1
|
Okujima Y, Watanabe T, Ito T, Inoue Y, Kasai Y, Imai Y, Nakamura Y, Koizumi M, Yoshida O, Tokumoto Y, Hirooka M, Abe M, Kawakami R, Saitou T, Imamura T, Murakami Y, Hiasa Y. PKR associates with 4.1R to promote anchorage-independent growth of hepatocellular carcinoma and lead to poor prognosis. Sci Rep 2024; 14:27768. [PMID: 39532917 PMCID: PMC11557841 DOI: 10.1038/s41598-024-75142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
RNA-dependent protein kinase (PKR) may have a positive regulatory role in controlling tumor growth and progression in hepatocellular carcinoma (HCC). However, the downstream substrates and the molecular mechanism of PKR in the growth and progression of HCC have not been clarified. In this study, mass spectrometry analysis was performed with immunoprecipitated samples, and 4.1R was identified as a protein that binds to PKR. In transfected COS7 cells, an immunoprecipitation experiment showed that 4.1R binds to wild-type PKR, but not to a kinase-deficient mutant PKR, suggesting that PKR binds to 4.1R in a kinase activity-dependent manner. In HCC cell lines, HuH7 and HepG2, the expression level of 4.1R protein was shown to be regulated by protein expression and activation of PKR. Interestingly, high expression of 4.1R, as well as PKR, is associated with a worse prognosis in HCC. PKR increased HCC cell growth in both anchorage-dependent and anchorage-independent manners, whereas 4.1R was involved in HCC cell growth only in an anchorage-independent manner, not in an anchorage-dependent manner. The rescue experiment indicated that increased anchorage-independent growth of HCC cells by PKR might be caused by 4.1R. In conclusion, PKR associates with 4.1R and promotes anchorage-independent growth of HCC. The PKR-4.1R axis might be a new therapeutic target in HCC.
Collapse
Affiliation(s)
- Yusuke Okujima
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yutaka Kasai
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mitsuhito Koizumi
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
2
|
Sang SY, Wang YJ, Liang T, Liu Y, Liu JJ, Li H, Liu X, Kang QZ, Wang T. Protein 4.1R regulates M1 macrophages polarization via glycolysis, alleviating sepsis-induced liver injury in mice. Int Immunopharmacol 2024; 128:111546. [PMID: 38237224 DOI: 10.1016/j.intimp.2024.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Acute liver injury (ALI) is a common clinical disease caused by sepsis, metabolic syndrome, hepatitis virus. Macrophage plays an important role in the development of ALI, which is characterized by polarization and inflammatory regulation. The polarization process of macrophages is related to membrane binding proteins and adaptors. Protein 4.1R acts as an adaptor, linking membrane proteins to the cytoskeleton, and is involved in cell activation and cytokine secretion. However, whether protein 4.1R is involved in regulating macrophage polarization and inflammation-induced liver injury remains unknown. In this study, protein 4.1R is identified with the special effect on macrophage M1 polarization. And it is further demonstrated that protein 4.1R deficiency significantly enhance glycolytic metabolism. Mechanistically, the regulation of protein 4.1R on pyruvate kinase M2 (PKM2) plays a key role in glycolysis metabolism. In addition, we found that protein 4.1R directly interacts with toll-like receptor 4 (TLR4), inhibits the activation of the AKT/HIF-1α signaling pathway. In conclusion, protein 4.1R targets HIF-1α mediated glycolysis regulates M1 macrophage polarization, indicating that protein 4.1R is a candidate for regulating macrophage mediated inflammatory response. In conclusion, we have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy. We have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy.
Collapse
Affiliation(s)
- Si-Yao Sang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuan-Jiao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Taotao Liang
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jiao-Jiao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Qiao-Zhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Vorn R, Devoto C, Meier TB, Lai C, Yun S, Broglio SP, Mithani S, McAllister TW, Giza CC, Kim HS, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz KM, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, McCrea MA, Gill JM. Are EPB41 and alpha-synuclein diagnostic biomarkers of sport-related concussion? Findings from the NCAA and Department of Defense CARE Consortium. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:379-387. [PMID: 36403906 DOI: 10.1016/j.jshs.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/15/2022] [Accepted: 10/08/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Current protein biomarkers are only moderately predictive at identifying individuals with mild traumatic brain injury or concussion. Therefore, more accurate diagnostic markers are needed for sport-related concussion. METHODS This was a multicenter, prospective, case-control study of athletes who provided blood samples and were diagnosed with a concussion or were a matched non-concussed control within the National Collegiate Athletic Association-Department of Defense Concussion Assessment, Research, and Education Consortium conducted between 2015 and 2019. The blood was collected within 48 h of injury to identify protein abnormalities at the acute and subacute timepoints. Athletes with concussion were divided into 6 h post-injury (0-6 h post-injury) and after 6 h post-injury (7-48 h post-injury) groups. We applied a highly multiplexed proteomic technique that used a DNA aptamers assay to target 1305 proteins in plasma samples from athletes with and without sport-related concussion. RESULTS A total of 140 athletes with concussion (79.3% males; aged 18.71 ± 1.10 years, mean ± SD) and 21 non-concussed athletes (76.2% males; 19.14 ± 1.10 years) were included in this study. We identified 338 plasma proteins that significantly differed in abundance (319 upregulated and 19 downregulated) in concussed athletes compared to non-concussed athletes. The top 20 most differentially abundant proteins discriminated concussed athletes from non-concussed athletes with an area under the curve (AUC) of 0.954 (95% confidence interval: 0.922‒0.986). Specifically, after 6 h of injury, the individual AUC of plasma erythrocyte membrane protein band 4.1 (EPB41) and alpha-synuclein (SNCA) were 0.956 and 0.875, respectively. The combination of EPB41 and SNCA provided the best AUC (1.000), which suggests this combination of candidate plasma biomarkers is the best for diagnosing concussion in athletes after 6 h of injury. CONCLUSION Our data suggest that proteomic profiling may provide novel diagnostic protein markers and that a combination of EPB41 and SNCA is the most predictive biomarker of concussion after 6 h of injury.
Collapse
Affiliation(s)
- Rany Vorn
- Johns Hopkins School of Nursing and Medicine, Baltimore, MD 21205, USA; National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chen Lai
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc., Mountain View, CA 94086, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara Mithani
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher C Giza
- Departments of Pediatrics and Neurosurgery, University of California at Los Angeles (UCLA), Los Angeles, CA 90024, USA
| | - Hyung-Suk Kim
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Kenneth L Cameron
- John A. Feagin Sports Medicine Fellowship, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO 80840, USA
| | - Jonathan Jackson
- United States Air Force Academy, Colorado Springs, CO 80840, USA
| | - Kevin M Guskiewicz
- Mathew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jason P Mihalik
- Mathew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alison Brooks
- Department of Orthopedics, Division of Sports Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Stefan Duma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paul Pasquina
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica M Gill
- Johns Hopkins School of Nursing and Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Delgadillo LF, Huang YS, Leon S, Palis J, Waugh RE. Development of Mechanical Stability in Late-Stage Embryonic Erythroid Cells: Insights From Fluorescence Imaged Micro-Deformation Studies. Front Physiol 2022; 12:761936. [PMID: 35082687 PMCID: PMC8784407 DOI: 10.3389/fphys.2021.761936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The combined use of fluorescence labeling and micro-manipulation of red blood cells has proven to be a powerful tool for understanding and characterizing fundamental mechanisms underlying the mechanical behavior of cells. Here we used this approach to study the development of the membrane-associated cytoskeleton (MAS) in primary embryonic erythroid cells. Erythropoiesis comes in two forms in the mammalian embryo, primitive and definitive, characterized by intra- and extra-vascular maturation, respectively. Primitive erythroid precursors in the murine embryo first begin to circulate at embryonic day (E) 8.25 and mature as a semi-synchronous cohort before enucleating between E12.5 and E16.5. Previously, we determined that the major components of the MAS become localized to the membrane between E10.5 and E12.5, and that this localization is associated with an increase in membrane mechanical stability over this same period. The change in mechanical stability was reflected in the creation of MAS-free regions of the membrane at the tips of the projections formed when cells were aspirated into micropipettes. The tendency to form MAS-free regions decreases as primitive erythroid cells continue to mature through E14.5, at least 2 days after all detectable cytoskeletal components are localized to the membrane, indicating continued strengthening of membrane cohesion after membrane localization of cytoskeletal components. Here we demonstrate that the formation of MAS-free regions is the result of a mechanical failure within the MAS, and not the detachment of membrane bilayer from the MAS. Once a "hole" is formed in the MAS, the skeletal network contracts laterally along the aspirated projection to form the MAS-free region. In protein 4.1-null primitive erythroid cells, the tendency to form MAS-free regions is markedly enhanced. Of note, similar MAS-free regions were observed in maturing erythroid cells from human marrow, indicating that similar processes occur in definitive erythroid cells. We conclude that localization of cytoskeletal components to the cell membrane of mammalian erythroid cells during maturation is insufficient by itself to produce a mature MAS, but that subsequent processes are additionally required to strengthen intraskeletal interactions.
Collapse
Affiliation(s)
- Luis F. Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Yu Shan Huang
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Sami Leon
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - James Palis
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States,*Correspondence: Richard E. Waugh,
| |
Collapse
|
5
|
The protein 4.1R downregulates VEGFA in M2 macrophages to inhibit colon cancer metastasis. Exp Cell Res 2021; 409:112896. [PMID: 34717920 DOI: 10.1016/j.yexcr.2021.112896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
M2 macrophages are crucial components of the tumour microenvironment and have been shown to be closely related to tumour progression. Co-culture with 4.1R-/- M2 macrophages enhances the malignancy of colon cancer (CC), but the mechanism remains unclear. Here, we report that protein 4.1R knockout reduced the phagocytosis of M2 macrophages (M-CSF/IL-4-treated bone marrow cells) and promoted MC38 colon cancer cell proliferation, migration, invasion, tumour formation and epithelial-mesenchymal transition (EMT), which are regulated by M2 macrophages. Further mechanistic dissection revealed that the 4.1R knockout upregulated vascular endothelial growth factor A (VEGFA) secreted by M2 macrophages and promoted colon cancer progression by activating the PI3K/AKT signalling pathway. In summary, our present study identified that 4.1R downregulates VEGFA secretion in M2 macrophages and delays the malignant potential of colon cancer by inhibiting the PI3K/AKT signalling pathway.
Collapse
|
6
|
Draberova L, Draberova H, Potuckova L, Halova I, Bambouskova M, Mohandas N, Draber P. Cytoskeletal Protein 4.1R Is a Positive Regulator of the FcεRI Signaling and Chemotaxis in Mast Cells. Front Immunol 2020; 10:3068. [PMID: 31993060 PMCID: PMC6970983 DOI: 10.3389/fimmu.2019.03068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Protein 4.1R, a member of the 4.1 family, functions as a bridge between cytoskeletal and plasma membrane proteins. It is expressed in T cells, where it binds to a linker for activation of T cell (LAT) family member 1 and inhibits its phosphorylation and downstream signaling events after T cell receptor triggering. The role of the 4.1R protein in cell activation through other immunoreceptors is not known. In this study, we used 4.1R-deficient (4.1R-KO) and 4.1R wild-type (WT) mice and explored the role of the 4.1R protein in the high-affinity IgE receptor (FcεRI) signaling in mast cells. We found that bone marrow mast cells (BMMCs) derived from 4.1R-KO mice showed normal growth in vitro and expressed FcεRI and c-KIT at levels comparable to WT cells. However, 4.1R-KO cells exhibited reduced antigen-induced degranulation, calcium response, and secretion of tumor necrosis factor-α. Chemotaxis toward antigen and stem cell factor (SCF) and spreading on fibronectin were also reduced in 4.1R-KO BMMCs, whereas prostaglandin E2-mediated chemotaxis was not affected. Antibody-induced aggregation of tetraspanin CD9 inhibited chemotaxis toward antigen in WT but not 4.1R-KO BMMCs, implying a CD9-4.1R protein cross-talk. Further studies documented that in the absence of 4.1R, antigen-mediated phosphorylation of FcεRI β and γ subunits was not affected, but phosphorylation of SYK and subsequent signaling events such as phosphorylation of LAT1, phospholipase Cγ1, phosphatases (SHP1 and SHIP), MAP family kinases (p38, ERK, JNK), STAT5, CBL, and mTOR were reduced. Immunoprecipitation studies showed the presence of both LAT1 and LAT2 (LAT, family member 2) in 4.1R immunocomplexes. The positive regulatory role of 4.1R protein in FcεRI-triggered activation was supported by in vivo experiments in which 4.1R-KO mice showed the normal presence of mast cells in the ears and peritoneum, but exhibited impaired passive cutaneous anaphylaxis. The combined data indicate that the 4.1R protein functions as a positive regulator in the early activation events after FcεRI triggering in mast cells.
Collapse
Affiliation(s)
- Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Potuckova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Monika Bambouskova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, United States
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Huang SC, Liang JY, Vu LV, Yu FH, Ou AC, Ou JP, Zhang HS, Burnett KM, Benz EJ. Epithelial-specific isoforms of protein 4.1R promote adherens junction assembly in maturing epithelia. J Biol Chem 2020; 295:191-211. [PMID: 31776189 PMCID: PMC6952607 DOI: 10.1074/jbc.ra119.009650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial adherens junctions (AJs) and tight junctions (TJs) undergo disassembly and reassembly during morphogenesis and pathological states. The membrane-cytoskeleton interface plays a crucial role in junctional reorganization. Protein 4.1R (4.1R), expressed as a diverse array of spliceoforms, has been implicated in linking the AJ and TJ complex to the cytoskeleton. However, which specific 4.1 isoform(s) participate and the mechanisms involved in junctional stability or remodeling remain unclear. We now describe a role for epithelial-specific isoforms containing exon 17b and excluding exon 16 4.1R (4.1R+17b) in AJs. 4.1R+17b is exclusively co-localized with the AJs. 4.1R+17b binds to the armadillo repeats 1-2 of β-catenin via its membrane-binding domain. This complex is linked to the actin cytoskeleton via a bispecific interaction with an exon 17b-encoded peptide. Exon 17b peptides also promote fodrin-actin complex formation. Expression of 4.1R+17b forms does not disrupt the junctional cytoskeleton and AJs during the steady-state or calcium-dependent AJ reassembly. Overexpression of 4.1R-17b forms, which displace the endogenous 4.1R+17b forms at the AJs, as well as depletion of the 4.1R+17b forms both decrease junctional actin and attenuate the recruitment of spectrin to the AJs and also reduce E-cadherin during the initial junctional formation of the AJ reassembly process. Expressing 4.1R+17b forms in depleted cells rescues junctional localization of actin, spectrin, and E-cadherin assembly at the AJs. Together, our results identify a critical role for 4.1R+17b forms in AJ assembly and offer additional insights into the spectrin-actin-4.1R-based membrane skeleton as an emerging regulator of epithelial integrity and remodeling.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
| | - Jia Y Liang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Alexander C Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Jennie Park Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Kimberly M Burnett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
8
|
Fan D, Li J, Li Y, Guo Y, Zhang X, Wang W, Liu X, Liu J, Dai L, Zhang L, Kang Q, Ji Z. Protein 4.1R negatively regulates CD8 + T-cell activation by modulating phosphorylation of linker for activation of T cells. Immunology 2019; 157:312-321. [PMID: 31135971 DOI: 10.1111/imm.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
Protein 4.1R, an 80 000 MW membrane skeleton protein, is a vital component of the red blood cell membrane cytoskeleton that stabilizes the spectrin-actin network and regulates membrane properties of deformability and mechanical stability. It has been shown that 4.1R is expressed in T cells, including CD8+ T cells, but its role in CD8+ T cells remains unclear. Here, we have explored the role of 4.1R in CD8+ T cells using 4.1R-/- mice. Our results showed that cell activation, proliferation and secretion levels of interleukin-2 and interferon-γ were significantly increased in 4.1R-/- CD8+ T cells. Furthermore, the phosphorylation levels of linker for activation of T cells (LAT) and its downstream signaling molecule extracellular signal-regulated kinase were enhanced in the absence of 4.1R. In vitro co-immunoprecipitation experiments showed a direct interaction between 4.1R and LAT. Moreover, 4.1R-/- CD8+ T cells and mice exhibited an enhanced T-cell-dependent immune response. These data enabled the identification of a negative regulation function for 4.1R in CD8+ T cells by a direct association between 4.1R and LAT, possibly through inhibiting phosphorylation of LAT and then modulating intracellular signal transduction.
Collapse
Affiliation(s)
- Dandan Fan
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital Affiliated To Henan University of Science and Technology, Xuchang, China
| | - Yi Li
- Henan Key Laboratory of Medical Pathogen Biology, Center for Disease Control and Prevention of Henan Province, Zhengzhou, China
| | - Yaxin Guo
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaolin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojie Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjing Liu
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liguo Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Ji
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Richards AL, Howie HL, Kapp LM, Hendrickson JE, Zimring JC, Hudson KE. Innate B-1 B Cells Are Not Enriched in Red Blood Cell Autoimmune Mice: Importance of B Cell Receptor Transgenic Selection. Front Immunol 2017; 8:1366. [PMID: 29163471 PMCID: PMC5675845 DOI: 10.3389/fimmu.2017.01366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
Autoimmune hemolytic anemia (AIHA) results from breakdown of humoral tolerance to RBC antigens. Past analyses of B-cell receptor transgenic (BCR-Tg) mice that recognize RBC autoantigens led to a paradigm in which autoreactive conventional B-2 B cells are deleted whereas extramedullary B-1 B cells escape deletion due to lack of exposure to RBCs. However, BCR-Tg mice utilized to shape the current paradigm were unable to undergo receptor editing or class-switching. Given the importance of receptor editing as mechanism to tolerize autoreactive B cells during central tolerance, we hypothesized that expansion of autoreactive B-1 B cells is a consequence of the inability of the autoreactive BCR to receptor edit. To test this hypothesis, we crossed two separate strains of BCR-Tg mice with transgenic mice expressing the BCR target on RBCs. Both BCR-Tg mice express the same immunoglobulin and, thus, secrete antibodies with identical specificity, but one strain (SwHEL) has normal receptor editing, whereas the other (IgHEL) does not. Similar to other AIHA models, the autoreactive IgHEL strain showed decreased B-2 B cells, an enrichment of B-1 B cells, and detectable anti-RBC autoantibodies and decreased RBC hematocrit and hemoglobin values. However, autoreactive SwHEL mice had induction of tolerance in both B-2 and B-1 B cells with anti-RBC autoantibody production without anemia. These data generate new understanding and challenge the existing paradigm of B cell tolerance to RBC autoantigens. Furthermore, these findings demonstrate that immune responses vary when BCR-Tg do not retain BCR editing and class-switching functions.
Collapse
Affiliation(s)
| | - Heather L Howie
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | - Linda M Kapp
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine and Pediatrics, Yale University, New Haven, CT, United States
| | - James C Zimring
- Bloodworks Northwest Research Institute, Seattle, WA, United States.,Department of Laboratory Medicine, Division of Hematology, University of Washington, Seattle, WA, United States.,Department of Internal Medicine, Division of Hematology, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
10
|
Ning S, Kang Q, Fan D, Liu J, Xue C, Zhang X, Ding C, Zhang J, Peng Q, Ji Z. Protein 4.1R is Involved in the Transport of 5-Aminolevulinic Acid by Interaction with GATs in MEF Cells. Photochem Photobiol 2017; 94:173-178. [DOI: 10.1111/php.12842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/30/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Shuwei Ning
- Institute of Medical and Pharmaceutical Sciences; Zhengzhou University; Zhengzhou China
- School of Life Sciences; Zhengzhou University; Zhengzhou China
| | - Qiaozhen Kang
- School of Life Sciences; Zhengzhou University; Zhengzhou China
| | - Dandan Fan
- Institute of Medical and Pharmaceutical Sciences; Zhengzhou University; Zhengzhou China
| | - Jingjing Liu
- Institute of Medical and Pharmaceutical Sciences; Zhengzhou University; Zhengzhou China
| | - Chaoyue Xue
- Institute of Medical and Pharmaceutical Sciences; Zhengzhou University; Zhengzhou China
- School of Life Sciences; Zhengzhou University; Zhengzhou China
| | - Xiaolin Zhang
- Institute of Medical and Pharmaceutical Sciences; Zhengzhou University; Zhengzhou China
- School of Life Sciences; Zhengzhou University; Zhengzhou China
| | - Cong Ding
- School of Life Sciences; Zhengzhou University; Zhengzhou China
| | - Jianying Zhang
- Institute of Medical and Pharmaceutical Sciences; Zhengzhou University; Zhengzhou China
| | - Qian Peng
- Department of Pathology; The Norwegian Radium Hospital; Oslo University Hospital; University of Oslo; Montebello Oslo Norway
| | - Zhenyu Ji
- Institute of Medical and Pharmaceutical Sciences; Zhengzhou University; Zhengzhou China
| |
Collapse
|
11
|
Zhou S, Huang YS, Kingsley PD, Cyr KH, Palis J, Wan J. Microfluidic assay of the deformability of primitive erythroblasts. BIOMICROFLUIDICS 2017; 11:054112. [PMID: 29085523 PMCID: PMC5653377 DOI: 10.1063/1.4999949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.
Collapse
Affiliation(s)
- Sitong Zhou
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Yu-Shan Huang
- Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642, USA
| | - Paul D Kingsley
- Department of Pediatric and Center for Pediatric Biomedical Research, University of Rochester, Rochester, New York 14642, USA
| | - Kathryn H Cyr
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | | |
Collapse
|
12
|
Circulating primitive erythroblasts establish a functional, protein 4.1R-dependent cytoskeletal network prior to enucleating. Sci Rep 2017; 7:5164. [PMID: 28701737 PMCID: PMC5507979 DOI: 10.1038/s41598-017-05498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/30/2017] [Indexed: 01/26/2023] Open
Abstract
Hematopoietic ontogeny is characterized by distinct primitive and definitive erythroid lineages. Definitive erythroblasts mature and enucleate extravascularly and form a unique membrane skeleton, composed of spectrin, 4.1R-complex, and ankyrinR-complex components, to survive the vicissitudes of the adult circulation. However, little is known about the formation and composition of the membrane skeleton in primitive erythroblasts, which progressively mature while circulating in the embryonic bloodstream. We found that primary primitive erythroblasts express the major membrane skeleton genes present in similarly staged definitive erythroblasts, suggesting that the composition and formation of this membrane network is conserved in maturing primitive and definitive erythroblasts despite their respective intravascular and extravascular locations. Membrane deformability and stability of primitive erythroblasts, assayed by microfluidic studies and fluorescence imaged microdeformation, respectively, significantly increase prior to enucleation. These functional changes coincide with protein 4.1 R isoform switching and protein 4.1R-null primitive erythroblasts fail to establish normal membrane stability and deformability. We conclude that maturing primitive erythroblasts initially navigate the embryonic vasculature prior to establishing a deformable cytoskeleton, which is ultimately formed prior to enucleation. Formation of an erythroid-specific, protein 4.1R-dependent membrane skeleton is an important feature not only of definitive, but also of primitive, erythropoiesis in mammals.
Collapse
|
13
|
Ijaz F, Hatanaka Y, Hatanaka T, Tsutsumi K, Iwaki T, Umemura K, Ikegami K, Setou M. Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4. Mol Biol Cell 2016; 28:535-544. [PMID: 27974641 PMCID: PMC5305260 DOI: 10.1091/mbc.e16-02-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023] Open
Abstract
Mammalian red blood cells (RBCs) circulate through blood vessels, including capillaries, for tens of days under high mechanical stress. RBCs tolerate this mechanical stress while maintaining their shape because of their elastic membrane skeleton. This membrane skeleton consists of spectrin-actin lattices arranged as quasi-hexagonal units beneath the plasma membrane. In this study, we found that the organization of the RBC cytoskeleton requires tubulin tyrosine ligase-like 4 (Ttll4). RBCs from Ttll4-knockout mice showed larger average diameters in smear test. Based on the rate of hemolysis, Ttll4-knockout RBCs showed greater vulnerability to phenylhydrazine-induced oxidative stress than did wild-type RBCs. Ultrastructural analyses revealed the macromolecular aggregation of cytoskeletal components in RBCs of Ttll4-knockout mice. Immunoprecipitation using the anti-glutamylation antibody GT335 revealed nucleosome assembly protein 1 (NAP1) to be the sole target of TTLL4 in the RBCs, and NAP1 glutamylation was completely lost in Ttll4-knockout RBCs. In wild-type RBCs, the amount of glutamylated NAP1 in the membrane was nearly double that in the cytosol. Furthermore, the absence of TTLL4-dependent glutamylation of NAP1 weakened the binding of NAP1 to the RBC membrane. Taken together, these data demonstrate that Ttll4 is required for proper cytoskeletal organization in RBCs.
Collapse
Affiliation(s)
- Faryal Ijaz
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center
| | - Yasue Hatanaka
- Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511, Japan
| | | | - Koji Tsutsumi
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center
| | - Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center .,Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center .,Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511, Japan.,Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.,Riken Center for Molecular Imaging Science, Kobe, Hyogo 650-0047, Japan.,Department of Anatomy, University of Hong Kong, Hong Kong.,Division of Neural Systematics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
14
|
Huang SC, Zhou A, Nguyen DT, Zhang HS, Benz EJ. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation. J Biol Chem 2016; 291:25591-25607. [PMID: 27780863 DOI: 10.1074/jbc.m116.761296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/28/2023] Open
Abstract
Protein 4.1R (4.1R) isoforms are expressed in both cardiac and skeletal muscle. 4.1R is a component of the contractile apparatus. It is also associated with dystrophin at the sarcolemma in skeletal myofibers. However, the expression and function of 4.1R during myogenesis have not been characterized. We now report that 4.1R expression increases during C2C12 myoblast differentiation into myotubes. Depletion of 4.1R impairs skeletal muscle differentiation and is accompanied by a decrease in the levels of myosin heavy and light chains and caveolin-3. Furthermore, the expression of myogenin at the protein, but not mRNA, level is drastically decreased in 4.1R knockdown myocytes. Similar results were obtained using MyoD-induced differentiation of 4.1R-/- mouse embryonic fibroblast cells. von Hippel-Lindau (VHL) protein is known to destabilize myogenin via the ubiquitin-proteasome pathway. We show that 4.1R associates with VHL and, when overexpressed, reverses myogenin ubiquitination and stability. This suggests that 4.1R may influence myogenesis by preventing VHL-mediated myogenin degradation. Together, our results define a novel biological function for 4.1R in muscle differentiation and provide a molecular mechanism by which 4.1R promotes myogenic differentiation.
Collapse
Affiliation(s)
- Shu-Ching Huang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, .,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Anyu Zhou
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Dan T Nguyen
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
15
|
Ulirsch JC, Nandakumar SK, Wang L, Giani FC, Zhang X, Rogov P, Melnikov A, McDonel P, Do R, Mikkelsen TS, Sankaran VG. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits. Cell 2016; 165:1530-1545. [PMID: 27259154 PMCID: PMC4893171 DOI: 10.1016/j.cell.2016.04.048] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/12/2015] [Accepted: 04/12/2016] [Indexed: 11/24/2022]
Abstract
Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways.
Collapse
Affiliation(s)
- Jacob C Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satish K Nandakumar
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Felix C Giani
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Xiaolan Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter Rogov
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Patrick McDonel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ron Do
- Department of Genetics and Genomic Sciences and The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tarjei S Mikkelsen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Gene disruption of dematin causes precipitous loss of erythrocyte membrane stability and severe hemolytic anemia. Blood 2016; 128:93-103. [PMID: 27073223 DOI: 10.1182/blood-2016-01-692251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/01/2016] [Indexed: 12/18/2022] Open
Abstract
Dematin is a relatively low abundance actin binding and bundling protein associated with the spectrin-actin junctions of mature erythrocytes. Primary structure of dematin includes a loosely folded core domain and a compact headpiece domain that was originally identified in villin. Dematin's actin binding properties are regulated by phosphorylation of its headpiece domain by cyclic adenosine monophosphate-dependent protein kinase. Here, we used a novel gene disruption strategy to generate the whole body dematin gene knockout mouse model (FLKO). FLKO mice, while born at a normal Mendelian ratio, developed severe anemia and exhibited profound aberrations of erythrocyte morphology and membrane stability. Having no apparent effect on primitive erythropoiesis, FLKO mice show significant enhancement of erythroblast enucleation during definitive erythropoiesis. Using membrane protein analysis, domain mapping, electron microscopy, and dynamic deformability measurements, we investigated the mechanism of membrane instability in FLKO erythrocytes. Although many membrane and cytoskeletal proteins remained at their normal levels, the major peripheral membrane proteins spectrin, adducin, and actin were greatly reduced in FLKO erythrocytes. Our results demonstrate that dematin plays a critical role in maintaining the fundamental properties of the membrane cytoskeleton complex.
Collapse
|
17
|
Ryan ZC, Craig TA, Filoteo AG, Westendorf JJ, Cartwright EJ, Neyses L, Strehler EE, Kumar R. Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3. Biochem Biophys Res Commun 2015; 467:152-6. [PMID: 26392310 DOI: 10.1016/j.bbrc.2015.09.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1(fl/fl)) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1(EKO) mice). Pmca1(EKO) mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) littermates. At two months of age, Pmca1(EKO) mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P < 0.037), and reduced femoral bone mineral density (P < 0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1(EKO) mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1(EKO) mice (P < 0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1(EKO) mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Zachary C Ryan
- Nephrology Research, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Theodore A Craig
- Nephrology Research, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Adelaida G Filoteo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | | | - Ludwig Neyses
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PT, UK; University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| | - Rajiv Kumar
- Nephrology Research, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Bazzini C, Benedetti L, Civello D, Zanoni C, Rossetti V, Marchesi D, Garavaglia ML, Paulmichl M, Francolini M, Meyer G, Rodighiero S. ICln: a new regulator of non-erythroid 4.1R localisation and function. PLoS One 2014; 9:e108826. [PMID: 25295618 PMCID: PMC4189953 DOI: 10.1371/journal.pone.0108826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/27/2014] [Indexed: 01/12/2023] Open
Abstract
To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions (“interactome”) but they frequently fail to consider the functional significance of the interactions themselves. We studied the interaction between two potential hub proteins, ICln and 4.1R (in the form of its two splicing variants 4.1R80 and 4.1R135), which are involved in such crucial cell functions as proliferation, RNA processing, cytoskeleton organisation and volume regulation. The sub-cellular localisation and role of native and chimeric 4.1R over-expressed proteins in human embryonic kidney (HEK) 293 cells were examined. ICln interacts with both 4.1R80 and 4.1R135 and its over-expression displaces 4.1R from the membrane regions, thus affecting 4.1R interaction with ß-actin. It was found that 4.1R80 and 4.1R135 are differently involved in regulating the swelling activated anion current (ICl,swell) upon hypotonic shock, a condition under which both isoforms are dislocated from the membrane region and thus contribute to ICl,swell current regulation. Both 4.1R isoforms are also differently involved in regulating cell morphology, and ICln counteracts their effects. The findings of this study confirm that 4.1R plays a role in cell volume regulation and cell morphology and indicate that ICln is a new negative regulator of 4.1R functions.
Collapse
Affiliation(s)
- Claudia Bazzini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Lorena Benedetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
| | - Davide Civello
- Department of Biosciences, University of Milan, Milan, Italy
| | - Chiara Zanoni
- Pharmaceutical Sciences Department (DISFARM), University of Milan, Milan, Italy
| | | | - Davide Marchesi
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
| | | | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
| | - Giuliano Meyer
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simona Rodighiero
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
- * E-mail:
| |
Collapse
|
19
|
Bosanquet DC, Ye L, Harding KG, Jiang WG. FERM family proteins and their importance in cellular movements and wound healing (review). Int J Mol Med 2014; 34:3-12. [PMID: 24820650 DOI: 10.3892/ijmm.2014.1775] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 11/06/2022] Open
Abstract
Motility is a requirement for a number of biological processes, including embryonic development, neuronal development, immune responses, cancer progression and wound healing. Specific to wound healing is the migration of endothelial cells, fibroblasts and other key cellular players into the wound space. Aberrations in wound healing can result in either chronic wounds or abnormally healed wounds. The protein 4.1R, ezrin, radixin, moesin (FERM) superfamily consists of over 40 proteins all containing a three lobed N-terminal FERM domain which binds a variety of cell-membrane associated proteins and lipids. The C-terminal ends of these proteins typically contain an actin-binding domain (ABD). These proteins therefore mediate the linkage between the cell membrane and the actin cytoskeleton, and are involved in cellular movements and migration. Certain FERM proteins have been shown to promote cancer metastasis via this very mechanism. Herein we review the effects of a number of FERM proteins on wound healing and cancer. We show how these proteins typically aid wound healing through their effects on increasing cellular migration and movements, but also typically promote metastasis in cancer. We conclude that FERM proteins play important roles in cellular migration, with markedly different outcomes in the context of cancer and wound healing.
Collapse
Affiliation(s)
- David C Bosanquet
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Lin Ye
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Keith G Harding
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Wen G Jiang
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| |
Collapse
|
20
|
Nunomura W, Gascard P, Wakui H, Takakuwa Y. Phosphatidylinositol-4,5 bisphosphate (PIP(2)) inhibits apo-calmodulin binding to protein 4.1. Biochem Biophys Res Commun 2014; 446:434-40. [PMID: 24607279 DOI: 10.1016/j.bbrc.2014.02.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022]
Abstract
Membrane skeletal protein 4.1R(80) plays a key role in regulation of erythrocyte plasticity. Protein 4.1R(80) interactions with transmembrane proteins, such as glycophorin C (GPC), are regulated by Ca(2+)-saturated calmodulin (Ca(2+)/CaM) through simultaneous binding to a short peptide (pep11; A(264)KKLWKVCVEHHTFFRL) and a serine residue (Ser(185)), both located in the N-terminal 30 kDa FERM domain of 4.1R(80) (H·R30). We have previously demonstrated that CaM binding to H·R30 is Ca(2+)-independent and that CaM binding to H·R30 is responsible for the maintenance of H·R30 β-sheet structure. However, the mechanisms responsible for the regulation of CaM binding to H·R30 are still unknown. To investigate this, we took advantage of similarities and differences in the structure of Coracle, the Drosophila sp. homologue of human 4.1R(80), i.e. conservation of the pep11 sequence but substitution of the Ser(185) residue with an alanine residue. We show that the H·R30 homologue domain of Coracle, Cor30, also binds to CaM in a Ca(2+)-independent manner and that the Ca(2+)/CaM complex does not affect Cor30 binding to the transmembrane protein GPC. We also document that both H·R30 and Cor30 bind to phosphatidylinositol-4,5 bisphosphate (PIP2) and other phospholipid species and that that PIP2 inhibits Ca(2+)-free CaM but not Ca(2+)-saturated CaM binding to Cor30. We conclude that PIP2 may play an important role as a modulator of apo-CaM binding to 4.1R(80) throughout evolution.
Collapse
Affiliation(s)
- Wataru Nunomura
- Center for Geo-Environmental Science, Graduate School of Engineering and Resource Science, Akita University, Akita, Japan; Department of Life Science, Graduate School of Engineering and Resource Science, Akita University, Akita, Japan.
| | - Philippe Gascard
- Department of Pathology, University of California at San Francisco, San Francisco, USA
| | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering and Resource Science, Akita University, Akita, Japan
| | - Yuichi Takakuwa
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
21
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
22
|
Kiyomitsu T, Cheeseman IM. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 2013; 154:391-402. [PMID: 23870127 DOI: 10.1016/j.cell.2013.06.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/28/2013] [Accepted: 06/10/2013] [Indexed: 02/02/2023]
Abstract
Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
23
|
Zhang L, Prak L, Rayon-Estrada V, Thiru P, Flygare J, Lim B, Lodish HF. ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors. Nature 2013; 499:92-6. [PMID: 23748442 PMCID: PMC3702661 DOI: 10.1038/nature12215] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 04/23/2013] [Indexed: 11/09/2022]
Abstract
Stem cells and progenitors in many lineages undergo self- renewing divisions, but the extracellular and intracellular proteins that regulate this process are largely unknown. Glucocorticoids stimulate red cell formation by promoting self-renewal of early erythroid burst forming unit-erythrocyte (BFU-E) progenitors1-4. Here we show that the RNA binding protein Zfp36l2 is a transcriptional target of the glucocorticoid receptor (GR) in BFU-Es and is required for BFU-E self-renewal. Zfp36l2 is normally downregulated during erythroid differentiation from the BFU-E stage but its expression is maintained by all tested GR agonists that stimulate BFU-E self-renewal, and the GR binds to several potential enhancer regions of Zfp36l2. Knockdown of Zfp36l2 in cultured BFU-E cells did not affect the rate of cell division but disrupted glucocorticoid-induced BFU-E self-renewal, and knockdown of Zfp36l2 in transplanted erythroid progenitors prevented expansion of erythroid lineage progenitors normally seen following induction of anemia by phenylhydrazine treatment. Zfp36l2 preferentially binds to mRNAs that are induced or maintained at high expression levels during terminal erythroid differentiation and negatively regulates their expression levels. Thus Zfp36l2 functions as part of molecular switch promoting BFU-E self-renewal and thus a subsequent increase in the total numbers of CFU-E progenitors and erythroid cells that are generated.
Collapse
Affiliation(s)
- Lingbo Zhang
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
25
|
Rivera A, Zee RYL, Alper SL, Peters LL, Brugnara C. Strain-specific variations in cation content and transport in mouse erythrocytes. Physiol Genomics 2013; 45:343-50. [PMID: 23482811 PMCID: PMC3656420 DOI: 10.1152/physiolgenomics.00143.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/06/2013] [Indexed: 11/22/2022] Open
Abstract
Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na(+), K(+), and Mg(2+), and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains.
Collapse
Affiliation(s)
- Alicia Rivera
- Department of Laboratory Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Liu C, Weng H, Chen L, Yang S, Wang H, Debnath G, Guo X, Wu L, Mohandas N, An X. Impaired intestinal calcium absorption in protein 4.1R-deficient mice due to altered expression of plasma membrane calcium ATPase 1b (PMCA1b). J Biol Chem 2013; 288:11407-15. [PMID: 23460639 DOI: 10.1074/jbc.m112.436659] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein 4.1R was first identified in the erythrocyte membrane skeleton. It is now known that the protein is expressed in a variety of epithelial cell lines and in the epithelia of many tissues, including the small intestine. However, the physiological function of 4.1R in the epithelial cells of the small intestine has not so far been explored. Here, we show that 4.1R knock-out mice exhibited a significantly impaired small intestinal calcium absorption that resulted in secondary hyperparathyroidism as evidenced by increased serum 1,25-(OH)2-vitamin D3 and parathyroid hormone levels, decreased serum calcium levels, hyperplasia of the parathyroid, and demineralization of the bones. 4.1R is located on the basolateral membrane of enterocytes, where it co-localizes with PMCA1b (plasma membrane calcium ATPase 1b). Expression of PMCA1b in enterocytes was decreased in 4.1(-/-) mice. 4.1R directly associated with PMCA1b, and the association involved the membrane-binding domain of 4.1R and the second intracellular loop and C terminus of PMCA1b. Our findings have enabled us to define a functional role for 4.1R in small intestinal calcium absorption through regulation of membrane expression of PMCA1b.
Collapse
Affiliation(s)
- Congrong Liu
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chan MM, Wooden JM, Tsang M, Gilligan DM, Hirenallur-S DK, Finney GL, Rynes E, MacCoss M, Ramirez JA, Park H, Iritani BM. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes. PLoS One 2013; 8:e54902. [PMID: 23424621 PMCID: PMC3570531 DOI: 10.1371/journal.pone.0054902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/17/2012] [Indexed: 01/24/2023] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1−/− erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1−/− erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.
Collapse
Affiliation(s)
- Maia M. Chan
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jason M. Wooden
- Puget Sound Blood Center, Seattle, Washington, United States of America
| | - Mark Tsang
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Diana M. Gilligan
- Puget Sound Blood Center, Seattle, Washington, United States of America
| | - Dinesh K. Hirenallur-S
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Greg L. Finney
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Eric Rynes
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julita A. Ramirez
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Heon Park
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Brian M. Iritani
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood 2013; 121:e43-9. [PMID: 23287863 DOI: 10.1182/blood-2012-09-456079] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Terminal erythroid differentiation is the process during which proerythroblasts differentiate to produce enucleated reticulocytes. Although it is well established that during murine erythropoiesis in vivo, 1 proerythroblast undergoes 3 mitosis to generate sequentially 2 basophilic, 4 polychromatic, and 8 orthochromatic erythroblasts, currently there is no method to quantitatively monitor this highly regulated process. Here we outline a method that distinguishes each distinct stage of erythroid differentiation in cells from mouse bone marrow and spleen based on expression levels of TER119, CD44, and cell size. Quantitative analysis revealed that the ratio of proerythroblasts:basophilic:polychromatic:orthromatic erythroblasts follows the expected 1:2:4:8 ratio, reflecting the physiologic progression of terminal erythroid differentiation in normal mice. Moreover, in 2 stress erythropoiesis mouse models, phlebotomy-induced acute anemia and chronic hemolytic anemia because of 4.1R deficiency, the ratio of these erythroblast populations remains the same as that of wild-type bone marrow. In contrast, in anemic β-thalassemia intermedia mice, there is altered progression which is restored to normal by transferrin treatment which was previously shown to ameliorate the anemic phenotype. The means to quantitate in vivo murine erythropoiesis using our approach will probably have broad application in the study of altered erythropoiesis in various red cell disorders.
Collapse
|
29
|
Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na(+)/H(+) exchanger isoform 1). Biochem J 2012; 446:427-35. [PMID: 22731252 DOI: 10.1042/bj20120535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NHE1 (Na(+)/H(+) exchanger isoform 1) has been reported to be hyperactive in 4.1R-null erythrocytes [Rivera, De Franceschi, Peters, Gascard, Mohandas and Brugnara (2006) Am. J. Physiol. Cell Physiol. 291, C880-C886], supporting a functional interaction between NHE1 and 4.1R. In the present paper we demonstrate that 4.1R binds directly to the NHE1cd (cytoplasmic domain of NHE1) through the interaction of an EED motif in the 4.1R FERM (4.1/ezrin/radixin/moesin) domain with two clusters of basic amino acids in the NHE1cd, K(519)R and R(556)FNKKYVKK, previously shown to mediate PIP(2) (phosphatidylinositol 4,5-bisphosphate) binding [Aharonovitz, Zaun, Balla, York, Orlowski and Grinstein (2000) J. Cell. Biol. 150, 213-224]. The affinity of this interaction (K(d) = 100-200 nM) is reduced in hypertonic and acidic conditions, demonstrating that this interaction is of an electrostatic nature. The binding affinity is also reduced upon binding of Ca(2+)/CaM (Ca(2+)-saturated calmodulin) to the 4.1R FERM domain. We propose that 4.1R regulates NHE1 activity through a direct protein-protein interaction that can be modulated by intracellular pH and Na(+) and Ca(2+) concentrations.
Collapse
|
30
|
Einheber S, Meng X, Rubin M, Lam I, Mohandas N, An X, Shrager P, Kissil J, Maurel P, Salzer JL. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia 2012; 61:240-53. [PMID: 23109359 DOI: 10.1002/glia.22430] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022]
Abstract
Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness.
Collapse
Affiliation(s)
- Steven Einheber
- School of Health Sciences, Hunter College, City University of New York, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pinder JC, Taylor-Harris PM, Bennett PM, Carter E, Hayes NVL, King MDA, Holt MR, Maggs AM, Gascard P, Baines AJ. Isoforms of protein 4.1 are differentially distributed in heart muscle cells: relation of 4.1R and 4.1G to components of the Ca2+ homeostasis system. Exp Cell Res 2012; 318:1467-79. [PMID: 22429617 DOI: 10.1016/j.yexcr.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
The 4.1 proteins are cytoskeletal adaptor proteins that are linked to the control of mechanical stability of certain membranes and to the cellular accumulation and cell surface display of diverse transmembrane proteins. One of the four mammalian 4.1 proteins, 4.1R (80 kDa/120 kDa isoforms), has recently been shown to be required for the normal operation of several ion transporters in the heart (Stagg MA et al. Circ Res, 2008; 103: 855-863). The other three (4.1G, 4.1N and 4.1B) are largely uncharacterised in the heart. Here, we use specific antibodies to characterise their expression, distribution and novel activities in the left ventricle. We detected 4.1R, 4.1G and 4.1N by immunofluorescence and immunoblotting, but not 4.1B. Only one splice variant of 4.1N and 4.1G was seen whereas there are several forms of 4.1R. 4.1N, like 4.1R, was present in intercalated discs, but unlike 4.1R, it was not localised at the lateral plasma membrane. Both 4.1R and 4.1N were in internal structures that, at the level of resolution of the light microscope, were close to the Z-disc (possibly T-tubules). 4.1G was also in intracellular structures, some of which were coincident with sarcoplasmic reticulum. 4.1G existed in an immunoprecipitable complex with spectrin and SERCA2. 80 kDa 4.1R was present in subcellular fractions enriched in intercalated discs, in a complex resistant to solubilization under non-denaturing conditions. At the intercalated disc 4.1R does not colocalise with the adherens junction protein, β-catenin, but does overlap with the other plasma membrane signalling proteins, the Na/K-ATPase and the Na/Ca exchanger NCX1. We conclude that isoforms of 4.1 proteins are differentially compartmentalised in the heart, and that they form specific complexes with proteins central to cardiomyocyte Ca(2+) metabolism.
Collapse
Affiliation(s)
- Jennifer C Pinder
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang HY, Kwon J, Choi HI, Park SH, Yang U, Park HR, Ren L, Chung KJ, Kim YU, Park BJ, Jeong SH, Lee TH. In-depth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice. Proteomics 2011; 12:101-12. [PMID: 22113967 DOI: 10.1002/pmic.201100275] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/22/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
Peroxiredoxin II (Prdx II, a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Mice lacking Prdx II proteins had heinz bodies in their peripheral blood, and morphologically abnormal cells were detected in the dense red blood cell (RBC) fractions, which contained markedly higher levels of reactive oxygen species (ROS). In this study, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) in Prdx II-/- mice revealed that a variety of RBC proteins were highly oxidized. To identify oxidation-sensitive proteins in Prdx II-/- mice, we performed RBC comparative proteome analysis in membrane and cytosolic fractions by nano-UPLC-MSE shotgun proteomics. We found oxidation-sensitive 54 proteins from 61 peptides containing cysteine oxidation, and analyzed comparative expression pattern in healthy RBCs of Prdx II+/+ mice, healthy RBCs of Prdx II-/- mice, and abnormal RBCs of Prdx II-/- mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cytoskeleton, stress-induced proteins, metabolic enzymes, signal transduction, and transporters. Furthermore, protein networks among identified oxidation-sensitive proteins were analyzed to associate with various diseases. Consequently, we expected that RBC proteome might provide clues to understand redox-imbalanced diseases.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Oral Biochemistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for Dental School, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Strzalkowska A, Unrug-Bielawska K, Bluszcz A, Sandowska-Markiewicz Z, Karaszewska J, Pysniak K, Gajewska M, Wirth-Dzieciolowska E. Quantitative trait loci analysis for peripheral blood parameters in a (BALB/cW × C57BL/6J-Mpl (hlb219)/J) F(2) mice. Exp Anim 2011; 60:405-16. [PMID: 21791880 DOI: 10.1538/expanim.60.405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genetic basis of the peripheral blood cell parameters is not fully elucidated. Thus, it is essential to research the correlation between blood cell counts levels and the genome in laboratory animals and subsequently in humans. In the present study, we examined 288 F(2) mice from a cross between BALB/cW and C57BL/6J-Mpl(hlb219)/J. The C57BL/6J-Mpl (hlb219)/J strain is a mouse model of thrombocytopenia. We found very strong correlations for PLT counts and revealed some highly significant correlations for RBC counts. On the basis of the obtained results, we presume that genetic control of erythrocyte parameters is divided into two pathways: first, the morphological determinants responsible for the red blood cell count (RBC), hematocrit (HCT), and mean corpuscular volume (MCV), and second, the functional pathway determining the hemoglobin content (HGB). The locus on Chromosome 4 is the only detected quantitative trait locus (QTL) influencing the analyzed platelets parameters. We also detected highly significant correlations for erythrocyte parameters on Chromosome 1 (RBC, MCV, MCH), Chr 7 (HGB), Chr 9 (MCHC), Chr 11 (RBC), and Chr 17 (MCH). Finally, with regards to the given correlations, using the Mouse Genome Database resource, we proposed candidate genes with possible meaning for the level of these parameters: cytokine receptor genes (e.g., Mpl), transcription factor genes (e.g., Xbp1, Ikzf1), hemoglobin chain genes (e.g., Hbb-b1, Hbb-ar), and many others localized in the confidence intervals of found QTLs.
Collapse
Affiliation(s)
- Adriana Strzalkowska
- Department of Genetics and Laboratory Animal Breeding, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, W. K. Roentgen St. 5, 02-871 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu F, Khan AA, Chishti AH, Ostafin AE. Atomic force microscopy demonstration of cytoskeleton instability in mouse erythrocytes with dematin-headpiece and β-adducin deficiency. SCANNING 2011; 33:426-436. [PMID: 21638291 PMCID: PMC3955161 DOI: 10.1002/sca.20246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/06/2011] [Indexed: 05/30/2023]
Abstract
The pattern of disassembly of the cytoskeletal network of murine erythrocytes with deficiency of either dematin-headpiece or β-adducin or both proteins were investigated using atomic force microscopy. A heterogeneous complex structure with fine filament features and coarse features was observed in the cytoskeleton of wild type mouse erythrocytes, whereas a significant amount of rearrangement and aggregation occurred in the mutants, particularly in the cells carrying double gene mutations. These results are consistent with the cellular and biochemical phenotype of the mutant cell membranes as being more fragile due to weakened vertical connections with the plasma membrane.
Collapse
Affiliation(s)
- Fei Liu
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115-6021
| | - Anwar A. Khan
- Department of Medicine, Section of Hematology/Oncology, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Athar H. Chishti
- Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston MA 02111
| | - Agnes E. Ostafin
- Department of Materials Science and Engineering and Bioengineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
35
|
Baklouti F, Morinière M, Haj-Khélil A, Fénéant-Thibault M, Gruffat H, Couté Y, Ninot A, Guitton C, Delaunay J. Homozygous deletion of EPB41 genuine AUG-containing exons results in mRNA splicing defects, NMD activation and protein 4.1R complete deficiency in hereditary elliptocytosis. Blood Cells Mol Dis 2011; 47:158-65. [DOI: 10.1016/j.bcmd.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/05/2011] [Indexed: 12/23/2022]
|
36
|
The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons. J Neurosci 2011; 31:8013-24. [PMID: 21632923 DOI: 10.1523/jneurosci.1015-11.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here, we report the generation and characterization of 4.1B-null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axoglial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in the study by Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after 1 year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at ∼ 1 year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons.
Collapse
|
37
|
Chen L, Hughes RA, Baines AJ, Conboy J, Mohandas N, An X. Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of beta1 integrin. J Cell Sci 2011; 124:2478-87. [PMID: 21693581 DOI: 10.1242/jcs.078170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein 4.1R is a membrane-cytoskeleton adaptor protein that has diverse roles in controlling the cell surface expression and/or function of transmembrane proteins, and in organizing F-actin. 4.1R is expressed in keratinocytes, but its role in these cells has not been explored. Here, we have investigated the role of 4.1R in skin using 4.1R(-/-) mice. Cell adhesion, spreading, migration and motility were significantly impaired in 4.1R(-/-) keratinocytes, and 4.1R(-/-) mice exhibited defective epidermal wound healing. Cultured 4.1R(-/-) keratinocytes on fibronectin failed to form actin stress fibres and focal adhesions. Furthermore, in the absence of 4.1R, the surface expression, and consequently the activity of β1 integrin were reduced. These data enabled the identification of a functional role for protein 4.1R in keratinocytes by modulating the surface expression of β1 integrin, possibly through a direct association between 4.1R and β1 integrin.
Collapse
Affiliation(s)
- Lixiang Chen
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ji P, Murata-Hori M, Lodish HF. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol 2011; 21:409-15. [PMID: 21592797 DOI: 10.1016/j.tcb.2011.04.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/14/2023]
Abstract
In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell-matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
39
|
Meyer AJ, Almendrala DK, Go MM, Krauss SW. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J Cell Sci 2011; 124:1433-44. [PMID: 21486941 DOI: 10.1242/jcs.077883] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus-centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome-nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export.
Collapse
Affiliation(s)
- Adam J Meyer
- Department of Genome Dynamics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
40
|
A prospective study to assess the predictive value for hereditary spherocytosis using five laboratory tests (cryohemolysis test, eosin-5'-maleimide flow cytometry, osmotic fragility test, autohemolysis test, and SDS-PAGE) on 50 hereditary spherocytosis families in Argentina. Ann Hematol 2010; 90:625-34. [PMID: 21080168 DOI: 10.1007/s00277-010-1112-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
This prospective study was carried out to assess the usefulness of five laboratory tests in the diagnosis of hereditary spherocytosis (HS), based on the correlation of erythrocyte membrane protein defects with clinical and laboratory features, and also to determine the membrane protein deficiencies detected in Argentina. Of 116 patients and their family members tested, 62 of them were diagnosed to have HS. The specificity of cryohemolysis (CH) test was 95.2%, and its cut-off value to distinguish HS from normal was 2.8%. For flow cytometry, cut-off points of 17% for mean channel fluorescence (MCF) decrease and 14% coefficient of variation (CV) increase showed 95.9% and 92.2% specificity, respectively. Both tests showed the highest percentages of positive results for diagnosis. Either CH or flow cytometry was positive in 93.5% of patients. In eight patients, flow cytometry was positive only through CV increase. Protein defects were detected in 72.3% of patients; ankyrin and spectrin were the most frequently found deficiencies. The CV of the fluorescence showed significantly higher increases in moderate and severe anemia than in mild anemia (p = 0.003). Severity of anemia showed no other correlation with tests results, type of deficient protein, inheritance pattern, or neonatal jaundice. CH and flow cytometry are easy methods with the highest diagnostic accuracy. Simultaneous reading of mean channel fluorescence (MCF) decrease and CV increase improve diagnostic usefulness of flow cytometry. This test seems to be a reliable predictor of severity. The type of detected protein deficiency has no predictive value for outcome. Predominant ankyrin and spectrin deficiencies agree with reports from other Latin American countries.
Collapse
|
41
|
Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochem Cell Biol 2010; 134:411-20. [PMID: 20890708 DOI: 10.1007/s00418-010-0749-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2010] [Indexed: 01/22/2023]
Abstract
The members of the protein 4.1 family, 4.1R, 4.1G, 4.1N, and 4.1B, are encoded by four genes, all of which undergo complex alternative splicing. It is well established that 4.1R, the prototypical member of the family, serves as an adapter that links the spectrin-actin based cytoskeleton to the plasma membrane in red cells. It is required for mechanical resilience of the membrane, and it ensures the cell surface accumulation of selected membrane proteins. However, the function of 4.1 proteins outside erythrocytes remains under-explored, especially in endocrine tissues. Transcripts of all 4.1 homologs have previously been documented to be abundantly expressed in adrenal gland. In order to begin to decipher the function of 4.1 proteins in adrenal gland, we performed a detailed characterization of the expression pattern of various 4.1 proteins and their cellular localization. We show that 4.1R (~80 and ~135 kDa) splice forms are expressed on the membrane of all cells, while a ~160 kDa 4.1G splice form is distributed in the cytoplasm and the membrane of zona glomerulosa and of medullary cells. Two 4.1N splice forms, ~135 and ~95 kDa, are present in the peri-nuclear region of both zona glomerulosa and medullary cells, while a single ~130 kDa 4.1B splice form, is detected in all layers of adrenal gland in both the cytoplasm and the membrane. The characterization of distinct splice forms of various 4.1 proteins with diverse cellular and sub-cellular localization indicates multiple functions for this family of proteins in endocrine functions of adrenal gland.
Collapse
|
42
|
Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res 2010; 20:1064-83. [PMID: 20566737 DOI: 10.1101/gr.104935.110] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.
Collapse
|
43
|
Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood 2010; 116:267-9. [PMID: 20339087 DOI: 10.1182/blood-2010-02-264127] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During erythroblast enucleation, membrane proteins distribute between extruded nuclei and reticulocytes. In hereditary spherocytosis (HS) and hereditary elliptocytosis (HE), deficiencies of membrane proteins, in addition to those encoded by the mutant gene, occur. Elliptocytes, resulting from protein 4.1R gene mutations, lack not only 4.1R but also glycophorin C, which links the cytoskeleton and bilayer. In HS resulting from ankyrin-1 mutations, band 3, Rh-associated antigen, and glycophorin A are deficient. The current study was undertaken to explore whether aberrant protein sorting, during enucleation, creates these membrane-spanning protein deficiencies. We found that although glycophorin C sorts to reticulocytes normally, it distributes to nuclei in 4.1R-deficient HE cells. Further, glycophorin A and Rh-associated antigen, which normally partition predominantly to reticulocytes, distribute to both nuclei and reticulocytes in an ankyrin-1-deficient murine model of HS. We conclude that aberrant protein sorting is one mechanistic basis for protein deficiencies in HE and HS.
Collapse
|
44
|
Okumura K, Mochizuki E, Yokohama M, Yamakawa H, Shitara H, Mburu P, Yonekawa H, Brown SD, Kikkawa Y. Protein 4.1 expression in the developing hair cells of the mouse inner ear. Brain Res 2010; 1307:53-62. [DOI: 10.1016/j.brainres.2009.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 01/11/2023]
|
45
|
White RA, Sokolovsky IV, Britt MI, Nsumu NN, Logsdon DP, McNulty SG, Wilmes LA, Brewer BP, Wirtz E, Joyce HR, Fegley B, Smith A, Heruth DP. Hematologic characterization and chromosomal localization of the novel dominantly inherited mouse hemolytic anemia, neonatal anemia (Nan). Blood Cells Mol Dis 2009; 43:141-8. [PMID: 19409822 DOI: 10.1016/j.bcmd.2009.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/09/2009] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
Abstract
One of the most commonly inherited anemias in man is Hereditary Spherocytosis (HS) with an incidence of 1 in 2000 for persons of Northern European descent. Mouse models of HS include spontaneous inherited hemolytic anemias and those generated by gene targeting. The Neonatal anemia (Nan) mouse is a novel model of HS generated by N-ethyl-N-nitrosurea mutagenesis and suffers from a severe neonatal anemia. Adult Nan mice have a lifelong hemolytic anemia with decreased red blood cell numbers, hematocrit, and hemoglobin, but elevated zinc protoporphyrin levels. Blood smears taken from Nan mice show a hypochromic anemia characterized by poikilocytosis, anisocytosis and polychromasia. The Nan phenotype can be transferred by bone marrow transplantation indicating that the defect is intrinsic to bone marrow. The hemolytic anemia in adult Nan mice can be identified by osmotic fragility testing. Examination of the erythrocyte membrane skeleton proteins (EMS) reveals a global deficiency of these proteins with protein 4.1a being completely absent. The Nan locus maps to mouse Chromosome 8 and does not co-localize with any known EMS genes. The identification of the Nan gene will likely uncover a novel protein that contributes to the stability of the EMS and may identify a new mutation for HS.
Collapse
Affiliation(s)
- Robert A White
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Protein 4.1R links E-cadherin/beta-catenin complex to the cytoskeleton through its direct interaction with beta-catenin and modulates adherens junction integrity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1458-65. [PMID: 19376086 DOI: 10.1016/j.bbamem.2009.03.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 11/21/2022]
Abstract
Protein 4.1R (4.1R) is the prototypical member of the protein 4.1 superfamily comprising of the protein 4.1 family (4.1R, 4.1B, 4.1G and 4.1N) and ERM family (ezrin, radixin and meosin). These proteins in general serve as adaptors between the membrane and the cytoskeleton. Here we show that 4.1R expressed in the gastric epithelial cells associates with adherens junction protein beta-catenin. Biochemical examination of 4.1R-deficient stomach epithelia revealed a selective reduction of beta-catenin which is accompanied by a weaker linkage of E-cadherin to the cytoskeleton. In addition, organization of actin cytoskeleton was altered in 4.1R-deficient cells. Moreover, histological examination revealed that cell-cell contacts are impaired and gastric glands are disorganized in 4.1R null stomach epithelia. These results demonstrate an important and previously unidentified role of 4.1R in linking the cadherin/catenin complex to the cytoskeleton through its direct interaction with beta-catenin and in regulating the integrity of adherens junction.
Collapse
|
47
|
Baines AJ, Bennett PM, Carter EW, Terracciano C. Protein 4.1 and the control of ion channels. Blood Cells Mol Dis 2009; 42:211-5. [PMID: 19272819 DOI: 10.1016/j.bcmd.2009.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/20/2009] [Indexed: 11/24/2022]
Abstract
The classical function of 4.1R in red blood cells is to contribute to the mechanochemical properties of the membrane by promoting the interaction between spectrin and actin. More recently, it has been recognized that 4.1R is required for the stable cell surface accumulation of a number of erythrocyte membrane proteins. 4.1R is one member of the mammalian 4.1 family - the others being 4.1N, 4.1G and 4.1B - and is expressed in many cell types other than erythrocytes. Recently we have examined the phenotype of hearts from 4.1R knockout mice. Although they had a generally normal morphology, these hearts exhibited bradycardia, and prolongation of both action potentials and QT intervals. Electrophysiological analysis revealed anomalies in a range of ion channel activities. In addition, the immunoreactivity of voltage-gated Na(+) channel NaV1.5 was reduced, indicating a role for 4.1R in the cellular accumulation of this ion channel. 4.1 proteins also have roles in the accumulation of at least two other classes of ion channel. In epithelia, 4.1 interacts with the store-operated channel TRPC4. In neurons, the ligand-gated channels GluR1 and GluR4 require 4.1 proteins for cell surface accumulation. The spectrum of transmembrane proteins that bind to 4.1 proteins overlaps with that of ankyrin. A hypothesis to investigate in the future is that differential regulation of 4.1 and ankyrins (e.g. by PIP(2)) allows highly selective control of cell surface accumulation and transport activity of a specific range of ion channels.
Collapse
Affiliation(s)
- Anthony J Baines
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ Kent, UK
| | | | | | | |
Collapse
|
48
|
Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT. Blood 2009; 113:6128-37. [PMID: 19190245 DOI: 10.1182/blood-2008-10-182329] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein 4.1R (4.1R) was first identified in red cells where it plays an important role in maintaining mechanical stability of red cell membrane. 4.1R has also been shown to be expressed in T cells, but its function has been unclear. In the present study, we use 4.1R-deficient mice to explore the role of 4.1R in T cells. We show that 4.1R is recruited to the immunologic synapse after T cell-antigen receptor (TCR) stimulation. We show further that CD4+ T cells of 4.1R-/- mice are hyperactivated and that they displayed hyperproliferation and increased production of interleukin-2 (IL-2) and interferon gamma (IFNgamma). The hyperactivation results from enhanced phosphorylation of LAT and its downstream signaling molecule ERK. The 4.1R exerts its effect by binding directly to LAT, and thereby inhibiting its phosphorylation by ZAP-70. Moreover, mice deficient in 4.1R display an elevated humoral response to immunization with T cell-dependent antigen. Thus, we have defined a hitherto unrecognized role for 4.1R in negatively regulating T-cell activation by modulating intracellular signal transduction.
Collapse
|
49
|
Ohno N, Terada N, Komada M, Saitoh S, Costantini F, Pace V, Germann PG, Weber K, Yamakawa H, Ohara O, Ohno S. Dispensable role of protein 4.1B/DAL-1 in rodent adrenal medulla regarding generation of pheochromocytoma and plasmalemmal localization of TSLC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:506-15. [PMID: 19321127 DOI: 10.1016/j.bbamcr.2009.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/06/2008] [Accepted: 01/06/2009] [Indexed: 02/07/2023]
Abstract
Protein 4.1B is a membrane skeletal protein expressed in various organs, and is associated with tumor suppressor in lung cancer-1 (TSLC1) in vitro. Although involvement of 4.1B in the intercellular junctions and tumor-suppression was suggested, some controversial results posed questions to the general tumor-suppressive function of 4.1B and its relation to TSLC1 in vivo. In this study, the expression of 4.1B and its interaction with TSLC1 were examined in rodent adrenal gland, and the involvement of 4.1B in tumorigenesis and the effect of 4.1B deficiency on TSLC1 distribution were also investigated using rodent pheochromocytoma and 4.1B-knockout mice. Although plasmalemmal immunolocalization of 4.1B was shown in chromaffin cells of rodent adrenal medulla, expression of 4.1B was maintained in developed pheochromocytoma, and morphological abnormality or pheochromocytoma generation could not be found in 4.1B-deficient mice. Furthermore, molecular interaction and colocalization of 4.1B and TSLC1 were observed in mouse adrenal gland, but the immunolocalization of TSLC1 along chromaffin cell membranes was not affected in the 4.1B-deficient mice. These results suggest that the function of 4.1B as tumor suppressor might significantly differ among organs and species, and that plasmalemmal retention of TSLC1 would be maintained by molecules other than 4.1B interacting in rodent chromaffin cells.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cunha SR, Mohler PJ. Cardiac cytoskeleton and arrhythmia: an unexpected role for protein 4.1R in cardiac excitability. Circ Res 2008; 103:779-81. [PMID: 18845816 DOI: 10.1161/circresaha.108.186460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|