1
|
Patel PD, Clark AF. Evaluation of Cross-Linked Actin Networks (CLANs) in Human Trabecular Meshwork Cells and Tissues. Methods Mol Biol 2025; 2858:1-15. [PMID: 39433662 DOI: 10.1007/978-1-0716-4140-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of glaucoma, the leading cause of irreversible vision loss and blindness. An overall increase in resistance to aqueous humor outflow causes sustained elevation in IOP. Glaucomatous insults in the aqueous humor outflow pathway, including the trabecular meshwork (TM), precede such chronic physiological changes in IOP. These insults include ultrastructural changes with excessive extracellular matrix deposition and actin cytoskeletal reorganization that leads to pathological stiffening of the ocular tissues. One of the most common cytoskeletal changes associated with TM tissue stiffness in glaucoma is the increased prevalence of cross-linked actin networks (CLANs) in cells of the trabecular meshwork (TM) and lamina cribrosa (LC). In glaucomatous cells, rearrangement of linear actin stress fibers leads to formation of polygonal arrays within the cytoplasm, resembling a geodesic dome-like structure, that we identified as CLANs. In addition to increased amounts of CLANs in POAG TM cells and tissues, we also discovered that glucocorticoid (GC) and TGFβ2 signaling pathways associated with the development of ocular hypertension (OHT) and glaucoma also induced CLANs in the TM. Despite a clear association, we are yet to completely understand the mechanisms involved in CLAN formation and their direct relevance to disease pathology. In this chapter, we will describe methods to identify and characterize CLANs using fluorescent microscopy in primary TM cell cultures, ex vivo perfusion cultured human anterior segments, and in situ in human donor eyes.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
2
|
Harvey DH, Sugali CK, Mao W. Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Clin Ophthalmol 2024; 18:481-505. [PMID: 38379915 PMCID: PMC10878139 DOI: 10.2147/opth.s442749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Glucocorticoid (GC) therapy is indicated in many diseases, including ocular diseases. An important side-effect of GC therapy is GC-induced ocular hypertension (GIOHT), which may cause irreversible blindness known as GC-induced glaucoma (GIG). Here, we reviewed the pathological changes that contribute to GIOHT including in the trabecular meshwork and Schlemm's canal at cellular and molecular levels. We also discussed the clinical aspects of GIOHT/GIG including disease prevalence, risk factors, the type of GCs, the route of GC administration, and management strategies.
Collapse
Affiliation(s)
- Devon Hori Harvey
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Tawfik HO, Saleh MM, Ammara A, Khaleel EF, Badi R, Khater YTT, Rasheed RA, Attia AA, Hefny SM, Elkaeed EB, Nocentini A, Supuran CT, Eldehna WM, Shaldam MA. Discovery of Novel Pyridazine-Tethered Sulfonamides as Carbonic Anhydrase II Inhibitors for the Management of Glaucoma. J Med Chem 2024; 67:1611-1623. [PMID: 38207099 DOI: 10.1021/acs.jmedchem.3c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As a progressive neuropathic condition, glaucoma can cause lifelong blindness if left untreated. Novel phenylpyridazine-tethered sulfonamides were designed as selective inhibitors for carbonic anhydrase (CA) isoform II to find effective therapeutic agents for glaucoma. Subsequently, the target inhibitors were synthesized and assessed for their inhibitory action against cytosolic CA I and II. Interestingly, the synthesized molecules poorly inhibited CA I while exhibiting low subnanomolar potency against CA II. Compound 7c disclosed the most potent activity (IC50 = 0.63 nM) with high selectivity against CA II (605-fold than acetazolamide selectivity). Moreover, compound 7c also showed significant in vivo IOP-reducing properties in the in vivo model of glaucoma. Furthermore, the binding of compound 7c to CA II was assessed at the molecular level, exploiting the molecular docking approach.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino 50019, Firenze, Italy
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Rehab Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Yomna T T Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rabab A Rasheed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Ahmed A Attia
- Mansoura Ophthalmic Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino 50019, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino 50019, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh 33516, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh 33516, Egypt
| |
Collapse
|
4
|
Buffault J, Brignole-Baudouin F, Labbé A, Baudouin C. An Overview of Current Glaucomatous Trabecular Meshwork Models. Curr Eye Res 2023; 48:1089-1099. [PMID: 37661784 DOI: 10.1080/02713683.2023.2253378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To provide an overview of the existing alternative models for studying trabecular meshwork (TM). METHODS Literature review. RESULTS The TM is a complex tissue that regulates aqueous humor outflow from the eye. Dysfunction of the TM is a major contributor to the pathogenesis of open-angle glaucoma, a leading cause of irreversible blindness worldwide. The TM is a porous structure composed of trabecular meshwork cells (TMC) within a multi-layered extracellular matrix (ECM). Although dysregulation of the outflow throughout the TM represents the first step in the disease process, the underlying mechanisms of TM degeneration associate cell loss and accumulation of ECM, but remain incompletely understood, and drugs targeting the TM are limited. Therefore, experimental models of glaucomatous trabeculopathy are necessary for preclinical screening, to advance research on this disease's pathophysiology, and to develop new therapeutic strategies targeting the TM. Traditional animal models have been used extensively, albeit with inherent limitations, including ethical concerns and limited translatability to humans. Consequently, there has been an increasing focus on developing alternative in vitro models to study the TM. Recent advancements in three-dimensional cell culture and tissue engineering are still in their early stages and do not yet fully reflect the complexity of the outflow pathway. However, they have shown promise in reducing reliance on animal experimentation in certain aspects of glaucoma research. CONCLUSION This review provides an overview of the existing alternative models for studying TM and their potential for advancing research on the pathophysiology of open-angle glaucoma and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Juliette Buffault
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Biology, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
| | - Antoine Labbé
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Christophe Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
| |
Collapse
|
5
|
Wang L, Wei X. Exosome-based crosstalk in glaucoma pathogenesis: a focus on oxidative stress and neuroinflammation. Front Immunol 2023; 14:1202704. [PMID: 37529047 PMCID: PMC10388248 DOI: 10.3389/fimmu.2023.1202704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Exosomes are membrane-bound tiny particles that are released by all live cells that contain multiple signal molecules and extensively participate in numerous normal physical activities and pathologies. In glaucoma, the crucial role of exosome-based crosstalk has been primarily revealed in animal models and ex vivo cell studies in the recent decade. In the aqueous drainage system, exosomes derived from non-pigment ciliary epithelium act in an endocrine manner and specifically regulate the function of the trabecular meshwork to cope with persistent oxidative stress challenges. In the retina, a more complicated regulatory network among microglia, retinal neurons, retinal ganglial cells, retinal pigment epithelium, and other immune effector cells by exosomes are responsible for the elaborate modulation of tissue homeostasis under physical state and the widespread propagation of neuroinflammation and its consequent neurodegeneration in glaucoma pathogenesis. Accumulating evidence indicates that exosome-based crosstalk depends on numerous factors, including the specific cargos they carried (particularly micro RNA), concentration, size, and ionization potentials, which largely remain elusive. In this narrative review, we summarize the latest research focus of exosome-based crosstalk in glaucoma pathogenesis, the current research progress of exosome-based therapy for glaucoma and provide in-depth perspectives on its current research gap.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, ShangjinNanfu Hospital, Chengdu, China
| |
Collapse
|
6
|
Agarwal R, Iezhitsa I. Advances in targeting the extracellular matrix for glaucoma therapy: current updates. Expert Opin Ther Targets 2023; 27:1217-1229. [PMID: 38069479 DOI: 10.1080/14728222.2023.2293748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
INTRODUCTION Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-β as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Abstract
Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.
Collapse
Affiliation(s)
- J Cameron Millar
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yogapriya Sundaresan
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Gulab S Zode
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
8
|
Mavlyutov TA, Myrah JJ, Chauhan AK, Liu Y, McDowell CM. Fibronectin extra domain A (FN-EDA) causes glaucomatous trabecular meshwork, retina, and optic nerve damage in mice. Cell Biosci 2022; 12:72. [PMID: 35619185 PMCID: PMC9137085 DOI: 10.1186/s13578-022-00800-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage. Here, we investigate the role of an endogenous Toll-like receptor 4 (TLR4) ligand, FN-EDA, in the development of glaucoma utilizing a transgenic mouse strain (B6.EDA+/+) that constitutively expresses only FN containing the EDA isoform. METHODS Eyes from C57BL6/J (wild-type), B6.EDA+/+ (constitutively active EDA), B6.EDA-/- (EDA null) mice were processed for electron microscopy and consecutive images of the entire length of the TM and Schlemm's canal (SC) from anterior to posterior were collected and montaged into a single image. ECM accumulation, basement membrane length, and size and number of giant vacuoles were quantified by ImageJ analysis. Tlr4 and Iba1 expression in the TM and ONH cells was conducted using RNAscope in situ hybridization and immunohistochemistry protocols. IOP was measured using a rebound tonometer, ON damage assessed by PPD stain, and RGC loss quantified in RBPMS labeled retina flat mounts. RESULTS Ultrastructure analyses show the TM of B6.EDA+/+ mice have significantly increased accumulation of ECM between TM beams with few empty spaces compared to C57BL/6 J mice (p < 0.05). SC basement membrane is thicker and more continuous in B6.EDA+/+ mice compared to C57BL/6 J. No significant structural differences are detected in the TM of EDA null mice. Tlr4 and Iba1 expression is increased in the TM of B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.05). IOP is significantly higher in B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.001), and significant ON damage (p < 0.001) and RGC loss (p < 0.05) detected at 1 year of age. Tlr4 mRNA is expressed in mouse ONH cells, and is present in ganglion cell axons, microglia, and astrocytes. There is a significant increase in the area occupied by Iba-1 positive microglia cells in the ONH of B6.EDA+/+ mice compared to C57BL/6 J control eyes (p < 0.01). CONCLUSIONS B6.EDA+/+ mice have increased ECM accumulation in the TM, elevated IOP, enhanced proinflammatory changes in the ONH, loss of RGCs, and ONH damage. These data suggest B6.EDA+/+ mice recapitulate many aspects of glaucomatous damage.
Collapse
Affiliation(s)
- Timur A. Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Justin J. Myrah
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Anil K. Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA USA
| | - Yang Liu
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
9
|
Kathirvel K, Haribalaganesh R, Krishnadas R, Muthukkaruppan V, Willoughby CE, Bharanidharan D, Senthilkumari S. A Comparative Genome-Wide Transcriptome Analysis of Glucocorticoid Responder and Non-Responder Primary Human Trabecular Meshwork Cells. Genes (Basel) 2022; 13:882. [PMID: 35627267 PMCID: PMC9140469 DOI: 10.3390/genes13050882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Aim: To investigate genes and pathways involved in differential glucocorticoid (GC) responsiveness in human trabecular meshwork (HTM) cells using RNA sequencing. Methods: Using paired human donor eyes, human organ-cultured anterior segment (HOCAS) was established in one eye to characterize GC responsiveness based on intra ocular pressure (IOP) change and, in the other eye, primary HTM cell culture was established. For RNA sequencing, total RNA extracted from GC-responder (GC-R) and non-responder (GC-NR) cells after dexamethasone (DEX) or ethanol (ETH) treatment for 7d was used. Differentially expressed genes (DEGs) were compared among five groups and validated. Results: In total, 616 and 216 genes were identified as significantly dysregulated in Group #1 and #2 (#1: ETH vs. DEX-treated GC-R; #2: ETH vs. DEX-treated GC-NR), respectively. Around 80 genes were commonly dysregulated in Group #3 (overlapping DEGs between #1 and #2), whereas 536 and 136 genes were uniquely expressed in GC-R (#4) and GC-NR HTM (#5) cells, respectively. Pathway analysis revealed that WNT signaling, drug metabolism cytochrome p450, cell adhesion, TGF-β signaling, and MAPK signaling were associated with GC responsiveness. Conclusion: This is the first study reporting distinct gene signatures and their associated pathways for GC-R and GC-NR HTM cells. WNT and MAPK signaling are potential therapeutic targets for the management of GC-induced glaucoma.
Collapse
Affiliation(s)
- Kandasamy Kathirvel
- Department of Ocular Pharmacology, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India; (K.K.); (R.H.)
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India;
| | - Ravinarayanan Haribalaganesh
- Department of Ocular Pharmacology, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India; (K.K.); (R.H.)
| | | | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India;
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Newtownabbey BT37 0QB, UK;
| | - Devarajan Bharanidharan
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India;
| | - Srinivasan Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India; (K.K.); (R.H.)
| |
Collapse
|
10
|
Bachman W, Maddala R, Chakraborty A, Eldawy C, Skiba NP, Rao PV. Glucocorticoids Preferentially Influence Expression of Nucleoskeletal Actin Network and Cell Adhesive Proteins in Human Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886754. [PMID: 35557957 PMCID: PMC9087352 DOI: 10.3389/fcell.2022.886754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Clinical use of glucocorticoids is associated with increased intraocular pressure (IOP), a major risk factor for glaucoma. Glucocorticoids have been reported to induce changes in actin cytoskeletal organization, cell adhesion, extracellular matrix, fibrogenic activity, and mechanical properties of trabecular meshwork (TM) tissue, which plays a crucial role in aqueous humor dynamics and IOP homeostasis. However, we have a limited understanding of the molecular underpinnings regulating these myriad processes in TM cells. To understand how proteins, including cytoskeletal and cell adhesion proteins that are recognized to shuttle between the cytosolic and nuclear regions, influence gene expression and other cellular activities, we used proteomic analysis to characterize the nuclear protein fraction of dexamethasone (Dex) treated human TM cells. Treatment of human TM cells with Dex for 1, 5, or 7 days led to consistent increases (by ≥ two-fold) in the levels of various actin cytoskeletal regulatory, cell adhesive, and vesicle trafficking proteins. Increases (≥two-fold) were also observed in levels of Wnt signaling regulator (glypican-4), actin-binding chromatin modulator (BRG1) and nuclear actin filament depolymerizing protein (MICAL2; microtubule-associated monooxygenase, calponin and LIM domain containing), together with a decrease in tissue plasminogen activator. These changes were independently further confirmed by immunoblotting analysis. Interestingly, deficiency of BRG1 expression blunted the Dex-induced increases in the levels of some of these proteins in TM cells. In summary, these findings indicate that the widely recognized changes in actin cytoskeletal and cell adhesive attributes of TM cells by glucocorticoids involve actin regulated BRG1 chromatin remodeling, nuclear MICAL2, and glypican-4 regulated Wnt signaling upstream of the serum response factor/myocardin controlled transcriptional activity.
Collapse
Affiliation(s)
- William Bachman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ayon Chakraborty
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Camelia Eldawy
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
11
|
McDowell CM, Kizhatil K, Elliott MH, Overby DR, van Batenburg-Sherwood J, Millar JC, Kuehn MH, Zode G, Acott TS, Anderson MG, Bhattacharya SK, Bertrand JA, Borras T, Bovenkamp DE, Cheng L, Danias J, De Ieso ML, Du Y, Faralli JA, Fuchshofer R, Ganapathy PS, Gong H, Herberg S, Hernandez H, Humphries P, John SWM, Kaufman PL, Keller KE, Kelley MJ, Kelly RA, Krizaj D, Kumar A, Leonard BC, Lieberman RL, Liton P, Liu Y, Liu KC, Lopez NN, Mao W, Mavlyutov T, McDonnell F, McLellan GJ, Mzyk P, Nartey A, Pasquale LR, Patel GC, Pattabiraman PP, Peters DM, Raghunathan V, Rao PV, Rayana N, Raychaudhuri U, Reina-Torres E, Ren R, Rhee D, Chowdhury UR, Samples JR, Samples EG, Sharif N, Schuman JS, Sheffield VC, Stevenson CH, Soundararajan A, Subramanian P, Sugali CK, Sun Y, Toris CB, Torrejon KY, Vahabikashi A, Vranka JA, Wang T, Willoughby CE, Xin C, Yun H, Zhang HF, Fautsch MP, Tamm ER, Clark AF, Ethier CR, Stamer WD. Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35129590 PMCID: PMC8842499 DOI: 10.1167/iovs.63.2.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.
Collapse
Affiliation(s)
- Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Michael H. Elliott
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, United Kingdom
| | | | - J. Cameron Millar
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences and Institute for Vision Research, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Gulab Zode
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ted S. Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics and Department of Ophthalmology and Visual Sciences, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | | | - Jacques A. Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Terete Borras
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - John Danias
- SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Michael Lucio De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | | | - Peter Humphries
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Simon W. M. John
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Mary J. Kelley
- Department of Ophthalmology and Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Ruth A. Kelly
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Krizaj
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California, United States
| | - Raquel L. Lieberman
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Paloma Liton
- Department of Ophthalmology and Department of Pathology, Duke University, Durham, North Carolina, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Katy C. Liu
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Navita N. Lopez
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Timur Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fiona McDonnell
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Gillian J. McLellan
- Department of Surgical Sciences and Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Philip Mzyk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Andrews Nartey
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Gaurang C. Patel
- Ophthalmology Research, Regeneron Pharmaceuticals, Tarreytown, New York, United States
| | | | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Naga Rayana
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Urmimala Raychaudhuri
- Department of Neurobiology, University of California, Irvine, Irvine, California, United States
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ruiyi Ren
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Douglas Rhee
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - John R. Samples
- Washington State University, Floyd Elson College of Medicine, Spokane, Washington, United States
| | | | - Najam Sharif
- Santen Inc., Emeryville, California, United States
| | - Joel S. Schuman
- Department of Ophthalmology and Department of Physiology and Neuroscience, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States; Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States
| | - Val C. Sheffield
- Department of Pediatrics and Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Cooper H. Stevenson
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Avinash Soundararajan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yang Sun
- Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California, United States
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States; Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, Ohio, United States
| | | | - Amir Vahabikashi
- Cell and Developmental Biology Department, Northwestern University, Chicago, Illinois, United States
| | - Janice A. Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ting Wang
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hao F. Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | - Michael P. Fautsch
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | | | - Abbot F. Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology; Emory University School of Medicine, Emory University, Atlanta, Georgia, United States
| | - W. Daniel Stamer
- Duke Ophthalmology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
12
|
Murphy R, Irnaten M, Hopkins A, O'Callaghan J, Stamer WD, Clark AF, Wallace D, O'Brien CJ. Matrix Mechanotransduction via Yes-Associated Protein in Human Lamina Cribrosa Cells in Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35015027 PMCID: PMC8762700 DOI: 10.1167/iovs.63.1.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Extracellular matrix stiffening is characteristic of both aging and glaucoma, and acts as a promoter and perpetuator of pathological fibrotic remodeling. Here, we investigate the role of a mechanosensitive transcriptional coactivator, Yes-associated protein (YAP), a downstream effector of multiple signaling pathways, in lamina cribrosa (LC) cell activation to a profibrotic, glaucomatous state. Methods LC cells isolated from glaucomatous human donor eyes (GLC; n = 3) were compared to LC cells from age-matched nonglaucomatous controls (NLC; n = 3) to determine differential YAP expression, protein levels, and proliferation rates. NLC cells were then cultured on soft (4 kPa), and stiff (100 kPa), collagen-1 coated polyacrylamide hydrogel substrates. Quantitative real-time RT-PCR, immunoblotting, and immunofluorescence microscopy were used to measure the expression, activity, and subcellular location of YAP and its downstream targets, respectively. Proliferation rates were examined in NLC and GLC cells by methyl thiazolyl tetrazolium salt assays, across a range of incrementally increased substrate stiffness. Endpoints were examined in the presence or absence of a YAP inhibitor, verteporfin (2 µM). Results GLC cells show significantly (P < 0.05) increased YAP gene expression and total-YAP protein compared to NLC cells, with significantly increased proliferation. YAP regulation is mechanosensitive, because NLC cells cultured on pathomimetic, stiff substrates (100 kPa) show significantly upregulated YAP gene and protein expression, increased YAP phosphorylation at tyrosine 357, reduced YAP phosphorylation at serine 127, increased nuclear pooling, and increased transcriptional target, connective tissue growth factor. Accordingly, myofibroblastic markers, α-smooth muscle actin (α-SMA) and collagen type I, alpha 1 (Col1A1) are increased. Proliferation rates are elevated on 50 kPa substrates and tissue culture plastic. Verteporfin treatment significantly inhibits YAP-mediated cellular activation and proliferation despite a stiffened microenvironment. Conclusions These data demonstrate how YAP plays a pivotal role in LC cells adopting a profibrotic and proliferative phenotype in response to the stiffened LC present in aging and glaucoma. YAP provides an attractive and novel therapeutic target, and its inhibition via verteporfin warrants further clinical investigation.
Collapse
Affiliation(s)
- Rory Murphy
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan Hopkins
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey O'Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | | - Abbot F Clark
- Department of Cell Biology & Immunology and the North Texas Eye Research Institute, U. North Texas Health Science Centre, Ft. Worth, Texas, United States
| | - Deborah Wallace
- Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm J O'Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Rueda‐Carrasco J, Martin‐Bermejo MJ, Pereyra G, Mateo MI, Borroto A, Brosseron F, Kummer MP, Schwartz S, López‐Atalaya JP, Alarcon B, Esteve P, Heneka MT, Bovolenta P. SFRP1 modulates astrocyte-to-microglia crosstalk in acute and chronic neuroinflammation. EMBO Rep 2021; 22:e51696. [PMID: 34569685 PMCID: PMC8567217 DOI: 10.15252/embr.202051696] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is a common feature of many neurodegenerative diseases. It fosters a dysfunctional neuron-microglia-astrocyte crosstalk that, in turn, maintains microglial cells in a perniciously reactive state that often enhances neuronal damage. The molecular components that mediate this critical communication are not fully explored. Here, we show that secreted frizzled-related protein 1 (SFRP1), a multifunctional regulator of cell-to-cell communication, is part of the cellular crosstalk underlying neuroinflammation. In mouse models of acute and chronic neuroinflammation, SFRP1, largely astrocyte-derived, promotes and sustains microglial activation, and thus a chronic inflammatory state. SFRP1 promotes the upregulation of components of the hypoxia-induced factor-dependent inflammatory pathway and, to a lower extent, of those downstream of the nuclear factor-kappa B. We thus propose that SFRP1 acts as an astrocyte-to-microglia amplifier of neuroinflammation, representing a potential valuable therapeutic target for counteracting the harmful effect of chronic inflammation in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Rueda‐Carrasco
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - María Jesús Martin‐Bermejo
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Guadalupe Pereyra
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - María Inés Mateo
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Aldo Borroto
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
| | - Frederic Brosseron
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Markus P Kummer
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Stephanie Schwartz
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Balbino Alarcon
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
| | - Pilar Esteve
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Michael T Heneka
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Paola Bovolenta
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| |
Collapse
|
14
|
Lo Faro V, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics 2021; 22:590. [PMID: 34348663 PMCID: PMC8336345 DOI: 10.1186/s12864-021-07846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arthur A Bergen
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Department of Ophthalmology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Yemanyi F, Raghunathan V. Lysophosphatidic Acid and IL-6 Trans-signaling Interact via YAP/TAZ and STAT3 Signaling Pathways in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2021; 61:29. [PMID: 33216119 PMCID: PMC7683860 DOI: 10.1167/iovs.61.13.29] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Lysophosphatidic acid (LPA) and soluble interleukin-6 receptor (sIL6R) are elevated in primary open angle glaucoma (POAG). LPA and IL6 modulate in response to biomechanical stimuli and converge on similar fibrotic phenotypes. Thus, we determined whether LPA and IL6 trans-signaling (IL6/sIL6R) interact via Yes-associated protein (YAP)/Transcriptional coactivator with a PDZ-binding motif (TAZ) or Signal transducer and activator of transcription 3 (STAT3) pathways in human trabecular meshwork (hTM) cells. Methods Confluent primary hTM cells were serum starved for 24 hours, and treated with vehicle, LPA (20 µM), IL6 (100 ng/mL)/sIL6R (200 ng/mL), or both (LPA + IL6/sIL6R) for 24 hours, with or without a YAP inhibitor (verteporfin; 2 µM) or STAT3 inhibitor (2 µM). Expression of key receptors and ligands, signaling mediators, actomyosin machinery, cell contractility, and extracellular matrix (ECM) targets of both signaling pathways was determined by immunocytochemistry, RT-qPCR, and Western blotting. Results LPA and IL6 trans-signaling coupling overexpressed/activated receptors and ligands, glycoprotein-130, IL6, and autotaxin; signaling mediators, YAP, TAZ, Pan-TEAD, and phosphorylated STAT3 (pSTAT3); actomyosin and contractile machinery components, myosin light chain 2 (MLC2), phosphorylated MLC2, rho-associated protein kinase 1, filamentous actin, and α-smooth muscle actin; and fibrotic ECM proteins, collagen I and IV, fibronectin, laminin, cysteine-rich angiogenic inducer 61, and connective tissue growth factor in hTM cells; mostly beyond LPA or IL6 trans-signaling alone. Verteporfin inhibited YAP, TAZ, and pSTAT3, with concomitant abrogation of aforementioned fibrotic targets; the STAT3 inhibitor was only partially effective. Conclusions These data suggest synergistic crosstalk between LPA and IL6 trans-signaling, mediated by YAP, TAZ, and pSTAT3. By completely inhibiting these mediators, verteporfin may be more efficacious in ameliorating LPA and/or IL6 trans-signaling–induced ocular hypertensive phenotypes in hTM cells.
Collapse
Affiliation(s)
- Felix Yemanyi
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
16
|
Acott TS, Vranka JA, Keller KE, Raghunathan V, Kelley MJ. Normal and glaucomatous outflow regulation. Prog Retin Eye Res 2021; 82:100897. [PMID: 32795516 PMCID: PMC7876168 DOI: 10.1016/j.preteyeres.2020.100897] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Glaucoma remains only partially understood, particularly at the level of intraocular pressure (IOP) regulation. Trabecular meshwork (TM) and Schlemm's canal inner wall endothelium (SCE) are key to IOP regulation and their characteristics and behavior are the focus of much investigation. This is becoming more apparent with time. We and others have studied the TM and SCE's extracellular matrix (ECM) extensively and unraveled much about its functions and role in regulating aqueous outflow. Ongoing ECM turnover is required to maintain IOP regulation and several TM ECM manipulations modulate outflow facility. We have established clearly that the outflow pathway senses sustained pressure deviations and responds by adjusting the outflow resistance correctively to keep IOP within an appropriately narrow range which will not normally damage the optic nerve. The glaucomatous outflow pathway has in many cases lost this IOP homeostatic response, apparently due at least in part, to loss of TM cells. Depletion of TM cells eliminates the IOP homeostatic response, while restoration of TM cells restores it. Aqueous outflow is not homogeneous, but rather segmental with regions of high, intermediate and low flow. In general, glaucomatous eyes have more low flow regions than normal eyes. There are distinctive molecular differences between high and low flow regions, and during the response to an IOP homeostatic pressure challenge, additional changes in segmental molecular composition occur. In conjunction with these changes, the biomechanical properties of the juxtacanalicular (JCT) segmental regions are different, with low flow regions being stiffer than high flow regions. The JCT ECM of glaucomatous eyes is around 20 times stiffer than in normal eyes. The aqueous humor outflow resistance has been studied extensively, but neither the exact molecular components that comprise the resistance nor their exact location have been established. Our hypothetical model, based on considerable available data, posits that the continuous SCE basal lamina, which lies between 125 and 500 nm beneath the SCE basal surface, is the primary source of normal resistance. On the surface of JCT cells, small and highly controlled focal degradation of its components by podosome- or invadopodia-like structures, PILS, occurs in response to pressure-induced mechanical stretching. Sub-micron sized basement membrane discontinuities develop in the SCE basement membrane and these discontinuities allow passage of aqueous humor to and through SCE giant vacuoles and pores. JCT cells then relocate versican with its highly charged glycosaminoglycan side chains into the discontinuities and by manipulation of their orientation and concentration, the JCT and perhaps the SCE cells regulate the amount of fluid passage. Testing this outflow resistance hypothesis is ongoing in our lab and has the potential to advance our understanding of IOP regulation and of glaucoma.
Collapse
Affiliation(s)
- Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kate E Keller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR, 97239, USA
| |
Collapse
|
17
|
Kosior-Jarecka E, Czop M, Gasińska K, Wróbel-Dudzińska D, Zalewski DP, Bogucka-Kocka A, Kocki J, Żarnowski T. MicroRNAs in the aqueous humor of patients with different types of glaucoma. Graefes Arch Clin Exp Ophthalmol 2021; 259:2337-2349. [PMID: 33929592 PMCID: PMC8352835 DOI: 10.1007/s00417-021-05214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose The aim of the study was to compare the frequency and the level of expression of selected miRNAs in the aqueous humor of patients with various types of glaucoma. Methods The studied group consisted of 42 patients with glaucoma: 19 with primary open-angle glaucoma (POAG), 14 with pseudoexfoliation glaucoma (PEXG), 9 with primary angle closure glaucoma (PACG), and the control group of 36 patients with senile cataract without glaucoma. The real-time polymerase chain reaction method was used to analyze the expression of miRNAs. Results There were no significant differences in the frequency and the level of miRNA expression between various types of glaucoma. There was a tendency for hsa-miR-6722-3p and hsa-miR-184 to be expressed more frequently in PEXG and hsa-miR-1260b in POAG. The expression levels of hsa-miR-1260b and hsa-miR-6515-3p were correlated with age in POAG. Target annotation and functional analyses showed that genes targeted by the most frequently expressed miRNAs (hsa-miR-1202, -1260b, -184, -187-5p, -6515-3p, -6722-3p, and hsa-mir-4634) are involved mainly in response to hypoxia, cardiovascular system development, and apoptosis. Conclusion Hsa-miR-1260b was the most abundantly expressed among studied miRNAs and may be a potential biomarker of clinical status in PEXG and PACG. Supplementary Information The online version contains supplementary material available at 10.1007/s00417-021-05214-z.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, ul. Chmielna 1, 20-079, Lublin, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Karolina Gasińska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, ul. Chmielna 1, 20-079, Lublin, Poland.
| | - Dominika Wróbel-Dudzińska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, ul. Chmielna 1, 20-079, Lublin, Poland
| | - Daniel P Zalewski
- Department of Biology and Genetics, Medical University of Lublin, ul. Chodźki 4a, 20-093, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, ul. Chodźki 4a, 20-093, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Tomasz Żarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, ul. Chmielna 1, 20-079, Lublin, Poland
| |
Collapse
|
18
|
Lithium and Atypical Antipsychotics: The Possible WNT/β Pathway Target in Glaucoma. Biomedicines 2021; 9:biomedicines9050473. [PMID: 33925885 PMCID: PMC8146329 DOI: 10.3390/biomedicines9050473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease that represents the major cause of irreversible blindness. Recent findings have shown which oxidative stress, inflammation, and glutamatergic pathway have main roles in the causes of glaucoma. Lithium is the major commonly used drug for the therapy of chronic mental illness. Lithium therapeutic mechanisms remain complex, including several pathways and gene expression, such as neurotransmitter and receptors, circadian modulation, ion transport, and signal transduction processes. Recent studies have shown that the benefits of lithium extend beyond just the therapy of mood. Neuroprotection against excitotoxicity or brain damages are other actions of lithium. Moreover, recent findings have investigated the role of lithium in glaucoma. The combination of lithium and atypical antipsychotics (AAPs) has been the main common choice for the treatment of bipolar disorder. Due to the possible side effects gradually introduced in therapy. Currently, no studies have focused on the possible actions of AAPs in glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with the overactivation of the GSK-3β signaling. The WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Lithium is correlated with upregulation the WNT/β-catenin pathway and downregulation of the GSK-3β activity. Thus, this review focuses on the possible actions of lithium and AAPs, as possible therapeutic strategies, on glaucoma and some of the presumed mechanisms by which these drugs provide their possible benefit properties through the WNT/β-catenin pathway.
Collapse
|
19
|
Vallée A, Lecarpentier Y, Vallée JN. Cannabidiol and the Canonical WNT/β-Catenin Pathway in Glaucoma. Int J Mol Sci 2021; 22:ijms22073798. [PMID: 33917605 PMCID: PMC8038773 DOI: 10.3390/ijms22073798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with overactivation of the GSK-3β signaling. WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa plant which possesses many therapeutic properties across a range of neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in anxiolytic disorders. CBD administration is associated with increase of the WNT/β-catenin pathway and decrease of the GSK-3β activity. CBD has a lower affinity for CB1 but can act through other signaling in glaucoma, including the WNT/β-catenin pathway. CBD downregulates GSK3-β activity, an inhibitor of WNT/β-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit properties through the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
20
|
The Canonical Wnt Signaling Pathway Inhibits the Glucocorticoid Receptor Signaling Pathway in the Trabecular Meshwork. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1020-1035. [PMID: 33705750 DOI: 10.1016/j.ajpath.2021.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023]
Abstract
Glucocorticoid-induced glaucoma is a secondary open-angle glaucoma. About 40% of the general population may develop elevated intraocular pressure on prolonged glucocorticoid treatment secondary to damages in the trabecular meshwork (TM), a tissue that regulates intraocular pressure. Therefore, identifying the key molecules responsible for glucocorticoid-induced ocular hypertension is crucial. In this study, Dickkopf-related protein 1 (Dkk1), a canonical Wnt signaling inhibitor, was found to be elevated in the aqueous humor and TM of glaucoma patients. At the signaling level, Dkk1 enhanced glucocorticoid receptor (GR) signaling, whereas Dkk1 knockdown or Wnt signaling activators decreased GR signaling in human TM cells as indicated by luciferase assays. Similarly, activation of the GR signaling inhibited Wnt signaling. At the protein level, glucocorticoid-induced extracellular matrix was inhibited by Wnt activation using Wnt activators or Dkk1 knockdown in primary human TM cells. In contrast, inhibition of canonical Wnt signaling by β-catenin knockdown increased glucocorticoid-induced extracellular matrix proteins. At the physiological level, adenovirus-mediated Wnt3a expression decreased glucocorticoid-induced ocular hypertension in mouse eyes. In summary, Wnt and GR signaling inhibit each other in the TM, and canonical Wnt signaling activators may prevent the adverse effect of glucocorticoids in the eye.
Collapse
|
21
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
22
|
Yemanyi F, Vranka J, Raghunathan VK. Crosslinked Extracellular Matrix Stiffens Human Trabecular Meshwork Cells Via Dysregulating β-catenin and YAP/TAZ Signaling Pathways. Invest Ophthalmol Vis Sci 2021; 61:41. [PMID: 32832971 PMCID: PMC7452853 DOI: 10.1167/iovs.61.10.41] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The purpose of this study was to determine whether genipin-induced crosslinked cell-derived matrix (XCDM) precipitates fibrotic phenotypes in human trabecular meshwork (hTM) cells by dysregulating β-catenin and Yes-associated protein (YAP)/ transcriptional coactivator with PDZ-binding motif (TAZ) signaling pathways. Methods Cell-derived matrices were treated with control or genipin for 5 hours to obtain respective uncrosslinked (CDM) and XCDMs and characterized. hTM cells were seeded on these matrices with/without Wnt pathway modulators in serum-free media for 24 hours. Elastic modulus, gene, and protein (whole cell and subcellular fractions) expressions of signaling mediators and targets of Wnt/β-catenin and YAP/TAZ pathways were determined. Results At the highest genipin concentration (10% XCDM), XCDM had increased immunostaining of N-ε(γ-glutamyl)-lysine crosslinks, appeared morphologically fused, and was stiffer (5.3-fold, P < 0.001). On 10% XCDM, hTM cells were 7.8-fold (P < 0.001) stiffer, total β-catenin was unchanged, pβ-catenin was elevated, and pGSK3β was suppressed. Although 10% XCDM had no effect on cytoplasmic β-catenin levels, it reduced nuclear β-catenin, cadherin 11, and key Wnt target genes/proteins. The 10% XCDM increased total TAZ, decreased pTAZ, and increased cytoplasmic TAZ levels in hTM cells. The 10% XCDM increased total YAP, reduced nuclear YAP levels, and critical YAP/TAZ target genes/proteins. Wnt activation rescued hTM cells from 10% XCDM-induced stiffening associated with increased nuclear β-catenin. Conclusions Increased cytoplasmic TAZ may inhibit β-catenin from its nuclear shuttling or regulating cadherin 11 important for aqueous homeostasis. Elevated cytoplasmic TAZ may inhibit YAP's probable homeostatic function in the nucleus. Together, TAZ's cytoplasmic localization may be an important downstream event of how increased TM extracellular matrix (ECM) crosslinking may cause increased stiffness and ocular hypertension in vivo. However, Wnt pathway activation may ameliorate ocular hypertensive phenotypes induced by crosslinked ECM.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
23
|
Kondkar AA, Sultan T, Azad TA, Osman EA, Almobarak FA, Al-Obeidan SA. Association analysis of polymorphisms rs12997 in ACVR1 and rs1043784 in BMP6 genes involved in bone morphogenic protein signaling pathway in primary angle-closure and pseudoexfoliation glaucoma patients of Saudi origin. BMC MEDICAL GENETICS 2020; 21:145. [PMID: 32641001 PMCID: PMC7346469 DOI: 10.1186/s12881-020-01076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
Background Glaucoma is a polygenic neurodegenerative disease and the second most common cause of blindness in Saudi Arabia. To test the hypothesis that genetic variants in the genes involved in the bone morphogenic protein (BMP) signaling pathway may be associated with glaucoma, we investigated the association between 3′ untranslated region variants, rs12997 in ACVR1 and rs1043784 in BMP6, and primary angle-closure glaucoma (PACG) and pseudoexfoliation glaucoma (PXG). Methods In a case-control study, TaqMan® real-time PCR-based genotyping was done in 444 subjects consisting of 250 controls, 101 PACG and 95 PXG cases, and tested for genetic association with glaucoma-types and other clinical phenotypes. Results Rs12997[G] allele in ACVR1 exhibited significant 2-fold increased risk of PACG (p = 0.005) in women but not in men. Similarly, genotype analysis also showed that subjects carrying rs12997[G/G] genotype were at > 2-fold risk of PACG that remained significant after adjustment for age, sex, and Bonferroni correction in the recessive model. Furthermore, this effect was also significant in women only. In PXG, the rs12997[G/G] genotype showed a significant trend towards increased risk of the disease (OR = 2.04, 95% CI = 0.99–4.18, p = 0.049) but did not survive the Bonferroni correction. Regression analysis showed that rs12997[G/G] genotype was a significant predictor of PACG independent of age, sex, and rs1043784 genotypes. Likewise, age and rs12997[G/G] genotype showed significant effect on PXG outcome. The rs12997[A/G] genotype showed significant association with cup/disc ratio as compared to wild-type (p = 0.005) in PXG. Genotype and allele frequencies of rs1043784 in BMP6 did not show any significant association either with PACG or PXG. Conclusions Our results suggest that the polymorphism rs12997 in the ACVR1 gene involved in the BMP signaling pathway is significantly associated with PACG and PXG in a Saudi cohort. This is the first study to associate this variant/gene with PACG and PXG. However, further studies would be needed to replicate these findings in a large population-based cohort.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia. .,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia
| | - Taif A Azad
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia
| | - Essam A Osman
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia
| | - Faisal A Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Disabled-2: a positive regulator of the early differentiation of myoblasts. Cell Tissue Res 2020; 381:493-508. [PMID: 32607799 PMCID: PMC7431403 DOI: 10.1007/s00441-020-03237-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022]
Abstract
Dab2 is an adaptor protein and a tumor suppressor. Our previous study has found that Dab2 was expressed in early differentiating skeletal muscles in mouse embryos. In this study, we determined the role of Dab2 in the skeletal muscle differentiation using C2C12 myoblasts in vitro and Xenopus laevis embryos in vivo. The expression of Dab2 was increased in C2C12 myoblasts during the formation of myotubes in vitro. Knockdown of Dab2 expression in C2C12 myoblasts resulted in a reduction of myotube formation, whereas the myotube formation was enhanced upon overexpression of Dab2. Re-expression of Dab2 in C2C12 myoblasts with downregulated expression of Dab2 restored their capacity to form myotubes. Microarray profiling and subsequent network analyses on the 155 differentially expressed genes after Dab2 knockdown showed that Mef2c was an important myogenic transcription factor regulated by Dab2 through the p38 MAPK pathway. It was also involved in other pathways that are associated with muscular development and functions. In Xenopus embryos developed in vivo, XDab2 was expressed in the myotome of somites where various myogenic markers were also expressed. Knockdown of XDab2 expression with antisense morpholinos downregulated the expression of myogenic markers in somites. In conclusion, this study is the first to provide solid evidence to show that Dab2 is a positive regulator of the early myoblast differentiation.
Collapse
|
25
|
The Genetic and Endoplasmic Reticulum-Mediated Molecular Mechanisms of Primary Open-Angle Glaucoma. Int J Mol Sci 2020; 21:ijms21114171. [PMID: 32545285 PMCID: PMC7312987 DOI: 10.3390/ijms21114171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a heterogenous, chronic, progressive group of eye diseases, which results in irreversible loss of vision. There are several types of glaucoma, whereas the primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma, accounting for three-quarters of all glaucoma cases. The pathological mechanisms leading to POAG pathogenesis are multifactorial and still poorly understood, but it is commonly known that significantly elevated intraocular pressure (IOP) plays a crucial role in POAG pathogenesis. Besides, genetic predisposition and aggregation of abrogated proteins within the endoplasmic reticulum (ER) lumen and subsequent activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent unfolded protein response (UPR) signaling pathway may also constitute important factors for POAG pathogenesis at the molecular level. Glaucoma is commonly known as a ‘silent thief of sight’, as it remains asymptomatic until later stages, and thus its diagnosis is frequently delayed. Thereby, detailed knowledge about the glaucoma pathophysiology is necessary to develop both biochemical and genetic tests to improve its early diagnosis as well as develop a novel, ground-breaking treatment strategy, as currently used medical therapies against glaucoma are limited and may evoke numerous adverse side-effects in patients.
Collapse
|
26
|
Dhamodaran K, Baidouri H, Sandoval L, Raghunathan V. Wnt Activation After Inhibition Restores Trabecular Meshwork Cells Toward a Normal Phenotype. Invest Ophthalmol Vis Sci 2020; 61:30. [PMID: 32539133 PMCID: PMC7415288 DOI: 10.1167/iovs.61.6.30] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Wnt is a spatiotemporally regulated signaling pathway whose inhibition is associated with glaucoma, elevated intraocular pressure (IOP), and cell stiffening. Whether such changes are permanent or may be reversed is unclear. Here, we determine if activation of Wnt pathway after inhibition reverses the pathologic phenotype. Methods Primary human trabecular meshwork (hTM) cells from nonglaucomatous donors were cultured for 12 days in the absence or presence of Wnt modulators: (i) LGK974 (Porcn inhibitor, 10 µM); (ii) LY2090314 (pGSK3β inhibitor, 250 nM); or (iii) 9 days of LGK974 followed by 3 days of LY2090314. Wnt modulation were determined by Western blotting and extracellular matrix (ECM) related genes were evaluated by quantitative PCR. Cytoskeletal morphology was determined by immunofluorescence and cell stiffness by atomic force microscopy. Results Wnt activation was confirmed by downregulation of pGSK3β (0.3-fold; P < 0.01), overexpression of AXIN2 (6.7-fold; P < 0.001), and LEF1 (3.8-fold; P < 0.001). Wnt inhibition resulted in dramatic changes in F-actin, which were resolved with subsequent Wnt activation. Concurrently, cell stiffness that was elevated with Wnt inhibition (11.86 kPa; P < 0.01) decreased with subsequent Wnt activation (4.195 kPa; P < 0.01) accompanied by significant overexpression of phosphorylated YAP (1.8-fold; P < 0.001) and TAZ (1.4-fold; P < 0.001). Additionally, Wnt activation after inhibition significantly repressed ECM genes (SPARC and CTGF, P < 0.01), cross-linking genes (LOX and TGM2, P < 0.05), inhibitors of matrix metalloproteinases (TIMP1 and PAI1, P < 0.001), and overexpressed MMP 1/9/14 (P < 0.01). Conclusions These data strongly demonstrate that, in normal hTM cells, activation of the Wnt pathway reverses the pathological phenotype caused by Wnt inhibition and may thus be a viable therapeutic for lowering IOP.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
| | - Lyndsey Sandoval
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, United States
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
27
|
Molecular taxonomy of human ocular outflow tissues defined by single-cell transcriptomics. Proc Natl Acad Sci U S A 2020; 117:12856-12867. [PMID: 32439707 PMCID: PMC7293718 DOI: 10.1073/pnas.2001896117] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ocular hypertension is the primary and only modifiable risk factor for glaucoma, the leading cause of irreversible blindness. Intraocular pressure is regulated homeostatically by resistance to aqueous humor outflow through an architecturally complex tissue, the conventional/trabecular pathway. In this study, we generated a comprehensive cell atlas of the human trabecular meshwork and neighboring tissues using single-cell RNA sequencing. We identified 12 distinct cell types and mapped region-specific expression of candidate genes. The utility of our atlas was demonstrated by mapping glaucoma-relevant genes to conventional outflow cell types. Our study provides a comprehensive molecular and cellular classification of tissue structures responsible for intraocular pressure homeostasis in health and dysregulation in disease. The conventional outflow pathway is a complex tissue responsible for maintaining intraocular pressure (IOP) homeostasis. The coordinated effort of multiple cells with differing responsibilities ensures healthy outflow function and IOP maintenance. Dysfunction of one or more resident cell types results in ocular hypertension and risk for glaucoma, a leading cause of blindness. In this study, single-cell RNA sequencing was performed to generate a comprehensive cell atlas of human conventional outflow tissues. We obtained expression profiles of 17,757 genes from 8,758 cells from eight eyes of human donors representing the outflow cell transcriptome. Upon clustering analysis, 12 distinct cell types were identified, and region-specific expression of candidate genes was mapped in human tissues. Significantly, we identified two distinct expression patterns (myofibroblast- and fibroblast-like) from cells located in the trabecular meshwork (TM), the primary structural component of the conventional outflow pathway. We also located Schwann cell and macrophage signatures in the TM. The second primary component structure, Schlemm’s canal, displayed a unique combination of lymphatic/blood vascular gene expression. Other expression clusters corresponded to cells from neighboring tissues, predominantly in the ciliary muscle/scleral spur, which together correspond to the uveoscleral outflow pathway. Importantly, the utility of our atlas was demonstrated by mapping glaucoma-relevant genes to outflow cell clusters. Our study provides a comprehensive molecular and cellular classification of conventional and unconventional outflow pathway structures responsible for IOP homeostasis.
Collapse
|
28
|
Lerner N, Schreiber‐Avissar S, Beit‐Yannai E. Extracellular vesicle-mediated crosstalk between NPCE cells and TM cells result in modulation of Wnt signalling pathway and ECM remodelling. J Cell Mol Med 2020; 24:4646-4658. [PMID: 32168427 PMCID: PMC7176886 DOI: 10.1111/jcmm.15129] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/14/2020] [Accepted: 02/16/2020] [Indexed: 12/27/2022] Open
Abstract
Primary open-angle glaucoma is a leading cause of irreversible blindness, often associated with increased intraocular pressure. Extracellular vesicles (EVs) carry a specific composition of proteins, lipids and nucleotides have been considered as essential mediators of cell-cell communication. Their potential impact for crosstalk between tissues responsible for aqueous humour production and out-flow is largely unknown. The study objective was to investigate the effects of EVs derived from non-pigmented ciliary epithelium (NPCE) primary cells on the expression of Wnt proteins in a human primary trabecular meshwork (TM) cells and define the mechanism underlying exosome-mediated regulation that signalling pathway. Consistent with the results in TM cell line, EVs released by both primary NPCE cells and NPCE cell line showed diminished pGSK3β phosphorylation and decreased cytosolic levels of β-catenin in primary TM cells. At the molecular level, we showed that NPCE exosome treatment downregulated the expression of positive GSKβ regulator-AKT protein but increased the levels of GSKβ negative regulator-PP2A protein in TM cells. NPCE exosome protein analysis revealed 584 miRNAs and 182 proteins involved in the regulation of TM cellular processes, including WNT/β-catenin signalling pathway, cell adhesion and extracellular matrix deposition. We found that negative modulator of Wnt signalling miR-29b was abundant in NPCE exosomal samples and treatment of TM cells with NPCE EVs significantly decreased COL3A1 expression. Suggesting that miR-29b can be responsible for decreased levels of WNT/β-catenin pathway. Overall, this study highlights a potential role of EVs derived from NPCE cells in modulating ECM proteins and TM canonical Wnt signalling.
Collapse
Affiliation(s)
- Natalie Lerner
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Sofia Schreiber‐Avissar
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Elie Beit‐Yannai
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
29
|
Boesl F, Drexler K, Müller B, Seitz R, Weber GR, Priglinger SG, Fuchshofer R, Tamm ER, Ohlmann A. Endogenous Wnt/β-catenin signaling in Müller cells protects retinal ganglion cells from excitotoxic damage. Mol Vis 2020; 26:135-149. [PMID: 32180679 PMCID: PMC7058433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose To analyze whether activation of endogenous wingless (Wnt)/β-catenin signaling in Müller cells is involved in protection of retinal ganglion cells (RGCs) following excitotoxic damage. Methods Transgenic mice with a tamoxifen-dependent β-catenin deficiency in Müller cells were injected with N-methyl-D-aspartate (NMDA) into the vitreous cavity of one eye to induce excitotoxic damage of the RGCs, while the contralateral eye received PBS only. Retinal damage was quantified by counting the total number of RGC axons in cross sections of optic nerves and measuring the thickness of the retinal layers on meridional sections. Then, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed to identify apoptotic cells in retinas of both genotypes. Western blot analyses to assess the level of retinal β-catenin and real-time RT-PCR to quantify the retinal expression of neuroprotective factors were performed. Results Following NMDA injection of wild-type mice, a statistically significant increase in retinal β-catenin protein levels was observed compared to PBS-injected controls, an effect that was blocked in mice with a Müller cell-specific β-catenin deficiency. Furthermore, in mice with a β-catenin deficiency in Müller cells, NMDA injection led to a statistically significant decrease in RGC axons as well as a substantial increase in TUNEL-positive cells in the RGC layer compared to the NMDA-treated controls. Moreover, in the retinas of the control mice a NMDA-mediated statistically significant induction of leukemia inhibitory factor (Lif) mRNA was detected, an effect that was substantially reduced in mice with a β-catenin deficiency in Müller cells. Conclusions Endogenous Wnt/β-catenin signaling in Müller cells protects RGCs against excitotoxic damage, an effect that is most likely mediated via the induction of neuroprotective factors, such as Lif.
Collapse
Affiliation(s)
- Fabian Boesl
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Konstantin Drexler
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Birgit Müller
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Roswitha Seitz
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Gregor R. Weber
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Germany
| | - Siegfried G. Priglinger
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
30
|
Pang IH, Clark AF. Inducible rodent models of glaucoma. Prog Retin Eye Res 2020; 75:100799. [PMID: 31557521 PMCID: PMC7085984 DOI: 10.1016/j.preteyeres.2019.100799] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022]
Abstract
Glaucoma is one of the leading causes of vision impairment worldwide. In order to further understand the molecular pathobiology of this disease and to develop better therapies, clinically relevant animal models are necessary. In recent years, both the rat and mouse have become popular models in glaucoma research. Key reasons are: many important biological similarities shared among rodent eyes and the human eye; development of improved methods to induce glaucoma and to evaluate glaucomatous damage; availability of genetic tools in the mouse; as well as the relatively low cost of rodent studies. Commonly studied rat and mouse glaucoma models include intraocular pressure (IOP)-dependent and pressure-independent models. The pressure-dependent models address the most important risk factor of elevated IOP, whereas the pressure-independent models assess "normal tension" glaucoma and other "non-IOP" related factors associated with glaucomatous damage. The current article provides descriptions of these models, their characterizations, specific techniques to induce glaucoma, mechanisms of injury, advantages, and limitations.
Collapse
Affiliation(s)
- Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
31
|
Guo T, Guo L, Fan Y, Fang L, Wei J, Tan Y, Chen Y, Fan X. Aqueous humor levels of TGFβ2 and SFRP1 in different types of glaucoma. BMC Ophthalmol 2019; 19:170. [PMID: 31382918 PMCID: PMC6683533 DOI: 10.1186/s12886-019-1183-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To assess bioactive transforming growth factor-β2 (TGFβ2) and secreted frizzled-related protein-1 (SFRP1) levels in aqueous humor (AH) of different types of glaucoma. METHODS AH samples were obtained immediately before ophthalmic surgery with a 27-gauge needle attached to a microsyringe from 126 eyes (105 patients) divided into five groups: cataract (control), primary open-angle glaucoma (POAG), chronic angle-closure glaucoma (CACG), primary angle-closure suspects (PACS), and acute angle-closure glaucoma (AACG). Bioactive TGFβ2 and SFRP1 levels were assayed by ELISA. RESULTS The concentration of TGFβ2 in AH of POAG patients, but not CACG, PACS, or AACG patients, was significantly higher than control eyes. However, within the AACG group, although the TGFβ2 levels in AH did not differ significantly from the control level when all AACG patients were grouped together, there were differences when the AACG patients were divided into high and normal intraocular pressure (IOP); TGFβ2 of AACG patients with high IOP (> 21 mmHg) was significantly higher than those with normal IOP. AH levels of SFRP1 were not significantly different among the groups. However, a statistical significant, negative correlation between SFRP1 and IOP existed in the POAG group. POAG patients with high IOP had lower levels of SFRP1 than those with normal IOP. In contrast, a significant, positive correlation between SFRP1 level and IOP was detected in the AACG group. AACG patients with high IOP had a higher level of SFRP1 than those with normal IOP. Concentrations of TGFβ2 and SFRP1 did not correlate significantly with each other, or with age. CONCLUSIONS These results indicate that AH levels of TGFβ2 and SFRP1 showed different profiles in different types of glaucomas.
Collapse
Affiliation(s)
- Tao Guo
- Department of Ophthalmology Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Li Guo
- Bengbu Medical College, Bengbu, 233030, Anhui province, China.,Department of Ophthalmology, Luan Affiliated Hospital of Anhui Medicine University, Luan, 237000, Anhui province, China
| | - Yuchen Fan
- Bengbu Medical College, Bengbu, 233030, Anhui province, China
| | - Li Fang
- Department of Ophthalmology Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jiahong Wei
- Bengbu Medical College, Bengbu, 233030, Anhui province, China
| | - Ye Tan
- Department of Ophthalmology, Shanghai Pudong District Gongli Hospital, Shanghai, 201201, China
| | - Yuhong Chen
- Department of Ophthalmology Eye & ENT Hospital Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Xianqun Fan
- Department of Ophthalmology Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
32
|
Xu J, Luo H, Yu M, Yang C, Shu Y, Gong B, Lin Y, Wang J. Association of polymorphism rs11656696 in GAS7 with primary open-Angle Glaucoma in a Chinese Population. Ophthalmic Genet 2019; 40:237-241. [PMID: 31269845 DOI: 10.1080/13816810.2019.1627465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: It has been shown that genetic factors play an important role in the pathogenesis of primary open-angle glaucoma (POAG). This study was conducted to investigate the association between the polymorphism rs11656696 located in the growth arrest-specific 7 gene (GAS7) and POAG. Methods: A cohort of 799 unrelated POAG patients and 799 unrelated control subjects was enrolled in this case-control association study. The polymorphism rs11656696 was genotyped using the SNaPshot method. The genotype and allele frequencies were evaluated using the χ2 tests. Results: The allele frequency distribution of rs11656696 in the GAS7 gene showed that there was significant difference between POAG cases and controls (P= .006448, OR = 0.82, 95%CI = (0.72-0.95). The minor "A" allele frequency of this polymorphism was 0.477 in the POAG cases, whereas it was 0.526 in controls, suggesting a protective effect for POAG. Significant associations were detected under the homozygous model (p = .006425, OR = 0.68, 95%CI = 0.51-0.90) and recessive model (p = .0003432, OR = 0.66, 95%CI = 0.52-0.84), indicating that subjects carrying rs11656696 AA genotype were less likely to suffer from POAG than those carrying AC/CC genotypes. Conclusion: This case-control association study showed that polymorphism rs11656696 in GAS7 is related to POAG and might be a protective factor against POAG.
Collapse
Affiliation(s)
- Jiaxin Xu
- a School of Clinic Medicine , Southwest Medical University , Luzhou , Sichuan , China
| | - Huanchao Luo
- b Department of Clinical Laboratory , Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Man Yu
- c Department of Ophthalmology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Chen Yang
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Yi Shu
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Bo Gong
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Yin Lin
- a School of Clinic Medicine , Southwest Medical University , Luzhou , Sichuan , China.,d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Jin Wang
- d Department of Laboratory Medicine , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| |
Collapse
|
33
|
Zhang Y, Jeffrey J, Dong F, Zhang J, Kao WWY, Liu CY, Yuan Y. Repressed Wnt Signaling Accelerates the Aging Process in Mouse Eyes. J Ophthalmol 2019; 2019:7604396. [PMID: 31318361 PMCID: PMC6604355 DOI: 10.1155/2019/7604396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/26/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Ocular aging is a natural process of functional decline in vision. When the process reaches a point that compromised vision affects normal daily activity, it manifests as age-related ocular diseases, such as age-related macular degeneration, cataracts, glaucoma, and pseudoexfoliation syndrome. We previously reported that repressed Wnt signaling accelerated the maturation of corneal epithelium during tissue development. Here, we explore the hypothesis that repressed Wnt signaling is associated with accelerated aging in mouse eyes. METHODS Wnt ligand antagonist secreted frizzled-related protein 1 (sFRP1) was expressed in the corneal stroma by a tissue-specific, inducible, bitransgenic system. Tissue structure was analyzed for signs of aging. Signal transduction analysis was performed to determine the cellular response to sFRP1. RESULTS Mouse eyes with sFRP1 expression showed signs of accelerated aging, resembling those found in pseudoexfoliation (PEX) syndrome, a known age-related disease. Specific findings include granular deposition on the surface of the anterior lens capsule, pigment loss from the anterior surface of the iris, the presence of fibrillary material in the anterior chamber, and changes in cell size (polymegethism) and shape (pleomorphism) of the corneal endothelial cells. In vitro studies demonstrated that sFRP1 did not inhibit Wnt5a function and that cells responded to sFRP1 and Wnt5a in a very similar manner. CONCLUSION The expression of sFRP1 accelerates the aging process in mouse eyes and future studies are warranted to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yujin Zhang
- School of Optometry, Indiana University, 800 East Atwater Avenue, Bloomington, IN 47405, USA
| | - Joseph Jeffrey
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Fei Dong
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jianhua Zhang
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Winston W.-Y. Kao
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Chia-Yang Liu
- School of Optometry, Indiana University, 800 East Atwater Avenue, Bloomington, IN 47405, USA
| | - Yong Yuan
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
34
|
Yuan Y, Schlötzer-Schrehardt U, Ritch R, Call M, Chu FB, Dong F, Rice T, Zhang J, Kao WWY. Transient expression of Wnt5a elicits ocular features of pseudoexfoliation syndrome in mice. PLoS One 2019; 14:e0212569. [PMID: 30840655 PMCID: PMC6402630 DOI: 10.1371/journal.pone.0212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Pseudoexfoliation (PEX) syndrome is an age-related systemic disease with ocular manifestations. The development of animal models is critical in order to elucidate the cause of the disease and to test potential treatment regimens. The purpose of this study is to report phenotypes found in mouse eyes injected with Adenovirus coding Wnt5a. Some of the phenotypes resemble those found in PEX patients while others are different. METHODS Recombinant Adenovirus coding Wnt5a or green fluorescent protein (GFP) were injected into mouse eyes. Two months after the injection, eyes were examined for PEX phenotypes using slit lamp, fluorescence stereomicroscope, histological staining, immunostaining and transmission electron microscope. RESULT Certain ocular features of PEX syndrome were found in mouse eyes injected with recombinant Adenovirus coding Wnt5a. These features include accumulation of exfoliation-like extracellular material on surfaces of anterior segment structures and its dispersion in the anterior chamber, saw-tooth appearance and disrupted basement membrane of the posterior iris pigment epithelium, iris stromal atrophy and disorganized ciliary zonules. Ultrastructure analysis of the exfoliation material revealed that the microfibril structure found in this model was different from those of PEX patients. CONCLUSION These features, resembling signs of ocular PEX syndrome in patients, suggest that new information obtained from this study will be helpful for developing better mouse models for PEX syndrome.
Collapse
Affiliation(s)
- Yong Yuan
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
| | - Mindy Call
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Fred B. Chu
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati Eye Institute, Cincinnati, Ohio, United States of America
| | - Fei Dong
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Taylor Rice
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jianhua Zhang
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Winston W.-Y. Kao
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
35
|
Webber HC, Bermudez JY, Millar JC, Mao W, Clark AF. The Role of Wnt/β-Catenin Signaling and K-Cadherin in the Regulation of Intraocular Pressure. Invest Ophthalmol Vis Sci 2018; 59:1454-1466. [PMID: 29625468 PMCID: PMC5858463 DOI: 10.1167/iovs.17-21964] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Wnt/β-catenin signaling in the trabecular meshwork (TM) is required for maintaining normal intraocular pressure (IOP), although the mechanism(s) behind this are unknown. We hypothesize that Wnt/β-catenin signaling regulates IOP via β-catenin's effects on cadherin junctions. Methods Nonglaucomatous primary human TM (NTM) cells were treated with or without 100 ng/ml Wnt3a, 1 μg/ml sFRP1, or both for 4 to 48 hours. Cells were immunostained for β-catenin, total cadherins, or cadherin isoforms. Membrane proteins or whole-cell lysates were isolated for Western immunoblotting and probed for cadherin isoforms. RNA was extracted for cDNA synthesis and qPCR analysis of cadherin expression. Some NTM cells were cultured on electric plates for cell impedance assays. Ad5.CMV recombinant adenoviruses encoding K-cadherin, and/or sFRP1 were injected into eyes of 4- to 6-month-old female BALB/cJ mice (n = 8–10). Conscious IOPs were assessed for 35 days. Results Upon Wnt3a treatment, total cadherin expression increased and β-catenin accumulated at the TM cell membrane and on processes formed between TM cells. qPCR showed that Wnt3a significantly increased K-cadherin expression in NTM cells (P < 0.01, n = 3), and Western immunoblotting showed that Wnt3a increased K-cadherin in NTM cells, which was inhibited by the addition of sFRP1. Cell impedance assays showed that Wnt3a treatment increased transcellular resistance and anti-K-cadherin siRNA decreased transcellular resistance (P < 0.001, n = 4–6). Our in vivo study showed that K-cadherin significantly decreased sFRP1-induced ocular hypertension (P < 0.05, n = 6). Western immunoblotting also showed that K-cadherin alleviated sFRP1-induced β-catenin decrease in mouse anterior segments. Conclusions Our results suggest that cadherins play important roles in the regulation of TM homeostasis and IOP via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hannah C Webber
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - Jaclyn Y Bermudez
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - J Cameron Millar
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - Weiming Mao
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center
| |
Collapse
|
36
|
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi W, Peng J, Yang H, Deng S, Wang Y. Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review). Int J Mol Med 2017; 41:1201-1212. [PMID: 29286147 PMCID: PMC5819904 DOI: 10.3892/ijmm.2017.3352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide and there is no effective treatment thus far. The trabecular meshwork has been identified as the major pathological area involved. Certain signaling pathways in the trabecular meshwork, including the Wnt, lysophosphatidic acid and transforming growth factor-β pathways, have been identified as novel therapeutic targets in glaucoma treatment. Meanwhile, it has been reported that key proteins in these pathways, particularly the primary transcription regulator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), exhibit interactions with the Hippo pathway. The Hippo pathway, which was first identified in Drosophila, has drawn great focus with regard to various aspects of studies in recent years. One role of the Hippo pathway in the regulation of organ size was indicated by more recent evidence. Defining the relevant physiological function of the Hippo pathway has proven to be extremely complicated. Studies have ascribed a role for the Hippo pathway in an overwhelming number of processes, including cell proliferation, cell death and cell differentiation. Therefore, the present review aimed to unravel the roles of YAP and TAZ in the Hippo pathway and the pathogenesis of glaucoma. Furthermore, a new and creative study for the treatment of glaucoma is provided.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Guoli Huai
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yuande Liu
- 91388 Military Hospital, Zhanjiang, Guangdong 524022, P.R. China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Wei Shi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jie Peng
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Hongji Yang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Shaoping Deng
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| |
Collapse
|
37
|
Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma. Sci Rep 2017; 7:14274. [PMID: 29079753 PMCID: PMC5660254 DOI: 10.1038/s41598-017-14423-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022] Open
Abstract
Norrin is a secreted signaling molecule activating the Wnt/β-catenin pathway. Since Norrin protects retinal neurons from experimental acute injury, we were interested to learn if Norrin attenuates chronic damage of retinal ganglion cells (RGC) and their axons in a mouse model of glaucoma. Transgenic mice overexpressing Norrin in the retina (Pax6-Norrin) were generated and crossed with DBA/2J mice with hereditary glaucoma and optic nerve axonal degeneration. One-year old DBA/2J/Pax6-Norrin animals had significantly more surviving optic nerve axons than their DBA/2J littermates. The protective effect correlated with an increase in insulin-like growth factor (IGF)-1 mRNA and an enhanced Akt phosphorylation in DBA/2J/Pax6-Norrin mice. Both mouse strains developed an increase in intraocular pressure during the second half of the first year and marked degenerative changes in chamber angle, ciliary body and iris structure. The degenerations were slightly attenuated in the chamber angle of DBA/2J/Pax6-Norrin mice, which showed a β-catenin increase in the trabecular meshwork. We conclude that high levels of Norrin and the subsequent constitutive activation of Wnt/β-catenin signaling in RGC protect from glaucomatous axonal damage via IGF-1 causing increased activity of PI3K-Akt signaling. Our results identify components of a protective signaling network preventing degeneration of optic nerve axons in glaucoma.
Collapse
|
38
|
Maddala R, Skiba NP, Rao PV. Vertebrate Lonesome Kinase Regulated Extracellular Matrix Protein Phosphorylation, Cell Shape, and Adhesion in Trabecular Meshwork Cells. J Cell Physiol 2017; 232:2447-2460. [PMID: 27591737 PMCID: PMC5462548 DOI: 10.1002/jcp.25582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
Glaucoma, a leading cause of irreversible blindness, is commonly associated with elevated intraocular pressure (IOP) due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM). Although dysregulated production and organization of extracellular matrix (ECM) is presumed to increase resistance to AH outflow and elevate IOP by altering TM cell contractile and adhesive properties, it is not known whether regulation of ECM protein phosphorylation via the secretory vertebrate lonesome kinase (VLK) influences TM cellular characteristics. Here, we tested this possibility. Experiments carried out in this study reveal that the 32 kDa protein is a prominent VLK isoform detectable in lysates and conditioned media (CM) of human TM cells. Increased levels of VLK were observed in CM of TM cells subjected to cyclic mechanical stretch, or treated with dexamethasone, TGF-β2, and TM cells expressing constitutively active RhoA GTPase. Downregulation of VLK expression in TM cells using siRNA decreased tyrosine phosphorylation (TyrP) of ECM proteins and focal adhesions, and induced changes in cell shape in association with reduced levels of actin stress fibers and phospho-paxillin. VLK was also demonstrated to regulate TGF-β2-induced TyrP of ECM proteins. Taken together, these results suggest that VLK secretion can be regulated by external cues, intracellular signal proteins, and mechanical stretch, and VLK can in turn regulate TyrP of ECM proteins secreted by TM cells and control cell shape, actin stress fibers, and focal adhesions. These observations indicate a potential role for VLK in homeostasis of AH outflow and IOP, and in the pathobiology of glaucoma. J. Cell. Physiol. 232: 2447-2460, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine. Durham, NC. USA. 27710
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine. Durham, NC. USA. 27710
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine. Durham, NC. USA. 27710
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine. Durham, NC. USA. 27710
| |
Collapse
|
39
|
Bermudez JY, Webber HC, Patel GC, Liu X, Cheng YQ, Clark AF, Mao W. HDAC Inhibitor-Mediated Epigenetic Regulation of Glaucoma-Associated TGFβ2 in the Trabecular Meshwork. Invest Ophthalmol Vis Sci 2017; 57:3698-707. [PMID: 27403998 PMCID: PMC4973502 DOI: 10.1167/iovs16-19446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Elevated intraocular pressure (IOP) in primary open-angle glaucoma (POAG) results from glaucomatous damage to the trabecular meshwork (TM). The glaucoma-associated factor TGFβ2 is increased in aqueous humor and TM of POAG patients. We hypothesize that histone acetylation has a role in dysregulated TGFβ2 expression. Methods Protein acetylation was compared between nonglaucomatous TM (NTM) and glaucomatous TM (GTM) cells using Western immunoblotting (WB). Nonglaucomatous TM cells were treated with 10 nM thailandepsin-A (TDP-A), a potent histone deacetylase inhibitor for 4 days. Total and nuclear proteins, RNA, and nuclear protein-DNA complexes were harvested for WB, quantitative PCR (qPCR), and chromatin immunoprecipitation (ChIP) assays, respectively. Paired bovine eyes were perfused with TDP-A versus DMSO, or TDP-A versus TDP-A plus the TGFβ pathway inhibitor LY364947 for 5 to 9 days. Intraocular pressure, TM, and perfusate proteins were compared. Results We found increased acetylated histone 3 and total protein acetylation in the GTM cells and TDP-A treated NTM cells. Chromatin immunoprecipitation assays showed that TDP-A induced histone hyperacetylation associated with the TGFβ2 promoter. This change of acetylation significantly increased TGFβ2 mRNA and protein expression in NTM cells. In perfusion-cultured bovine eyes, TDP-A increased TGFβ2 in the perfusate as well as elevated IOP. Histologic and immunofluorescent analyses showed increased extracellular matrix and cytoskeletal proteins in the TM of TDP-A treated bovine eyes. Cotreatment with the TGFβ pathway inhibitor LY364947 blocked TDP-A–induced ocular hypertension. Conclusions Our results suggest that histone acetylation has an important role in increased expression of the glaucoma-associated factor TGFβ2. Histone hyperacetylation may be the initiator of glaucomatous damage to the TM.
Collapse
Affiliation(s)
- Jaclyn Y Bermudez
- North Texas Eye Research Institute University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Hannah C Webber
- North Texas Eye Research Institute University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Gaurang C Patel
- North Texas Eye Research Institute University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Xiangyang Liu
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yi-Qiang Cheng
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Weiming Mao
- North Texas Eye Research Institute University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
40
|
Ahadome SD, Zhang C, Tannous E, Shen J, Zheng JJ. Small-molecule inhibition of Wnt signaling abrogates dexamethasone-induced phenotype of primary human trabecular meshwork cells. Exp Cell Res 2017; 357:116-123. [PMID: 28526237 DOI: 10.1016/j.yexcr.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 01/21/2023]
Abstract
Trabecular meshwork (TM) cells are the governing regulators of the TM structure. When the functionality of these cells is impaired, the structure of the TM is perturbed which often results in increased ocular hypertension. High intraocular pressure is the most significant risk factor for steroid-induced glaucoma. Dexamethasone (Dex)-induced phenotype of TM cells is widely utilized as a model system to gain insight into mechanisms underlying damaged TM in glaucoma. In this study, to assess the possible role of abnormal Wnt signaling in steroid-induced glaucoma, we analyzed the effects of small-molecule Wnt signaling modulators on Dex-induced expression extracellular matrix proteins of primary human TM cells. While Dex-treated TM cells exhibited increased collagen and fibronectin expression, we found that Wnt signaling inhibitor 3235-0367 suppressed these Dex-induced effects. We therefore propose that Wnt signaling plays an important role in Dex-mediated impairment of TM cell functions. Moreover, the use of small-molecule Wnt signaling inhibitors to treat TM cells may provide an opportunity of restoring TM tissue in steroid-induced glaucoma.
Collapse
Affiliation(s)
- Sarah D Ahadome
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chi Zhang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth Tannous
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James Shen
- ScienCell Research Laboratories, Carlsbad, CA 92011, USA
| | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Borrás T. A single gene connects stiffness in glaucoma and the vascular system. Exp Eye Res 2017; 158:13-22. [PMID: 27593913 PMCID: PMC6067113 DOI: 10.1016/j.exer.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Arterial calcification results in arterial stiffness and higher systolic blood pressure. Arterial calcification is prevented by the high expression of the Matrix-Gla gene (MGP) in the vascular smooth muscle cells (VSMC) of the arteries' tunica media. Originally, MGP, a gene highly expressed in cartilage and VSMC, was found to be one of the top expressed genes in the trabecular meshwork. The creation of an Mgp-lacZ Knock-In mouse and the use of mouse genetics revealed that in the eye, Mgp's abundant expression is localized and restricted to glaucoma-associated tissues from the anterior and posterior segments. In particular, it is specifically expressed in the regions of the trabecular meshwork and of the peripapillary sclera that surrounds the optic nerve. Because stiffness in these tissues would significantly alter outflow facility and biomechanical scleral stress in the optic nerve head (ONH), we propose MGP as a strong candidate for the regulation of stiffness in glaucoma. MGP further illustrates the presence of a common function affecting key glaucomatous parameters in the front and back of the eye, and thus offers the possibility for a sole therapeutic target for the disease.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 105 Mason Farm Road, Chapel Hill, NC 27599-7041, USA.
| |
Collapse
|
42
|
Extracellular vesicles mediate signaling between the aqueous humor producing and draining cells in the ocular system. PLoS One 2017; 12:e0171153. [PMID: 28241021 PMCID: PMC5328276 DOI: 10.1371/journal.pone.0171153] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/15/2017] [Indexed: 01/10/2023] Open
Abstract
Purpose Canonical Wnt signaling is associated with glaucoma pathogenesis and intraocular pressure (IOP) regulation. Our goal was to gain insight into the influence of non-pigmented ciliary epithelium (NPCE)-derived exosomes on Wnt signaling by trabecular meshwork (TM) cells. The potential impact of exosomes on Wnt signaling in the ocular drainage system remains poorly understood. Methods Exosomes isolated from media collected from cultured NPCE cells by differential ultracentrifugation were characterized by dynamic light scattering (DLS), tunable resistive pulse sensing (TRPS), and nanoparticle tracking analysis (NTA), sucrose density gradient migration and transmission electron microscopy (TEM). The cellular target specificity of the NPCE-derived exosomes was investigated by confocal microscopy-based monitoring of the uptake of DiD-labeled exosomes over time, as compared to uptake by various cell lines. Changes in Wnt protein levels in TM cells induced by NPCE exosomes were evaluated by Western blot. Results Exosomes derived from NPCE cells were purified and detected as small rounded 50–140 nm membrane vesicles, as defined by DLS, NTA, TRPS and TEM. Western blot analysis indicated that the nanovesicles were positive for classic exosome markers, including Tsg101 and Alix. Isolated nanoparticles were found in sucrose density fractions typical of exosomes (1.118–1.188 g/mL sucrose). Using confocal microscopy, we demonstrated time-dependent specific accumulation of the NPCE-derived exosomes in NTM cells. Other cell lines investigated hardly revealed any exosome uptake. We further showed that exosomes induced changes in Wnt signaling protein expression in the TM cells. Western blot analysis further revealed decreased phosphorylation of GKS3β and reduced β-catenin levels. Finally, we found that treatment of NTM cells with exosomes resulted in a greater than 2-fold decrease in the level of β-catenin in the cytosolic fraction. In contrast, no remarkable difference in the amount of β-catenin in the nuclear fraction was noted, relative to the control. Conclusions The data suggest that NPCE cells release exosome-like vesicles and that these nanoparticles affect canonical Wnt signaling in TM cells. These findings may have therapeutic relevance since canonical Wnt pathway is involved in intra-ocular pressure regulation. Further understanding of NPCE-derived exosome-responsive signaling pathways may reveal new targets for pharmacological intervention within the drainage system as a target for glaucoma therapy.
Collapse
|
43
|
Bermudez JY, Webber HC, Brown B, Braun TA, Clark AF, Mao W. A Comparison of Gene Expression Profiles between Glucocorticoid Responder and Non-Responder Bovine Trabecular Meshwork Cells Using RNA Sequencing. PLoS One 2017; 12:e0169671. [PMID: 28068412 PMCID: PMC5222504 DOI: 10.1371/journal.pone.0169671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022] Open
Abstract
The most common ocular side effect of glucocorticoid (GC) therapy is GC-induced ocular hypertension (OHT) and GC-induced glaucoma (GIG). GC-induced OHT occurs in about 40% of the general population, while the other 60% are resistant. This study aims to determine the genes and pathways involved in differential GC responsiveness in the trabecular meshwork (TM). Using paired bovine eyes, one eye was perfusion-cultured with 100nM dexamethasone (DEX), while the fellow eye was used to establish a bovine TM (BTM) cell strain. Based on maximum IOP change in the perfused eye, the BTM cell strain was identified as a DEX-responder or non-responder strain. Three responder and three non-responder BTM cell strains were cultured, treated with 0.1% ethanol or 100nM DEX for 7 days. RNA and proteins were extracted for RNA sequencing (RNAseq), qPCR, and Western immunoblotting (WB), respectively. Data were analyzed using the human and bovine genome databases as well as Tophat2 software. Genes were grouped and compared using Student’s t-test. We found that DEX induced fibronectin expression in responder BTM cells but not in non-responder cells using WB. RNAseq showed between 93 and 606 differentially expressed genes in different expression groups between responder and non-responder BTM cells. The data generated by RNAseq were validated using qPCR. Pathway analyses showed 35 pathways associated with differentially expressed genes. These genes and pathways may play important roles in GC-induced OHT and will help us to better understand differential ocular responsiveness to GCs.
Collapse
Affiliation(s)
- Jaclyn Y. Bermudez
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
| | - Hannah C. Webber
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
| | - Bartley Brown
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, United States of America
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Terry A. Braun
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, United States of America
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Abbot F. Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
| | - Weiming Mao
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
- * E-mail:
| |
Collapse
|
44
|
Borrás T. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs. Asia Pac J Ophthalmol (Phila) 2017; 6:80-93. [PMID: 28161916 PMCID: PMC6005701 DOI: 10.22608/apo.2016126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Fini ME, Schwartz SG, Gao X, Jeong S, Patel N, Itakura T, Price MO, Price FW, Varma R, Stamer WD. Steroid-induced ocular hypertension/glaucoma: Focus on pharmacogenomics and implications for precision medicine. Prog Retin Eye Res 2017; 56:58-83. [PMID: 27666015 PMCID: PMC5237612 DOI: 10.1016/j.preteyeres.2016.09.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
Elevation of intraocular pressure (IOP) due to therapeutic use of glucocorticoids is called steroid-induced ocular hypertension (SIOH); this can lead to steroid-induced glaucoma (SIG). Glucocorticoids initiate signaling cascades ultimately affecting expression of hundreds of genes; this provides the potential for a highly personalized pharmacological response. Studies attempting to define genetic risk factors were undertaken early in the history of glucocorticoid use, however scientific tools available at that time were limited and progress stalled. In contrast, significant advances were made over the ensuing years in defining disease pathophysiology. As the genomics age emerged, it appeared the time was right to renew investigation into genetics. Pharmacogenomics is an unbiased discovery approach, not requiring an underlying hypothesis, and provides a way to pinpoint clinically significant genes and pathways that could not have been discovered any other way. Results of the first genome-wide association study to identify polymorphisms associated with SIOH, and follow-up on two novel genes linked to the disorder, GPR158 and HCG22, is discussed in the second half of the article. However, knowledge of genetic variants determining response to steroids in the eye also has value in its own right as a predictive and diagnostic tool. This article concludes with a discussion of how the Precision Medicine Initiative®, announced by U.S. President Obama in his 2015 State of the Union address, is beginning to touch the practice of ophthalmology. It is argued that SIOH/SIG may provide one of the next opportunities for effective application of precision medicine.
Collapse
Affiliation(s)
- M Elizabeth Fini
- USC Institute for Genetic Medicine and Department of Cell & Neurobiology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA, 90089, USA.
| | - Stephen G Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 3880 Tamiami Trail North, Naples, FL, 34103, USA.
| | - Xiaoyi Gao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St., Suite 235, Chicago, IL, 60612, USA.
| | - Shinwu Jeong
- USC Institute for Genetic Medicine, USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA, 90089, USA.
| | - Nitin Patel
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA, 90089, USA.
| | - Tatsuo Itakura
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA, 90089, USA.
| | - Marianne O Price
- Cornea Research Foundation of America, 9002 North Meridian Street, Indianapolis, IN, 46260, USA.
| | - Francis W Price
- Price Vision Group, 9002 North Meridian Street, Indianapolis, IN, 46260, USA.
| | - Rohit Varma
- Office of the Dean, USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1975 Zonal Ave., KAM 500, Los Angeles, CA, 90089, USA.
| | - W Daniel Stamer
- Department of Ophthalmology and Department of Biomedical Engineering, Duke University, AERI Room 4008, 2351 Erwin Rd, Durham, NC, 27705, USA.
| |
Collapse
|
46
|
Stamer WD, Clark AF. The many faces of the trabecular meshwork cell. Exp Eye Res 2016; 158:112-123. [PMID: 27443500 DOI: 10.1016/j.exer.2016.07.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/19/2016] [Accepted: 07/16/2016] [Indexed: 12/26/2022]
Abstract
With the combined purpose of facilitating useful vision over a lifetime, a number of ocular cells have evolved specialized features not found elsewhere in the body. The trabecular meshwork (TM) cell at the irido-corneal angle, which is a key regulator of intraocular pressure, is no exception. Examination of cells in culture isolated from the human TM has shown that they are unique in many ways, displaying characteristic features of several different cell types. Thus, these neural crest derived cells display expression patterns and behaviors typical of endothelia, fibroblasts, smooth muscle and macrophages, owing to the multiple roles and two distinct environments where they operate to maintain intraocular pressure homeostasis. In most individuals, TM cells function normally over a lifetime in the face of persistent stressors, including phagocytic, oxidative, mechanical and metabolic stress. Study of TM cells isolated from ocular hypertensive eyes has shown a compromised ability to perform their daily duties. This review highlights the many responsibilities of the TM cell and its challenges, progress in our understanding of TM biology over the past 30 years, as well as discusses unanswered questions about TM dysfunction that results in IOP dysregulation and glaucoma.
Collapse
Affiliation(s)
- W Daniel Stamer
- Departments of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX, United States.
| |
Collapse
|
47
|
Soliman M, Nasraoui O, Cooper NGF. Building a glaucoma interaction network using a text mining approach. BioData Min 2016; 9:17. [PMID: 27152122 PMCID: PMC4857381 DOI: 10.1186/s13040-016-0096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/23/2016] [Indexed: 11/21/2022] Open
Abstract
Background The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. Results A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. Conclusions This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network. Electronic supplementary material The online version of this article (doi:10.1186/s13040-016-0096-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maha Soliman
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
| | - Olfa Nasraoui
- Knowledge Discovery & Web Mining Lab, Department of Computer Engineering & Computer Science, University of Louisville, J.B Speed School of Engineering, Louisville, KY USA
| | - Nigel G F Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
| |
Collapse
|
48
|
Dang Y, Loewen R, Parikh HA, Roy P, Loewen NA. Gene transfer to the outflow tract. Exp Eye Res 2016; 158:73-84. [PMID: 27131906 DOI: 10.1016/j.exer.2016.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022]
Abstract
Elevated intraocular pressure is the primary cause of open angle glaucoma. Outflow resistance exists within the trabecular meshwork but also at the level of Schlemm's canal and further downstream within the outflow system. Viral vectors allow to take advantage of naturally evolved, highly efficient mechanisms of gene transfer, a process that is termed transduction. They can be produced at biosafety level 2 in the lab using protocols that have evolved considerably over the last 15-20 years. Applied by an intracameral bolus, vectors follow conventional as well as uveoscleral outflow pathways. They may affect other structures in the anterior chamber depending on their transduction kinetics which can vary among species when using the same vector. Not all vectors can express long-term, a desirable feature to address the chronicity of glaucoma. Vectors that integrate into the genome of the target cell can achieve transgene function for the life of the transduced cell but are mutagenic by definition. The most prominent long-term expressing vector systems are based on lentiviruses that are derived from HIV, FIV, or EIAV. Safety considerations make non-primate lentiviral vector systems easier to work with as they are not derived from human pathogens. Non-integrating vectors are subject to degradation and attritional dilution during cell division. Lentiviral vectors have to integrate in order to express while adeno-associated viral vectors (AAV) often persist as intracellular concatemers but may also integrate. Adeno- and herpes viral vectors do not integrate and earlier generation systems might be relatively immunogenic. Nonviral methods of gene transfer are termed transfection with few restrictions of transgene size and type but often a much less efficient gene transfer that is also short-lived. Traditional gene transfer delivers exons while some vectors (lentiviral, herpes and adenoviral) allow transfer of entire genes that include introns. Recent insights have highlighted the role of non-coding RNA, most prominently, siRNA, miRNA and lncRNA. SiRNA is highly specific, miRNA is less specific, while lncRNA uses highly complex mechanisms that involve secondary structures and intergenic, intronic, overlapping, antisense, and bidirectional location. Several promising preclinical studies have targeted the RhoA or the prostaglandin pathway or modified the extracellular matrix. TGF-β and glaucoma myocilin mutants have been transduced to elevate the intraocular pressure in glaucoma models. Cell based therapies have started to show first promise. Past approaches have focused on the trabecular meshwork and the inner wall of Schlemm's canal while new strategies are concerned with modification of outflow tract elements that are downstream of the trabecular meshwork.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Ralitsa Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Hardik A Parikh
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA; New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Pritha Roy
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Nils A Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
49
|
Webber HC, Bermudez JY, Sethi A, Clark AF, Mao W. Crosstalk between TGFβ and Wnt signaling pathways in the human trabecular meshwork. Exp Eye Res 2016; 148:97-102. [PMID: 27091054 DOI: 10.1016/j.exer.2016.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
Abstract
Primary Open Angle Glaucoma (POAG) is an irreversible, vision-threatening disease that affects millions worldwide. The principal risk factor of POAG is increased intraocular pressure (IOP) due to pathological changes in the trabecular meshwork (TM). The TGFβ signaling pathway activator TGFβ2 and the Wnt signaling pathway inhibitor secreted frizzled-related protein 1 (sFRP1) are elevated in the POAG TM. In this study, we determined whether there is a crosstalk between the TGFβ/Smad pathway and the canonical Wnt pathway using luciferase reporter assays. Lentiviral luciferase reporter vectors for studying the TGFβ/Smad pathway or the canonical Wnt pathway were transduced into primary human non-glaucomatous TM (NTM) cells. Cells were treated with or without a combination of 5 μg/ml TGFβ2 and/or 100 ng/ml Wnt3a recombinant proteins, and luciferase levels were measured using a plate reader. We found that TGFβ2 inhibited Wnt3a-induced canonical Wnt pathway activation, while Wnt3a inhibited TGFβ2-induced TGFβ/Smad pathway activation (n = 6, p < 0.05) in 3 NTM cell strains. We also found that knocking down of Smad4 or β-catenin using siRNA in HTM5 cells transfected with similar luciferase reporter plasmids abolished the inhibitory effect of TGFβ2 and/or Wnt3a on the other pathway (n = 6). Our results suggest the existence of a cross-inhibition between the TGFβ/Smad and canonical Wnt pathways in the TM, and this cross-inhibition may be mediated by Smad4 and β-catenin.
Collapse
Affiliation(s)
- Hannah C Webber
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Jaclyn Y Bermudez
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Anirudh Sethi
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Weiming Mao
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| |
Collapse
|
50
|
McDowell CM, Hernandez H, Mao W, Clark AF. Gremlin Induces Ocular Hypertension in Mice Through Smad3-Dependent Signaling. Invest Ophthalmol Vis Sci 2015; 56:5485-92. [PMID: 26284554 DOI: 10.1167/iovs.15-16993] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Transforming growth factor-β2 induces extracellular matrix (ECM) remodeling, which likely contributes to the defective function of the trabecular meshwork (TM) leading to glaucomatous ocular hypertension. Bone morphogenetic proteins (BMPs) inhibit these profibrotic effects of TGFβ2. The BMP antagonist gremlin is elevated in glaucomatous TM cells and increases IOP in an ex vivo perfusion culture model. The purpose of this study was to determine whether gremlin regulates ECM proteins in the TM, signals through the Smad3-dependent pathway, and induces ocular hypertension in mice. METHODS Ad5.Gremlin or Ad5.TGFβ2 was injected intravitreally into one eye of each mouse. Intraocular pressure measurements were taken using a TonoLab tonometer. Gremlin, TGFβ2, fibronectin (FN), and collagen-1 (Col-1) expression in the TM was determined by immunofluorescence, Western immunoblot, and quantitative (q)PCR analyses. RESULTS Ad5.Gremlin or Ad5.TGFβ2 each caused significant IOP elevation in mice. Immunofluorescence and Western blot analysis demonstrated that gremlin and TGFβ2 reciprocally increased the expression of each other, and both increased FN expression in the TM and surrounding tissues. Ad5.Gremlin elevated IOP and increased Fn and Col-1 gene expression in the TM of Smad3 wild-type (WT) mice, but had no effect in Smad3 HET or Smad3 KO mice. CONCLUSIONS Our results demonstrate that intravitreal injections of either Ad5.Gremlin or Ad5.TGFβ2 elevate IOP and upregulate the ECM protein FN in the TM of mice. These data show that gremlin signals through the Smad3-dependent pathway in the TM to elevate IOP. We determined for the first time gremlin's role in inducing ocular hypertension in an in vivo model system.
Collapse
|