1
|
Boswell MT, Nazziwa J, Kuroki K, Palm A, Karlson S, Månsson F, Biague A, da Silva ZJ, Onyango CO, de Silva TI, Jaye A, Norrgren H, Medstrand P, Jansson M, Maenaka K, Rowland-Jones SL, Esbjörnsson J. Intrahost evolution of the HIV-2 capsid correlates with progression to AIDS. Virus Evol 2022; 8:veac075. [PMID: 36533148 PMCID: PMC9753047 DOI: 10.1093/ve/veac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2023] Open
Abstract
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
| | - J Nazziwa
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - K Kuroki
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - A Palm
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - S Karlson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - F Månsson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - A Biague
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - Z J da Silva
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - C O Onyango
- US Centres for Disease Control, KEMRI Complex, Mbagathi Road off Mbagathi Way PO Box 606-00621, Kenya
| | - T I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Beech Hill Rd, S10 2RX, Sheffield, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - A Jaye
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - H Norrgren
- Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - P Medstrand
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - M Jansson
- Department of Laboratory Medicine, Lund University, Sölvegatan 19, Sweden
| | - K Maenaka
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - S L Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - J Esbjörnsson
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| |
Collapse
|
2
|
Moysi E, Darko S, Gea-Mallorquí E, Petrovas C, Almeida JR, Wolinsky D, Peng Y, Jaye A, Stewart-Jones G, Douek DC, Koup RA, Dong T, Rowland-Jones S. Clonotypic architecture of a Gag-specific CD8+ T-cell response in chronic human HIV-2 infection. Eur J Immunol 2021; 51:2485-2500. [PMID: 34369597 DOI: 10.1002/eji.202048931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
The dynamics of T-cell receptor (TCR) selection in chronic HIV-1 infection, and its association with clinical outcome, is well documented for an array of MHC-peptide complexes and disease stages. However, the factors that may contribute to the selection and expansion of CD8+ T-cells in chronic HIV-2 infection, especially at clonal level remain unclear. To address this question, we undertook a detailed molecular characterization of the clonotypic architecture of an HLA-B*3501 restricted Gag -specific CD8+ T-cell response in donors chronically infected with HIV-2 using a combination of flow cytometry, tetramer-specific CD8+ TCR clonotyping and in vitro assays. We show that the response to the NY9 epitope is hierarchical and narrow in terms of T-cell receptor alpha (TCRA) and beta (TCRB) gene usage yet clonotypically diverse. Furthermore, clonotypic dominance in shared origin cytotoxic T lymphocyte (CTL) clones was associated with a greater magnitude of cytokine production and antigen sensitivity at limiting antigen dilution as well as enhanced cross-reactivity for known HIV-2 variants. Hence, our data suggest that effector mobilization and expansion in human chronic HIV-2 infection may be linked to the qualitative features of specific CD8+ T-cell clonotypes, which could have implications for viral control and disease outcome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jorge R Almeida
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - David Wolinsky
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Assan Jaye
- MRC Laboratories, The Gambia, PO Box 273, West Africa
| | - Guillaume Stewart-Jones
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Berg MG, Olivo A, Harris BJ, Rodgers MA, James L, Mampunza S, Niles J, Baer F, Yamaguchi J, Kaptue L, Laeyendecker O, Quinn TC, McArthur C, Cloherty GA. A high prevalence of potential HIV elite controllers identified over 30 years in Democratic Republic of Congo. EBioMedicine 2021; 65:103258. [PMID: 33674212 PMCID: PMC7992073 DOI: 10.1016/j.ebiom.2021.103258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background In-depth analysis of the HIV pandemic at its epicenter in the Congo basin has been hampered by 40 years of political unrest and lack of functional public health infrastructure. In recent surveillance studies (2017-18), we found that the prevalence of HIV in Kinshasa, Democratic Republic of Congo (11%) far exceeded previous estimates. Methods 10,457 participants were screened in Kinshasa with rapid tests from 2017-2019. Individuals confirmed as reactive by the Abbott ARCHITECT HIV Ag/Ab Combo assay (n=1968) were measured by the Abbott RealTime HIV-1 viral load assay. Follow up characterization of samples was performed with alternate manufacturer viral load assays, qPCR for additional blood borne viruses, unbiased next generation sequencing, and HIV Western blotting. Findings Our data suggested the existence of a significant cohort (n=429) of HIV antibody positive/viral load negative individuals. We systematically eliminated collection site bias, sample integrity, and viral genetic diversity as alternative explanations for undetectable viral loads. Mass spectroscopy unexpectedly detected the presence of 3TC antiviral medication in approximately 60% of those tested (209/354), and negative Western blot results indicated false positive serology in 12% (49/404). From the remaining Western blot positives (n=53) and indeterminates (n=31) with reactive Combo and rapid test results, we estimate 2.7-4.3% of infections in DRC to be potential elite controllers. We also analyzed samples from the DRC collected in 1987 and 2001-03, when antiretroviral drugs were not available, and found similarly elevated trends. Interpretation Viral suppression to undetectable viral loads without therapy occurs infrequently in HIV-1 infected patients around the world. Mining of global data suggests a unique ability to control HIV infection arose early in central Africa and occurs in <1% of founder populations. Identification of this group of elite controllers presents a unique opportunity to study potentially novel genetic mechanisms of viral suppression. Funding Abbott Laboratories funded surveillance in DRC and subsequent research efforts. Additional funding was received from a MIZZOU Award from the University of Missouri. Research was supported in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.
Collapse
Affiliation(s)
- Michael G Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States.
| | - Ana Olivo
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Barbara J Harris
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Mary A Rodgers
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Linda James
- Université Protestante au Congo, Croisement de l'avenue de Libération et du Boulevard Triomphal, Kinshasa, Democratic Republic of Congo; IMA World Health, 1730 M St NW Suite 1100, Washington DC, United States
| | - Samuel Mampunza
- Université Protestante au Congo, Croisement de l'avenue de Libération et du Boulevard Triomphal, Kinshasa, Democratic Republic of Congo
| | - Jonathan Niles
- IMA World Health, 1730 M St NW Suite 1100, Washington DC, United States
| | - Franklin Baer
- SANRU NGO, 76 Ave. de la Justice, Kinshasa-Gombe, Democratic Republic of Congo
| | - Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | | | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Carole McArthur
- Pathology Department, Truman Medical Center, Kansas City, MO, United States; Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, United States; University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Gavin A Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| |
Collapse
|
4
|
Dizaji Asl K, Velaei K, Rafat A, Tayefi Nasrabadi H, Movassaghpour AA, Mahdavi M, Nozad Charoudeh H. The role of KIR positive NK cells in diseases and its importance in clinical intervention. Int Immunopharmacol 2021; 92:107361. [PMID: 33429335 DOI: 10.1016/j.intimp.2020.107361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells are essential for the elimination of the transformed and cancerous cells. Killer cell immunoglobulin-like receptors (KIRs) which expressed by T and NK cells, are key regulator of NK cell function. The KIR and their ligands, MHC class I (HLA-A, B and C) molecules, are highly polymorphic and their related genes are located on 19 q13.4 and 6 q21.3 chromosomes, respectively. It is clear that particular interaction between the KIRs and their related ligands can influence on the prevalence, progression and outcome of several diseases, like complications of pregnancy, viral infection, autoimmune diseases, and hematological malignancies. The mechanisms of immune signaling in particular NK cells involvement in causing pathological conditions are not completely understood yet. Therefore, better understanding of the molecular mechanism of KIR-MHC class I interaction could facilitate the treatment strategy of diseases. The present review focused on the main characteristics and functional details of various KIR and their combination with related ligands in diseases and also highlights ongoing efforts to manipulate the key checkpoints in NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
5
|
Gea-Mallorquí E, Zablocki-Thomas L, Maurin M, Jouve M, Rodrigues V, Ruffin N, Benaroch P. HIV-2-Infected Macrophages Produce and Accumulate Poorly Infectious Viral Particles. Front Microbiol 2020; 11:1603. [PMID: 32754142 PMCID: PMC7365954 DOI: 10.3389/fmicb.2020.01603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
A significant proportion of HIV-2-infected patients exhibit natural virological control that is generally absent from HIV-1-infected patients. Along with CD4+ T cells, HIV-1 targets macrophages which may contribute to viral spreading and the latent reservoir. We have studied the relationship between macrophages and HIV-2, focusing on post-entry steps. HIV-2-infected monocyte-derived macrophages (MDMs) produced substantial amounts of viral particles that were largely harbored intracellularly. New viruses assembled at the limiting membrane of internal compartments similar to virus-containing compartments (VCCs) described for HIV-1. VCCs from MDMs infected with either virus shared protein composition and morphology. Strikingly, HIV-2 Gag was mostly absent from the cytosol and almost exclusively localized to the VCCs, whereas HIV-1 Gag was distributed in both locations. Ultrastructural analyses of HIV-2-infected MDMs revealed the presence of numerous VCCs containing both immature and mature particles in the lumen. HIV-2 particles produced de novo by MDMs were poorly infectious in reporter cells and in transmission to activated T cells through a process that appeared independent of BST2 restriction. Rather than being involved in viral spreading, HIV-2-infected macrophages may represent a cell-associated source of viral antigens that can participate in the immune control of HIV-2 infection.
Collapse
Affiliation(s)
| | | | - Mathieu Maurin
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| | - Mabel Jouve
- Institut Curie, PSL∗ Research University, UMR3216, Paris, France
| | - Vasco Rodrigues
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| | - Nicolas Ruffin
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| | - Philippe Benaroch
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| |
Collapse
|
6
|
Esbjörnsson J, Jansson M, Jespersen S, Månsson F, Hønge BL, Lindman J, Medina C, da Silva ZJ, Norrgren H, Medstrand P, Rowland-Jones SL, Wejse C. HIV-2 as a model to identify a functional HIV cure. AIDS Res Ther 2019; 16:24. [PMID: 31484562 PMCID: PMC6727498 DOI: 10.1186/s12981-019-0239-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Two HIV virus types exist: HIV-1 is pandemic and aggressive, whereas HIV-2 is confined mainly to West Africa and less pathogenic. Despite the fact that it has been almost 40 years since the discovery of AIDS, there is still no cure or vaccine against HIV. Consequently, the concepts of functional vaccines and cures that aim to limit HIV disease progression and spread by persistent control of viral replication without life-long treatment have been suggested as more feasible options to control the HIV pandemic. To identify virus-host mechanisms that could be targeted for functional cure development, researchers have focused on a small fraction of HIV-1 infected individuals that control their infection spontaneously, so-called elite controllers. However, these efforts have not been able to unravel the key mechanisms of the infection control. This is partly due to lack in statistical power since only 0.15% of HIV-1 infected individuals are natural elite controllers. The proportion of long-term viral control is larger in HIV-2 infection compared with HIV-1 infection. We therefore present the idea of using HIV-2 as a model for finding a functional cure against HIV. Understanding the key differences between HIV-1 and HIV-2 infections, and the cross-reactive effects in HIV-1/HIV-2 dual-infection could provide novel insights in developing functional HIV cures and vaccines.
Collapse
|
7
|
T-cell and B-cell perturbations identify distinct differences in HIV-2 compared with HIV-1-induced immunodeficiency. AIDS 2019; 33:1131-1141. [PMID: 30845070 DOI: 10.1097/qad.0000000000002184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND For unknown reasons, HIV-2 is less pathogenic than HIV-1, and HIV-2-induced immunodeficiency may be different from that caused by HIV-1. Previous immunological studies have hinted at possible shifts in both T-cell and B-cell subsets, which we aimed to characterize further. METHODS From an HIV clinic in Guinea-Bissau, 63 HIV-2, 83 HIV-1, and 26 HIV-negative participants were included. All HIV-infected participants were ART-naive. The following cell subsets were analysed by flow cytometry; T cells (maturation and activation), regulatory T cells, and B cells (maturation and activation). RESULTS After standardizing for sex, age, and CD4 T-cell count HIV-2 had 0.938 log10 copies/ml lower HIV RNA levels than the HIV-1-infected patients. Whereas T-cell maturation and regulatory T-cell profiles were similar between patients, HIV-2-infected patients had higher proportions of CD8CD28 and lower proportions of CD8PD-1+ T cells than HIV-1-infected patients. This finding was independent of HIV RNA levels. HIV-2 was also associated with a more preserved proportion of naive B cells. CONCLUSION HIV-2 is characterized by lower viral load, and lower T-cell activation, which may account for the slower disease progression.
Collapse
|
8
|
Samri A, Charpentier C, Diallo MS, Bertine M, Even S, Morin V, Oudin A, Parizot C, Collin G, Hosmalin A, Cheynier R, Thiébaut R, Matheron S, Collin F, Zoorob R, Brun-Vézinet F, Autran B. Limited HIV-2 reservoirs in central-memory CD4 T-cells associated to CXCR6 co-receptor expression in attenuated HIV-2 infection. PLoS Pathog 2019; 15:e1007758. [PMID: 31095640 PMCID: PMC6541300 DOI: 10.1371/journal.ppat.1007758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/29/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022] Open
Abstract
The low pathogenicity and replicative potential of HIV-2 are still poorly understood. We investigated whether HIV-2 reservoirs might follow the peculiar distribution reported in models of attenuated HIV-1/SIV infections, i.e. limited infection of central-memory CD4 T lymphocytes (TCM). Antiretroviral-naive HIV-2 infected individuals from the ANRS-CO5 (12 non-progressors, 2 progressors) were prospectively included. Peripheral blood mononuclear cells (PBMCs) were sorted into monocytes and resting CD4 T-cell subsets (naive [TN], central- [TCM], transitional- [TTM] and effector-memory [TEM]). Reactivation of HIV-2 was tested in 30-day cultures of CD8-depleted PBMCs. HIV-2 DNA was quantified by real-time PCR. Cell surface markers, co-receptors and restriction factors were analyzed by flow-cytometry and multiplex transcriptomic study. HIV-2 DNA was undetectable in monocytes from all individuals and was quantifiable in TTM from 4 individuals (median: 2.25 log10 copies/106 cells [IQR: 1.99–2.94]) but in TCM from only 1 individual (1.75 log10 copies/106 cells). HIV-2 DNA levels in PBMCs (median: 1.94 log10 copies/106 PBMC [IQR = 1.53–2.13]) positively correlated with those in TTM (r = 0.66, p = 0.01) but not TCM. HIV-2 reactivation was observed in the cells from only 3 individuals. The CCR5 co-receptor was distributed similarly in cell populations from individuals and donors. TCM had a lower expression of CXCR6 transcripts (p = 0.002) than TTM confirmed by FACS analysis, and a higher expression of TRIM5 transcripts (p = 0.004). Thus the low HIV-2 reservoirs differ from HIV-1 reservoirs by the lack of monocytic infection and a limited infection of TCM associated to a lower expression of a potential alternative HIV-2 co-receptor, CXCR6 and a higher expression of a restriction factor, TRIM5. These findings shed new light on the low pathogenicity of HIV-2 infection suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models. HIV-2 induces a still poorly understood attenuated infection compared to HIV-1. We investigated whether this infection might follow peculiarities associated with other models of attenuated HIV-1/SIV infection, i.e. a limited infection of a key subset of memory CD4 T lymphocytes, the central-memory ones (TCM). Thus we studied the infection rates in peripheral blood cells from 14 untreated HIV-2 infected individuals from the ANRS-CO5 HIV-2 cohort, and found; 1) a lack of infection of monocytes, 2) extremely low infection in central-memory CD4+ T lymphocytes while HIV-2 predominated in the transitional-memory cells, 3) a poor replicative capacity of HIV-2 in individuals cells. We then investigated the cellular expression of a hundred-host genes potentially involved in HIV-2 control. We found in individuals’ TCM cells, compared to TTM ones, a lower expression of CXCR6, a potentially alternative co-receptor of HIV-2 but not of HIV-1, and a higher expression of TRIM5α, a restriction factor to which HIV-2 is more sensitive than HIV-1. Altogether our findings shed new light on the low pathogenicity of HIV-2 suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models.
Collapse
Affiliation(s)
- Assia Samri
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mariama Sadjo Diallo
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Mélanie Bertine
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Even
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Véronique Morin
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Anne Oudin
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Christophe Parizot
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Gilles Collin
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Hosmalin
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rodolphe Thiébaut
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, Univ. Bordeaux, Bordeaux, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Fideline Collin
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, Univ. Bordeaux, Bordeaux, France
| | - Rima Zoorob
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | | | - Brigitte Autran
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, AP-HP, Hôpital universitaire Pitié-Salpêtrière, Paris, France
- * E-mail: (FBV); (BA)
| | | |
Collapse
|
9
|
Saito A, Ode H, Nohata K, Ohmori H, Nakayama EE, Iwatani Y, Shioda T. HIV-1 is more dependent on the K182 capsid residue than HIV-2 for interactions with CPSF6. Virology 2019; 532:118-126. [PMID: 31071616 DOI: 10.1016/j.virol.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
Abstract
The HIV-1 capsid (CA) utilizes CPSF6 for nuclear entry and integration site targeting. Previous studies demonstrated that the HIV-1 CA C-terminal domain (CTD) contains a highly conserved K182 residue involved in interaction with CPSF6. In contrast, certain HIV-2 strains possess a substitution at this residue (K182R). To assess whether CA-CPSF6 interaction via the CA CTD is conserved among primate lentiviruses, we examined resistance of several HIV-1- and HIV-2-lineage viruses to a truncated form of CPSF6, CPSF6-358. The results demonstrated that viruses belonging to the HIV-2-lineage maintain interaction with CPSF6 regardless of the presence of the K182R substitution, in contrast to the case with HIV-1-lineage viruses. Our structure-guided mutagenesis indicated that the differential requirement for CA-CPSF6 interaction is regulated in part by residues near the 182nd amino acid of CA. These results demonstrate a previously unrecognized distinction between HIV-1 and HIV-2, which may reflect differences in their evolutionary histories.
Collapse
Affiliation(s)
- Akatsuki Saito
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kyotaro Nohata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hisaki Ohmori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Boswell MT, Rowland-Jones SL. Delayed disease progression in HIV-2: the importance of TRIM5α and the retroviral capsid. Clin Exp Immunol 2019; 196:305-317. [PMID: 30773620 DOI: 10.1111/cei.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-2 is thought to have entered the human population in the 1930s through cross-species transmission of SIV from sooty mangabeys in West Africa. Unlike HIV-1, HIV-2 has not led to a global pandemic, and recent data suggest that HIV-2 prevalence is declining in some West African states where it was formerly endemic. Although many early isolates of HIV-2 were derived from patients presenting with AIDS-defining illnesses, it was noted that a much larger proportion of HIV-2-infected subjects behaved as long-term non-progressors (LTNP) than their HIV-1-infected counterparts. Many HIV-2-infected adults are asymptomatic, maintaining an undetectable viral load for over a decade. However, despite lower viral loads, HIV-2 progresses to clinical AIDS without therapeutic intervention in most patients. In addition, successful treatment with anti-retroviral therapy (ART) is more challenging than for HIV-1. HIV-2 is significantly more sensitive to restriction by host restriction factor tripartite motif TRIM5α than HIV-1, and this difference in sensitivity is linked to differences in capsid structure. In this review we discuss the determinants of HIV-2 disease progression and focus on the important interactions between TRIM5α and HIV-2 capsid in long-term viral control.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
11
|
Schmidt ME, Varga SM. Identification of Novel Respiratory Syncytial Virus CD4 + and CD8 + T Cell Epitopes in C57BL/6 Mice. Immunohorizons 2019; 3:1-12. [PMID: 31356172 DOI: 10.4049/immunohorizons.1800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection and hospitalization in infants. It is well established that both CD4+ and CD8+ T cells are critical for mediating viral clearance but also contribute to the induction of immunopathology following RSV infection. C57BL/6 mice are often used to study T cell responses following RSV infection given the wide variety of genetically modified animals available. To date, few RSV-derived CD4+ and CD8+ T cell epitopes have been identified in C57BL/6 mice. Using an overlapping peptide library spanning the entire RSV proteome, intracellular cytokine staining for IFN-γ was performed to identify novel CD4+ and CD8+ T cell epitopes in C57BL/6 mice. We identified two novel CD4+ T cell epitopes and three novel CD8+ T cell epitopes located within multiple RSV proteins. Additionally, we characterized the newly described T cell epitopes by determining their TCR Vβ expression profiles and MHC restriction. Overall, the novel RSV-derived CD4+ and CD8+ T cell epitopes identified in C57BL/6 mice will aid in future studies of RSV-specific T cell responses.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
12
|
HLA-associated polymorphisms in the HIV-2 capsid highlight key differences between HIV-1 and HIV-2 immune adaptation. AIDS 2018; 32:709-714. [PMID: 29369160 PMCID: PMC5895130 DOI: 10.1097/qad.0000000000001753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV-1 frequently adapts in response to immune pressure from cytotoxic T-lymphocytes (CTL). Many HIV-2 infected individuals have robust capsid-specific CTL responses associated with viral control. Despite this CTL pressure, adaptive changes in this key immunogenic HIV-2 protein have not previously been described. We sought to compare selective pressure on HIV-1 and HIV-2 capsids and identify HLA-associated viral polymorphisms in HIV-2. DESIGN AND METHODS Bioinformatic algorithms to identify sites under positive and negative selective pressure and a statistical model of evolution to identify HLA-associated polymorphisms in HIV-2 was applied to sequences from a community cohort in Guinea-Bissau. IFN-γ ELISpots were used to compare T-cell responses to wild-type and variant epitopes. RESULTS We identified greater purifying selection and less sites under positive selective pressure in HIV-2 compared with HIV-1. Five HIV-2 codons with HLA-associated polymorphisms were detected all within or around known or predicted CTL epitopes. One site was within the HLA-B58 SuperType (ST)-restricted epitope (TSTVEEQIQW), the HIV-2 equivalent of the HIV-1 TW10 epitope. In contrast to HIV-1, where a T→N mutation at position 3 is associated with resulting loss of CTL control, an E→D mutation at position 5 was observed in HIV-2. Robust CTL responses to the variant HIV-2 epitope were seen, suggesting that HIV-2 adaptation may be at the level of T-cell receptor recognition. CONCLUSION Greater constraints on evolution may exist in HIV-2, resulting in more purifying selection and different immune adaptation pathways in HIV-1 and HIV-2 capsids. This may allow CTL responses to persist in HIV-2.
Collapse
|
13
|
The influence of human leukocyte antigen-types on disease progression among HIV-2 infected patients in Guinea-Bissau. AIDS 2018; 32:721-728. [PMID: 29369163 DOI: 10.1097/qad.0000000000001758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES HIV-2 is endemic in West Africa and is characterized by lower transmissibility because of lower viral load, and HIV-2-infected persons usually have a slower progression to AIDS. The mechanisms behind the slower disease progression are unknown. The main objective was to identify specific HLA class I and II alleles that may influence the disease progression of HIV-2 infection. DESIGN Cohort follow-up study. METHODS We used high-resolution HLA typing of DNA from 437 antiretroviral naive HIV-2-infected patients from the Bissau HIV Cohort, Guinea-Bissau, to identify HLA alleles with an influence on HIV-2 disease progression. The effect of HLA-type on viral load and CD4 cell count was assessed initially by ranksum-test and t-test, followed by adjusted logistic regression and multivariable linear regression analysis, respectively. RESULTS Three alleles (HLA-B58:01, HLA-DPB110:01 and HLA-DRB111:01) were associated with lower possibility of detectable baseline plasma viral load (P = 0.002, P = 0.044 and P = 0.033, respectively), and no alleles were associated with higher possibility of detectable plasma viral load. HLA-DPB110:01 and HLA-DRB111:01 were in linkage disequilibrium (P = 0.047). Patients with heterozygous HLA types in all their HLA class I loci or in one or two loci were not more likely to have undetectable viral load compared with patients that were homozygous in all their class I loci after adjusting for sex and CD4 cell count (P = 0.93 and P = 0.88, respectively). CONCLUSION The three alleles HLA-B58:01, HLA-DPB110:01 and HLA-DRB111:01 may protect against HIV-2 disease progression towards AIDS.
Collapse
|
14
|
Dufrasne FE, Lucchetti M, Martin A, André E, Dessilly G, Kabamba B, Goubau P, Ruelle J. Modulation of the NF-κB signaling pathway by the HIV-2 envelope glycoprotein and its incomplete BST-2 antagonism. Virology 2017; 513:11-16. [PMID: 29028477 DOI: 10.1016/j.virol.2017.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
Abstract
The HIVs have evolved by selecting means to hijack numerous host cellular factors. HIVs exploit the transcription factor NF-κB to ensure efficient LTR-driven gene transcription. However, NF-κB is primarily known to act as a key regulator of the proinflammatory and antiviral responses. Interestingly, retroviruses activate NF-κB during early stages of infection to initiate proviral genome expression while suppressing it at later stages to restrain expression of antiviral genes. During HIV-1 infection, diverse viral proteins such as Env, Nef and Vpr have been proposed to activate NF-κB activity, whereas Vpu has been shown to inhibit NF-κB activation. It is still unclear how HIV-2 regulates NF-κB signaling pathway during its replication cycle. Here we confirm that human BST-2 and HIV-1 Env proteins can trigger potent activation of NF-κB. Importantly, we demonstrate for the first time that the HIV-2 Env induces NF-κB activation in HEΚ293T cells. Furthermore, the anti-BST-2 activity of the HIV-2 Env is not sufficient to completely inhibit NF-κB activity.
Collapse
Affiliation(s)
- François E Dufrasne
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Mara Lucchetti
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | - Anandi Martin
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Emmanuel André
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Géraldine Dessilly
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Benoit Kabamba
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Patrick Goubau
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Jean Ruelle
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
15
|
Yamaguchi J, Brennan CA, Alessandri-Gradt E, Plantier JC, Cloherty GA, Berg MG. HIV-2 Surveillance with Next-Generation Sequencing Reveals Mutations in a Cytotoxic Lymphocyte-Restricted Epitope Involved in Long-Term Nonprogression. AIDS Res Hum Retroviruses 2017; 33:347-352. [PMID: 27758113 DOI: 10.1089/aid.2016.0229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-2 exhibits a natural history of infection distinct from HIV-1. Primarily found in West Africa and in only 10%-20% of HIV infections in this region, patients with HIV-2 typically exhibit a slower progression to AIDS, lower viral loads, and decreased rates of transmission. Here, we used next-generation sequencing to determine the sequence and phylogenetic classification of nine HIV-2 genomes. We identified a patient with a series of mutations in an invariant cytotoxic lymphocyte (CTL)-restricted gag epitope required for retroviral structure and replication and implicated in long-term nonprogression to AIDS. The presence of wild-type sequence argues these mutations are involved in immune escape, whereas its reversion to a sequence seen only in the sooty mangabey reservoir suggests an alternate means of controlling infection. Surveillance and molecular characterization of circulating strains are essential for continued development of monitoring tools and may provide greater insight into the reduced pathogenicity of HIV-2.
Collapse
Affiliation(s)
- Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois
| | | | - Elodie Alessandri-Gradt
- Virology Unit, National Reference for HIV, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Jean-Christophe Plantier
- Virology Unit, National Reference for HIV, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Gavin A. Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois
| | - Michael G. Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois
| |
Collapse
|
16
|
CD4+ T cells with an activated and exhausted phenotype distinguish immunodeficiency during aviremic HIV-2 infection. AIDS 2016; 30:2415-2426. [PMID: 27525551 PMCID: PMC5051526 DOI: 10.1097/qad.0000000000001223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HIV type 2 (HIV-2) represents an attenuated form of HIV, in which many infected individuals remain ‘aviremic’ without antiretroviral therapy. However, aviremic HIV-2 disease progression exists, and in the current study, we therefore aimed to examine if specific pathological characteristics of CD4+ T cells are linked to such outcome.
Collapse
|
17
|
Angin M, Wong G, Papagno L, Versmisse P, David A, Bayard C, Charmeteau-De Muylder B, Besseghir A, Thiébaut R, Boufassa F, Pancino G, Sauce D, Lambotte O, Brun-Vézinet F, Matheron S, Rowland-Jones SL, Cheynier R, Sáez-Cirión A, Appay V. Preservation of Lymphopoietic Potential and Virus Suppressive Capacity by CD8+ T Cells in HIV-2-Infected Controllers. THE JOURNAL OF IMMUNOLOGY 2016; 197:2787-95. [PMID: 27566819 DOI: 10.4049/jimmunol.1600693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022]
Abstract
Compared with HIV-1, HIV-2 infection is characterized by a larger proportion of slow or nonprogressors. A better understanding of HIV-2 pathogenesis should open new therapeutic avenues to establish control of HIV-1 replication in infected patients. In this study, we studied the production of CD8(+) T cells and their capacity for viral control in HIV-2 controllers from the French ANRS CO5 HIV-2 cohort. HIV-2 controllers display a robust capacity to support long-term renewal of the CD8(+) T cell compartment by preserving immune resources, including hematopoietic progenitors and thymic activity, which could contribute to the long-term maintenance of the CD8(+) T cell response and the avoidance of premature immune aging. Our data support the presence of HIV-2 Gag-specific CD8(+) T cells that display an early memory differentiation phenotype and robust effector potential in HIV-2 controllers. Accordingly, to our knowledge, we show for the first time that HIV-2 controllers possess CD8(+) T cells that show an unusually strong capacity to suppress HIV-2 infection in autologous CD4(+) T cells ex vivo, an ability that likely depends on the preservation of host immune resources. This effective and durable antiviral response probably participates in a virtuous circle, during which controlled viral replication permits the preservation of potent immune functions, thus preventing HIV-2 disease progression.
Collapse
Affiliation(s)
- Mathieu Angin
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Glenn Wong
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France; Nuffield Department of Medicine, Headington, Oxford OX3 7FZ, United Kingdom
| | - Laura Papagno
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France
| | - Pierre Versmisse
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Annie David
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Charles Bayard
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France
| | - Bénédicte Charmeteau-De Muylder
- INSERM U1016, Institut Cochin, Cytokines and Viral Infections Team, Paris 75014, France; CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amel Besseghir
- Centre de Méthodologie et de Gestion des Essais Cliniques de l'INSERM U1219, Virus de l'Immunodéficience Humaine, Hépatites Virales et Comorbidités, Épidémiologie Clinique et Santé Publique, Bordeaux 33076, France
| | - Rodolphe Thiébaut
- Centre de Méthodologie et de Gestion des Essais Cliniques de l'INSERM U1219, Virus de l'Immunodéficience Humaine, Hépatites Virales et Comorbidités, Épidémiologie Clinique et Santé Publique, Bordeaux 33076, France
| | - Faroudy Boufassa
- INSERM U1018, Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris Sud, Le Kremlin Bicêtre 94270, France
| | - Gianfranco Pancino
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Delphine Sauce
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France
| | - Olivier Lambotte
- INSERM UMR 1184, Immunologie des Maladies Virales et Autoimmunes, Le Kremlin Bicêtre 94270, France; Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne, Hôpitaux Universitaires, Le Kremlin Bicêtre 94270, France; Université Paris Sud, Le Kremlin Bicêtre 94270, France
| | - Françoise Brun-Vézinet
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Virologie, Hôpital Bichat, Paris 75018, France
| | - Sophie Matheron
- INSERM UMR 1137, Infections, Antimicrobiens, Modélisation, Evolution, Université Paris Diderot, Sorbonne Paris Cité, Paris 75018, France; and Assistance Publique-Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, Paris 75018, France
| | | | - Rémi Cheynier
- INSERM U1016, Institut Cochin, Cytokines and Viral Infections Team, Paris 75014, France; CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France;
| | - Victor Appay
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France;
| | | |
Collapse
|
18
|
Elevated levels of invariant natural killer T-cell and natural killer cell activation correlate with disease progression in HIV-1 and HIV-2 infections. AIDS 2016; 30:1713-22. [PMID: 27163705 PMCID: PMC4925311 DOI: 10.1097/qad.0000000000001147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: In this study, we aimed to investigate the frequency and activation of invariant natural killer T (iNKT) cells and natural killer (NK) cells among HIV-1, HIV-2, or dually HIV-1/HIV-2 (HIV-D)-infected individuals, in relation to markers of disease progression. Design: Whole blood samples were collected from treatment-naive HIV-1 (n = 23), HIV-2 (n = 34), and HIV-D (n = 11) infected individuals, as well as HIV-seronegative controls (n = 25), belonging to an occupational cohort in Guinea-Bissau. Methods: Frequencies and activation levels of iNKT and NK cell subsets were analysed using multicolour flow cytometry, and results were related to HIV-status, CD4+ T-cell levels, viral load, and T-cell activation. Results: HIV-1, HIV-D, and viremic HIV-2 individuals had lower numbers of CD4+ iNKT cells in circulation compared with seronegative controls. Numbers of CD56bright NK cells were also reduced in HIV-infected individuals as compared with control study participants. Notably, iNKT cell and NK cell activation levels, assessed by CD38 expression, were increased in HIV-1 and HIV-2 single, as well as dual, infections. HIV-2 viremia was associated with elevated activation levels in CD4+ iNKT cells, CD56bright, and CD56dim NK cells, as compared with aviremic HIV-2 infection. Additionally, disease markers such as CD4+ T-cell percentages, viral load, and CD4+ T-cell activation were associated with CD38 expression levels of both iNKT and NK cells, which activation levels also correlated with each other. Conclusion: Our data indicate that elevated levels of iNKT-cell and NK-cell activation are associated with viremia and disease progression markers in both HIV-1 and HIV-2 infections.
Collapse
|
19
|
Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques. Viruses 2016; 8:v8050121. [PMID: 27144577 PMCID: PMC4885076 DOI: 10.3390/v8050121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.
Collapse
|
20
|
Williamson AL, Rybicki EP. Justification for the inclusion of Gag in HIV vaccine candidates. Expert Rev Vaccines 2015; 15:585-98. [PMID: 26645951 DOI: 10.1586/14760584.2016.1129904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is widely accepted that effective human immunodeficiency virus (HIV) vaccines need to elicit a range of responses, including neutralising antibodies and T-cells. In natural HIV infections, immune responses to Gag are associated with lower viral load in infected individuals, and these responses can be measured against infected cells before the replication of HIV. Priming immune responses to Gag with DNA or recombinant Bacillus Calmette-Guérin (BCG) vaccines, and boosting with Gag virus-like particles as subunit vaccines or Gag produced in vivo by other vaccine vectors, elicits high-magnitude, broad polyfunctional responses, with memory T-cell responses appropriate for virus control. This review provides justification for the inclusion of HIV Gag in vaccine regimens, either as a transgene expressing protein that may assemble to form budded particles, or as purified virus-like particles. Possible benefits would include early control via CD8(+) T-cells at the site of infection, control of spread from the entry portal, and control of viraemia if infection is established.
Collapse
Affiliation(s)
- Anna-Lise Williamson
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,b National Health Laboratory Service, Groote Schuur Hospital, Cape Town and Department of Pathology , University of Cape Town , Cape Town , South Africa
| | - Edward P Rybicki
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,c Biopharming Research Unit, Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| |
Collapse
|
21
|
Jallow S, Leligdowicz A, Kramer HB, Onyango C, Cotten M, Wright C, Whittle HC, McMichael A, Dong T, Kessler BM, Rowland-Jones SL. The presence of prolines in the flanking region of an immunodominant HIV-2 gag epitope influences the quality and quantity of the epitope generated. Eur J Immunol 2015; 45:2232-42. [PMID: 26018465 PMCID: PMC4832300 DOI: 10.1002/eji.201545451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
Both the recognition of HIV‐infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV‐2 gag‐specific T‐cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165DRFYKSLRA173, within the highly conserved Major Homology Region of gag‐p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag‐p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag‐specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165DRFYKSLRA173 epitope. Our data demonstrate that the 165DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral‐load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV‐2 encoding the “PPP‐gag” sequence and both strong gag‐specific CTL responses as well as lower viral load.
Collapse
Affiliation(s)
- Sabelle Jallow
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | | | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Cynthia Wright
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Andrew McMichael
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Tao Dong
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Makvandi-Nejad S, Rowland-Jones S. How does the humoral response to HIV-2 infection differ from HIV-1 and can this explain the distinct natural history of infection with these two human retroviruses? Immunol Lett 2014; 163:69-75. [PMID: 25445493 DOI: 10.1016/j.imlet.2014.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022]
Abstract
A substantial proportion of people infected with HIV-2, the second causative agent of acquired immune deficiency syndrome (AIDS), behave as long-term non-progressors (LTNP) and are able to control the infection more effectively than most HIV-1-infected patients. A better understanding of the differences in the natural history of HIV-1 and HIV-2 infection, and how these relate to the relative immunogenicity and evolution of the two virus strains, could provide important insights into the mechanisms of protective immunity in HIV infection. One of the most striking differences is that most people infected with HIV-2 generate high titers of broadly neutralizing antibodies, whereas this is relatively uncommon in HIV-1 infection. In this review we compare the underlying structural differences of the envelope (Env) between HIV-1 and HIV-2, and examine how these might affect the antibody responses as well as their impact on Env evolution and control of viral replication.
Collapse
Affiliation(s)
- Shokouh Makvandi-Nejad
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Clinical Medicine, NDM Research Building, Old Road Campus, Headington, Oxford OX3 7FZ, United Kingdom.
| |
Collapse
|
23
|
Jespersen S, Hønge BL, Oliveira I, Medina C, da Silva Té D, Correira FG, Erikstrup C, Laursen AL, Østergaard L, Wejse C. Cohort Profile: The Bissau HIV Cohort-a cohort of HIV-1, HIV-2 and co-infected patients. Int J Epidemiol 2014; 44:756-63. [PMID: 25342251 DOI: 10.1093/ije/dyu201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2014] [Indexed: 12/27/2022] Open
Abstract
The West African country Guinea-Bissau is home to the world's highest prevalence of HIV-2, and its HIV-1 prevalence is rising. Other chronic viral infections like human T-lymphotropic virus type 1 (HTLV-1) and hepatitis B virus are common as well. The Bissau HIV Cohort was started in 2007 to gain new insights into the overall effect of introducing antiretroviral treatment in a treatment-naïve population with concomitant infection with three retroviruses (HIV-1, HIV-2 and HTLV-1) and tuberculosis. The cohort includes patients from the HIV clinic at Hospital Nacional Simão Mendes, the main hospital in Bissau, the capital of the country. From July 2007 to June 2013, 3762 HIV-infected patients (69% HIV-1, 18% HIV-2, 11% HIV-1/2 and 2% HIV type unknown) were included in the world's largest single-centre HIV-2 cohort. Demographic and clinical data are collected at baseline and every 6 months, together with CD4 cell count and routine biochemistry analyses. Plasma and cells are stored in a biobank in Denmark. The Bissau HIV Cohort is administered by the Bissau HIV Cohort study group. Potential collaborators are invited to contact the chair of the cohort study group, Christian Wejse, e-mail: [wejse@dadlnet.dk].
Collapse
Affiliation(s)
- Sanne Jespersen
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau, Department of Infectious Diseases, Aarhus University Hospital, Copenhagen, Denmark,
| | - Bo Langhoff Hønge
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau, Department of Infectious Diseases, Aarhus University Hospital, Copenhagen, Denmark
| | - Inés Oliveira
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Candida Medina
- National HIV Programme, Ministry of Health, Bissau, Guinea-Bissau
| | | | | | | | - Alex Lund Laursen
- Department of Infectious Diseases, Aarhus University Hospital, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Copenhagen, Denmark
| | - Christian Wejse
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau, Department of Infectious Diseases, Aarhus University Hospital, Copenhagen, Denmark, Center for Global Health, Aarhus University, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Royle CM, Graham DR, Sharma S, Fuchs D, Boasso A. HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs. THE JOURNAL OF IMMUNOLOGY 2014; 193:3538-48. [PMID: 25156368 DOI: 10.4049/jimmunol.1400860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HIV-1 causes a progressive impairment of immune function. HIV-2 is a naturally attenuated form of HIV, and HIV-2 patients display a slow-progressing disease. The leading hypothesis for the difference in disease phenotype between HIV-1 and HIV-2 is that more efficient T cell-mediated immunity allows for immune-mediated control of HIV-2 infection, similar to that observed in the minority of HIV-1-infected long-term nonprogressors. Understanding how HIV-1 and HIV-2 differentially influence the immune function may highlight critical mechanisms determining disease outcome. We investigated the effects of exposing primary human peripheral blood cells to HIV-1 or HIV-2 in vitro. HIV-2 induced a gene expression profile distinct from HIV-1, characterized by reduced type I IFN, despite similar upregulation of IFN-stimulated genes and viral restriction factors. HIV-2 favored plasmacytoid dendritic cell (pDC) differentiation into cells with an APC phenotype rather than IFN-α-producing cells. HIV-2, but not HIV-1, inhibited IFN-α production in response to CpG-A. The balance between pDC maturation into IFN-α-producing cells or development of an APC phenotype differentiates the early response against HIV-1 and HIV-2. We propose that divergent paths of pDC differentiation driven by HIV-1 and HIV-2 cause the observed differences in pathogenicity between the two viruses.
Collapse
Affiliation(s)
- Caroline M Royle
- Immunology Section, Chelsea and Westminster Hospital, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Imperial College, London SW10 9NH, United Kingdom
| | - David R Graham
- Retrovirus Laboratory, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Simone Sharma
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom; and
| | - Dietmar Fuchs
- Division of Biological Chemistry Biocenter, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - Adriano Boasso
- Immunology Section, Chelsea and Westminster Hospital, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Imperial College, London SW10 9NH, United Kingdom;
| |
Collapse
|
25
|
Hegedus A, Nyamweya S, Zhang Y, Govind S, Aspinall R, Mashanova A, Jansen VAA, Whittle H, Jaye A, Flanagan KL, Macallan DC. Protection versus pathology in aviremic and high viral load HIV-2 infection-the pivotal role of immune activation and T-cell kinetics. J Infect Dis 2014; 210:752-61. [PMID: 24803534 PMCID: PMC4130319 DOI: 10.1093/infdis/jiu165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background. Many human immunodeficiency virus (HIV)–2-infected individuals remain aviremic and behave as long-term non-progressors but some progress to AIDS. We hypothesized that immune activation and T-cell turnover would be critical determinants of non-progressor/progressor status. Methods. We studied 37 subjects in The Gambia, West Africa: 10 HIV-negative controls, 10 HIV-2-infected subjects with low viral loads (HIV-2-LV), 7 HIV-2-infected subjects with high viral loads (HIV-2-HV), and 10 with HIV-1 infection. We measured in vivo T-cell turnover using deuterium-glucose labeling, and correlated results with T-cell phenotype (by flow cytometry) and T-cell receptor excision circle (TREC) abundance. Results. Immune activation (HLA-DR/CD38 coexpression) differed between groups with a significant trend: controls <HIV-2-LV <HIV-1 <HIV-2-HV (P < .01 for all cell types). A similar trend was observed in the pattern of in vivo turnover of memory CD4+ and CD8+ T-cells and TREC depletion in naive CD4+ T-cells, although naive T-cell turnover was relatively unaffected by either infection. T-cell turnover, immune activation, and progressor status were closely associated. Conclusions. HIV-2 non-progressors have low rates of T-cell turnover (both CD4+ and CD8+) and minimal immune activation; high viral load HIV-2 progressors had high values, similar to or exceeding those in HIV-1 infection.
Collapse
Affiliation(s)
- Andrea Hegedus
- Infection and Immunity Research Institute, St George's, University of London, United Kingdom
| | | | - Yan Zhang
- Infection and Immunity Research Institute, St George's, University of London, United Kingdom
| | - Sheila Govind
- Translational Medicine Group, Cranfield Health, Cranfield University
| | - Richard Aspinall
- Translational Medicine Group, Cranfield Health, Cranfield University
| | - Alla Mashanova
- School of Biological Sciences, Royal Holloway University of London, United Kingdom
| | - Vincent A A Jansen
- School of Biological Sciences, Royal Holloway University of London, United Kingdom
| | | | - Assan Jaye
- Medical Research Council (UK), The Gambia, West Africa
| | | | - Derek C Macallan
- Infection and Immunity Research Institute, St George's, University of London, United Kingdom
| |
Collapse
|
26
|
Correlates of T-cell-mediated viral control and phenotype of CD8(+) T cells in HIV-2, a naturally contained human retroviral infection. Blood 2013; 121:4330-9. [PMID: 23558015 DOI: 10.1182/blood-2012-12-472787] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While a significant proportion of HIV-2-infected individuals are asymptomatic and maintain undetectable viral loads (controllers), 15% to 20% progress to AIDS and are predicted by detectable viremia. Identifying immune correlates that distinguish these 2 groups should provide insights into how a potentially pathogenic retrovirus can be naturally controlled. We performed a detailed study of HIV-2-specific cellular responses in a unique community cohort in Guinea-Bissau followed for over 2 decades. T-cell responses were compared between controllers (n = 33) and viremic subjects (n = 27) using overlapping peptides, major histocompatibility complex class I tetramers, and multiparameter flow cytometry. HIV-2 viral control was significantly associated with a high-magnitude, polyfunctional Gag-specific CD8(+) T-cell response but not with greater perforin upregulation. This potentially protective HIV-2-specific response is surprisingly narrow. HIV-2 Gag-specific CD8(+) T cells are at an earlier stage of differentiation than cytomegalovirus-specific CD8(+) T-cells, do not contain high levels of cytolytic markers, and exhibit low levels of activation and proliferation, representing distinct properties from CD8(+) T cells associated with HIV-1 control. These data reveal the potential T-cell correlates of HIV-2 control and the detailed phenotype of virus-specific CD8(+) T cells in a naturally contained retroviral infection.
Collapse
|
27
|
Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 2013; 23:221-40. [PMID: 23444290 DOI: 10.1002/rmv.1739] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 12/18/2022]
Abstract
HIV-1 and HIV-2 share many similarities including their basic gene arrangement, modes of transmission, intracellular replication pathways and clinical consequences: both result in AIDS. However, HIV-2 is characterised by lower transmissibility and reduced likelihood of progression to AIDS. The underlying mechanistic differences between these two infections illuminate broader issues of retroviral pathogenesis, which remain incompletely understood. Comparisons between these two infections from epidemiological, clinical, virologic and immunologic viewpoints provide a basis for hypothesis generation and testing in this 'natural experiment' in viral pathogenesis. In terms of epidemiology, HIV-2 remains largely confined to West Africa, whereas HIV-1 extends worldwide. Clinically, HIV-2 infected individuals seem to dichotomise, most remaining long-term non-progressors, whereas most HIV-1 infected individuals progress. When clinical progression occurs, both diseases demonstrate very similar pathological processes, although progression in HIV-2 occurs at higher CD4 counts. Plasma viral loads are consistently lower in HIV-2, as are average levels of immune activation. Significant differences exist between the two infections in all components of the immune system. For example, cellular responses to HIV-2 tend to be more polyfunctional and produce more IL-2; humoral responses appear broader with lower magnitude intratype neutralisation responses; innate responses appear more robust, possibly through differential effects of tripartite motif protein isoform 5 alpha. Overall, the immune response to HIV-2 appears more protective against disease progression suggesting that pivotal immune factors limit viral pathology. If such immune responses could be replicated or induced in HIV-1 infected patients, they might extend survival and reduce requirements for antiretroviral therapy.
Collapse
|
28
|
Diwan B, Saxena R, Tiwari A. HIV-2 and its role in conglutinated approach towards Acquired Immunodeficiency Syndrome (AIDS) Vaccine Development. SPRINGERPLUS 2013; 2:7. [PMID: 23483108 PMCID: PMC3586397 DOI: 10.1186/2193-1801-2-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is one of the most critically acclaimed endemic diseases, caused by two lentiviruses HIV-1 and 2. HIV-2 displays intimate serological and antigenic resemblance to Simian Immunodeficiency Virus (SIV) along with less pathogenicity, lower infectivity and appreciable cross reactivity with HIV-1 antigens. The present era is confronted with the challenge to fabricate a vaccine effective against all clades of both the species of HIV. But vaccine development against HIV-1 has proven highly intricate, moreover the laborious and deficient conventional approaches has slackened the pace regarding the development of new vaccines. These concerns may be tackled with the development of HIV-2 vaccine as a natural control of HIV-1 that has been found in ancestors of HIV-2 i.e. African monkeys, mangabeys and macaques. Thereby, suggesting the notion of cross protection among HIV-2 and HIV-1. Assistance of bioinformatics along with vaccinomics strategy can bring about a quantum leap in this direction for surpassing the bottleneck in conventional approaches. These specifics together can add to our conception that HIV-2 vaccine design by in silico strategy will surely be a constructive approach for HIV-1 targeting.
Collapse
Affiliation(s)
- Batul Diwan
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, MP India
| | | | | |
Collapse
|
29
|
de Silva TI, van Tienen C, Onyango C, Jabang A, Vincent T, Loeff MFSVD, Coutinho RA, Jaye A, Rowland-Jones S, Whittle H, Cotten M, Hué S. Population dynamics of HIV-2 in rural West Africa: comparison with HIV-1 and ongoing transmission at the heart of the epidemic. AIDS 2013; 27:125-34. [PMID: 23032414 DOI: 10.1097/qad.0b013e32835ab12c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To compare the population dynamics of HIV-2 and HIV-1, and to characterize ongoing HIV-2 transmission in rural Guinea-Bissau. DESIGN Phylogenetic and phylodynamic analyses using HIV-2 gag and env, and HIV-1 env sequences, combined with epidemiological data from a community cohort. METHODS Samples were obtained from surveys in 1989-1991, 1996-1997, 2003 and 2006-2007. Phylogenies were reconstructed using sequences from 103 HIV-2-infected and 56 HIV-1-infected patients using Bayesian Evolutionary Analysis by Sampling Trees (BEAST), a relaxed molecular clock and a Bayesian skyline coalescent model. RESULTS Bayesian skyline plots showed a strong increase in the 1990s of the HIV-1 effective population size (Ne) in the same period that the Ne of HIV-2 came into a plateau phase. The population dynamics of both viruses were remarkably similar following initial introduction. Incident infections were found more often in HIV-2 transmission clusters, with 55-58% of all individuals contributing to ongoing transmission. Some phylogenetically linked sexual partners had discordant viral loads (undetectable vs. detectable), suggesting host factors dictate the risk of disease progression in HIV-2. Multiple HIV-2 introductions into the cohort are evident, but ongoing transmission has occurred predominantly within the community. CONCLUSION Comparison of HIV-1 and HIV-2 phylodynamics in the same community suggests both viruses followed similar growth patterns following introduction, and is consistent with the hypothesis that HIV-1 may have played a role in the decline of HIV-2 via competitive exclusion. The source of ongoing HIV-2 transmission in the cohort appears to be new HIV-2 cases, rather than the pool of older infections established during the early growth of HIV-2.
Collapse
|
30
|
van Tienen C, Schim van der Loeff M, Whittle H. Effect of HIV-2 infection on HIV-1 disease progression. N Engl J Med 2012; 367:1962; author reply 1962-3. [PMID: 23150973 DOI: 10.1056/nejmc1210334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Abstract
PURPOSE OF REVIEW In this review we report how recent insights into control of HIV replication in HIV-1-infected patients might provide a rationale for boosting the immune system prior to combined antiretroviral therapy interruption; and recent results of therapeutic immunization studies followed by combined antiretroviral therapy interruption. RECENT FINDINGS Interruption of antiretroviral therapy is not without risk in HIV-infected patients. Baseline HIV-specific immunity does not prevent viral rebound and the loss of CD4 T cells. Recent findings in 'HIV controllers' and long-term nonprogressors showed that the immune system may contain HIV replication. These studies may help to define the objectives of therapeutic immunization. This strategy is aimed to contain viral replication or lower the viral 'set point' in patients who did not achieve this equilibrium on their own. From a clinical standpoint, the challenge is, therefore, to transform chronic treated patients into long-term nonprogressors following combined antiretroviral therapy discontinuation. SUMMARY In the last 2 years several studies of therapeutic immunization showed that preparation of the immune system by boosting specific immune responses may help patients to contain viral replication following combined antiretroviral therapy discontinuation. Although some of these results are encouraging, further studies are needed to confirm these results and to identify patients who may benefit from this strategy.
Collapse
|
32
|
Nyamweya S, Townend J, Zaman A, Steele SJ, Jeffries D, Rowland-Jones S, Whittle H, Flanagan KL, Jaye A. Are plasma biomarkers of immune activation predictive of HIV progression: a longitudinal comparison and analyses in HIV-1 and HIV-2 infections? PLoS One 2012; 7:e44411. [PMID: 22970212 PMCID: PMC3438191 DOI: 10.1371/journal.pone.0044411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/02/2012] [Indexed: 11/21/2022] Open
Abstract
Background Chronic immune activation is a hallmark of HIV infection and has been associated with disease progression. Assessment of soluble biomarkers indicating immune activation provide clues into pathogenesis and hold promise for the development of point-of-care monitoring of HIV in resource-poor-settings. Their evaluation in cohort resources is therefore needed to further their development and use in HIV research. Methodology/Principal Findings Longitudinal evaluation of βeta-2 microglobulin (β-2 m), neopterin and suPAR soluble urokinase-type plasminogen activator receptor (suPAR) was performed with archived plasma samples to predict disease progression and provided the first direct comparison of levels in HIV-1 and HIV-2 infections. At least 2095 samples from 137 HIV-1 and 198 HIV-2 subjects with starting CD4% of ≥28 and median follow up of 4 years were analysed. All biomarkers were correlated negatively to CD4% and positively to viral load and to each other. Analyses in subjects living for ≥5 years revealed increases in median β-2 m and neopterin and decreases in CD4% over this period and the odds of death within 5 years were positively associated with baseline levels of β-2 m and neopterin. ROC analyses strengthened the evidence of elevation of biomarkers in patients approaching death in both HIV-1 and HIV-2 infections. Regression models showed that rates of biomarker fold change accelerated from 6–8 years before death with no significant differences between biomarker levels in HIV-1 and HIV-2 at equal time points prior to death.An ‘immune activation index’ analysis indicative of biomarker levels at equivalent viral loads also showed no differences between the two infections. Conclusions/Significance Our results suggest that β-2 m and neopterin are useful tools for disease monitoring in both HIV-1 and HIV-2 infections, whereas sUPAR performed less well. Levels of immune activation per amount of virus were comparable in HIV-1 and HIV-2 infected subjects.
Collapse
Affiliation(s)
- Samuel Nyamweya
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | - John Townend
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | - Akram Zaman
- Medical Research Council (UK), Banjul, The Gambia, West Africa
- Centre for Infections, Health Protection Agency, London, United Kingdom
| | | | - David Jeffries
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | | | - Hilton Whittle
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | | | - Assan Jaye
- Medical Research Council (UK), Banjul, The Gambia, West Africa
- * E-mail: .
| |
Collapse
|
33
|
Gourlay AJ, van Tienen C, Dave SS, Vincent T, Rowland-Jones SL, Glynn JR, Whittle HC, van der Loeff MFS. Clinical predictors cannot replace biological predictors in HIV-2 infection in a community setting in West Africa. Int J Infect Dis 2012; 16:e337-43. [PMID: 22387142 PMCID: PMC3324712 DOI: 10.1016/j.ijid.2012.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/18/2011] [Accepted: 01/09/2012] [Indexed: 11/26/2022] Open
Abstract
Objective To identify clinical predictors of mortality in HIV-2-infected individuals that may be used in place of CD4 count or plasma viral load (PVL) to guide treatment management in resource-limited settings. Methods A prospective community cohort study of HIV-infected and HIV-negative individuals in a rural area of Guinea-Bissau has been ongoing since 1989. In 2003 participants were invited for a clinical examination and blood tests. They were followed-up for vital status until 2010. Antiretroviral treatment (ART) became available in 2007. Cox regression was used to examine the association of clinical measures (World Health Organization (WHO) stage, body mass index (BMI), mid-upper arm circumference (MUAC), and WHO performance scale) measured in 2003 with subsequent mortality. Results In 2003, 146 HIV-2-infected individuals (68% women; mean age 56 years) were examined. Over the next 7 years, 44 (30%) died. BMI < 18.5 kg/m2 was associated with a crude mortality hazard ratio (HR) of 1.9 (95% confidence interval (CI) 1.0–3.9, p = 0.08); adjusted for age and sex, HR 1.8 (95% CI 0.9–3.8, p = 0.1). MUAC <230 mm in women and <240 mm in men was also associated with an elevated mortality HR, though statistical evidence was weak (crude HR 2.2, 95% CI 0.9–5.3, p = 0.1). WHO clinical stage and WHO performance scale were not associated with mortality (p = 0.6 and p = 0.2, respectively, for crude associations). Conclusions Baseline BMI, MUAC, WHO stage, and WHO performance scale were not strong or statistically significant predictors of mortality among HIV-2-infected individuals. CD4 count and PVL are more reliable tools, when available, for the management of HIV-2-infected patients in the community setting.
Collapse
Affiliation(s)
- Annabelle J Gourlay
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Castro-Nallar E, Crandall KA, Pérez-Losada M. Genetic diversity and molecular epidemiology of HIV transmission. Future Virol 2012. [DOI: 10.2217/fvl.12.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high genetic diversity of HIV is one of its most significant features, as it has consequences in global distribution, vaccine design, therapy success, disease progression, transmissibility and viral load testing. Studying HIV diversity helps to understand its origins, migration patterns, current distribution and transmission events. New advances in sequencing technologies based on the parallel acquisition of data are now used to characterize within-host and population processes in depth. Additionally, we have seen similar advances in statistical methods designed to model the past history of lineages (the phylodynamic framework) to ultimately gain better insights into the evolutionary history of HIV. We can, for example, estimate population size changes, lineage dispersion over geographic areas and epidemiological parameters solely from sequence data. In this article, we review some of the evolutionary approaches used to study transmission patterns and processes in HIV and the insights gained from such studies.
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Keith A Crandall
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
35
|
For protection from HIV-1 infection, more might not be better: a systematic analysis of HIV Gag epitopes of two alleles associated with different outcomes of HIV-1 infection. J Virol 2011; 86:1166-80. [PMID: 22072744 DOI: 10.1128/jvi.05721-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of women in the Pumwani Sex Worker Cohort, established in 1985 in Nairobi, Kenya, remains uninfected despite repeated high-risk exposure (HIV-exposed, seronegative [HESN]) through active sex work. This HESN phenotype is associated with several alleles of human leukocyte antigens (HLAs) and specific CD8(+) and CD4(+) T cell responses to HIV-1. The associations of HLA alleles with differential HIV-1 infection are most likely due to their different abilities to present antigen and the different immune responses they induce. The characteristics of epitopes of HLA alleles associated with different outcomes of HIV-1 infection might therefore point to a vital clue for developing an effective vaccine. In this study, we systematically analyzed HIV-1 clade A and D Gag CD8(+) T cell epitopes of two HLA class I alleles associated with different outcomes of HIV-1 infection. Binding affinity and off-rates of the identified epitopes were determined. Gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays with patient peripheral blood mononuclear cells (PBMCs) validated the epitopes. Epitope-specific CD8(+) T cells were further phenotyped for memory markers with tetramer staining. Our study showed that the protective allele A*01:01 recognizes only three Gag epitopes. By contrast, B*07:02, the allele associated with susceptibility, binds 30 epitope variants. These two alleles differ most importantly in the spectrum of Gag epitopes they can present and not in affinity, off-rates, the location of the epitopes, or epitope-specific Tem/Tcm frequencies. The binding of more epitopes and strong IFN-gamma ELISpot responses are associated with susceptibility to HIV-1 infection, while more focused antigen recognition of multiple subtypes is protective. Rational vaccine design should take these observations into account.
Collapse
|
36
|
Potent autologous and heterologous neutralizing antibody responses occur in HIV-2 infection across a broad range of infection outcomes. J Virol 2011; 86:930-46. [PMID: 22072758 DOI: 10.1128/jvi.06126-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Few studies have explored the role of neutralizing antibody (NAb) responses in controlling HIV-2 viremia and disease progression. Using a TZM-bl neutralization assay, we assessed heterologous and autologous NAb responses from a community cohort of HIV-2-infected individuals with a broad range of disease outcomes in rural Guinea-Bissau. All subjects (n = 40) displayed exceptionally high heterologous NAb titers (50% inhibitory plasma dilution or 50% inhibitory concentration [IC(50)], 1:7,000 to 1:1,000,000) against 5 novel primary HIV-2 envelopes and HIV-2 7312A, whereas ROD A and 3 primary envelopes were relatively resistant to neutralization. Most individuals also showed high autologous NAb against contemporaneous envelopes (78% of plasma-envelope combinations in 69 envelopes from 21 subjects), with IC(50)s above 1:10,000. No association between heterologous or autologous NAb titer and greater control of HIV-2 was found. A subset of envelopes was found to be more resistant to neutralization (by plasma and HIV-2 monoclonal antibodies). These envelopes were isolated from individuals with greater intrapatient sequence diversity and were associated with changes in potential N-linked glycosylation sites but not CD4 independence or CXCR4 use. Plasma collected from up to 15 years previously was able to potently neutralize recent autologous envelopes, suggesting a lack of escape from NAb and the persistence of neutralization-sensitive variants over time, despite significant NAb pressure. We conclude that despite the presence of broad and potent NAb responses in HIV-2-infected individuals, these are not the primary forces behind the dichotomous outcomes observed but reveal a limited capacity for adaptive selection and escape from host immunity in HIV-2 infection.
Collapse
|
37
|
Hodges-Mameletzis I, De Bree GJ, Rowland-Jones SL. An underestimated lentivirus model: what can HIV-2 research contribute to the development of an effective HIV-1 vaccine? Expert Rev Anti Infect Ther 2011; 9:195-206. [PMID: 21342067 DOI: 10.1586/eri.10.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of an HIV-1 vaccine that would be effective against all existing subtypes and circulating recombinant forms remains one of the great scientific and public health challenges of our generation. One of the major barriers to HIV-1 vaccine development is a lack of understanding of the correlates of protective immunity against the virus. In this context, research has focused on the rare phenomenon of spontaneous control of HIV-1 infection, in groups referred to as 'long-term nonprogressors' and 'elite controllers', together with models of nonprogressive sooty mangabey simian immunodeficiency (SIV) infection in African nonhuman primate hosts such as sooty mangabeys and African green monkeys, in which the majority of animals tolerate high levels of viral replication without development of immunodeficiency or disease. Much less attention has been given to humans infected with the nonpandemic strain HIV-2, derived from the SIV in West Africa, most of whom behave as long-term nonprogressors or viral controllers, while a minority develop disease clinically indistinguishable from AIDS caused by HIV-1. This apparent dichotomous outcome is, based on the evidence accumulated to date, more clearly related to the host immune response than the good clinical outcome of HIV-1 controllers. We propose that complementing research into HIV-1 controllers and nonpathogenic SIV models with the prioritization of HIV-2 research could enhance the HIV-1 vaccine research effort. The absence of disease progression or detectable plasma viral replication in the presence of an effective immune response in most patients living with HIV-2 represents an opportunity to unravel the virus' evolutionary adaptation in human hosts and to establish the correlates of such a protective response.
Collapse
|
38
|
Leligdowicz A, Onyango C, Yindom LM, Peng Y, Cotten M, Jaye A, McMichael A, Whittle H, Dong T, Rowland-Jones S. Highly avid, oligoclonal, early-differentiated antigen-specific CD8+ T cells in chronic HIV-2 infection. Eur J Immunol 2010; 40:1963-72. [PMID: 20411566 DOI: 10.1002/eji.200940295] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
HIV-1-specific CD8(+) T cells are present in most HIV-1-infected people and play an important role in controlling viral replication, but the characteristics of an effective HIV-specific T-cell response are largely unknown. The majority of HIV-2-infected people behave as long-term non-progressors while those who progress to AIDS do so in a manner indistinguishable from HIV-1. A detailed study of HIV-2 infection may identify protective immune responses. Robust gag p26-specific T-cell responses are elicited during HIV-2 infection and correlate with control of viremia. In this study, we analyzed features of an HLA-B 3501-restricted T-cell response to HIV-2 p26 that may contribute to virus control. In contrast to HIV-1, HIV-2-specific T cells are at an early stage of differentiation (CD27(+)CD28(+)), a finding that relates directly to CD4(+) T-cell levels and inversely to immune activation. The cells demonstrate IFN-gamma secretion, oligoclonal T-cell receptor Vbeta gene segment usage, exceptional avidity and secretion of pro-inflammatory cytokines. Despite the potentially strong selection pressure imposed on the virus by these cells, there was no evidence of HIV-2 sequence evolution. We propose that in chronic HIV-2 infection, the maintenance of early-differentiated, highly avid CD8(+) T cells could account for the non-progressive course of disease. Such responses may be desirable from an HIV vaccine.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Weatherall Institute of Molecular Medicine, Medical Research Council Human Immunology Unit, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Onyango CO, Leligdowicz A, Yokoyama M, Sato H, Song H, Nakayama EE, Shioda T, de Silva T, Townend J, Jaye A, Whittle H, Rowland-Jones S, Cotten M. HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. Vaccine 2010; 28 Suppl 2:B60-7. [PMID: 20510746 DOI: 10.1016/j.vaccine.2009.08.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
HIV-2 causes AIDS similar to HIV-1, however a considerable proportion of HIV-2 infected patients show no disease and have low plasma virus load (VL). An analysis of HIV-2 capsid (p26) variation demonstrated that proline at p26 positions 119, 159 and 178 are more frequent in lower VL subjects while non-proline residues at all three sites are more frequent in subjects with high VL. In vitro replication levels of viruses bearing changes at the three sites suggested that these three residues influence virus replication by altering susceptibility to TRIM5alpha. These results provide new insights into HIV-2 pathogenesis.
Collapse
Affiliation(s)
- Clayton O Onyango
- Medical Research Council Laboratories, Fajara, Atlantic Road, PO Box 273, The Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yindom LM, Leligdowicz A, Martin MP, Gao X, Qi Y, Zaman SMA, van der Loeff MS, van Tienen C, Jaye A, Aveika A, Worwui A, Diatta M, Vincent T, Whittle HC, Rowland-Jones SL, Walton R, Carrington M. Influence of HLA class I and HLA-KIR compound genotypes on HIV-2 infection and markers of disease progression in a Manjako community in West Africa. J Virol 2010; 84:8202-8. [PMID: 20519398 PMCID: PMC2916551 DOI: 10.1128/jvi.00116-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/23/2010] [Indexed: 11/20/2022] Open
Abstract
Overall, the time to AIDS after HIV-2 infection is longer than with HIV-1, and many individuals infected with HIV-2 virus remain healthy throughout their lives. Multiple HLA and KIR gene products have been implicated in the control of HIV-1, but the effect of variation at these loci on HIV-2 disease is unknown. We show here for the first time that HLA-B*1503 is associated significantly with poor prognosis after HIV-2 infection and that HLA-B*0801 is associated with susceptibility to infection. Interestingly, previous data indicate that HLA-B*1503 is associated with low viral loads in HIV-1 clade B infection but has no significant effect on viral load in clade C infection. In general, alleles strongly associated with HIV-1 disease showed no effect in HIV-2 disease. These data emphasize the unique nature of the effects of HLA and HLA/KIR combinations on HIV-2 immune responses relative to HIV-1, which could be related to their distinct clinical course.
Collapse
Affiliation(s)
- Louis-Marie Yindom
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Aleksandra Leligdowicz
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Maureen P. Martin
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Xiaojiang Gao
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Ying Qi
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Syed M. A. Zaman
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Maarten Schim van der Loeff
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Carla van Tienen
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Assan Jaye
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Akum Aveika
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Archibald Worwui
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Mathurin Diatta
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Tim Vincent
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Hilton C. Whittle
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Sarah L. Rowland-Jones
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Robert Walton
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Mary Carrington
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| |
Collapse
|
41
|
van Tienen C, van der Loeff MFS, Peterson I, Cotten M, Holmgren B, Andersson S, Vincent T, Sarge-Njie R, Rowland-Jones S, Jaye A, Aaby P, Whittle H. HTLV-1 in rural Guinea-Bissau: prevalence, incidence and a continued association with HIV between 1990 and 2007. Retrovirology 2010; 7:50. [PMID: 20525366 PMCID: PMC2894744 DOI: 10.1186/1742-4690-7-50] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/04/2010] [Indexed: 11/25/2022] Open
Abstract
Background HTLV-1 is endemic in Guinea-Bissau, and the highest prevalence in the adult population (5.2%) was observed in a rural area, Caió, in 1990. HIV-1 and HIV-2 are both prevalent in this area as well. Cross-sectional associations have been reported for HTLV-1 with HIV infection, but the trends in prevalence of HTLV-1 and HIV associations are largely unknown, especially in Sub Saharan Africa. In the current study, data from three cross-sectional community surveys performed in 1990, 1997 and 2007, were used to assess changes in HTLV-1 prevalence, incidence and its associations with HIV-1 and HIV-2 and potential risk factors. Results HTLV-1 prevalence was 5.2% in 1990, 5.9% in 1997 and 4.6% in 2007. Prevalence was higher among women than men in all 3 surveys and increased with age. The Odds Ratio (OR) of being infected with HTLV-1 was significantly higher for HIV positive subjects in all surveys after adjustment for potential confounding factors. The risk of HTLV-1 infection was higher in subjects with an HTLV-1 positive mother versus an uninfected mother (OR 4.6, CI 2.6-8.0). The HTLV-1 incidence was stable between 1990-1997 (Incidence Rate (IR) 1.8/1,000 pyo) and 1997-2007 (IR 1.6/1,000 pyo) (Incidence Rate Ratio (IRR) 0.9, CI 0.4-1.7). The incidence of HTLV-1 among HIV-positive individuals was higher compared to HIV negative individuals (IRR 2.5, CI 1.0-6.2), while the HIV incidence did not differ by HTLV-1 status (IRR 1.2, CI 0.5-2.7). Conclusions To our knowledge, this is the largest community based study that has reported on HTLV-1 prevalence and associations with HIV. HTLV-1 is endemic in this rural community in West Africa with a stable incidence and a high prevalence. The prevalence increases with age and is higher in women than men. HTLV-1 infection is associated with HIV infection, and longitudinal data indicate HIV infection may be a risk factor for acquiring HTLV-1, but not vice versa. Mother to child transmission is likely to contribute to the epidemic.
Collapse
|
42
|
van der Loeff MFS, Larke N, Kaye S, Berry N, Ariyoshi K, Alabi A, van Tienen C, Leligdowicz A, Sarge-Njie R, da Silva Z, Jaye A, Ricard D, Vincent T, Jones SR, Aaby P, Jaffar S, Whittle H. Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village. Retrovirology 2010; 7:46. [PMID: 20482865 PMCID: PMC2887382 DOI: 10.1186/1742-4690-7-46] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There have been no previous studies of the long-term survival and temporal changes in plasma viral load among HIV-2 infected subjects. METHODS 133 HIV-2 infected and 158 HIV-uninfected subjects from a rural area in North-west Guinea-Bissau, West Africa were enrolled into a prospective cohort study in 1991 and followed-up to mid-2009. Data were collected on four occasions during that period on HIV antibodies, CD4% and HIV-2 plasma viral load. RESULTS Median age (interquartile range [IQR]) of HIV-2 infected subjects at time of enrollment was 47 (36, 60) years, similar to that of HIV-uninfected control subjects, 49 (38, 62) (p = 0.4). Median (IQR) plasma viral load and CD4 percentage were 347 (50, 4,300) copies/ml and 29 (22, 35) respectively.Overall loss to follow-up to assess vital status was small, at 6.7% and 6.3% for HIV-2 infected and uninfected subjects respectively. An additional 17 (12.8%) and 16 (10.1%) of HIV-2 infected and uninfected subjects respectively were censored during follow-up due to infection with HIV-1. The mortality rate per 100 person-years (95% CI) was 4.5 (3.6, 5.8) among HIV-2 infected subjects compared to 2.1 (1.6, 2.9) among HIV-uninfected (age-sex adjusted rate ratio 1.9 (1.3, 2.8, p < 0.001) representing a 2-fold excess mortality rate associated with HIV-2 infection.Viral load measurements were available for 98%, 78%, 77% and 61% HIV-2 infected subjects who were alive and had not become super-infected with HIV-1, in 1991, 1996, 2003 and 2006 respectively. Median plasma viral load (RNA copies per ml) (IQR) did not change significantly over time, being 150 (50, 1,554; n = 77) in 1996, 203 (50, 2,837; n = 47) in 2003 and 171 (50, 497; n = 31) in 2006. Thirty seven percent of HIV-2 subjects had undetectable viraemia (<100 copies/ml) at baseline: strikingly, mortality in this group was similar to that of the general population. CONCLUSIONS A substantial proportion of HIV-2 infected subjects in this cohort have stable plasma viral load, and those with an undetectable viral load (37%) at study entry had a normal survival rate. However, the sequential laboratory findings need to be interpreted with caution given the number of individuals who could not be re-examined.
Collapse
|
43
|
Thushan I de Silva, Carla van Tienen, Sarah L Rowland-Jones,. Dual infection with HIV-1 and HIV-2: double trouble or destructive interference? ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1 and HIV-2 are two related retroviruses and, in regions where both infections are endemic, HIV-1/2 dual infection can occur. Several important questions arise about the interplay between these two viruses in a single host, including: what is the potential for HIV-1–HIV-2 recombinants to form, are there synergistic or inhibitory mechanisms that result in distinct viral replication dynamics when compared with HIV-1 or HIV-2 monoinfected individuals and what are the factors to consider when choosing antiretroviral regimes in HIV-1/2 dual-infected individuals? We summarize the relevant evidence to answer these questions, as well as indentify trends in prevalence and how the natural history of HIV-1/2 dual infection differs from that of HIV-1 or HIV-2 monoinfection. The epidemiological and in vitro evidence pertaining to the question of whether HIV-2 infection may protect against HIV-1 superinfection will also be addressed.
Collapse
|
44
|
Downregulation of the T-cell receptor by human immunodeficiency virus type 2 Nef does not protect against disease progression. J Virol 2009; 83:12968-72. [PMID: 19812166 DOI: 10.1128/jvi.01252-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic immune activation is thought to play a major role in human immunodeficiency virus (HIV) pathogenesis, but the relative contributions of multiple factors to immune activation are not known. One proposed mechanism to protect against immune activation is the ability of Nef proteins from some HIV and simian immunodeficiency virus strains to downregulate the T-cell receptor (TCR)-CD3 complex of the infected cell, thereby reducing the potential for deleterious activation. HIV type 1 (HIV-1) Nef has lost this property. In contrast to HIV-1, HIV-2 infection is characterized by a marked disparity in the disease course, with most individuals maintaining a normal life span. In this study, we examined the relationship between the ability of HIV-2 Nef proteins to downregulate the TCR and immune activation, comparing progressors and nonprogressors. Representative Nef variants were isolated from 28 HIV-2-infected individuals. We assessed their abilities to downregulate the TCR from the surfaces of CD4 T cells. In the same individuals, the activation of peripheral lymphocytes was evaluated by measurement of the expression levels of HLA-DR and CD38. We observed a striking correlation of the TCR downregulation efficiency of HIV-2 Nef variants with immune activation in individuals with a low viral load. This strongly suggests that Nef expression can influence the activation state of the immune systems of infected individuals. However, the efficiency of TCR downregulation by Nef was not reduced in progressing individuals, showing that TCR downregulation does not protect against progression in HIV-2 infection.
Collapse
|
45
|
Steers NJ, Peachman KK, McClain S, Alving CR, Rao M. Liposome-encapsulated HIV-1 Gag p24 containing lipid A induces effector CD4+ T-cells, memory CD8+ T-cells, and pro-inflammatory cytokines. Vaccine 2009; 27:6939-49. [PMID: 19748578 DOI: 10.1016/j.vaccine.2009.08.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 11/26/2022]
Abstract
Liposomal lipid A is an effective adjuvant for the delivery of antigens and for the induction of both cellular and humoral immunity. In this study, we demonstrate that following the third immunization with HIV-1 Gag p24 encapsulated in liposomes containing lipid A [L(p24+LA)], central memory CD8+ T-cells were localized in the spleen and lymph nodes of mice while effector memory CD8+ T-cells and effector CD4+ T-cells were found in the PBMC. Effector CD4+ T-cells were also detected in the spleen and lymph nodes. The predominant cytokine secreted from splenic lymphocytes and lymph nodes was IFN-gamma. In contrast, IL-6 and IL-10 were the major cytokines produced from PBMC. The peptide stimulation indicated that the cytokine responses observed were T-cell specific. The results demonstrate the importance of the adjuvant liposomal lipid A for the induction of HIV-1 Gag p24 -specific CD8+ T-cells, effector CD4+ T-cells, and cytokines with a Th-1 type profile after immunization with L(p24+LA).
Collapse
Affiliation(s)
- Nicholas J Steers
- Division of Retrovirology, USMHRP, Walter Reed Army Institute of Research, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
46
|
Lohman-Payne B, Slyker JA, Richardson BA, Farquhar C, Majiwa M, Maleche-Obimbo E, Mbori-Ngacha D, Overbaugh J, Rowland-Jones S, John-Stewart G. Infants with late breast milk acquisition of HIV-1 generate interferon-gamma responses more rapidly than infants with early peripartum acquisition. Clin Exp Immunol 2009; 156:511-7. [PMID: 19438605 PMCID: PMC2691981 DOI: 10.1111/j.1365-2249.2009.03937.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2009] [Indexed: 02/04/2023] Open
Abstract
Infants infected with HIV-1 after the first month of life have a lower viral set-point and slower disease progression than infants infected before 1 month. We investigated the kinetics of HIV-1-specific CD8(+) T lymphocyte secretion of interferon (IFN)-gamma in infants infected before 1 month of life compared with those infected between months 1 and 12 (late infection). HIV-1 infection was assessed at birth and at months 1, 3, 6, 9 and 12 and timing of infection was determined by HIV-1 gag DNA from dried blood spots and verified by plasma HIV-1 RNA levels. HIV-1 peptide-specific IFN-gamma responses were measured by enzyme-linked immunospot at months 1, 3, 6, 9 and 12. Timing of development of IFN-gamma responses was compared using the log-rank test and Kaplan-Meier survival curves. Infants infected late developed HIV-1-specific CD8(+) T cell responses 2.8 months sooner than infants infected peripartum: 2.3 versus 5.1 months after HIV-1 infection (n = 52, P = 0.04). Late-infected infants had more focused epitope recognition than early-infected infants (median 1 versus 2 peptides, P = 0.03); however, there were no differences in the strength of IFN-gamma responses. In infants infected with HIV-1 after the first month of life, emergence of HIV-1-specific CD8(+) IFN-gamma responses is coincident with the decline in viral load, nearly identical to what is observed in adults and more rapid than in early-infected infants.
Collapse
Affiliation(s)
- B Lohman-Payne
- Department of Paediatrics, University of Nairobi, Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ondondo BO, Rowland-Jones SL, Dorrell L, Peterson K, Cotten M, Whittle H, Jaye A. Comprehensive analysis of HIV Gag-specific IFN-gamma response in HIV-1- and HIV-2-infected asymptomatic patients from a clinical cohort in The Gambia. Eur J Immunol 2009; 38:3549-60. [PMID: 19016530 DOI: 10.1002/eji.200838759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Majority of HIV-2-infected individuals meet the criteria of long-term non-progressors. This has been linked to superior qualitative HIV-2-specific cellular immune responses that correlate with viral control. However, it is unknown whether this is due to frequent targeting of immunodominant Gag epitopes in HIV-2 than HIV-1 infection. We describe a comprehensive comparison of the magnitude, breadth and frequency of Gag responses and the degree of cross-recognition of frequently targeted, immunodominant Gag peptides in a cross-sectional study of asymptomatic HIV-1- and HIV-2-infected individuals. Fresh PBMC from 20 HIV-1- and 20 HIV-2-infected patients with similar CD4(+) T-cell counts (p=0.36) were stimulated with pools of HIV-1 and/or HIV-2 Gag peptides in an IFN-gamma ELISPOT assay. We found no difference in the cumulative magnitude of IFN-gamma responses (p=0.75) despite significantly lower plasma viral loads in HIV-2-infected people (p<0.0001). However, Gag211-290 was targeted with significantly higher magnitude in HIV-2-infected subjects (p=0.03) although this did not correlate with viral control. There was no difference in frequently targeted Gag peptides, the breadth, immunodominance or cross-recognition of Gag peptide pools between the two infections. This suggests that other factors may control viral replication in HIV-2 infection.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Infection of humans by the human immunodeficiency virus (HIV) causes a progressive, multifactorial impairment of the immune system eventually leading to the acquired immunodeficiency syndrome (AIDS). No cure or vaccine exists yet against HIV infection. More worrisome is the fact that despite having identified HIV as the cause of the AIDS, we still do not understand what pathogenic mechanisms lead to the debacle of the immune system. In this review we consider the extent and the limits of our knowledge of HIV pathogenesis, and how this knowledge may be used to design preventive and therapeutic approaches.
Collapse
Affiliation(s)
- A Boasso
- Department of Immunology, Faculty of Medicine, Imperial College, Chelsea and Westminster Hospital, London, UK
| | | | | |
Collapse
|
49
|
Abstract
HIV infection leads to progressive CD4 T cell depletion, resulting in the development of AIDS. The mechanisms that trigger T cell death after HIV infection are still not fully understood, but a lot of data indicate that apoptosis of uninfected CD4 lymphocytes plays a major role. HIV directly modulates cell death using various strategies in which several viral proteins, in particular the envelope glycoproteins (Env), play an essential role. Importantly, Env, expressed on infected cells, triggers autophagy in uninfected CD4 T cells, leading to their apoptosis. Furthermore, HIV, like other viruses, has evolved strategies to inhibit this autophagic process in HIV-infected cells. This discovery further increases the level of complexity of the cellular processes involved in HIV-induced pathology. Interestingly, HIV protease inhibitors, currently used in highly active antiretroviral therapy (HAART), are able to induce autophagy in cancer cells, leading to a recent repositioning of these drugs as anticancer agents. This review presents an overview of the relationship between HIV, HAART, and autophagy.
Collapse
Affiliation(s)
- Lucile Espert
- University of Montpellier, Institut de Biologie, 4, Bd Henri IV, CS 69033, 34965, Montpellier Cedex 2, France
| | | |
Collapse
|
50
|
Envelope-specific antibody response in HIV-2 infection: C2V3C3-specific IgG response is associated with disease progression. AIDS 2008; 22:2257-65. [PMID: 18981765 DOI: 10.1097/qad.0b013e3283155546] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To examine the unspecific and envelope-specific IgA and IgG responses in acute and chronic HIV-2 infection. METHODS Twenty-eight chronically infected adults and two children with perinatal infection were studied. Total plasma concentrations of IgA and IgG were determined by nephelometry. IgA and IgG reactivity against the immunodominant region in gp36 and the C2V3C3 region in gp125 was tested with the enzyme-linked immunosorbent assay (ELISA)-HIV-2 assay. Clonal sequences of the C2V3C3 env region were obtained for most patients. RESULTS Total plasma IgG concentration, but not IgA, was significantly higher than normal in HIV-2 patients and correlated inversely with CD4 T-cell counts. Seroconversion to gp36 occurred during the first year of life in both infants. The infant with rapid disease progression did not elicit C2V3C3-specific antibodies. Most chronically infected patients produced plasma IgG1, IgG3 and IgA antibodies against gp36 and C2V3C3. Lack of C2V3C3-specific IgG response in two patients was associated with a major antigenic change in the V3 region. In longitudinal analysis, there was a significant inverse association between the C2V3C3-specific IgG antibody response and the number of CD4 T cells. CONCLUSION HIV-2 promotes an early, strong and broad gp36 and C2V3C3-specific IgG and IgA response. Increase in the IgG response against the envelope C2V3C3 region is associated with increased loss of CD4 T cells in chronically infected patients. These results provide further support for the immune protective role of the C2V3C3 envelope region during HIV-2 infection and have direct implications for HIV-2 diagnosis, clinical management and pathogenesis.
Collapse
|