1
|
Chasseloup F, Bernard V, Chanson P. Prolactin: structure, receptors, and functions. Rev Endocr Metab Disord 2024; 25:953-966. [PMID: 39476210 DOI: 10.1007/s11154-024-09915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 12/08/2024]
Abstract
Prolactin (PRL) is a 23-kDa protein synthesized and secreted by lactotroph cells of the anterior pituitary gland but also by other peripheral tissues. PRL binds directly to a unique transmembrane receptor (PRLR), and the JAK2/signal transducer and activator of transcription 5 (Stat5) pathway is considered the major downstream pathway for PRLR signaling. To a lesser extent, PRL may be cleaved into the shorter 16-kDa PRL, also called vasoinhibin, whose signaling is not fully known. According to rodent models of PRL signaling inactivation and the identification of human genetic alterations in PRL signaling, a growing number of biological processes are partly mediated by PRL or its downstream effectors. In this review, we focused on PRL structure and signaling and its canonical function in reproduction. In addition to regulating reproductive functions, PRL also plays a role in behavior, notably in initiating nurturing and maternal behavior. We also included recent insights into PRL function in several fields, including migraines, metabolic homeostasis, inflammatory and autoimmune disease, and cancer. Despite the complexity of understanding the many functions of PRL, new research in this field offers interesting perspectives on physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France
| | - Valérie Bernard
- Department of Gynecology and Reproductive Medicine, CHU de Bordeaux, Bordeaux, F-33000, France
- Univ. Bordeaux, Bordeaux Institute in Oncology-BRIC-BioGo Team, INSERM U1312, Bordeaux, F-33000, France
| | - Philippe Chanson
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France.
| |
Collapse
|
2
|
Núñez-Amaro CD, López M, Adán-Castro E, Robles-Osorio ML, García-Franco R, García-Roa M, Villalpando-Gómez Y, Ramírez-Neria P, Pineiro N, Rubio-Mijangos JF, Sánchez J, Ramírez-Hernández G, Siqueiros-Márquez L, Díaz-Lezama N, López-Star E, Bertsch T, Marínez de la Escalera G, Triebel J, Clapp C. Levosulpiride for the treatment of diabetic macular oedema: a phase 2 randomized clinical trial. Eye (Lond) 2024; 38:520-528. [PMID: 37673971 PMCID: PMC10858020 DOI: 10.1038/s41433-023-02715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND/OBJECTIVE The prokinetic levosulpiride elevates vasoinhibin levels in the vitreous of patients with proliferative diabetic retinopathy (PDR) suggesting clinical benefits due to the anti-vasopermeability and anti-angiogenic properties of vasoinhibin. We investigated the biological activity of levosulpiride in centre-involving diabetic macular oedema (DME). PATIENTS/METHODS Prospective, randomized, double-blinded, dual-centre, phase 2 trial in patients with centre-involving DME orally treated with placebo (n = 17) or levosulpiride (n = 17) for 8 weeks or in patients with PDR undergoing elective pars plana vitrectomy and receiving placebo (n = 18) or levosulpiride (n = 18) orally for the 1 week before vitrectomy. RESULTS Levosulpiride improved changes from baseline in best-corrected visual acuity (p ≤ 0.037), central foveal thickness (CFT, p ≤ 0.013), and mean macular volume (MMV, p ≤ 0.002) at weeks 4, 6, and 8 compared to placebo. At 8 weeks, the proportion of eyes gaining ≥5 ETDRS letters at 4 m (41% vs. 28%), losing ≥21 μm in CFT (55% vs. 28%), and dropping ≥0.06 mm3 in MMV (65% vs. 29%) was higher after levosulpiride than placebo. The overall grading of visual and structural parameters improved with levosulpiride (p = 0.029). Levosulpiride reduced VEGF (p = 0.025) and PlGF (p = 0.008) levels in the vitreous of PDR patients. No significant adverse side-effects were detected. CONCLUSIONS Oral levosulpiride for 8 weeks improved visual and structural outcomes in patients with centre-involving DME by mechanisms that may include intraocular upregulation of vasoinhibin and downregulation of VEGF and PlGF. Larger clinical trials evaluating long-term efficacy and safety are warranted.
Collapse
Affiliation(s)
- Carlos D Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro (UAQ), Querétaro, México
| | - Mariana López
- Instituto Mexicano de Oftalmología (IMO), Querétaro, México
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | | | | | | | | | - Nayeli Pineiro
- Instituto Mexicano de Oftalmología (IMO), Querétaro, México
| | | | - Jorge Sánchez
- Instituto de la Retina del Bajío (INDEREB), Querétaro, México
| | - Gabriela Ramírez-Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Lourdes Siqueiros-Márquez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
3
|
Garza-Rodríguez ML, Rodríguez-Sanchez IP, González-Álvarez R, Luna M, Burciaga-Flores CH, Alcorta-Nuñez F, Solis-Coronado O, Bautista de Lucio VM, Ramírez-Correa GA, Vidal-Gutiérrez O, Pérez-Ibave DC. Prolactin Expression in the Baboon ( Papio hamadryas) Eye. Animals (Basel) 2022; 12:2288. [PMID: 36078009 PMCID: PMC9455022 DOI: 10.3390/ani12172288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/14/2023] Open
Abstract
Prolactin (PRL) is a hormone expressed in lactotrophs cells of the pituitary gland in primates. Extra pituitary expression of PRL has been reported, including the eye; however, expression in the developing eye of primates is limited. The aim of the study was determining the expression of PRL and PRL receptor (PRLR) (mRNAs and proteins) in adult and fetal baboon (Papio hamadryas) ocular tissues. METHODS We analyzed PRL and PRLR in baboon eyes tissues by immunofluorescence. The mRNAs of PRL and PRLR were detected by RT-PCR, cDNA was cloned, and sequenced. Furthermore, we performed a phylogenetic analysis to identify the evolutionary forces that underlie the divergence of PRL and PRLR primate genes. RESULTS We observed the expression of PRL and PRLR (mRNAs and proteins) in all retinal cell lineages of fetal and adult baboon. PRL and PRLR fit the hypothesis of evolutionary purifying gene selection. CONCLUSIONS mRNA and protein of PRL and PRLR are expressed in fetal and adult baboon retinal tissue. PRL may trigger autocrine and paracrine-specific actions in retinal cell lines.
Collapse
Affiliation(s)
- María Lourdes Garza-Rodríguez
- Servicio de Oncología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64440, Mexico
| | - Iram Pablo Rodríguez-Sanchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | | | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico
| | - Carlos Horacio Burciaga-Flores
- Servicio de Oncología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64440, Mexico
| | - Fernando Alcorta-Nuñez
- Servicio de Oncología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64440, Mexico
| | - Orlando Solis-Coronado
- Servicio de Oncología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64440, Mexico
- División de Anatomía Patológica, Hospital General “Dr. Manuel Gea González”, Secretaría de Salud, Ciudad de México 14080, Mexico
| | - Víctor Manuel Bautista de Lucio
- Departamento de Microbiología y Proteómica Ocular, Instituto de Oftalmología “Fundación de Asistencia Privada Conde de Valenciana”, Ciudad de México 06800, Mexico
| | - Genaro A. Ramírez-Correa
- Department of Molecular Science, University of Texas Health Rio Grande Valley, McAllen, TX 78550, USA
| | - Oscar Vidal-Gutiérrez
- Servicio de Oncología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64440, Mexico
| | - Diana Cristina Pérez-Ibave
- Servicio de Oncología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64440, Mexico
| |
Collapse
|
4
|
Robles JP, Zamora M, Siqueiros-Marquez L, Adan-Castro E, Ramirez-Hernandez G, Nuñez FF, Lopez-Casillas F, Millar RP, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. The HGR motif is the antiangiogenic determinant of vasoinhibin: implications for a therapeutic orally active oligopeptide. Angiogenesis 2022; 25:57-70. [PMID: 34097181 PMCID: PMC8813873 DOI: 10.1007/s10456-021-09800-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
The hormone prolactin acquires antiangiogenic and antivasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, an endogenous prolactin fragment of 123 or more amino acids that inhibits the action of multiple proangiogenic factors. Preclinical and clinical evidence supports the therapeutic potential of vasoinhibin against angiogenesis-related diseases including diabetic retinopathy, peripartum cardiomyopathy, rheumatoid arthritis, and cancer. However, the use of vasoinhibin in the clinic has been limited by difficulties in its production. Here, we removed this barrier to using vasoinhibin as a therapeutic agent by showing that a short linear motif of just three residues (His46-Gly47-Arg48) (HGR) is the functional determinant of vasoinhibin. The HGR motif is conserved throughout evolution, its mutation led to vasoinhibin loss of function, and oligopeptides containing this sequence inhibited angiogenesis and vasopermeability with the same potency as whole vasoinhibin. Furthermore, the oral administration of an optimized cyclic retro-inverse vasoinhibin heptapeptide containing HGR inhibited melanoma tumor growth and vascularization in mice and exhibited equal or higher antiangiogenic potency than other antiangiogenic molecules currently used as anti-cancer drugs in the clinic. Finally, by unveiling the mechanism that obscures the HGR motif in prolactin, we anticipate the development of vasoinhibin-specific antibodies to solve the on-going challenge of measuring endogenous vasoinhibin levels for diagnostic and interventional purposes, the design of vasoinhibin antagonists for managing insufficient angiogenesis, and the identification of putative therapeutic proteins containing HGR.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | - Elva Adan-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | - Francisco Freinet Nuñez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Fernando Lopez-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Robert P Millar
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México.
| |
Collapse
|
5
|
Triebel J, Bertsch T, Clapp C. Prolactin and vasoinhibin are endogenous players in diabetic retinopathy revisited. Front Endocrinol (Lausanne) 2022; 13:994898. [PMID: 36157442 PMCID: PMC9500238 DOI: 10.3389/fendo.2022.994898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes for visual loss in adults. Nearly half of the world's population with diabetes has some degree of DR, and DME is a major cause of visual impairment in these patients. Severe vision loss occurs because of tractional retinal detachment due to retinal neovascularization, but the most common cause of moderate vision loss occurs in DME where excessive vascular permeability leads to the exudation and accumulation of extracellular fluid and proteins in the macula. Metabolic control stands as an effective mean for controlling retinal vascular alterations in some but not all patients with diabetes, and the search of other modifiable factors affecting the risk for diabetic microvascular complications is warranted. Prolactin (PRL) and its proteolytic fragment, vasoinhibin, have emerged as endogenous regulators of retinal blood vessels. PRL acquires antiangiogenic and anti-vasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, which helps restrict the vascularization of ocular organs and, upon disruption, promotes retinal vascular alterations characteristic of DR and DME. Evidence is linking PRL (and other pituitary hormones) and vasoinhibin to DR and recent preclinical and clinical evidence supports their translation into novel therapeutic approaches.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
6
|
Yu M, Zhang L, Sun S, Zhang Z. Gliquidone improves retinal injury to relieve diabetic retinopathy via regulation of SIRT1/Notch1 pathway. BMC Ophthalmol 2021; 21:451. [PMID: 34961513 PMCID: PMC8711144 DOI: 10.1186/s12886-021-02215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a common and potentially devastating microvascular complication of diabetes mellitus (DM). The main features of DR are inflammation and oxidative damage. Gliquidone (GLI) is confirmed to be a hypoglycemic drug by oral administration. The current study is aimed to investigate the role and mechanism of GLI on the pathogenesis of DR. Methods High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to explore the anti-inflammatory and anti-oxidant effects of GLI on DR in vitro. Streptozotocin (STZ)-induced DM rats were used to investigate the effects of GLI on retinal structures, inflammation, and oxidative stress. The levels of SIRT1/Notch1 pathway-related proteins were determined by western blotting. Results GLI treatment promoted the viability and inhibited the apoptosis of HG-induced HRECs. Meanwhile, the levels of interleukin (IL)-6, IL-1β, tumour necrosis factor alpha and reactive oxygen species were suppressed, while both catalase and superoxide dismutase were elevated after GLI treatment in HG-induced HRECs. Furthermore, we found that Silencing information regulator 2 related enzyme 1 (SIRT1) silencing reversed the inhibiting effects of GLI on the levels of protein Notch1 and effector genes Hes1 and Hey2. Similar anti-inflammatory and anti-oxidant effects of GLI in STZ-induced DM rats were observed. Additionally, GLI administration also repressed vascular hyperpermeability in vivo. Conclusion GLI may be an effective agent to improve DR through repression of inflammation and oxidative stress via SIRT1/Notch1 pathway.
Collapse
Affiliation(s)
- Mengdan Yu
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Lijun Zhang
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Shasha Sun
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Zhenhua Zhang
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China.
| |
Collapse
|
7
|
Iturriaga-Goyon E, Buentello-Volante B, Magaña-Guerrero FS, Garfias Y. Future Perspectives of Therapeutic, Diagnostic and Prognostic Aptamers in Eye Pathological Angiogenesis. Cells 2021; 10:cells10061455. [PMID: 34200613 PMCID: PMC8227682 DOI: 10.3390/cells10061455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides that are currently used in clinical trials due to their selectivity and specificity to bind small molecules such as proteins, peptides, viral particles, vitamins, metal ions and even whole cells. Aptamers are highly specific to their targets, they are smaller than antibodies and fragment antibodies, they can be easily conjugated to multiple surfaces and ions and controllable post-production modifications can be performed. Aptamers have been therapeutically used for age-related macular degeneration, cancer, thrombosis and inflammatory diseases. The aim of this review is to highlight the therapeutic, diagnostic and prognostic possibilities associated with aptamers, focusing on eye pathological angiogenesis.
Collapse
Affiliation(s)
- Emilio Iturriaga-Goyon
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Beatriz Buentello-Volante
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
| | - Fátima Sofía Magaña-Guerrero
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
| | - Yonathan Garfias
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
8
|
Jiang Q, Liu C, Li CP, Xu SS, Yao MD, Ge HM, Sun YN, Li XM, Zhang SJ, Shan K, Liu BH, Yao J, Zhao C, Yan B. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest 2021; 130:3833-3847. [PMID: 32343678 DOI: 10.1172/jci123353] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Vascular pericyte degeneration is the predominant clinical manifestation of DR, yet the mechanism governing pericyte degeneration is poorly understood. Circular RNAs (circRNAs) play important roles in multiple biological processes and disease progression. Here, we investigated the role of circRNA in pericyte biology and diabetes-induced retinal vascular dysfunction. cZNF532 expression was upregulated in pericytes under diabetic stress, in the retinal vessels of a diabetic murine model, and in the vitreous humor of diabetic patients. cZNF532 silencing reduced the viability, proliferation, and differentiation of pericytes and suppressed the recruitment of pericytes toward endothelial cells in vitro. cZNF532 regulated pericyte biology by acting as a miR-29a-3p sponge and inducing increased expression of NG2, LOXL2, and CDK2. Knockdown of cZNF532 or overexpression of miR-29a-3p aggravated streptozotocin-induced retinal pericyte degeneration and vascular dysfunction. By contrast, overexpression of cZNF532 or inhibition of miR-29a-3p ameliorated human diabetic vitreous-induced retinal pericyte degeneration and vascular dysfunction. Collectively, these data identify a circRNA-mediated mechanism that coordinates pericyte biology and vascular homeostasis in DR. Induction of cZNF532 or antagonism of miR-29a-3p is an exploitable therapeutic approach for the treatment of DR.
Collapse
Affiliation(s)
- Qin Jiang
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chao-Peng Li
- Department of Ophthalmology, Huai'an First People's Hospital, Huai An, China
| | - Shan-Shan Xu
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Mu-Di Yao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui-Min Ge
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Nan Sun
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Shu-Jie Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Shan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bai-Hui Liu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Yao
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Ortiz G, Ledesma-Colunga MG, Wu Z, García-Rodrigo JF, Adan N, Martínez de la Escalera G, Clapp C. Vasoinhibin reduces joint inflammation, bone loss, and the angiogenesis and vasopermeability of the pannus in murine antigen-induced arthritis. J Transl Med 2020; 100:1068-1079. [PMID: 32341517 DOI: 10.1038/s41374-020-0432-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Increased permeability and growth (angiogenesis) of blood vessels play a key role in joint swelling and pannus formation in inflammatory arthritis, a family of diseases influenced by reproductive hormones. The hormone prolactin (PRL) protects against joint inflammation, pannus formation, and bone destruction in adjuvant-induced arthritis and these effects may involve its proteolytic conversion to vasoinhibin, a PRL fragment that inhibits angiogenesis and vasopermeability. Here, we show that the intra-articular injection of an adeno-associated virus type-2 (AAV2) vector encoding vasoinhibin reduced joint inflammation, the hyperplasia, vascular density, and vasopermeability of the pannus, and the loss of bone in mice subjected to antigen-induced arthritis. In agreement, the AAV2 vasoinhibin vector reduced the expression of proinflammatory cytokines (interleukin-1β, interleukin-6), an endothelial cell marker (platelet endothelial cell-adhesion molecule 1), and proangiogenic molecules [vascular endothelial growth factor (VEGF), VEGF receptor 2, and hypoxia-inducible factor 1α] in the arthritic joint. Also, vasoinhibin reduced the synovial vasopermeability induced by the intra-articular injection of VEGF in healthy mice. Finally, vasoinhibin signals by blocking the phosphorylation/activation of endothelial nitric oxide synthase (eNOS) at Ser1179 and the AAV2 vasoinhibin vector inhibited the enhanced phosphorylation of eNOS Ser1179 in the arthritic joint. We conclude that vasoinhibin reduces joint inflammation and bone loss in arthritis by inhibiting pannus angiogenesis and vasopermeability via the blockage of VEGF-induced eNOS activation. These findings suggest the potential therapeutic benefit of AAV2-mediated vasoinhibin gene delivery in arthritis.
Collapse
Affiliation(s)
- Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | - Maria G Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | - Zhijian Wu
- Ocular Gene Therapy Laboratory, Neurobiology, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Jose F García-Rodrigo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | - Norma Adan
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México.
| |
Collapse
|
10
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
12
|
Yun BY, Cho C, Cho BN. Differential activity of 16K rat prolactin in different organic systems. Anim Cells Syst (Seoul) 2019; 23:135-142. [PMID: 30949401 PMCID: PMC6440500 DOI: 10.1080/19768354.2018.1554543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023] Open
Abstract
The 16K isoform of rat prolactin (16K rPRL) performs multiple functions in various systems including angiogenesis, tumorigenesis, and reproduction. Recently, 16K rPRL has attained prominence as a possible therapeutic target in pathophysiological conditions. However, the integral function and mechanism of 16K rPRL in various systems has not been elucidated. To this end, a transient gain-of-function animal model was adopted. An expression DNA plasmid containing 16K rPRL or rPRL gene was introduced into the muscle of adult mice by direct injection. The mRNA and protein expression levels of 16K rPRL were detected by initial RT–PCR and subsequent Southern blot and western blot, respectively. When the expression vector was introduced, the results were as follows: First, 16K rPRL combined with rPRL reduced angiogenesis in the testis whereas rPRL alone induced angiogenesis. Second, 16K rPRL combined with rPRL reduced WBC proliferation, whereas rPRL alone increased WBC proliferation. Third, 16K rPRL combined with rPRL reduced diestrus, whereas rPRL alone extended diestrus. Fourth, 16K rPRL combined with rPRL unexpectedly increased testosterone (T) levels, whereas rPRL alone did not increase T levels. Taken together, our data suggest that the 16K rPRL isoform performs integral functions in angiogenesis in the testis, WBC proliferation, and reproduction, although the action of 16K rPRL is not always antagonistic.
Collapse
Affiliation(s)
- Bo-Young Yun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Chunghee Cho
- Department of Life Science Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byung-Nam Cho
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
13
|
Triebel J, Robles JP, Zamora M, Martínez de la Escalera G, Bertsch T, Clapp C. Regulator of Angiogenesis and Vascular Function: A 2019 Update of the Vasoinhibin Nomenclature. Front Endocrinol (Lausanne) 2019; 10:214. [PMID: 31024452 PMCID: PMC6467929 DOI: 10.3389/fendo.2019.00214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University Nuremberg, Nuremberg, Germany
- *Correspondence: Jakob Triebel
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University Nuremberg, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
14
|
Robles JP, Zamora M, Velasco-Bolom JL, Tovar M, Garduño-Juárez R, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. Vasoinhibin comprises a three-helix bundle and its antiangiogenic domain is located within the first 79 residues. Sci Rep 2018; 8:17111. [PMID: 30459448 PMCID: PMC6244167 DOI: 10.1038/s41598-018-35383-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
Vasoinhibin belongs to a family of angiogenesis inhibitors generated when the fourth α-helix (H4) of the hormone prolactin (PRL) is removed by specific proteolytic cleavage. The antiangiogenic properties are absent in uncleaved PRL, indicating that conformational changes create a new bioactive domain. However, the solution structure of vasoinhibin and the location of its bioactive domain are unknown. Molecular dynamic simulation (MD) showed that the loss of H4 exposes the hydrophobic nucleus of PRL and leads to the compression of the molecule into a three-helix bundle that buries the hydrophobic nucleus again. Compression occurs by the movement of loop 1 (L1) and its interaction with α-helix 1 (H1) generating a new L1 conformation with electrostatic and hydrophobic surfaces distinct from those of PRL, that may correspond to a bioactive domain. Consistent with this model, a recombinant protein containing the first 79 amino acids comprising H1 and L1 of human PRL inhibited the proliferation and migration of endothelial cells and upregulated the vasoinhibin target genes, IL1A and ICAM1. This bioactivity was comparable to that of a conventional vasoinhibin having the 123 residues encompassing H1, L1, Η2, L2, and Η3 of human PRL. These findings extend the vasoinhibin family to smaller proteins and provide important structural information, which will aid in antiangiogenic drug development.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | | - Miriam Tovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Ramón Garduño-Juárez
- Biofísica y Ciencia de Materiales, Instituto de Ciencias Físicas, UNAM, Cuernavaca, Mexico
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico.
| |
Collapse
|
15
|
Robles-Osorio ML, García-Franco R, Núñez-Amaro CD, Mira-Lorenzo X, Ramírez-Neria P, Hernández W, López-Star E, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. Basis and Design of a Randomized Clinical Trial to Evaluate the Effect of Levosulpiride on Retinal Alterations in Patients With Diabetic Retinopathy and Diabetic Macular Edema. Front Endocrinol (Lausanne) 2018; 9:242. [PMID: 29896154 PMCID: PMC5986911 DOI: 10.3389/fendo.2018.00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) and diabetic macular edema (DME) are potentially blinding, microvascular retinal diseases in people with diabetes mellitus. Preclinical studies support a protective role of the hormone prolactin (PRL) due to its ocular incorporation and conversion to vasoinhibins, a family of PRL fragments that inhibit ischemia-induced retinal angiogenesis and diabetes-derived retinal vasopermeability. Here, we describe the protocol of an ongoing clinical trial investigating a new therapy for DR and DME based on elevating the circulating levels of PRL with the prokinetic, dopamine D2 receptor blocker, levosulpiride. METHODS It is a prospective, randomized, double-blind, placebo-controlled trial enrolling male and female patients with type 2 diabetes having DME, non-proliferative DR (NPDR), proliferative DR (PDR) requiring vitrectomy, and DME plus standard intravitreal therapy with the antiangiogenic agent, ranibizumab. Patients are randomized to receive placebo (lactose pill, orally TID) or levosulpiride (75 mg/day orally TID) for 8 weeks (DME and NPDR), 1 week (the period before vitrectomy in PDR), or 12 weeks (DME plus ranibizumab). In all cases the study medication is taken on top of standard therapy for diabetes, blood pressure control, or other medical conditions. Primary endpoints in groups 1 and 2 (DME: placebo and levosulpiride), groups 3 and 4 (NPDR: placebo and levosulpiride), and groups 7 and 8 (DME plus ranibizumab: placebo and levosulpiride) are changes from baseline in visual acuity, retinal thickness assessed by optical coherence tomography, and retinal microvascular abnormalities evaluated by fundus biomicroscopy and fluorescein angiography. Changes in serum PRL levels and of PRL and vasoinhibins levels in the vitreous between groups 5 and 6 (PDR undergoing vitrectomy: placebo and levosulpiride) serve as proof of principle that PRL enters the eye to counteract disease progression. Secondary endpoints are changes during the follow-up of health and metabolic parameters (blood pressure, glycated hemoglobin, and serum levels of glucose and creatinine). A total of 120 patients are being recruited. DISCUSSION This trial will provide important knowledge on the potential benefits and safety of elevating circulating and intraocular PRL levels with levosulpiride in patients with DR and DME. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Ethics Committees of the National University of Mexico (UNAM) and the Instituto Mexicano de Oftalmología, I.A.P. Dissemination will include submission to peer-reviewed scientific journals and presentation at congresses. CLINICAL TRIAL REGISTRATION Registered at www.ClinicalTrials.gov, ID: NCT03161652 on May 18, 2017.
Collapse
Affiliation(s)
| | | | - Carlos D. Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro (UAQ), Querétaro, Mexico
| | | | | | - Wendy Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| |
Collapse
|
16
|
Dual contribution of TRPV4 antagonism in the regulatory effect of vasoinhibins on blood-retinal barrier permeability: diabetic milieu makes a difference. Sci Rep 2017; 7:13094. [PMID: 29026201 PMCID: PMC5638810 DOI: 10.1038/s41598-017-13621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/29/2017] [Indexed: 01/05/2023] Open
Abstract
Breakdown of the blood-retinal barrier (BRB), as occurs in diabetic retinopathy and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing vision loss. Vasoinhibins are N-terminal fragments of prolactin that prevent BRB breakdown during diabetes. They modulate the expression of some transient receptor potential (TRP) family members, yet their role in regulating the TRP vanilloid subtype 4 (TRPV4) remains unknown. TRPV4 is a calcium-permeable channel involved in barrier permeability, which blockade has been shown to prevent and resolve pulmonary edema. We found TRPV4 expression in the endothelium and retinal pigment epithelium (RPE) components of the BRB, and that TRPV4-selective antagonists (RN-1734 and GSK2193874) resolve BRB breakdown in diabetic rats. Using human RPE (ARPE-19) cell monolayers and endothelial cell systems, we further observed that (i) GSK2193874 does not seem to contribute to the regulation of BRB and RPE permeability by vasoinhibins under diabetic or hyperglycemic-mimicking conditions, but that (ii) vasoinhibins can block TRPV4 to maintain BRB and endothelial permeability. Our results provide important insights into the pathogenesis of diabetic retinopathy that will further guide us toward rationally-guided new therapies: synergistic combination of selective TRPV4 blockers and vasoinhibins can be proposed to mitigate diabetes-evoked BRB breakdown.
Collapse
|
17
|
Keeley TP, Siow RCM, Jacob R, Mann GE. A PP2A-mediated feedback mechanism controls Ca 2+-dependent NO synthesis under physiological oxygen. FASEB J 2017; 31:5172-5183. [PMID: 28760745 PMCID: PMC5690389 DOI: 10.1096/fj.201700211r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
Intracellular O2 is a key regulator of NO signaling, yet most in vitro studies are conducted in atmospheric O2 levels, hyperoxic with respect to the physiologic milieu. We investigated NO signaling in endothelial cells cultured in physiologic (5%) O2 and stimulated with histamine or shear stress. Culture of cells in 5% O2 (>5 d) decreased histamine- but not shear stress–stimulated endothelial (e)NOS activity. Unlike cells adapted to a hypoxic environment (1% O2), those cultured in 5% O2 still mobilized sufficient Ca2+ to activate AMPK. Enhanced expression and membrane targeting of PP2A-C was observed in 5% O2, resulting in greater interaction with eNOS in response to histamine. Moreover, increased dephosphorylation of eNOS in 5% O2 was Ca2+-sensitive and reversed by okadaic acid or PP2A-C siRNA. The present findings establish that Ca2+ mobilization stimulates both NO synthesis and PP2A-mediated eNOS dephosphorylation, thus constituting a novel negative feedback mechanism regulating eNOS activity not present in response to shear stress. This, coupled with enhanced NO bioavailability, underpins differences in NO signaling induced by inflammatory and physiologic stimuli that are apparent only in physiologic O2 levels. Furthermore, an explicit delineation between physiologic normoxia and genuine hypoxia is defined here, with implications for our understanding of pathophysiological hypoxia.—Keeley, T. P., Siow, R. C. M., Jacob, R., Mann, G. E. A PP2A-mediated feedback mechanism controls Ca2+-dependent NO synthesis under physiological oxygen.
Collapse
Affiliation(s)
- Thomas P Keeley
- Cardiovascular Division, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Richard C M Siow
- Cardiovascular Division, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Ron Jacob
- Cardiovascular Division, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Giovanni E Mann
- Cardiovascular Division, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Higher prolactin and vasoinhibin serum levels associated with incidence and progression of retinopathy of prematurity. Pediatr Res 2017; 81:473-479. [PMID: 27842054 DOI: 10.1038/pr.2016.241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a potentially blinding, retinal neovascular disease. Systemic prolactin accesses the retina to regulate blood vessels. Prolactin is proangiogenic and can be cleaved to antiangiogenic vasoinhibins. We investigated whether circulating prolactin and vasoinhibins associate with incidence and progression of ROP. METHODS A prospective, longitudinal, case-control study covering postnatal weeks 1 to 9 measured serum prolactin, vasoinhibins, and vascular endothelial growth factor (VEGF) weekly in 90 premature infants diagnosed as ROP or control. RESULTS Prolactin levels were higher in ROP than in control patients before (106.2 ± 11.3 (SEM) vs. 64.7 ± 4.9 ng/ml, postnatal week 1) and during (120.6 ± 10 vs. 84.7 ± 7.5ng/ml, postnatal week 5) ROP diagnosis. Prolactin, but not gestational age, birth weight, Apgar score, sepsis, or ventilation time, correlated with ROP. The relative risk (RR) of developing ROP increased if Prolactin (PRL) levels were higher than thresholds of 80 ng/ml (RR = 1.55, 95% CI: 1.06-2.28), 100 ng/ml (RR = 1.63, 95% CI: 1.14-2.34), or 120 ng/ml (RR = 1.95, 95% CI: 1.41-2.68). Vasoinhibin levels were 39.7% higher (95% CI: 4.5-77.5) in the circulation of ROP than in control patients at postnatal week 1 and similar thereafter, whereas VEGF serum levels were always similar. CONCLUSION High serum prolactin and vasoinhibin levels predict and may impact ROP progression.
Collapse
|
19
|
Triebel J, Robles-Osorio ML, Garcia-Franco R, Martínez de la Escalera G, Clapp C, Bertsch T. From Bench to Bedside: Translating the Prolactin/Vasoinhibin Axis. Front Endocrinol (Lausanne) 2017; 8:342. [PMID: 29321761 PMCID: PMC5732132 DOI: 10.3389/fendo.2017.00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
The prolactin/vasoinhibin axis defines an endocrine system, in which prolactin (PRL) and vasoinhibins regulate blood vessel growth and function, the secretion of other hormones, inflammatory and immune processes, coagulation, and behavior. The core element of the PRL/vasoinhibin axis is the generation of vasoinhibins, which consists in the proteolytic cleavage of their precursor molecule PRL. Vasoinhibins can interact with multiple different partners to mediate their effects in various tissues and anatomical compartments, indicating their pleiotropic nature. Based on accumulating knowledge about the PRL/vasoinhibin axis, two clinical trials were initiated, in which vasoinhibin levels are the target of therapeutic interventions. One trial investigates the effect of levosulpiride, a selective dopamine D2-receptor antagonist, on retinal alterations in patients with diabetic macular edema and retinopathy. The rationale of this trial is that the levosulpiride-induced hyperprolactinemia resulting in increased retinal vasoinhibins could lead to beneficiary outcomes in terms of a vasoinhibin-mediated antagonization of diabetes-induced retinal alterations. Another trial investigated the effect of bromocriptine, a dopamine D2-receptor agonist, for the treatment of peripartum cardiomyopathy. The rationale of treatment with bromocriptine is the inhibition of vasoinhibin generation by substrate depletion to prevent detrimental effects on the myocardial microvascularization. The trial demonstrated that bromocriptine treatment was associated with a high rate of left ventricular recovery and low morbidity and mortality. Therapeutic interventions into the PRL/vasoinhibin axis bear the risk of side effects in the areas of blood coagulation, blood pressure, and alterations of the mental state.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | | | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
20
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Triebel J, Friedrich CJ, Leuchs A, Martínez de la Escalera G, Clapp C, Bertsch T. Human Prolactin Point Mutations and Their Projected Effect on Vasoinhibin Generation and Vasoinhibin-Related Diseases. Front Endocrinol (Lausanne) 2017; 8:294. [PMID: 29163363 PMCID: PMC5681482 DOI: 10.3389/fendo.2017.00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A dysregulation of the generation of vasoinhibin hormones by proteolytic cleavage of prolactin (PRL) has been brought into context with diabetic retinopathy, retinopathy of prematurity, preeclampsia, pregnancy-induced hypertension, and peripartum cardiomyopathy. Factors governing vasoinhibin generation are incompletely characterized, and the composition of vasoinhibin isoforms in human tissues or compartments, such as the circulation, is unknown. The aim of this study was to determine the possible contribution of PRL point mutations to the generation of vasoinhibins as well as to project their role in vasoinhibin-related diseases. METHODS Prolactin sequences, point mutations, and substrate specificity information about the PRL cleaving enzymes cathepsin D, matrix metalloproteinases 8 and 13, and bone-morphogenetic protein 1 were retrieved from public databases. The consequences of point mutations in regard to their possible effect on vasoinhibin levels were projected on the basis of a score indicating the suitability of a particular sequence for enzymatic cleavage that result in vasoinhibin generation. The relative abundance and type of vasoinhibin isoforms were estimated by comparing the relative cleavage efficiency of vasoinhibin-generating enzymes. RESULTS Six point mutations leading to amino acid substitutions in vasoinhibin-generating cleavage sites were found and projected to either facilitate or inhibit vasoinhibin generation. Four mutations affecting vasoinhibin generation in cancer tissues were found. The most likely composition of the relative abundance of vasoinhibin isoforms is projected to be 15 > 17.2 > 16.8 > 17.7 > 18 kDa vasoinhibin. CONCLUSION Prolactin point mutations are likely to influence vasoinhibin levels by affecting the proteolysis efficiency of vasoinhibin-generating enzymes and should be monitored in patients with vasoinhibin-related diseases. Attempts to characterize vasoinhibin-related diseases should include the 15, 17.2, 16.8, 17.7, and 18 kDa vasoinhibin isoforms.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | - Christin J. Friedrich
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Andreas Leuchs
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
22
|
Prolactin alters blood pressure by modulating the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2016; 113:12538-12543. [PMID: 27791173 DOI: 10.1073/pnas.1615051113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased levels of a cleaved form of prolactin (molecular weight 16 kDa) have been associated with preeclampsia. To study the effects of prolactin on blood pressure (BP), we generated male mice with a single-copy transgene (Tg; inserted into the hypoxanthine-guanine phosphoribosyltransferase locus) that enables inducible hepatic production of prolactin and its cleavage product. The Tg is driven by the indole-3-carbinol (I3C)-inducible rat cytochrome P450 1A1 promoter. When the Tg mice were fed normal chow (NC), plasma prolactin concentrations were comparable to those in female WT mice in the last third of pregnancy, and BP was lower than in WT mice (∼95 mm Hg vs. ∼105 mm Hg). When the Tg mice were fed chow containing IC3, plasma prolactin concentrations increased threefold, BP increased to ∼130 mm Hg, and cardiac function became markedly impaired. IC3 chow did not affect the WT mice. Urinary excretion of nitrite/nitrate and the amount of Ser1177-phosphorylated endothelial nitric oxide (NO) synthase (eNOS) were significantly greater in the Tg mice fed NC than in WT mice, as they are during pregnancy. However, when I3C was fed, these indicators of NO production became significantly less in the Tg mice than in WT mice. The effects of increased plasma prolactin were abolished by a genetic absence of eNOS. Thus, a threefold increase in plasma prolactin is sufficient to increase BP significantly and to markedly impair cardiac function, with effects mediated by NO produced by eNOS. We suggest that pregnant women with abnormally high prolactin levels may need special attention.
Collapse
|
23
|
Clapp C, Adán N, Ledesma-Colunga MG, Solís-Gutiérrez M, Triebel J, Martínez de la Escalera G. The role of the prolactin/vasoinhibin axis in rheumatoid arthritis: an integrative overview. Cell Mol Life Sci 2016; 73:2929-48. [PMID: 27026299 PMCID: PMC11108309 DOI: 10.1007/s00018-016-2187-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, inflammatory disease destroying articular cartilage and bone. The female preponderance and the influence of reproductive states in RA have long linked this disease to sexually dimorphic, reproductive hormones such as prolactin (PRL). PRL has immune-enhancing properties and increases in the circulation of some patients with RA. However, PRL also suppresses the immune system, stimulates the formation and survival of joint tissues, acquires antiangiogenic properties upon its cleavage to vasoinhibins, and protects against joint destruction and inflammation in the adjuvant-induced model of RA. This review addresses risk factors for RA linked to PRL, the effects of PRL and vasoinhibins on joint tissues, blood vessels, and immune cells, and the clinical and experimental data associating PRL with RA. This information provides important insights into the pathophysiology of RA and highlights protective actions of the PRL/vasoinhibin axis that could lead to therapeutic benefits.
Collapse
MESH Headings
- Angiogenesis Inhibitors/immunology
- Animals
- Arthritis, Rheumatoid/epidemiology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/physiopathology
- Cartilage, Articular/blood supply
- Cartilage, Articular/immunology
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Female
- Humans
- Immune Tolerance
- Immunity, Cellular
- Inflammation/epidemiology
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/physiopathology
- Joints/blood supply
- Joints/immunology
- Joints/pathology
- Joints/physiopathology
- Male
- Prolactin/immunology
- Reproduction
- Sex Factors
- Stress, Physiological
- Stress, Psychological
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico.
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - María G Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - Mariana Solís-Gutiérrez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| |
Collapse
|
24
|
Díaz-Lezama N, Wu Z, Adán-Castro E, Arnold E, Vázquez-Membrillo M, Arredondo-Zamarripa D, Ledesma-Colunga MG, Moreno-Carranza B, Martinez de la Escalera G, Colosi P, Clapp C. Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1. J Transl Med 2016; 96:283-95. [PMID: 26568297 DOI: 10.1038/labinvest.2015.135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood-retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood-retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG). Also, the transduction of AAV2 vectors and expression of AAV2 receptors and co-receptors were compared between the diabetic and the non-diabetic rat retinas. AAV2 vasoinhibin or AAV2 sFlt-1 vectors were injected intravitreally before or after enhanced BRBB due to diabetes induced by streptozotocin. The BRBB was examined by the Evans blue method, the vascular bed by fluorescein angiography, expression of the AAV2 EGFP reporter vector by confocal microscopy, and the AAV2 genome, expression of transgenes, receptors, and co-receptors by quantitative PCR. AAV2 vasoinhibin and sFlt-1 vectors inhibited the diabetes-mediated increase in BRBB when injected after, but not before, diabetes was induced. The AAV2 vasoinhibin vector decreased retinal microvascular abnormalities and the diabetes-induced reduction of the B-wave of the ERG, but it had no effect in non-diabetic controls. Also, retinal thickness was not altered by diabetes or by the AAV2 vasoinhibin vector. The AAV2 genome, vasoinhibin and sFlt-1 transgenes, and EGFP levels were higher in the retinas from diabetic rats and were associated with an elevated expression of AAV2 receptors (syndecan, glypican, and perlecan) and co-receptors (fibroblast growth factor receptor 1, αvβ5 integrin, and hepatocyte growth factor receptor). We conclude that retinal transduction and efficacy of AAV2 vectors are enhanced in diabetes, possibly due to their elevated cell entry. AAV2 vectors encoding vasoinhibin and sFlt-1 may be desirable gene therapeutics to target diabetic retinopathy and macular edema.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, NIH, Bethesda, MD, USA
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | | | | | | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
25
|
Triebel J, Bertsch T, Bollheimer C, Rios-Barrera D, Pearce CF, Hüfner M, Martínez de la Escalera G, Clapp C. Principles of the prolactin/vasoinhibin axis. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1193-203. [PMID: 26310939 PMCID: PMC4666935 DOI: 10.1152/ajpregu.00256.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/25/2015] [Indexed: 12/18/2022]
Abstract
The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany;
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Cornelius Bollheimer
- Institute for Biomedicine of Aging, Friedrich-Alexander Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Daniel Rios-Barrera
- European Molecular Biology Laboratory, Developmental Biology Unit, Directors' Research, Heidelberg, Germany
| | - Christy F Pearce
- Southern Colorado Maternal Fetal Medicine, St. Francis Medical Campus, Centura Health, Colorado Springs, Colorado
| | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| |
Collapse
|
26
|
Li Z, Liu XB, Liu YH, Xue YX, Wang P, Liu LB, Liu J, Yao YL, Ma J. Roles of Serine/Threonine Phosphatases in Low-Dose Endothelial Monocyte-Activating Polypeptide-II-Induced Opening of Blood-Tumor Barrier. J Mol Neurosci 2015; 57:11-20. [PMID: 26087743 DOI: 10.1007/s12031-015-0604-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022]
Abstract
Previous studies have demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) induces blood-tumor barrier (BTB) opening via RhoA/Rho kinase/PKC-α/β signaling pathway. In a recent study, we revealed that low-dose EMAP-II induced significant increases in expression levels of serine/threonine (Ser/Thr) phosphatase (PP)1 and 2A in rat brain microvascular endothelial cells (RBMECs) of BTB model. In addition, PKC-ζ/PP2A signaling pathway is involved in EMAP-II-induced BTB hyperpermeability. The present study further investigated the exact roles of PPs in this process. In an in vitro BTB model, low-dose EMAP-II (0.05 nM) induced a significant increase in PP1 activity in RBMECs. There was an interaction between PKC-α/β and PP1 in RBMECs. Inhibition of PKC-α/β activity with GÖ6976 completely blocked EMAP-II-induced activation of PP1. Conversely, inhibition of PP1 activity with tautomycin had no effect on EMAP-II-induced PKC-α/β activation. Like GÖ6976, tautomycin significantly prevented EMAP-II-induced BTB hyperpermeability and MLC phosphorylation in RBMECs. Also, in this study, EMAP-II induced a marked redistribution of occludin and a significant dephosphorylation of occludin on Ser/Thr residues in RBMECs. Similar with GÖ6976 pretreatment, tautomycin pretreatment dramatically diminished EMAP-II-induced redistribution of occludin. Furthermore, pretreatment with tautomycin significantly inhibited EMAP-II-induced dephosphorylation of occludin on Ser residues. However, pretreatment with okadaic acid (an inhibitor of PP2A) significantly prevented changes in Ser-phosphorylated occludin induced by EMAP-II treatment. Collectively, this study demonstrates that low-dose EMAP-II increases BTB permeability via a RhoA/Rho kinase/PKC-α/β/PP1 signaling pathway and that PP1/PP2A-mediated Ser/Thr dephosphorylation of occludin plays an important role in EMAP-II-induced BTB hyperpermeability.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, 110004, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gonzalez C, Rosas-Hernandez H, Jurado-manzano B, Ramirez-Lee MA, Salazar-Garcia S, Martinez-Cuevas PP, Velarde-salcedo AJ, Morales-Loredo H, Espinosa-Tanguma R, Ali SF, Rubio R. The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacol Sin 2015; 36:572-86. [PMID: 25891087 DOI: 10.1038/aps.2014.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/26/2014] [Indexed: 01/17/2023] Open
Abstract
AIM Prolactin family hormones include growth hormone, placental lactogen and prolactin, which are able to regulate angiogenesis via NO and prostaglandins. However, their effects on vascular tone are not fully understood. The aim of this study was to evaluate the effects of prolactin family hormones on rat vascular tone in vitro. METHODS Aortic rings were prepared from adult male rats and precontracted with phenylephrine, then treated with the hormones and drugs. The tension was measured with isometric force displacement transducer connected to a polygraph. NO production and prostacyclin release in physiological solution was determined. Cultured rat aortic endothelial cells (RAECs) were treated with the hormones and drugs, and the phosphorylation of eNOS at serine 1177 was assessed using Western bolt analysis. RESULTS Administration of growth hormone or placental lactogen (0.01-100 nmol/L) induced endothelium-dependent vasodilation. Both the hormones significantly increased the phosphorylation of eNOS in RAECs and NO level in physiological solution. Preincubation with L-NAME blocked growth hormone- or placental lactogen-induced vasodilation and NO production. Preincubation with an antibody against growth hormone receptors blocked growth hormone- and placental lactogen-induced vasodilation. Addition of a single dose of prolactin (0.01 nmol/L) induced sustained vessel relaxation, whereas multiple doses of prolactin induced a biphasic contraction-relaxation effect. The vascular effects of prolactin depended on endothelium. Prolactin significantly increased the level of prostacyclin I2 in physiological solution. Preincubation with indomethacin or an antibody against prolactin receptors blocked prolactin-induced vasodilation. CONCLUSION The prolactin family hormones regulate rat vascular tone, selectively promoting either relaxation or contraction of vascular smooth muscle via activation of either growth hormone receptors or prolactin receptors within the endothelium.
Collapse
|
28
|
Arredondo Zamarripa D, Díaz-Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma-Colunga MG, Arnold E, Clapp C, Thebault S. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci 2014; 8:333. [PMID: 25368550 PMCID: PMC4202700 DOI: 10.3389/fncel.2014.00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.
Collapse
Affiliation(s)
- David Arredondo Zamarripa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Nundehui Díaz-Lezama
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Rodrigo Meléndez García
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jesús Chávez Balderas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Norma Adán
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Maria G Ledesma-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Edith Arnold
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Carmen Clapp
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Stéphanie Thebault
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| |
Collapse
|
29
|
McCole DF. Phosphatase regulation of intercellular junctions. Tissue Barriers 2013; 1:e26713. [PMID: 24868494 DOI: 10.4161/tisb.26713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023] Open
Abstract
Intercellular junctions represent the key contact points and sites of communication between neighboring cells. Assembly of these junctions is absolutely essential for the structural integrity of cell monolayers, tissues and organs. Disruption of junctions can have severe consequences such as diarrhea, edema and sepsis, and contribute to the development of chronic inflammatory diseases. Cell junctions are not static structures, but rather they represent highly dynamic micro-domains that respond to signals from the intracellular and extracellular environments to modify their composition and function. This review article will focus on the regulation of tight junctions and adherens junctions by phosphatase enzymes that play an essential role in preserving and modulating the properties of intercellular junction proteins.
Collapse
Affiliation(s)
- Declan F McCole
- Division of Biomedical Sciences; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
30
|
Hilfiker-Kleiner D, Struman I, Hoch M, Podewski E, Sliwa K. 16-kDa prolactin and bromocriptine in postpartum cardiomyopathy. Curr Heart Fail Rep 2012; 9:174-82. [PMID: 22729360 DOI: 10.1007/s11897-012-0095-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peripartum cardiomyopathy (PPCM) is a potentially life-threatening heart disease emerging toward the end of pregnancy or in the first postpartal months in previously healthy women. Recent data suggest a central role of unbalanced peri-/postpartum oxidative stress that triggers the proteolytic cleavage of the nursing hormone prolactin (PRL) into a potent antiangiogenic, proapoptotic, and proinflammatory 16-kDa PRL fragment. This notion is supported by the observation that inhibition of PRL secretion by bromocriptine, a dopamine D2-receptor agonist, prevented the onset of disease in an animal model of PPCM and by first clinical experiences where bromocriptine seem to exert positive effects with respect to prevention or treatment of PPCM patients. Here, we highlight the current state of knowledge on diagnosis of PPCM, provide insights into the biology and pathophysiology of 16-kDa PRL and bromocriptine, and outline potential consequences for the clinical management and treatment options for PPCM patients.
Collapse
Affiliation(s)
- Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|
31
|
Song MK, Roufogalis BD, Huang THW. Modulation of diabetic retinopathy pathophysiology by natural medicines through PPAR-γ-related pharmacology. Br J Pharmacol 2012; 165:4-19. [PMID: 21480863 DOI: 10.1111/j.1476-5381.2011.01411.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes and remains a major cause of preventable blindness among adults at working age. DR involves an abnormal pathology of major retinal cells, including retinal pigment epithelium, microaneurysms, inter-retinal oedema, haemorrhage, exudates (hard exudates) and intraocular neovascularization. The biochemical mechanisms associated with hyperglycaemic-induced DR are through multifactorial processes. Peroxisome proliferator-activated receptor-γ (PPAR-γ) plays an important role in the pathogenesis of DR by inhibiting diabetes-induced retinal leukostasis and leakage. Despite DR causing eventual blindness, only a few visual or ophthalmic symptoms are observed until visual loss develops. Therefore, early medical interventions and prevention are the current management strategies. Laser photocoagulation therapy is the most common treatment. However, this therapy may cause retinal damage and scarring. Herbal and traditional natural medicines may provide an alternative to prevent or delay the progression of DR. This review provides an analysis of the therapeutic potential of herbal and traditional natural medicines or their active components for the slowdown of progression of DR and their possible mechanism through the PPAR-γ pathway.
Collapse
Affiliation(s)
- Min K Song
- Herbal Medicines Research and Education Centre, Faculty of Pharmacy, The University of Sydney, NSW, Australia
| | | | | |
Collapse
|
32
|
Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, Arenas E, Parish CL. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One 2011; 6:e18373. [PMID: 21483795 PMCID: PMC3069098 DOI: 10.1371/journal.pone.0018373] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 03/04/2011] [Indexed: 11/19/2022] Open
Abstract
During development, precise temporal and spatial gradients are responsible for
guiding axons to their appropriate targets. Within the developing ventral
midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain
targets remain to be fully elucidated. Wnts are morphogens that have been
identified as axon guidance molecules. Several Wnts are expressed in the VM
where they regulate the birth of DA neurons. Here, we describe that a precise
temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal
projections by VM DA neurons. In mice at E11.5, Wnt5a is
expressed in the VM where it was found to promote DA neurite and axonal growth
in VM primary cultures. By E14.5, when DA axons are approaching their striatal
target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM
explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is
capable of repelling DA neurites. Antagonism experiments revealed that the
effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase,
Rac1 (a component of the non-canonical Wnt planar cell polarity pathway).
Moreover, the effects were specific as they could be blocked by Wnt5a antibody,
sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further
verified in Wnt5a−/− mice, where
fasciculation of the medial forebrain bundle (MFB) as well as the density of DA
neurites in the MFB and striatal terminals were disrupted. Thus, our results
identify a novel role of Wnt5a in DA axon growth and guidance.
Collapse
Affiliation(s)
- Brette D. Blakely
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
- Centre for Neurosciences, The University of Melbourne, Victoria,
Australia
| | - Christopher R. Bye
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
| | | | - Malcolm K. Horne
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
- Centre for Neurosciences, The University of Melbourne, Victoria,
Australia
- St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Maria L. Macheda
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital,
Parkville, Victoria, Australia
| | - Steven A. Stacker
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital,
Parkville, Victoria, Australia
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Biochemistry and
Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Clare L. Parish
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
- Centre for Neurosciences, The University of Melbourne, Victoria,
Australia
- * E-mail:
| |
Collapse
|
33
|
Lkhider M, Seddiki T, Ollivier-Bousquet M. La prolactine et son fragment 16 kDa dans les tissus de mammifères. Med Sci (Paris) 2010; 26:1049-55. [DOI: 10.1051/medsci/201026121049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Arnold E, Rivera JC, Thebault S, Moreno-Páramo D, Quiroz-Mercado H, Quintanar-Stéphano A, Binart N, Martínez de la Escalera G, Clapp C. High levels of serum prolactin protect against diabetic retinopathy by increasing ocular vasoinhibins. Diabetes 2010; 59:3192-7. [PMID: 20823101 PMCID: PMC2992782 DOI: 10.2337/db10-0873] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Increased retinal vasopermeability (RVP) occurs early in diabetes and is crucial for the development of sight-threatening proliferative diabetic retinopathy (DR). The hormone prolactin (PRL) is proteolytically processed to vasoinhibins, a family of peptides that inhibit the excessive RVP related to DR. Here, we investigate the circulating levels of PRL in association with DR in men and test whether increased circulating PRL, by serving as a source of ocular vasoinhibins, can reduce the pathological RVP in diabetes. RESEARCH DESIGN AND METHODS Serum PRL was evaluated in 40 nondiabetic and 181 diabetic men at various stages of DR. Retinal vasoinhibins were measured in rats rendered hyperprolactinemic by placing two anterior pituitary grafts under the kidney capsule and in PRL receptor-null mice. RVP was determined in hyperprolactinemic rats subjected to the intraocular injection of vascular endothelial growth factor (VEGF) or made diabetic with streptozotocin. RESULTS The circulating levels of PRL increased in diabetes and were higher in diabetic patients without retinopathy than in those with proliferative DR. In rodents, hyperprolactinemia led to vasoinhibin accumulation within the retina; genetic deletion of the PRL receptor prevented this effect, indicating receptor-mediated incorporation of systemic PRL into the eye. Hyperprolactinemia reduced both VEGF-induced and diabetes-induced increase of RVP. This reduction was blocked by bromocriptine, an inhibitor of pituitary PRL secretion, which lowers the levels of circulating PRL and retinal vasoinhibins. CONCLUSIONS Circulating PRL influences the progression of DR after its intraocular conversion to vasoinhibins. Inducing hyperprolactinemia may represent a novel therapy against DR.
Collapse
Affiliation(s)
- Edith Arnold
- Neurobiology Institute, National University of Mexico (UNAM), Campus UNAM-Juriquilla, Juriquilla, Queretaro, Mexico
| | - José C. Rivera
- Neurobiology Institute, National University of Mexico (UNAM), Campus UNAM-Juriquilla, Juriquilla, Queretaro, Mexico
| | - Stéphanie Thebault
- Neurobiology Institute, National University of Mexico (UNAM), Campus UNAM-Juriquilla, Juriquilla, Queretaro, Mexico
| | - Daniel Moreno-Páramo
- Association for the Prevention of Blindness (APEC), Hospital “Dr. Luis Sanchez Bulnes,” Mexico City, Mexico
| | - Hugo Quiroz-Mercado
- Association for the Prevention of Blindness (APEC), Hospital “Dr. Luis Sanchez Bulnes,” Mexico City, Mexico
- Denver Health Medical Center, Denver, Colorado
- Department of Opthalmology, School of Medicine, University of Colorado, Denver, Colorado
| | | | - Nadine Binart
- INSERM U845, University Paris-Descartes, Faculty of Medicine, Paris, France
| | | | - Carmen Clapp
- Neurobiology Institute, National University of Mexico (UNAM), Campus UNAM-Juriquilla, Juriquilla, Queretaro, Mexico
- Corresponding author: Carmen Clapp,
| |
Collapse
|
35
|
Farjo KM, Ma JX. The potential of nanomedicine therapies to treat neovascular disease in the retina. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:21. [PMID: 20932321 PMCID: PMC2958857 DOI: 10.1186/2040-2384-2-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/08/2010] [Indexed: 12/20/2022]
Abstract
Neovascular disease in the retina is the leading cause of blindness in all age groups. Thus, there is a great need to develop effective therapeutic agents to inhibit and prevent neovascularization in the retina. Over the past decade, anti-VEGF therapeutic agents have entered the clinic for the treatment of neovascular retinal disease, and these agents have been effective for slowing and preventing the progression of neovascularization. However, the therapeutic benefits of anti-VEGF therapy can be diminished by the need for prolonged treatment regimens of repeated intravitreal injections, which can lead to complications such as endophthalmitis, retinal tears, and retinal detachment. Recent advances in nanoparticle-based drug delivery systems offer the opportunity to improve bioactivity and prolong bioavailability of drugs in the retina to reduce the risks associated with treating neovascular disease. This article reviews recent advances in the development of nanoparticle-based drug delivery systems which could be utilized to improve the treatment of neovascular disease in the retina.
Collapse
Affiliation(s)
- Krysten M Farjo
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
36
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
37
|
Miller TW, Isenberg JS, Roberts DD. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009; 109:3099-124. [PMID: 19374334 PMCID: PMC2801866 DOI: 10.1021/cr8005125] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - David D. Roberts
- To whom correspondence should be addressed: NIH, Building 10, Room 2A33, 10 Center Dr, MSC1500, Bethesda, Maryland 20892,
| |
Collapse
|
38
|
Clapp C, Thebault S, Arnold E, García C, Rivera JC, de la Escalera GM. Vasoinhibins: novel inhibitors of ocular angiogenesis. Am J Physiol Endocrinol Metab 2008; 295:E772-8. [PMID: 18544641 DOI: 10.1152/ajpendo.90358.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the quiescent state of blood vessels in the retina leads to aberrant vasopermeability and angiogenesis, the major causes of vision loss in diabetic retinopathy. Prolactin is expressed throughout the retina, where it is proteolytically cleaved to vasoinhibins, a family of peptides (including the 16-kDa fragment of prolactin) with potent antiangiogenic, vasoconstrictive, and antivasopermeability actions. Ocular vasoinhibins act directly on endothelial cells to block blood vessel growth and dilation and to promote apoptosis-mediated vascular regression. Also, vasoinhibins prevent retinal angiogenesis and vasopermeability associated with diabetic retinopathy, and inactivation of endothelial nitric oxide synthase via protein phosphatase 2A is among the various mechanisms mediating their actions. Here, we discuss the potential role of vasoinhibins both in the maintenance of normal retinal vasculature and in the cause and prevention of diabetic retinopathy and other vasoproliferative retinopathies.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Apartado Postal 1-1141, Querétaro, Qro., Mexico, 76001.
| | | | | | | | | | | |
Collapse
|