stereotyped and recurrent episodes of intense nausea and incoercible vomiting with predictable periodicity and return to baseline health between episodes. A distinction with other differential diagnoses is a challenge for clinicians. Although extensive and invasive investigations should be avoided, baseline testing toward identifying organic causes is recommended in all children with CVS. The management of CVS requires an individually tailored therapy. Management of acute phase is mainly based on supportive and symptomatic care. Early intervention with abortive agents during the brief prodromal phase can be used to attempt to terminate the attack. During the interictal period, non-pharmacologic measures as lifestyle changes and the use of reassurance and anticipatory guidance seem to be effective as a preventive treatment. The indication for prophylactic pharmacotherapy depends on attack intensity and severity, the impairment of the QoL and if attack treatments are ineffective or cause side effects. When children remain refractory to acute or prophylactic treatment, or the episode differs from previous ones, the clinician should consider the possibility of an underlying disease and further mono- or combination therapy and psychotherapy can be guided by accompanying comorbidities and specific sub-phenotype. This review was developed by a joint task force of the Italian Society of Pediatric Gastroenterology Hepatology and Nutrition (SIGENP) and Italian Society of Pediatric Neurology (SINP) to identify relevant current issues and to propose future research directions on pediatric CVS.
Collapse
Affiliation(s)
- Umberto Raucci
- Pediatric Emergency Department, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Osvaldo Borrelli
- Division of Neurogastroenterology and Motility, Department of Pediatric Gastroenterology, University College London (UCL) Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Giovanni Di Nardo
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Renato Tambucci
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Piero Pavone
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Silvia Salvatore
- Pediatric Department, Ospedale “F. Del Ponte,” University of Insubria, Varese, Italy
| | | | | | - Raffaele Falsaperla
- Neonatal Intensive Care and Pediatric Units, S. Marco Hospital, Vittorio Emanuele Hospital, Catania, Italy
| | - Enrico Felici
- Unit of Pediatrics, The Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Michela Ada Noris Ferilli
- Division of Neurology, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Saverio Mallardo
- Pediatric Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric Specialties, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Paolo Quitadamo
- Department of Pediatrics, A.O.R.N. Santobono-Pausilipon, Naples, Italy
| | - Licia Pensabene
- Pediatric Unit, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Claudio Romano
- Pediatric Gastroenterology Unit, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | | | - Alberto Spalice
- Child Neurology Division, Department of Pediatrics, “Sapienza,” University of Rome, Rome, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child, General and Specialistic Surgery, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Agnese Suppiej
- Pediatric Section, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimiliano Valeriani
- Division of Neurology, Bambino Gesù Children's Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Rome, Italy
| | - Letizia Zenzeri
- Emergency Pediatric Department, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Staiano
- Section of Pediatrics, Department of Translational Medical Science, “Federico II” University of Naples, Naples, Italy
| | - Maria Pia Villa
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- Institute for Research, Hospitalization and Health Care (IRCCS) “G. Gaslini” Institute, Genova, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Jiang Y, Travagli RA. Hypothalamic-vagal oxytocinergic neurocircuitry modulates gastric emptying and motility following stress. J Physiol 2020; 598:4941-4955. [PMID: 32864736 PMCID: PMC8451654 DOI: 10.1113/jp280023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Stress triggers and exacerbates the symptoms of functional gastrointestinal disorders, such as delayed gastric emptying and impaired gastric motility. Understanding the mechanisms by which the neural circuits, impaired by stress, are restored may help to identify potential targets for more effective therapeutic interventions. Oxytocin administration or release ameliorates the stress-induced delayed gastric emptying and motility. However, is it unclear whether the effects are mediated via the hypothalamic-pituitary-adrenocortical axis or the oxytocinergic projections from the paraventricular nucleus of the hypothalamus to brainstem neurones of the dorsal vagal complex. We used Cre-inducible designer receptors exclusively activated by designer drugs to demonstrate the fundamental role of the oxytocinergic hypothalamic-vagal projections in the gastric adaptation to stress. ABSTRACT Stress triggers and exacerbates the symptoms of functional gastrointestinal (GI) disorders, such as delayed gastric emptying and impaired gastric motility. The prototypical anti-stress hormone, oxytocin (OXT), plays a major role in the modulation of gastric emptying and motility following stress. It is not clear, however, whether the amelioration of dysregulated GI functions by OXT is mediated via an effect on the hypothalamic-pituitary-adrenocortical axis or the oxytocinergic projections from the paraventricular nucleus of the hypothalamus (PVN) to neurones of the dorsal vagal complex (DVC). In the present study we tested the hypothesis that the activity of hypothalamic-vagal oxytocinergic neurocircuits plays a major role in the gastric adaptation to stress. Cre-inducible designer receptors exclusively activated by designer drugs (DREADDs) were injected into the DVC of rats and retrogradely transported to allow selective expression in OXT neurones in the PVN. Following acute stress and either chronic heterotypic (CHe) or chronic homotypic (CHo) stress, gastric emptying was assessed via the [13 C]-octanoic acid breath test, and gastric tone and motility were assessed via strain gauges sewn on the surface of the stomach. Activation of the hypothalamic-vagal oxytocinergic neurocircuitry, by DREADD agonist clozapine-N-oxide (CNO), prevented the delayed gastric emptying observed following acute or CHe stress, and 4th ventricular administration of CNO increased gastric tone and motility. Conversely, CNO-mediated inhibition of the hypothalamic-vagal oxytocinergic neurocircuitry prevented the CHo-induced adaptation in gastric emptying, and an increase in gastric tone and motility. Taken together, the data support the hypothesis that hypothalamic-vagal oxytocinergic neurocircuits play a major role in the modulation of gastric emptying and motility following stress.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
44
|
Batebi S, Masjedi Arani A, Jafari M, Sadeghi A, Saberi Isfeedvajani M, Davazdah Emami MH. A randomized clinical trial of metacognitive therapy and nortriptyline for anxiety, depression, and difficulties in emotion regulation of patients with functional dyspepsia. RESEARCH IN PSYCHOTHERAPY (MILANO) 2020; 23:448. [PMID: 33024721 PMCID: PMC7513609 DOI: 10.4081/ripppo.2020.448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Functional Dyspepsia (FD) as a psychosomatic disorder is an upper gastrointestinal tract disease without organic pathogenesis causes. The psychopathological nature of this disease and its high correlation with anxiety and depression implies the need for psychological interventions. The purpose of the present study is to compare the efficacy of Metacognitive Therapy (MCT) and medication for the symptoms of anxiety, depression, and difficulties in emotion regulation in patients with FD. In a randomized clinical trial, 65 patients with FD were recruited during their visit to gastroenterology clinics. These patients were randomly assigned to three groups to receive MCT, nortriptyline treatment, and controls. They were treated for 10 weeks and followed up three months later. The instruments used in this study were Hamilton anxiety and Depression Rating Scale (HAM-A and HDRS) and difficulties in emotion regulation scale. The results were analyzed using repeated measure analysis by SPSS (19- IBM). Data analysis showed statistically significant differences in the variables of depression, anxiety among MCT, nortriptyline treatment, and controls at pre-test, post-test and follow-up phases. Moreover, MCT had a better and more persistent effect on anxiety compared to nortriptyline treatment, as well as a better efficacy in treating anxiety and depression symptoms compared to the controls. MCT demonstrated better efficacy in treating anxiety symptoms compared to nortriptyline treatment and controls.
Collapse
Affiliation(s)
- Sepideh Batebi
- Department of Clinical Psychology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences
| | - Abbas Masjedi Arani
- Department of Clinical Psychology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences
| | - Mahdi Jafari
- Department of Clinical Psychology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases. Shahid Beheshti University of Medical Sciences
| | - Mohsen Saberi Isfeedvajani
- Medicine, Quran and Hadith Research Center & Department of Community Medicine, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran
| | | |
Collapse
|
45
|
Zhao YX, Cui CX, Gao JH, Liu J, Liu Q, Lu FY, Xin JJ, Yu XC, Zhu B. Electroacupuncture ameliorates corticotrophin-releasing factor-induced jejunal dysmotility in a rat model of stress. Acupunct Med 2020; 39:135-145. [PMID: 32605385 DOI: 10.1177/0964528420920288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Central injection of corticotrophin-releasing factor (CRF) mimics the effect of stress on gastrointestinal (GI) responses, including inhibition of GI motility. This study was designed to explore the effects of electroacupuncture (EA) on disordered jejunal motility in a rat model of stress induced by intracisternal (IC) injection of CRF. METHODS A stress model was established by IC injection of CRF in Sprague-Dawley rats. GI motility was evaluated by assessing gastric emptying (GE), gastrointestinal transit (GIT) and jejunal motility in vivo. EA was performed at ST36. The functional roles of CRF receptor subtype 1 and subtype 2 (CRFr1 and CRFr2) were examined by IC administration of the corresponding selective CRF antagonists. Protein expression of CRFr1 and CRFr2 in the hypothalamus and jejunum was detected by Western blotting. RESULTS IC injection of CRF significantly inhibited GE, GIT and jejunal motility. EA treatment remarkably improved the disturbed GI motility. Intriguingly, the disordered jejunal motility induced by central CRF was abolished by IC injection of a selective CRFr2 antagonist, indicating the essential role of central CRFr2 in mediating the stress-induced jejunal motor disorder. EA at ST36 decreased central and peripheral expression of CRFr2, which might be one of the potential mechanisms underlying the beneficial effect of EA on jejunal dysmotility in this rat model of stress. CONCLUSION This study suggested that EA at ST36 could ameliorate disordered jejunal motility induced by stress, and that this might be associated with the down-regulation of CRFr2.
Collapse
Affiliation(s)
- Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang-Xiang Cui
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun-Hong Gao
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Qun Liu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Yan Lu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan-Juan Xin
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Chun Yu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Yu Z. Neuromechanism of acupuncture regulating gastrointestinal motility. World J Gastroenterol 2020; 26:3182-3200. [PMID: 32684734 PMCID: PMC7336328 DOI: 10.3748/wjg.v26.i23.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used in China for thousands of years and has become more widely accepted by doctors and patients around the world. A large number of clinical studies and animal experiments have confirmed that acupuncture has a benign adjustment effect on gastrointestinal (GI) movement; however, the mechanism of this effect is unclear, especially in terms of neural mechanisms, and there are still many areas that require further exploration. This article reviews the recent data on the neural mechanism of acupuncture on GI movements. We summarize the neural mechanism of acupuncture on GI movement from four aspects: acupuncture signal transmission, the sympathetic and parasympathetic nervous system, the enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
47
|
Seo M, Anderson G. Gut-Amygdala Interactions in Autism Spectrum Disorders: Developmental Roles via regulating Mitochondria, Exosomes, Immunity and microRNAs. Curr Pharm Des 2020; 25:4344-4356. [PMID: 31692435 DOI: 10.2174/1381612825666191105102545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism Spectrum Disorders (ASD) have long been conceived as developmental disorder. A growing body of data highlights a role for alterations in the gut in the pathoetiology and/or pathophysiology of ASD. Recent work shows alterations in the gut microbiome to have a significant impact on amygdala development in infancy, suggesting that the alterations in the gut microbiome may act to modulate not only amygdala development but how the amygdala modulates the development of the frontal cortex and other brain regions. METHODS This article reviews wide bodies of data pertaining to the developmental roles of the maternal and foetal gut and immune systems in the regulation of offspring brain development. RESULTS A number of processes seem to be important in mediating how genetic, epigenetic and environmental factors interact in early development to regulate such gut-mediated changes in the amygdala, wider brain functioning and inter-area connectivity, including via regulation of microRNA (miR)-451, 14-3-3 proteins, cytochrome P450 (CYP)1B1 and the melatonergic pathways. As well as a decrease in the activity of monoamine oxidase, heightened levels of in miR-451 and CYP1B1, coupled to decreased 14-3-3 act to inhibit the synthesis of N-acetylserotonin and melatonin, contributing to the hyperserotonemia that is often evident in ASD, with consequences for mitochondria functioning and the content of released exosomes. These same factors are likely to play a role in regulating placental changes that underpin the association of ASD with preeclampsia and other perinatal risk factors, including exposure to heavy metals and air pollutants. Such alterations in placental and gut processes act to change the amygdala-driven biological underpinnings of affect-cognitive and affect-sensory interactions in the brain. CONCLUSION Such a perspective readily incorporates previously disparate bodies of data in ASD, including the role of the mu-opioid receptor, dopamine signaling and dopamine receptors, as well as the changes occurring to oxytocin and taurine levels. This has a number of treatment implications, the most readily applicable being the utilization of sodium butyrate and melatonin.
Collapse
Affiliation(s)
- Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| |
Collapse
|
48
|
DeVuono MV, Parker LA. Cannabinoid Hyperemesis Syndrome: A Review of Potential Mechanisms. Cannabis Cannabinoid Res 2020; 5:132-144. [PMID: 32656345 PMCID: PMC7347072 DOI: 10.1089/can.2019.0059] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Cannabinoids have long been known for their ability to treat nausea and vomiting. Recent reports, however, have highlighted the paradoxical proemetic effects of cannabinoids. Cannabinoid hyperemesis syndrome (CHS) is characterized by cyclical episodes of nausea and vomiting, accompanied by abdominal pain following prolonged, high-dose cannabis use, which is alleviated by hot baths and showers. Little is known about the cause of this syndrome. Discussion: Cannabinoids produce a biphasic effect on nausea and vomiting, with low doses having an antiemetic effect and high doses producing emesis. Presentation and treatment of CHS are similar to cyclical vomiting syndrome as well as chemotherapy-related anticipatory nausea and vomiting, suggesting that these phenomena may share mechanisms. The prevalence of CHS is not known because of the symptomatic overlap with other disorders and the lack of knowledge of the syndrome by the public and physicians. Treatment with typical antiemetic drugs is ineffective for CHS, but anxiolytic and sedative drugs, along with hot showers, seem to be consistently effective at reducing symptoms. The only known way to permanently end CHS, however, is abstinence from cannabinoids. Case studies and limited pre-clinical data on CHS indicate that prolonged high doses of the main psychotropic compound in cannabis, Δ9-tetrahydrocannabinol (THC), result in changes to the endocannabinoid system by acting on the cannabinoid 1 (CB1) receptor. These endocannabinoid system changes can dysregulate stress and anxiety responses, thermoregulation, the transient receptor potential vanilloid system, and several neurotransmitters systems, and are thus potential candidates for mediating the pathophysiology of CHS. Conclusions: Excessive cannabinoid administration disrupts the normal functioning of the endocannabinoid system, which may cause CHS. More clinical and pre-clinical research is needed to fully understand the underlying pathophysiology of this disorder and the negative consequences of prolonged high-dose cannabis use.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Psychology and Collabortive Neuroscience Program, University of Guelph, Guelph, Canada
| | - Linda A. Parker
- Department of Psychology and Collabortive Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
49
|
Molecular Aspects of Regional Pain Syndrome. Pain Res Manag 2020; 2020:7697214. [PMID: 32351641 PMCID: PMC7171689 DOI: 10.1155/2020/7697214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
The purpose of this review is to summarize the pathophysiology of complex regional pain syndrome (CRPS), the underlying molecular mechanisms, and potential treatment options for its management. CRPS is a multifactorial pain condition. CRPS is characterized by prolonged or excessive pain and changes in skin color and temperature, and/or swelling in the affected area, and is generally caused by stimuli that lead to tissue damage. An inflammatory response involving various cytokines and autoantibodies is generated in response to acute trauma/stress. Chronic phase pathophysiology is more complex, involving the central and peripheral nervous systems. Various genetic factors involved in the chronicity of pain have been identified in CRPS patients. As with other diseases of complex pathology, CRPS is difficult to treat and no single treatment regimen is the same for two patients. Stimulation of the vagus nerve is a promising technique being tested for different gastrointestinal and inflammatory diseases. CRPS is more frequent in individuals of 61–70 years of age with a female to male ratio of 3 : 1. Menopause, migraine, osteoporosis, and asthma all represent risk factors for CRPS and in smokers the prognosis appears to be more severe. The pathophysiological mechanisms underlying CRPS involve both inflammatory and neurological pathways. Understanding the molecular basis of CRPS is important for its diagnosis, management, and treatment. For instance, vagal nerve stimulation might have the potential for treating CRPS through the cholinergic anti-inflammatory pathway.
Collapse
|
50
|
González-Moret R, Cebolla A, Cortés X, Baños RM, Navarrete J, de la Rubia JE, Lisón JF, Soria JM. The effect of a mindfulness-based therapy on different biomarkers among patients with inflammatory bowel disease: a randomised controlled trial. Sci Rep 2020; 10:6071. [PMID: 32269278 PMCID: PMC7142151 DOI: 10.1038/s41598-020-63168-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mindfulness-based interventions have shown some efficacy in decreasing stress levels and improving quality of life. However, so far, only a few studies have studied this type of intervention among patients with inflammatory bowel disease and none of them have studied their effects on inflammatory biomarkers. This current study was a two-armed, single-centre, randomised (2:1 ratio) controlled trial used to evaluate the effects of a mindfulness-based intervention (n = 37) compared to standard medical therapy (n = 20) in patients with Crohn’s disease or ulcerative colitis. The mindfulness intervention blended four internet-based therapy modules with four face-to-face support sessions. The outcomes we assessed were faecal calprotectin (primary outcome), C-reactive protein, and cortisol levels measured in hair samples at several timepoints. The between-group analysis highlighted significant decreases in faecal calprotectin and in C-reactive protein levels in the mindfulness-based intervention group compared to the standard medical therapy group at the six-month follow-up (faecal calprotectin: −367, [95% CI: −705, −29], P = 0.03; C-reactive protein: −2.82, [95% CI: −5.70, 0.08], P = 0.05), with moderate to large effect sizes (faecal calprotectin: ηp2 = 0.085; C-reactive protein: ηp2 = 0.066). We concluded that mindfulness-based therapy administered as part of standard clinical practice effectively improves inflammatory biomarkers in patients diagnosed with inflammatory bowel disease.
Collapse
Affiliation(s)
- Rafael González-Moret
- Department of Nursing, Universidad Cardenal Herrera-CEU, CEU Universities, Castellon, Spain
| | - Ausias Cebolla
- Department of Personality, Evaluation, and psychological treatments, Universidad de Valencia, Valencia, Spain.,Obesity and Nutrition Pathophysiology CIBER (CB06/03), Instituto Carlos III, Madrid, Spain
| | - Xavier Cortés
- Internal Medicine Service, Digestive Medicine Section, Hospital Universitario de Sagunto, Valencia, Spain
| | - Rosa M Baños
- Department of Personality, Evaluation, and psychological treatments, Universidad de Valencia, Valencia, Spain.,Obesity and Nutrition Pathophysiology CIBER (CB06/03), Instituto Carlos III, Madrid, Spain
| | - Jaime Navarrete
- Department of Personality, Evaluation, and psychological treatments, Universidad de Valencia, Valencia, Spain
| | | | - Juan Francisco Lisón
- Institute of Biomedical Sciences, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,Odisesas Institute, Universidad CEU Cardenal Herrera-CEU Universities, Valencia, Spain.,Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.,Obesity and Nutrition Pathophysiology CIBER (CB06/03), Instituto Carlos III, Madrid, Spain
| | - José Miguel Soria
- Department of Biomedical Sciences, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain. .,Institute of Biomedical Sciences, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain. .,Odisesas Institute, Universidad CEU Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|