1
|
Treccani M, Veschetti L, Patuzzo C, Malerba G, Vaglio A, Martorana D. Genetic and Non-Genetic Contributions to Eosinophilic Granulomatosis with Polyangiitis: Current Knowledge and Future Perspectives. Curr Issues Mol Biol 2024; 46:7516-7529. [PMID: 39057087 PMCID: PMC11275403 DOI: 10.3390/cimb46070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, we present a comprehensive overview of the genetic and non-genetic complexity of eosinophilic granulomatosis with polyangiitis (EGPA). EGPA is a rare complex systemic disease that occurs in people presenting with severe asthma and high eosinophilia. After briefly introducing EGPA and its relationship with the anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis (AAVs), we delve into the complexity of this disease. At first, the two main biological actors, ANCA and eosinophils, are presented. Biological and clinical phenotypes related to ANCA positivity or negativity are explained, as well as the role of eosinophils and their pathological subtypes, pointing out their intricate relations with EGPA. Then, the genetics of EGPA are described, providing an overview of the research effort to unravel them. Candidate gene studies have investigated biologically relevant candidate genes; the more recent genome-wide association studies and meta-analyses, able to analyze the whole genome, have confirmed previous associations and discovered novel risk loci; in the end, family-based studies have dissected the contribution of rare variants and the heritability of EGPA. Then, we briefly present the environmental contribution to EGPA, reporting seasonal events and pollutants as triggering factors. In the end, the latest omic research is discussed and the most recent epigenomic, transcriptomic and microbiome studies are presented, highlighting the current challenges, open questions and suggesting approaches to unraveling this complex disease.
Collapse
Affiliation(s)
- Mirko Treccani
- GM Lab, Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy;
| | - Laura Veschetti
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy;
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Giovanni Malerba
- GM Lab, Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy;
| | - Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
- Department of Biomedical Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Davide Martorana
- Medical Genetics Unit, Department of Onco-Hematology, University Hospital of Parma, 43126 Parma, Italy;
- CoreLab Unit, Research Center, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
Danieli MG, Casciaro M, Paladini A, Bartolucci M, Sordoni M, Shoenfeld Y, Gangemi S. Exposome: Epigenetics and autoimmune diseases. Autoimmun Rev 2024; 23:103584. [PMID: 39097180 DOI: 10.1016/j.autrev.2024.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Systemic autoimmune diseases are complex conditions characterized by an immune system dysregulation and an aberrant activation against self-antigens, leading to tissue and organ damage. Even though genetic predisposition plays a role, it cannot fully explain the onset of these diseases, highlighting the significant impact of non-heritable influences such as environment, hormones and infections. The exposome represents all those factors, ranging from chemical pollutants and dietary components to psychological stressors and infectious agents. Epigenetics, which studies changes in gene expression without altering the DNA sequence, is a crucial link between exposome and the development of autoimmune diseases. Key epigenetic mechanisms include DNA methylation, histone modifications, and non-coding RNAs. These epigenetic modifications could provide a potential piece of the puzzle in understanding systemic autoimmune diseases and their connection with the exposome. In this work we have collected the most important and recent evidence in epigenetic changes linked to systemic autoimmune diseases (systemic lupus erythematosus, idiopathic inflammatory myopathies, ANCA-associated vasculitis, and rheumatoid arthritis), emphasizing the roles these changes may play in disease pathogenesis, their potential as diagnostic biomarkers and their prospective in the development of targeted therapies.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti, AOU delle Marche & Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Alberto Paladini
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Martina Bartolucci
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Martina Sordoni
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; Reichman University, Herzelia 46101, Israel.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
3
|
Fouka E, Drakopanagiotakis F, Steiropoulos P. Pathogenesis of Pulmonary Manifestations in ANCA-Associated Vasculitis and Goodpasture Syndrome. Int J Mol Sci 2024; 25:5278. [PMID: 38791316 PMCID: PMC11121030 DOI: 10.3390/ijms25105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary manifestations of vasculitis are associated with significant morbidity and mortality in affected individuals. They result from a complex interplay between immune dysregulation, which leads to vascular inflammation and tissue damage. This review explored the underlying pathogenesis of pulmonary involvement in vasculitis, encompassing various forms such as granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), eosinophilic granulomatosis with polyangiitis (EGPA), and anti-GBM disease. Mechanisms involving ANCA and anti-GBM autoantibodies, neutrophil activation, and neutrophil extracellular trap (NETs) formation are discussed, along with the role of the complement system in inducing pulmonary injury. Furthermore, the impact of genetic predisposition and environmental factors on disease susceptibility and severity was considered, and the current treatment options were presented. Understanding the mechanisms involved in the pathogenesis of pulmonary vasculitis is crucial for developing targeted therapies and improving clinical outcomes in affected individuals.
Collapse
Affiliation(s)
- Evangelia Fouka
- Department of Respiratory Medicine, General Hospital G. Papanikolaou, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Fotios Drakopanagiotakis
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
4
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Xia G, Zhou G, Jiang W, Chu C, Wang L, Moorthy B. Attenuation of Polycyclic Aromatic Hydrocarbon (PAH)-Induced Carcinogenesis and Tumorigenesis by Omega-3 Fatty Acids in Mice In Vivo. Int J Mol Sci 2024; 25:3781. [PMID: 38612589 PMCID: PMC11012139 DOI: 10.3390/ijms25073781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.
Collapse
Affiliation(s)
- Guobin Xia
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Guodong Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| |
Collapse
|
6
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
7
|
Ozeri DJ, Peretz S, Brif B, Gueta I, Oppenheim A. The Differences in Clinical Manifestations and Prognosis of Infective Endocarditis Patients With Positive Serology to Antineutrophilic Cytoplasmic Antibody Compared to Negative Serology. Cureus 2023; 15:e51211. [PMID: 38283493 PMCID: PMC10819091 DOI: 10.7759/cureus.51211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Previous studies have established a relationship between bacterial proteins and autoimmune diseases through several mechanisms. Infective endocarditis is known for its immunological phenomena, and the presence of antineutrophil cytoplasmic antibodies (ANCA) antibodies has been previously demonstrated in several infectious diseases. This retrospective, comparative, and descriptive study examined the relationship between infective endocarditis and the presence of ANCA antibodies. Ninety infective endocarditis cases were included in the study and tested for ANCA antibodies. The prevalence of ANCA positivity was determined, along with the differences in characteristics and prognosis between infective endocarditis patients with positive and negative serology for ANCA antibodies. The results showed that the characteristics of endocarditis patients who underwent ANCA serology testing were similar to those who did not, except for a higher prevalence of central line and chronic kidney disease in patients with ANCA serology (6.7% compared to 1.1% and 25.6% compared to 12.9%, respectively). Of the 90 endocarditis patients tested for ANCA serology, 18% were ANCA-positive, consistent with other prospective studies. There were no statistically significant differences in the primary outcome, six-month and one-year mortality, between patients with positive and negative ANCA serology. Similarly, in the secondary outcomes of acute kidney injury, heart surgery, and days of hospitalization, there were no statistically significant differences between patients with positive and negative ANCA serology. However, there were statistically significant differences in certain characteristics between the two groups. Patients with positive ANCA serology were found to have a higher prevalence of Enterococcus involvement (29.4% compared to 9.6% with P-value 0.046) and Q fever (23.5% compared to 4.1% P-value 0.02%). In contrast, patients with negative ANCA serology had a higher prevalence of fever (73% compared to 41% P-value 0.033).
Collapse
Affiliation(s)
| | - Shani Peretz
- Internal Medicine A, Sheba Medical Center, Ramat Gan, ISR
| | - Bianca Brif
- Infectious Disease, Sheba Medical Center, Ramat Gan, ISR
| | - Itai Gueta
- Internal Medicine A, Sheba Medical Center, Ramat Gan, ISR
| | - Amit Oppenheim
- Internal Medicine A, Sheba Medical Center, Ramat Gan, ISR
| |
Collapse
|
8
|
Gluhovschi C, Gadalean F, Velciov S, Nistor M, Petrica L. Three Diseases Mediated by Different Immunopathologic Mechanisms-ANCA-Associated Vasculitis, Anti-Glomerular Basement Membrane Disease, and Immune Complex-Mediated Glomerulonephritis-A Common Clinical and Histopathologic Picture: Rapidly Progressive Crescentic Glomerulonephritis. Biomedicines 2023; 11:2978. [PMID: 38001978 PMCID: PMC10669599 DOI: 10.3390/biomedicines11112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Immune mechanisms play an important role in the pathogenesis of glomerulonephritis (GN), with autoimmunity being the main underlying pathogenetic process of both primary and secondary GN. We present three autoimmune diseases mediated by different autoimmune mechanisms: glomerulonephritis in vasculitis mediated by anti-neutrophil cytoplasmic antibodies (ANCAs), glomerulonephritis mediated by anti-glomerular basement membrane antibodies (anti-GBM antibodies), and immune complex-mediated glomerulonephritis. Some of these diseases represent a common clinical and histopathologic scenario, namely rapidly progressive crescentic glomerulonephritis. This is a severe illness requiring complex therapy, with the main role being played by therapy aimed at targeting immune mechanisms. In the absence of immune therapy, the crescents, the characteristic histopathologic lesions of this common presentation, progress toward fibrosis, which is accompanied by end-stage renal disease (ESRD). The fact that three diseases mediated by different immunopathologic mechanisms have a common clinical and histopathologic picture reveals the complexity of the relationship between immunopathologic mechanisms and their clinical expression. Whereas most glomerular diseases progress by a slow process of sclerosis and fibrosis, the glomerular diseases accompanied by glomerular crescent formation can progress, if untreated, in a couple of months into whole-nephron glomerulosclerosis and fibrosis. The outcome of different immune processes in a common clinical and histopathologic phenotype reveals the complexity of the relationship of the kidney with the immune system. The aim of this review is to present different immune processes that lead to a common clinical and histopathologic phenotype, such as rapidly progressive crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Cristina Gluhovschi
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Florica Gadalean
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Silvia Velciov
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Mirabela Nistor
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Ligia Petrica
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| |
Collapse
|
9
|
Xue A, Bernard A, Moreno V, Phillips L, Raff E. A Rare Case of Hydralazine-Induced Diffuse Alveolar Hemorrhage. Cureus 2023; 15:e47591. [PMID: 38022102 PMCID: PMC10665773 DOI: 10.7759/cureus.47591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Hydralazine-induced anti-neutrophil cytoplasmic antibody (ANCA) vasculitis may occur any time after hydralazine initiation. General internists should recognize diffuse alveolar hemorrhage (DAH) as a rare complication of this condition, as early treatment reduces the associated high risk of mortality. We describe the case of an 82-year-old female with diastolic heart failure who presented with a one-month history of worsening dyspnea on exertion and a one-week history of scant hemoptysis and fatigue. Her medications included aspirin and hydralazine. She was hypoxic with bilateral expiratory wheezes on exam. Labs showed new anemia, elevated creatinine, proteinuria, and hematuria. Chest computed tomography showed asymmetric bilateral upper lobe ground-glass attenuation superimposed on interlobular septal thickening and intralobular lines. Further testing showed anti-nuclear antibody, positive ANCA, perinuclear ANCA (p-ANCA), and anti-myeloperoxidase ANCA (anti-MPO-ANCA). Renal biopsy revealed MPO-ANCA, pauci-immune, necrotizing, and crescentic glomerulonephritis. She was diagnosed with DAH secondary to hydralazine-induced ANCA-associated vasculitis (AAV). Hydralazine is an anti-hypertensive medication with known potential for autoimmune reactions. Of these, AAV is a rare sequela mediated by anti-MPO and most commonly affects the kidneys. In rare circumstances, patients with AAV can develop pulmonary-renal syndrome, resulting in both glomerulonephritis and DAH with an associated high risk of mortality. Diagnosis requires a high index of suspicion in patients with acute kidney injury of unclear etiology. Early diagnosis through immune work-up and kidney biopsy should be pursued, as prompt recognition of the vasculitis, cessation of hydralazine, immunosuppression, and early plasma exchange are essential to an improved prognosis.
Collapse
Affiliation(s)
- Angela Xue
- Medicine, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Adele Bernard
- Medicine, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Vanessa Moreno
- Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Lindsey Phillips
- Medicine, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Evan Raff
- Medicine, University of North Carolina School of Medicine, Chapel Hill, USA
| |
Collapse
|
10
|
Shiratori-Aso S, Nakazawa D. The involvement of NETs in ANCA-associated vasculitis. Front Immunol 2023; 14:1261151. [PMID: 37781373 PMCID: PMC10539550 DOI: 10.3389/fimmu.2023.1261151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a serious autoimmune disease that is characterized by vascular necrosis. The pathogenesis of AAV includes ANCA-mediated neutrophil activation, subsequent release of inflammatory cytokines and reactive oxygen species (ROS), and formation of neutrophil extracellular traps (NETs). Excessive NETs could participate not only in ANCA-mediated vascular injury but also in the production of ANCAs per se as autoantigens. Thus, a vicious cycle of NET formation and ANCA production is critical for AAV pathogenesis. Elucidating the molecular signaling pathways in aberrant neutrophil activation and NETs clearance systems will allow specific therapeutics to regulate these pathways. Currently, standard therapy with high doses of glucocorticoids and immunosuppressants has improved outcomes in patients with AAV. However, AAV frequently develops in elderly people, and adverse effects such as severe infections in the standard regimens might contribute to the mortality. Mechanistically, cytokines or complement factors activate and prime neutrophils for ANCA-binding; thus, C5a receptor blocker has garnered attention as potential replacement for glucocorticoids in clinical settings. Recent studies have demonstrated that receptor-interacting protein kinases (RIPK3) and cyclophilin D (CypD), which regulate cell necrosis, may be involved in ANCA-induced NETs formation. Meanwhile, targeting NETs clearance, including the addition of deoxyribonuclease I (DNase I) and macrophage engulfment, may improve vasculitis. In this review, we focus on the pathogenesis of NETs and discuss potential targeted therapies for AAV based on recent experimental evidence.
Collapse
Affiliation(s)
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Sweis JJG, Sweis NWG, Alnaimat F, Jansz J, Liao TWE, Alsakaty A, Azam A, Elmergawy H, Hanson HA, Ascoli C, Rubinstein I, Sweiss N. Immune-mediated lung diseases: A narrative review. Front Med (Lausanne) 2023; 10:1160755. [PMID: 37089604 PMCID: PMC10117988 DOI: 10.3389/fmed.2023.1160755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The role of immunity in the pathogenesis of various pulmonary diseases, particularly interstitial lung diseases (ILDs), is being increasingly appreciated as mechanistic discoveries advance our knowledge in the field. Immune-mediated lung diseases demonstrate clinical and immunological heterogeneity and can be etiologically categorized into connective tissue disease (CTD)-associated, exposure-related, idiopathic, and other miscellaneous lung diseases including sarcoidosis, and post-lung transplant ILD. The immunopathogenesis of many of these diseases remains poorly defined and possibly involves either immune dysregulation, abnormal healing, chronic inflammation, or a combination of these, often in a background of genetic susceptibility. The heterogeneity and complex immunopathogenesis of ILDs complicate management, and thus a collaborative treatment team should work toward an individualized approach to address the unique needs of each patient. Current management of immune-mediated lung diseases is challenging; the choice of therapy is etiology-driven and includes corticosteroids, immunomodulatory drugs such as methotrexate, cyclophosphamide and mycophenolate mofetil, rituximab, or other measures such as discontinuation or avoidance of the inciting agent in exposure-related ILDs. Antifibrotic therapy is approved for some of the ILDs (e.g., idiopathic pulmonary fibrosis) and is being investigated for many others and has shown promising preliminary results. A dire need for advances in the management of immune-mediated lung disease persists in the absence of standardized management guidelines.
Collapse
Affiliation(s)
| | | | - Fatima Alnaimat
- Division of Rheumatology, Department of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Jacqueline Jansz
- Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Ting-Wei Ernie Liao
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Alaa Alsakaty
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Abeera Azam
- Department of Internal Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Hesham Elmergawy
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Hali A. Hanson
- UIC College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Israel Rubinstein
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Research Service, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Singh H, Kumar U, Senapati S. Translational implications of humoral and cellular immune dysfunction in granulomatosis with polyangiitis. Cytokine 2023; 164:156154. [PMID: 36812668 DOI: 10.1016/j.cyto.2023.156154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Granulomatosis with polyangiitis (GPA) is a rare systemic ANCA (Anti-neutrophil cytoplasmic antibodies) associated vasculitis (AAV). In the last couple of decades, GPA has emerged as a disease of concern due to rapid increase in the prevalence and incidence especially in developing countries. Unknown aetiology and rapid progression have made GPA a critical disease. Thus, establishing specific tools to facilitate early and faster disease diagnosis and efficient disease management has immense importance. GPA may develop in genetically predisposed individuals on receiving the external stimulus (i.e. microbial pathogen, pollutant etc.) that triggers the immune response. B-cell activating factor (BAFF) produced by the neutrophils, promotes the B-cell maturation and survival which leads to increased ANCA production. Abnormal B-cell and T-cell proliferation and their cytokine response plays a major role in disease pathogenesis and granuloma formation. ANCA interacts with neutrophils and induces the neutrophil extracellular traps (NETs) formation and reactive oxygen species (ROS) production which leads to the endothelial cell injury. This review article summarizes the critical pathological events and how cytokines and immune cells shape the GPA pathogenesis. Decoding this complex network would facilitate in developing tools for diagnosis, prognosis and disease management. Recently developed specific monoclonal antibodies (MAbs) targeting cytokines and immune cells are being used for safer treatment and achieving longer remission.
Collapse
Affiliation(s)
- Harinder Singh
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
14
|
Paroli M, Gioia C, Accapezzato D. New Insights into Pathogenesis and Treatment of ANCA-Associated Vasculitis: Autoantibodies and Beyond. Antibodies (Basel) 2023; 12:antib12010025. [PMID: 36975372 PMCID: PMC10045085 DOI: 10.3390/antib12010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a group of rare systemic diseases affecting small-caliber vessels. The damage caused by AAV mainly involves the lung and kidneys. AAV includes three different types: granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). Although the different phenotypic forms of AAV share common features, recent studies have shown that there are significant differences in terms of pathogenetic mechanisms involving both the adaptive and innate immune systems. Advances in our understanding of pathogenesis have enabled the development of immuno-targeted therapies. This review illustrates the characteristics of the various forms of AAV and the new therapies available for this disease that can have lethal consequences if left untreated.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Sun XJ, Li ZY, Chen M. Pathogenesis of anti-neutrophil cytoplasmic antibody-associated vasculitis. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:11-21. [PMID: 37138650 PMCID: PMC10150877 DOI: 10.2478/rir-2023-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/08/2023] [Indexed: 05/05/2023]
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) encompasses a group of potentially life-threatening disorders characterized by necrotizing small vessel vasculitis with positive serum ANCA. To date, the pathogenesis of AAV has not been fully elucidated, but remarkable progress has been achieved in the past few decades. In this review, we summarize the mechanism of AAV. The pathogenesis of AAV involves various factors. ANCA, neutrophils, and the complement system play key roles in disease initiation and progression, forming a feedback amplification loop leading to vasculitic injury. Neutrophils activated by ANCA undergo respiratory burst and degranulation, as well as releasing neutrophils extracellular traps (NETs), thus causing damage to vascular endothelial cells. Activated neutrophils could further activate the alternative complement pathway, leading to the generation of complement 5a (C5a), which amplifies the inflammatory response by priming neutrophils for ANCA-mediated overactivation. Neutrophils stimulated with C5a and ANCA could also activate the coagulation system, generate thrombin, and subsequently cause platelet activation. These events in turn augment complement alternative pathway activation. Moreover, disturbed B-cell and T-cell immune homeostasis is also involved in disease development. In-depth investigation in pathogenesis of AAV might help to offer more effective targeted therapies.
Collapse
Affiliation(s)
- Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing100034, China
- Peking University Institute of Nephrology, Beijing100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing100034, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing100034, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing100034, China
- Peking University Institute of Nephrology, Beijing100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing100034, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing100034, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing100034, China
- Peking University Institute of Nephrology, Beijing100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing100034, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing100034, China
| |
Collapse
|
16
|
Chen DP, Aiello CP, McCoy D, Stamey T, Yang J, Hogan SL, Hu Y, Derebail VK, Wu EY, Jennette JC, Falk RJ, Ciavatta DJ. PRTN3 variant correlates with increased autoantigen levels and relapse risk in PR3-ANCA versus MPO-ANCA disease. JCI Insight 2023; 8:e166107. [PMID: 36626226 PMCID: PMC9977496 DOI: 10.1172/jci.insight.166107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A GWAS of patients with anti-neutrophil cytoplasmic antibodies (ANCAs) found an association between proteinase-3 ANCA (PR3-ANCA) and a single nucleotide polymorphism (rs62132293) upstream of PRTN3, encoding PR3. The variant (G allele) was shown to be an expression quantitative trait locus in healthy controls, but the clinical impact remains unknown. Longitudinally followed patients with ANCA and healthy controls were genotyped. Gene expression was quantified by real-time quantitative PCR from leukocyte RNA. Plasma PR3 was quantified by ELISA. Among patients, variant carriers had elevated leukocyte PRTN3 expression compared with noncarriers (C/G vs. C/C and G/G vs. C/C). Healthy controls had low PRTN3 regardless of genotype. Myeloperoxidase (MPO) expression did not differ by genotype. PRTN3 expression correlated with circulating PR3, and variant carriers had higher plasma PR3 compared with noncarriers. Among variant carriers, there was an increased risk of relapse in patients with PR3-ANCA versus MPO-ANCA. The risk allele marked by rs62132293 is clinically significant as it is associated with increased autoantigen and may, in part, explain increased relapse in PR3-ANCA. Our results underscore the role of autoantigen availability in ANCA vasculitis.
Collapse
Affiliation(s)
- Dhruti P. Chen
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claudia P. Aiello
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - DeMoris McCoy
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Taylor Stamey
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jiajin Yang
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan L. Hogan
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yichun Hu
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vimal K. Derebail
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eveline Y. Wu
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J. Charles Jennette
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, and
| | - Ronald J. Falk
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, and
| | - Dominic J. Ciavatta
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Tayari MM, Fang C, Ntziachristos P. Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:139-165. [PMID: 37751139 DOI: 10.1007/978-3-031-38176-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.
Collapse
Affiliation(s)
- Mina Masoumeh Tayari
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celestia Fang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Center for Medical Genetics, Ghent University, Medical Research Building 2 (MRB2), Entrance 38, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Scurt FG, Bose K, Hammoud B, Brandt S, Bernhardt A, Gross C, Mertens PR, Chatzikyrkou C. Old known and possible new biomarkers of ANCA-associated vasculitis. J Autoimmun 2022; 133:102953. [PMID: 36410262 DOI: 10.1016/j.jaut.2022.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises a group of multisystem disorders involving severe, systemic, small-vessel vasculitis with short- and long term serious and life-threating complications. Despite the simplification of treatment, fundamental aspects concerning assessment of its efficacy and its adaptation to encountered complications or to the relapsing/remitting/subclinical disease course remain still unknown. The pathogenesis of AAV is complex and unique, and despite the progress achieved in the last years, much has not to be learnt. Foremost, there is still no accurate marker enabling us to monitoring disease and guide therapy. Therefore, the disease management relays often on clinical judgment and follows a" trial and error approach". In the recent years, an increasing number of new molecules s have been explored and used for this purpose including genomics, B- and T-cell subpopulations, complement system factors, cytokines, metabolomics, biospectroscopy and components of our microbiome. The aim of this review is to discuss both the role of known historical and clinically established biomarkers of AAV, as well as to highlight potential new ones, which could be used for timely diagnosis and monitoring of this devastating disease, with the goal to improve the effectiveness and ameliorate the complications of its demanding therapy.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany.
| | - K Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Ben Hammoud
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - S Brandt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - A Bernhardt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - C Gross
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | | |
Collapse
|
19
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
20
|
Casal Moura M, Branco C, Martins-Martinho J, Ferraro JL, Berti A, Nogueira E, Ponte C. A glance into the future of anti-neutrophil cytoplasmic antibody-associated vasculitis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221125979. [PMID: 36353270 PMCID: PMC9638684 DOI: 10.1177/1759720x221125979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
In the past decade, unprecedented progress has been made in understanding the pathogenesis, diagnosis, assessment, and treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs). International collaborations and input from several fields (e.g. immunology, rheumatology, and nephrology) have been critical for analyzing demographics, disease manifestations, and outcomes in clinical research studies. Such efforts opened new avenues for generating novel questions and rationale to design better clinical trials. In addition, clinical research has been a source of several biological discoveries and the starting point for knowledge seeking on the pathophysiology of AAV. Interestingly, the blending of clinical and basic research provides a platform for personalized medicine. Despite recent revisions on AAV classification, the incorporation of new findings on disease genetics and immunologic responses may soon result in changes in clinical practice. These advances will enhance the selection of more specific and targeted therapies. However, current unmet needs in the management of AAV are still sizable and heavily impact long-term survival. Especially, frequent relapses, damage accrual, and high morbidity contribute to poor outcomes. Finally, the lack of defined biomarkers for disease activity and the prognosis is a permanent challenge in AAV research. Our work provides an overview of the current state of the art in AAV literature and suggests bridges for the remaining knowledge gaps. It offers potential future directions for the clinical assessment, management, and research in the field toward a more personalized medicine approach.
Collapse
Affiliation(s)
- Marta Casal Moura
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, and Thoracic Research Disease Unit, Mayo
Clinic College of Medicine and Science, 200 First Street, Rochester, MN
55905-0002, USA
- Department of Medicine, Faculty of Medicine,
Porto University, Porto, Portugal
| | - Carolina Branco
- Renal Transplant and Nephrology Department,
Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte,
Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Joana Martins-Martinho
- Rheumatology Department, Hospital de Santa
Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de
Medicina de Lisboa, Lisbon, Portugal
| | - José Luís Ferraro
- Rheumatology Department, Hospital de Santa
Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de
Medicina de Lisboa, Lisbon, Portugal
| | - Alvise Berti
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, and Thoracic Research Disease Unit, Mayo
Clinic College of Medicine and Science, Rochester, MN, USA
- Rheumatology Department, Santa Chiara Hospital
and Department of Cellular, Computational and Integrative Biology (CIBIO),
University of Trento, Trento, Italy
| | - Estela Nogueira
- Renal Transplant and Nephrology Department,
Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte,
Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Cristina Ponte
- Rheumatology Department, Hospital de Santa
Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de
Medicina de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Reumatologia,
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de
Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Trivioli G, Marquez A, Martorana D, Tesi M, Kronbichler A, Lyons PA, Vaglio A. Genetics of ANCA-associated vasculitis: role in pathogenesis, classification and management. Nat Rev Rheumatol 2022; 18:559-574. [PMID: 36109667 DOI: 10.1038/s41584-022-00819-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA), that share features of pauci-immune small-vessel vasculitis and the positivity of ANCA targeting proteinase-3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). AAV syndromes are rare, complex diseases and their aetio-pathogenesis is mainly driven by the interaction between environmental and genetic factors. In patients with GPA and MPA, the genetic associations are stronger with ANCA specificity (PR3- versus MPO-ANCA) than with the clinical diagnosis, which, in keeping with the known clinical and prognostic differences between PR3-ANCA-positive and MPO-ANCA-positive patients, supports an ANCA-based re-classification of these disorders. EGPA is also made up of genetically distinct subsets, which can be stratified on ANCA-status (MPO ANCA-positive versus ANCA-negative); these subsets differ in clinical phenotype and possibly in their response to treatment. Interestingly, MPO-ANCA-positive patients with either MPA or EGPA have overlapping genetic determinants, thus strengthening the concept that this EGPA subset is closely related to the other AAV syndromes. The genetics of AAV provides us with essential information to understand its varied phenotype. This Review discusses the main findings of genetic association studies in AAV, their pathogenic implications and their potential effect on classification, management and prognosis.
Collapse
Affiliation(s)
- Giorgio Trivioli
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Ana Marquez
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Davide Martorana
- Medical Genetics Unit, Department of Diagnostics, University Hospital of Parma, Parma, Italy
- CoreLab Unit, Research Center, University Hospital of Parma, Parma, Italy
| | - Michelangelo Tesi
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Andreas Kronbichler
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Vasculitis and Lupus Service, Department of Renal Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Augusto Vaglio
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy.
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy.
| |
Collapse
|
22
|
Martin K, Deleveaux S, Cunningham M, Ramaswamy K, Thomas B, Lerma E, Madariaga H. The presentation, etiologies, pathophysiology, and treatment of pulmonary renal syndrome: A review of the literature. Dis Mon 2022; 68:101465. [PMID: 36008166 DOI: 10.1016/j.disamonth.2022.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Pulmonary renal syndrome (PRS) is a constellation of different disorders that cause both rapidly progressive glomerulonephritis and diffuse alveolar hemorrhage. While antineutrophil cytoplasmic antibody associated vasculitis and anti-glomerular basement membrane disease are the predominant causes of PRS, numerous other mechanisms have been shown to cause this syndrome, including thrombotic microangiopathies, drug exposures, and infections, among others. This syndrome has high morbidity and mortality, and early diagnosis and treatment is imperative to improve outcomes. Treatment generally involves glucocorticoids and immunosuppressive agents, but treatment targeted to the underlying disorder can improve outcomes and mitigate side effects. Familiarity with the wide range of possible causes of PRS can aid the clinician in workup, diagnosis and early initiation of treatment. This review provides a summary of the clinical presentation, etiologies, pathophysiology, and treatment of PRS.
Collapse
Affiliation(s)
| | | | | | | | - Beje Thomas
- Medstar Georgetown University Hospital, United States
| | - Edgar Lerma
- Advocate Christ Medical Center, United States
| | | |
Collapse
|
23
|
Hypertrophic pachymeningitis with co-occurrence of anti-neutrophil cytoplasmic antibodies and immunoglobulin G4 seropositivity: Case report and literature review. J Neuroimmunol 2022; 368:577896. [DOI: 10.1016/j.jneuroim.2022.577896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022]
|
24
|
Massicotte-Azarniouch D, Herrera CA, Jennette JC, Falk RJ, Free ME. Mechanisms of vascular damage in ANCA vasculitis. Semin Immunopathol 2022; 44:325-345. [PMID: 35254509 PMCID: PMC9064952 DOI: 10.1007/s00281-022-00920-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
The discovery of anti-neutrophil cytoplasmic antibodies (ANCA) and their antigenic targets, myeloperoxidase (MPO) and proteinase 3 (PR3), has led to further understanding as to the pathophysiologic processes that underlie vascular and tissue damage in ANCA vasculitis. ANCA trigger neutrophil activation leading to vascular damage in ANCA vasculitis. However, decades of study have determined that neutrophil activation alone is not sufficient to cause disease. Inflammatory stimuli are drivers of ANCA autoantigen expression and ANCA production. Certain infections or bacterial peptides may be crucial players in the initial steps of ANCA immunopathogenesis. Genetic and epigenetic alterations of gene encoding for MPO and PR3 provide additional disturbances to the immune homeostasis which provide a substrate for pathogenic ANCA formation from an adaptive immune system predisposed to autoreactivity. Promoted by inflammatory cytokines, ANCA binding leads to neutrophil activation, a process characterized by conformational changes, production and release of cytotoxic substances, and alternative complement pathway activation, thus creating an intense inflammatory milieu. This cascade of events perpetuates a vicious cycle of further inflammatory cell recruitment and activation, culminating in tissue necrosis. Our understanding of the pathogenic process in ANCA vasculitis paves the way for the development of therapies targeting crucial steps in this process. The greater appreciation of the role for complement, monocytes, and the adaptive immune system has already led to novel complement blockers and is poised to lead to further innovations which will allow for tailored antigen- or cell-specific immunotherapy targeting the autoimmune process without exposure to undue risks or toxicities.
Collapse
Affiliation(s)
- David Massicotte-Azarniouch
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Carolina A Herrera
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald J Falk
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Meghan E Free
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Néel A, Degauque N, Bruneau S, Braudeau C, Bucchia M, Caristan A, De Mornac D, Genin V, Glemain A, Oriot C, Rimbert M, Brouard S, Josien R, Hamidou M. [Pathogenesis of ANCA-associated vasculitides in 2021: An update]. Rev Med Interne 2022; 43:89-97. [PMID: 35033384 DOI: 10.1016/j.revmed.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Anticytoplasmic neutrophil antibodies (ANCA)-associated vasculitis (AAV) are rare systemic immune-mediated diseases characterized by small vessel necrotizing vasculitis and/or respiratory tract inflammation. Over the last 2 decades, anti-MPO vasculitis mouse model has enlightened the role of ANCA, neutrophils, complement activation, T helper cells (Th1, Th17) and microbial agents. In humans, CD4T cells have been extensively studied, while the dramatic efficacy of rituximab demonstrated the key role of B cells. Many areas of uncertainty remain, such as the driving force of GPA extra-vascular granulomatous inflammation and the relapse risk of anti-PR3 AAV pathogenesis. Animal models eventually led to identify complement activation as a promising therapeutic target. New investigation tools, which permit in depth immune profiling of human blood and tissues, may open a new era for the studying of AAV pathogenesis.
Collapse
Affiliation(s)
- A Néel
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Centre de référence maladies auto-immunes systémiques Rares, hôpital Cochin, AP-HP, Paris, France.
| | - N Degauque
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - S Bruneau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Braudeau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Bucchia
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - A Caristan
- Service de médecine interne, CHD Vendée, La-Roche-Sur-Yon, France
| | - D De Mornac
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - V Genin
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - A Glemain
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Oriot
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - M Rimbert
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - S Brouard
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - R Josien
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Hamidou
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| |
Collapse
|
26
|
The Immunogenetics of Vasculitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:299-334. [DOI: 10.1007/978-3-030-92616-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Renal Tissue miRNA Expression Profiles in ANCA-Associated Vasculitis—A Comparative Analysis. Int J Mol Sci 2021; 23:ijms23010105. [PMID: 35008531 PMCID: PMC8745125 DOI: 10.3390/ijms23010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises autoimmune disease entities that cause target organ damage due to relapsing-remitting small vessel necrotizing vasculitis, and which affects various vascular beds. The pathogenesis of AAV is incompletely understood, which translates to considerable disease- and treatment-related morbidity and mortality. Recent advances have implicated microRNAs (miRNAs) in AAV; however, their accurate characterization in renal tissue is lacking. The goal of this study was to identify the intrarenal miRNA expression profile in AAV relative to healthy, non-inflammatory and inflammatory controls to identify candidate-specific miRNAs. Formalin-fixed, paraffin-embedded renal biopsy tissue samples from 85 patients were obtained. Comprehensive miRNA expression profiles were performed using panels with 752 miRNAs and revealed 17 miRNA that differentiated AAV from both controls. Identified miRNAs were annotated to characterize their involvement in pathways and to define their targets. A considerable subset of differentially expressed miRNAs was related to macrophage and lymphocyte polarization and cytokines previously deemed important in AAV pathogenesis, lending credence to the obtained results. Interestingly, several members of the miR-30 family were detected. However, a validation study of these differentially expressed miRNAs in an independent, larger sample cohort is needed to establish their potential diagnostic utility.
Collapse
|
28
|
Padoan R, Campaniello D, Gatto M, Schiavon F, Doria A. Current clinical and therapeutic approach to tumour-like mass lesions in granulomatosis with polyangiitis. Autoimmun Rev 2021; 21:103018. [PMID: 34902605 DOI: 10.1016/j.autrev.2021.103018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022]
Abstract
Granulomatosis with polyangiitis (GPA) is a systemic autoimmune disorder classified among the anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and characterized by a triad of upper and lower respiratory tract disease, systemic vasculitis involving small-to-medium vessels and renal manifestations. Mass lesions, also described as inflammatory lesions, pseudotumor or tumour-like masses, are uncommon manifestations of GPA and are often called granuloma since histology examination shows granulomatous inflammation and rarely vasculitis. Masses could represent a localized manifestation of GPA or develop as part of a systemic disease. Unusual clinical presentation together with nonspecific radiological and histological features may delay the correct diagnosis leading to disease progression and organ damage. Diagnosis of GPA in such cases may be challenging and malignancy or infections must be considered as alternative diagnostic options. Here we reviewed all the different sites where mass lesions were reported in GPA, focusing on atypical localization, and summarized current therapeutic options and their different outcomes. We retrieved and discussed the cases reported since 2010, bearing in mind the advances in the therapeutic management of AAV patients in the last decade, namely biological therapy such as rituximab. Despite treatment regimens with glucocorticoids and immunosuppressive agents, mass lesions have a refractory course in a high proportion of patients. Invasive surgical procedures may be considered only when drug therapy fails.
Collapse
Affiliation(s)
- Roberto Padoan
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Debora Campaniello
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Franco Schiavon
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy.
| |
Collapse
|
29
|
Lionaki S, Marinaki S, Liapis G, Kalaitzakis E, Fragkioudaki S, Kalogeropoulos P, Michelakis I, Goules A, Tzioufas AG, Boletis JN. Hypocomplementemia at Diagnosis of Pauci-immune Glomerulonephritis Is Associated With Advanced Histopathological Activity Index and High Probability of Treatment Resistance. Kidney Int Rep 2021; 6:2425-2435. [PMID: 34514203 PMCID: PMC8418949 DOI: 10.1016/j.ekir.2021.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction Recent evidence suggests that complement activation is important in the pathogenesis of pauci-immune (PI) vasculitis. This is a retrospective investigation of the frequency of hypocomplementemia at pauci-immune glomerulonephritis (PIGN) diagnosis, in relation to vasculitic manifestations, renal histopathology, and treatment outcomes. Methods A total of 115 patients with biopsy-proven PIGN were categorized based on their serum complement C3 (sC3). Histopathology evaluation included activity and chronicity indexes. The primary outcome of interest was treatment resistance, defined as a progressive decline in kidney function, with persistently active urine sediment, leading to dialysis dependency or vasculitis-related death. Results In all, 20.9% of patients had low sC3 levels associated with more advanced renal impairment (P < 0.01), requiring acute dialysis (P < 0.01) more frequently compared to patients with normal sC3. Within 1 year, 85.7% of patients with normal sC3 responded to therapy, versus 58.3% of those with low sC3 (P = 0.001). The probability of treatment resistance was strongly associated with low sC3 (P = 0.004), high serum creatinine (P < 0.001), acute dialysis requirement (P < 0.001), and high histopathological score of chronicity (P < 0.01). Advanced histopathological activity was related to more intense interstitial leukocyte infiltration (P = 0.005) and higher likelihood of fibrinoid necrosis documentation in a vessel wall (P = 0.02). The probability of treatment resistance was higher in patients with low sC3 (odds ratio [OR] = 6.47, 95% confidence interval [CI] 1.47-28.35, P = 0.013), oliguria (OR = 29.57, 95% CI = 4.74-184, P < 0.0001), and high chronicity score (OR = 1.77, 95% CI = 1.23-2.54, P = 0.002). Conclusion Low sC3 is emerging as an independent predictor of treatment resistance in patients with PIGN associated with higher index of histopathological activity at diagnosis compared to normal sC3.
Collapse
Affiliation(s)
- Sophia Lionaki
- Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence to: Sophia Lionaki, Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Agiou Thoma 17, Athens 11527, Greece.
| | - Smaragdi Marinaki
- Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Liapis
- 1 Department of Pathology, Medical School, National and Kapodistrian University of Athens, Laiko Hospital, Athens, Greece
| | - Emmanuel Kalaitzakis
- Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Fragkioudaki
- Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Kalogeropoulos
- Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Michelakis
- Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Goules
- Department of Pathophysiology, School of Medicine and Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine and Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - John N. Boletis
- Department of Nephrology and Transplantation Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Park SH, Fong KW, Mong E, Martin MC, Schiltz GE, Yu J. Going beyond Polycomb: EZH2 functions in prostate cancer. Oncogene 2021; 40:5788-5798. [PMID: 34349243 PMCID: PMC8487936 DOI: 10.1038/s41388-021-01982-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The Polycomb group (PcG) protein Enhancer of Zeste Homolog 2 (EZH2) is one of the three core subunits of the Polycomb Repressive Complex 2 (PRC2). It harbors histone methyltransferase activity (MTase) that specifically catalyze histone 3 lysine 27 (H3K27) methylation on target gene promoters. As such, PRC2 are epigenetic silencers that play important roles in cellular identity and embryonic stem cell maintenance. In the past two decades, mounting evidence supports EZH2 mutations and/or over-expression in a wide array of hematological cancers and solid tumors, including prostate cancer. Further, EZH2 is among the most upregulated genes in neuroendocrine prostate cancers, which become abundant due to the clinical use of high-affinity androgen receptor pathway inhibitors. While numerous studies have reported epigenetic functions of EZH2 that inhibit tumor suppressor genes and promote tumorigenesis, discordance between EZH2 and H3K27 methylation has been reported. Further, enzymatic EZH2 inhibitors have shown limited efficacy in prostate cancer, warranting a more comprehensive understanding of EZH2 functions. Here we first review how canonical functions of EZH2 as a histone MTase are regulated and describe the various mechanisms of PRC2 recruitment to the chromatin. We further outline non-histone substrates of EZH2 and discuss post-translational modifications to EZH2 itself that may affect substrate preference. Lastly, we summarize non-canonical functions of EZH2, beyond its MTase activity and/or PRC2, as a transcriptional cofactor and discuss prospects of its therapeutic targeting in prostate cancer.
Collapse
Affiliation(s)
- Su H Park
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ka-Wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Ezinne Mong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M Cynthia Martin
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
31
|
Vegting Y, Vogt L, Anders HJ, de Winther MPJ, Bemelman FJ, Hilhorst ML. Monocytes and macrophages in ANCA-associated vasculitis. Autoimmun Rev 2021; 20:102911. [PMID: 34298153 DOI: 10.1016/j.autrev.2021.102911] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitides (AAV) are characterized by inflammation of small-to-medium-sized blood vessels and the presence of autoantibodies against cytoplasmic proteases sited in neutrophils and monocytes. Increasing evidence indicates a substantial role of monocytes and macrophages in the pathogenesis of AAV. Activated monocytes and macrophages contribute to necroinflammation in peripheral vasculitic lesions as well as to central and peripheral mechanisms of autoimmunity. The intermediate monocyte subset (CD14++CD16+) is increased and monocytes show elevated expression of CD14, Toll-like receptor 2/4, MHCII and integrins, likely reflecting activation and increased monocyte extravasation. Monocytes differentiate locally predominantly into alternatively activated (M2) macrophages, which are known for cell-clearance and phagocytosis, but may ultimately lead to fibrosis. Phagocytotic function of macrophages can be impaired by surface expression of cytoplasmic proteases on apoptotic neutrophils and causes release of inflammatory cytokines and immunogenic contents, presumably resulting in a vicious circle of increased neutrophil, T and B cell activation and consequent ANCA production. Considering their crucial role in initiating necroinflammation as well as fibrogenesis, monocytes and macrophages may represent a logic first-line target for new treatment options in AAV.
Collapse
Affiliation(s)
- Yosta Vegting
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans-Joachim Anders
- Department of Internal Medicine IV, Division of Nephrology, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike J Bemelman
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc L Hilhorst
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Müller A, Krause B, Kerstein-Stähle A, Comdühr S, Klapa S, Ullrich S, Holl-Ulrich K, Lamprecht P. Granulomatous Inflammation in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 22:ijms22126474. [PMID: 34204207 PMCID: PMC8234846 DOI: 10.3390/ijms22126474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
ANCA-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). While systemic vasculitis is a hallmark of all AAV, GPA is characterized by extravascular granulomatous inflammation, preferentially affecting the respiratory tract. The mechanisms underlying the emergence of neutrophilic microabscesses; the appearance of multinucleated giant cells; and subsequent granuloma formation, finally leading to scarred or destroyed tissue in GPA, are still incompletely understood. This review summarizes findings describing the presence and function of molecules and cells contributing to granulomatous inflammation in the respiratory tract and to renal inflammation observed in GPA. In addition, factors affecting or promoting the development of granulomatous inflammation such as microbial infections, the nasal microbiome, and the release of damage-associated molecular patterns (DAMP) are discussed. Further, on the basis of numerous results, we argue that, in situ, various ways of exposure linked with a high number of infiltrating proteinase 3 (PR3)- and myeloperoxidase (MPO)-expressing leukocytes lower the threshold for the presentation of an altered PR3 and possibly also of MPO, provoking the local development of ANCA autoimmune responses, aided by the formation of ectopic lymphoid structures. Although extravascular granulomatous inflammation is unique to GPA, similar molecular and cellular patterns can be found in both the respiratory tract and kidney tissue of GPA and MPA patients; for example, the antimicrobial peptide LL37, CD163+ macrophages, or regulatory T cells. Therefore, we postulate that granulomatous inflammation in GPA or PR3-AAV is intertwined with autoimmune and destructive mechanisms also seen at other sites.
Collapse
Affiliation(s)
- Antje Müller
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Correspondence: ; Tel.: +49-451-5005-0867
| | - Bettina Krause
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
| | - Anja Kerstein-Stähle
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sara Comdühr
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sebastian Klapa
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Experimental Medicine c/o German Naval Medical Institute, Carl-Albrechts University of Kiel, 24119 Kronshagen, Germany
| | - Sebastian Ullrich
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
- Municipal Hospital Kiel, 24116 Kiel, Germany
| | | | - Peter Lamprecht
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| |
Collapse
|
33
|
Al-Ghabkari A, Narendran A. Targeting EZH2-mediated methylation of histone 3 inhibits proliferation of pediatric acute monocytic leukemia cells in vitro. Cancer Biol Ther 2021; 22:333-344. [PMID: 33978549 DOI: 10.1080/15384047.2021.1902913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and a catalytic subunit of the polycomb repressive complex 2 (PRC2) that catalyzes the mono-, di-, and tri-methylation of histone H3 at Lys 27 (H3K27me3) to facilitate chromatin-remodeling and gene-silencing functions. Previous reports showed a significant association of EZH2 aberrations in pediatric cancers, such as soft tissue sarcomas and glioblastoma. Recent reports in human subjects and animal models have also suggested a central role of EZH2 in the induction and progression of acute myeloid leukemia. In this study, we aimed to investigate the molecular status of EZH in cell lines derived from distinct pediatric leukemia to assess the efficacy of targeting EZH2 to suppress cancer cell survival and proliferation. Our results showed that EZH2 protein is overexpressed in the pediatric monocytic cell-line THP-1, but not in other leukemia-derived cell lines MV4;11 and SEM. Screening a panel of methyltransferase inhibitors revealed that three inhibitors; GSK126, UNC1999 and EPZ-5687 are the most potent inhibitors that suppressed EZH2 activity selectively on lysine 27 which resulted in increased apoptosis and inhibition of AKT and ERK protein phosphorylation in THP-1 cells. Our data demonstrated a significant increase in apoptosis in cells treated with drug combination (EZH2i and selinexor) compared to EZH2i inhibitors alone. Taken together, our data provide initial evidence that targeting EZH2 is a promising therapeutic strategy for the treatment of subtypes of pediatric AML. Also, combining EZH2 inhibitors with selinexor may increase the treatment efficacy in these patients.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Departments of Pediatrics, Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- Departments of Pediatrics, Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Morris AD, Morais CLM, Lima KMG, Freitas DLD, Brady ME, Dhaygude AP, Rowbottom AW, Martin FL. Distinguishing active from quiescent disease in ANCA-associated vasculitis using attenuated total reflection Fourier-transform infrared spectroscopy. Sci Rep 2021; 11:9981. [PMID: 33976282 PMCID: PMC8113456 DOI: 10.1038/s41598-021-89344-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
The current lack of a reliable biomarker of disease activity in anti-neutrophil cytoplasmic autoantibody (ANCA) associated vasculitis poses a significant clinical unmet need when determining relapsing or persisting disease. In this study, we demonstrate for the first time that attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy offers a novel and functional candidate biomarker, distinguishing active from quiescent disease with a high degree of accuracy. Paired blood and urine samples were collected within a single UK centre from patients with active disease, disease remission, disease controls and healthy controls. Three key biofluids were evaluated; plasma, serum and urine, with subsequent chemometric analysis and blind predictive model validation. Spectrochemical interrogation proved plasma to be the most conducive biofluid, with excellent separation between the two categories on PC2 direction (AUC 0.901) and 100% sensitivity (F-score 92.3%) for disease remission and 85.7% specificity (F-score 92.3%) for active disease on blind predictive modelling. This was independent of organ system involvement and current ANCA status, with similar findings observed on comparative analysis following successful remission-induction therapy (AUC > 0.9, 100% sensitivity for disease remission, F-score 75%). This promising technique is clinically translatable and warrants future larger study with longitudinal data, potentially aiding earlier intervention and individualisation of treatment.
Collapse
Affiliation(s)
- Adam D Morris
- Department of Renal Medicine, Royal Preston Hospital, Lancashire NHS Foundation Trust, Preston, UK.
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Kássio M G Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Daniel L D Freitas
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Mark E Brady
- Department of Renal Medicine, Royal Preston Hospital, Lancashire NHS Foundation Trust, Preston, UK
| | - Ajay P Dhaygude
- Department of Renal Medicine, Royal Preston Hospital, Lancashire NHS Foundation Trust, Preston, UK
| | - Anthony W Rowbottom
- Department of Immunology, Royal Preston Hospital, Lancashire NHS Foundation Trust, Preston, UK
- School of Medicine, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
35
|
Santoriello D, Bomback AS, Kudose S, Batal I, Stokes MB, Canetta PA, Radhakrishnan J, Appel GB, D'Agati VD, Markowitz GS. Anti-neutrophil cytoplasmic antibody associated glomerulonephritis complicating treatment with hydralazine. Kidney Int 2021; 100:440-446. [PMID: 33857570 DOI: 10.1016/j.kint.2021.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 01/23/2023]
Abstract
Hydralazine, a widely used therapy for hypertension and heart failure, can elicit autoimmune disease, including anti-neutrophil cytoplasmic antibody associated glomerulonephritis (ANCA-GN). We identified 80 cases of ANCA-GN complicating treatment with hydralazine, accounting for 4.3% (80/1858 biopsies) of ANCA-GN diagnosed between 2006 and 2019. Over three-fourths of patients were on hydralazine for at least one year, with mean daily dose of approximately 250 mg/day. ANCA testing revealed p-ANCA/myeloperoxidase-ANCA seropositivity in 98%, including 39% with dual p-ANCA/myeloperoxidase-ANCA and cANCA/anti-protinase 3-ANCA positivity, often accompanied by anti-nuclear antibody (89%), anti-histone antibody (98%), and hypocomplementemia (58%). Kidney biopsy revealed necrotizing and crescentic glomerulonephritis, similar to primary ANCA-GN, but significantly less frequently pauci-immune (77 vs. 100%) and more commonly associated with mesangial hypercellularity (30 vs. 5%), electron dense deposits (62 vs. 20%), and endothelial tubuloreticular inclusions (11 vs. 0%); all significant differences. On follow-up, 42 of 51 patients received induction immunosuppression: 19 reached the combined end-points of kidney failure or death and 32 had mean creatinine of 1.49 mg/dL at last follow-up. Thus, hydralazine-associated ANCA-GN often exhibits overlapping clinical and pathologic features of mild immune complex glomerulonephritis resembling lupus nephritis. With discontinuation of hydralazine and immunosuppression, outcomes are similar to primary ANCA-GN.
Collapse
Affiliation(s)
- Dominick Santoriello
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA.
| | - Andrew S Bomback
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Satoru Kudose
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ibrahim Batal
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - M Barry Stokes
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Pietro A Canetta
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jai Radhakrishnan
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Glen S Markowitz
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
36
|
Bushueva O, Barysheva E, Markov A, Belykh A, Koroleva I, Churkin E, Polonikov A, Ivanov V, Nazarenko M. DNA Hypomethylation of the MPO Gene in Peripheral Blood Leukocytes Is Associated with Cerebral Stroke in the Acute Phase. J Mol Neurosci 2021; 71:1914-1932. [PMID: 33864596 DOI: 10.1007/s12031-021-01840-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/03/2021] [Indexed: 01/15/2023]
Abstract
Dysregulation of the oxidant-antioxidant system contributes to the pathogenesis of cerebral stroke (CS). Epigenetic changes of redox homeostasis genes, such as glutamate-cysteine ligase (GCLM), glutathione-S-transferase-P1 (GSTP1), thioredoxin reductase 1 (TXNRD1), and myeloperoxidase (MPO), may be biomarkers of CS. In this study, we assessed the association of DNA methylation levels of these genes with CS and clinical features of CS. We quantitatively analyzed DNA methylation patterns in the promoter or regulatory regions of 4 genes (GCLM, GSTP1, TXNRD1, and MPO) in peripheral blood leukocytes of 59 patients with CS in the acute phase and in 83 relatively healthy individuals (controls) without cardiovascular and cerebrovascular diseases. We found that in both groups, the methylation level of CpG sites in genes TXNRD1 and GSTP1 was ≤ 5%. Lower methylation levels were registered at a CpG site (chr1:94,374,293, GRCh37 [hg19]) in GCLM in patients with ischemic stroke compared with the control group (9% [7%; 11.6%] (median and interquartile range) versus 14.7% [10.4%; 23%], respectively, p < 0.05). In the leukocytes of patients with CS, the methylation level of CpG sites in the analyzed region of MPO (chr17:56,356,470, GRCh3 [hg19]) on average was significantly lower (23.5% [19.3%; 26.7%]) than that in the control group (35.6% [30.4%; 42.6%], p < 0.05). We also found increased methylation of MPO in smokers with CS (27.2% [23.5%; 31.1%]) compared with nonsmokers with CS (21.7% [18.1%; 24.8%]). Thus, hypomethylation of CpG sites in GCLM and MPO in blood leukocytes is associated with CS in the acute phase.
Collapse
Affiliation(s)
- Olga Bushueva
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia. .,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia.
| | - Ekaterina Barysheva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Anton Markov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Andrey Belykh
- Department of Pathophysiology, Kursk State Medical University, Kursk, Russia
| | - Iuliia Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Egor Churkin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexey Polonikov
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Vladimir Ivanov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Maria Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
37
|
Fagni F, Bello F, Emmi G. Eosinophilic Granulomatosis With Polyangiitis: Dissecting the Pathophysiology. Front Med (Lausanne) 2021; 8:627776. [PMID: 33718405 PMCID: PMC7943470 DOI: 10.3389/fmed.2021.627776] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Eosinophilic Granulomatosis with Polyangiitis (EGPA) is a rare multisystemic disease classified both amongst hypereosinophilic disorders and ANCA-associated vasculitis. Vessel inflammation and eosinophilic proliferation are the hallmarks of the disease and main effectors of organ damage. Two distinct disease phenotypes have classically been described according to ANCA-status: the ANCA-negative subset with eosinophil-driven manifestation and the ANCA-positive one with vasculitic manifestations. An analogous dichotomization has also been backed by histological findings and a distinct genetic background. EGPA is typically consider a Th2-mediated disease and blood and tissue eosinophilia represent the cornerstone of diagnosis. Besides, ANCA are known for inducing endothelial injury and vascular inflammation by activating the circulating neutrophils. Thus, the pathogenesis of EGPA seems to be mediated by two coexisting mechanisms. However, the verbatim application of this strict dualism cannot always be translated into routine clinical practice. In the present review we describe the current knowledge on the eosinophilic and ANCA-mediated aspects of EGPA pathogenesis. Finally, we review the rationale of the currently proposed EGPA dichotomy and future research perspectives.
Collapse
Affiliation(s)
| | | | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
38
|
Leacy E, Brady G, Little MA. Pathogenesis of ANCA-associated vasculitis: an emerging role for immunometabolism. Rheumatology (Oxford) 2021; 59:iii33-iii41. [PMID: 32348520 DOI: 10.1093/rheumatology/keaa023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
ANCA-associated vasculitis (AAV) is a severe systemic autoimmune disease. A key feature of AAV is the presence of Anti-Neutrophil Cytoplasmic Antibodies (ANCA) directed against myeloperoxidase (MPO) or proteinase-3 (PR3). ANCA are key to the pathogenesis of AAV, where they activate innate immune cells to drive inflammation. Pre-activation or 'priming' of immune cells appears to be important for complete cellular activation in AAV. The burgeoning field of immunometabolism has illuminated the governance of immune cell function by distinct metabolic pathways. There is ample evidence that the priming events synonymous with AAV alter immune cell metabolism. In this review we discuss the pathogenesis of AAV and its intersection with recent insights into immune cell metabolism.
Collapse
Affiliation(s)
- Emma Leacy
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Kitching AR, Anders HJ, Basu N, Brouwer E, Gordon J, Jayne DR, Kullman J, Lyons PA, Merkel PA, Savage COS, Specks U, Kain R. ANCA-associated vasculitis. Nat Rev Dis Primers 2020; 6:71. [PMID: 32855422 DOI: 10.1038/s41572-020-0204-y] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group of disorders involving severe, systemic, small-vessel vasculitis and are characterized by the development of autoantibodies to the neutrophil proteins leukocyte proteinase 3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). The three AAV subgroups, namely granulomatosis with polyangiitis (GPA), microscopic polyangiitis and eosinophilic GPA (EGPA), are defined according to clinical features. However, genetic and other clinical findings suggest that these clinical syndromes may be better classified as PR3-positive AAV (PR3-AAV), MPO-positive AAV (MPO-AAV) and, for EGPA, by the presence or absence of ANCA (ANCA+ or ANCA-, respectively). Although any tissue can be involved in AAV, the upper and lower respiratory tract and kidneys are most commonly and severely affected. AAVs have a complex and unique pathogenesis, with evidence for a loss of tolerance to neutrophil proteins, which leads to ANCA-mediated neutrophil activation, recruitment and injury, with effector T cells also involved. Without therapy, prognosis is poor but treatments, typically immunosuppressants, have improved survival, albeit with considerable morbidity from glucocorticoids and other immunosuppressive medications. Current challenges include improving the measures of disease activity and risk of relapse, uncertainty about optimal therapy duration and a need for targeted therapies with fewer adverse effects. Meeting these challenges requires a more detailed knowledge of the fundamental biology of AAV as well as cooperative international research and clinical trials with meaningful input from patients.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia. .,Departments of Nephrology and Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia.
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians University, Munich, Germany
| | - Neil Basu
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Elisabeth Brouwer
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Jennifer Gordon
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | - David R Jayne
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Peter A Merkel
- Division of Rheumatology, Department of Medicine and Division of Clinical Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline O S Savage
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Renate Kain
- Department of Pathology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
40
|
Guzman AK, Balagula Y. Drug-induced cutaneous vasculitis and anticoagulant-related cutaneous adverse reactions: insights in pathogenesis, clinical presentation, and treatment. Clin Dermatol 2020; 38:613-628. [PMID: 33341196 DOI: 10.1016/j.clindermatol.2020.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drug-induced vasculitis and anticoagulant-related skin reactions are commonly encountered in the inpatient and outpatient settings. The spectrum of clinical presentation is broad and ranges from focal, skin-limited disease, to more extensive cutaneous and soft tissue necrosis, to potentially fatal systemic involvement. The prompt recognition of these adverse events can have a significant impact on patient morbidity and mortality. We highlight the key features of the clinical presentation with an emphasis on primary lesion morphology, distribution, and epidemiology of purpuric drug reactions. The proposed pathophysiology, histologic findings, and therapeutic interventions of these potentially life-threatening diseases are discussed.
Collapse
Affiliation(s)
- Anthony K Guzman
- Division of Dermatology, Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Yevgeniy Balagula
- Division of Dermatology, Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
41
|
DNA demethylation increases NETosis. Arch Biochem Biophys 2020; 689:108465. [PMID: 32561201 DOI: 10.1016/j.abb.2020.108465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/27/2020] [Accepted: 06/06/2020] [Indexed: 12/28/2022]
Abstract
Neutrophil extracellular traps (NETs) occur during the development of autoimmune diseases, cancer and diabetes. A novel form of cell death that is induced by NETs is called NETosis. Although these diseases are known to have an epigenetic component, epigenetic regulation of NETosis has not previously been explored. In the present study, we investigated the effects of epigenetic change, especially DNA demethylation, on NETosis in neutrophil-like cells differentiated from HL-60 cells, which were incubated for 72 h in the presence of 1.25% DMSO. DMSO-differentiated neutrophil-like cells tended to have increased methylation of genomic DNA. NETosis in the neutrophil-like cells was induced by the treatment with A23187, calcium ionophore, and increased by the addition of the DNMT inhibitor 5-azacytidine (Aza) during differentiation. Interestingly, Aza-stimulated neutrophil-like cell induced NETosis without treatment with A23187. Although reactive oxygen species (ROS), especially superoxide and hypochlorous acid, are important in NETosis induction, treatment with Aza decreased production of ROS, while mitochondria ROS scavenger tended to decrease Aza-induced NETosis. Moreover, the genomic DNA in Aza-stimulated neutrophil-like cell was demethylated, and the expression of peptidylarginine deiminase4 (PAD4) and citrullinated histone H3 (R2+R8+R17) was increased, but myeloperoxidase expression was unaffected. Additionally, PAD4 inhibition tended to decrease Aza-induced NETosis. The DNA demethylation induced by the DNMT inhibitor in neutrophil-like cells enhanced spontaneous NETosis through increasing PAD4 expression and histone citrullination. This study establishes a relationship between NETosis and epigenetics for the first time, and indicates that various diseases implicated to have an epigenetic component might be exacerbated by excessive NETosis also under epigenetic control.
Collapse
|
42
|
Jones BE, Herrera CA, Agosto-Burgos C, Starmer J, Bass WA, Poulton CJ, Blazek L, Henderson CD, Hu Y, Hogan SL, Hu P, Xiao H, Wu EY, Chen DP, Jennette JC, Free ME, Falk RJ, Ciavatta DJ. ANCA autoantigen gene expression highlights neutrophil heterogeneity where expression in normal-density neutrophils correlates with ANCA-induced activation. Kidney Int 2020; 98:744-757. [PMID: 32446935 DOI: 10.1016/j.kint.2020.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
ANCA vasculitis is an autoimmune disease with increased expression of the autoantigen genes, myeloperoxidase (MPO) and proteinase 3 (PRTN3), but the origin and significance of expression is less distinct. To clarify this, we measured MPO and PRTN3 messenger RNA in monocytes, normal-density neutrophils, and in enriched leukocytes from peripheral blood mononuclear cells. Increased autoantigen gene expression was detected in normal-density neutrophils and enriched leukocytes from patients during active disease compared to healthy individuals, with the largest difference in enriched leukocytes. RNA-seq of enriched leukocytes comparing active-remission pairs identified a gene signature for low-density neutrophils. Cell sorting revealed low-density neutrophils contained mature and immature neutrophils depending on the presence or absence of CD10. Both populations contributed to autoantigen expression but the frequency of immature cells in low-density neutrophils did not correlate with low-density neutrophil MPO or PRTN3 expression. Low-density neutrophils were refractory to MPO-ANCA induced oxidative burst, suggesting an alternative role for low-density neutrophils in ANCA vasculitis pathogenesis. In contrast, normal-density neutrophils were activated by MPO-ANCA and monoclonal anti-PR3 antibody. Normal-density neutrophil activation correlated with MPO and PRTN3 mRNA. Increased autoantigen gene expression originating from the mature low-density and normal-density neutrophils suggests transcriptional dysregulation is a hallmark of ANCA vasculitis. Thus, the correlation between autoantigen gene expression and antibody-mediated normal-density neutrophil activation connects autoantigen gene expression with disease pathogenesis.
Collapse
Affiliation(s)
- Britta E Jones
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carolina A Herrera
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christian Agosto-Burgos
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua Starmer
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William A Bass
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caroline J Poulton
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren Blazek
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Candace D Henderson
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yichun Hu
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan L Hogan
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peiqi Hu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hong Xiao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eveline Y Wu
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dhruti P Chen
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Charles Jennette
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meghan E Free
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald J Falk
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dominic J Ciavatta
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
43
|
Sundqvist M, Gibson KM, Bowers SM, Niemietz I, Brown KL. Anti-neutrophil cytoplasmic antibodies (ANCA): Antigen interactions and downstream effects. J Leukoc Biol 2020; 108:617-626. [PMID: 32421916 DOI: 10.1002/jlb.3vmr0220-438rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in circulation and are key "first responders" in the immune response to infectious and non-infectious stimuli. Unlike other immune cells, neutrophils can mount a robust response (including a change in surface markers and the production of extracellular traps and reactive oxygen species) just minutes after sensing a disturbance. It has been speculated that, in some individuals, the activation of neutrophils inadvertently leads to the generation of anti-neutrophil cytoplasmic autoantibodies (ANCA) against particular neutrophil proteins (antigens) such as myeloperoxidase (MPO) and proteinase 3 (PR3). In these individuals, continuous ANCA-antigen interactions are thought to drive persistent activation of neutrophils, chronic immune activation, and disease, most notably, small vessel vasculitis. There are significant gaps however in our understanding of the underlying mechanisms and even the pathogenicity of ANCA given that vasculitis can develop in the absence of ANCA, and that ANCA have been found in circulation in other conditions with no apparent contribution to disease. These gaps are particularly evident in the context of human studies. Herein, we review knowledge on neutrophil-derived ANCA antigens PR3 and MPO, ANCA generation, and ANCA-antigen interaction(s) that may promote immune activation and disease.
Collapse
Affiliation(s)
- Martina Sundqvist
- Department of Pediatrics, Division of Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristen M Gibson
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah M Bowers
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Iwona Niemietz
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly L Brown
- Department of Pediatrics, Division of Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Cook EK, Luo M, Rauh MJ. Clonal hematopoiesis and inflammation: Partners in leukemogenesis and comorbidity. Exp Hematol 2020; 83:85-94. [PMID: 32001341 DOI: 10.1016/j.exphem.2020.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
Clonal hematopoiesis (CH) of indeterminate potential (CHIP), defined as the presence of a somatic mutation in the peripheral blood at a variant allele frequency (VAF) ≥2%, affects at least 10% of individuals older than 65, but low-VAF clones can be detected in 95% of individuals older than 50. CHIP associates with a wide range of comorbidities from atherosclerosis to pulmonary disease. A growing body of evidence, primarily from studies involving Tet2-knockout and stem cell transplant models of CH, suggest that dysregulated inflammation contributes to clonal expansion and associated comorbidities. Mutant leukocytes from animal models contribute to an inflammatory milieu that may confer a selective advantage to the clone, thus perpetuating a cycle of inflammation and expansion. Although it is unclear whether inflammation or expansion sets this cycle in motion, some evidence suggests that inflammation from infections or pre-existing comorbidities initiates this cycle. The pro-inflammatory phenotypes of macrophages from mutant clones and their contributions to disease are well characterized in murine models, but have not yet been confirmed in humans. Furthermore, the roles of other cell types that can carry mutations of CHIP are not fully understood. We propose a rationale for further investigation of neutrophils, other granulocytes and T, B, and NK cells as they may play a role in CHIP-associated comorbidities. As the understanding of CH has advanced, potential interventions, especially those targeting aberrant inflammation, have been proposed. We are hopeful that as studies continue to unravel the complex links between CHIP, inflammation, and leukocyte dysfunction, CHIP-related comorbidities may be more effectively managed.
Collapse
Affiliation(s)
- Elina K Cook
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| | - Michael Luo
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
45
|
Demirkaya E, Arici ZS, Romano M, Berard RA, Aksentijevich I. Current State of Precision Medicine in Primary Systemic Vasculitides. Front Immunol 2019; 10:2813. [PMID: 31921111 PMCID: PMC6927998 DOI: 10.3389/fimmu.2019.02813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Precision medicine (PM) is an emerging data-driven health care approach that integrates phenotypic, genomic, epigenetic, and environmental factors unique to an individual. The goal of PM is to facilitate diagnosis, predict effective therapy, and avoid adverse reactions specific for each patient. The forefront of PM is in oncology; nonetheless, it is developing in other fields of medicine, including rheumatology. Recent studies on elucidating the genetic architecture of polygenic and monogenic rheumatological diseases have made PM possible by enabling physicians to customize medical treatment through the incorporation of clinical features and genetic data. For complex inflammatory disorders, the prevailing paradigm is that disease susceptibility is due to additive effects of common reduced-penetrance gene variants and environmental factors. Efforts have been made to calculate cumulative genetic risk score (GRS) and to relate specific susceptibility alleles for use of target therapies. The discovery of rare patients with single-gene high-penetrance mutations informed our understanding of pathways driving systemic inflammation. Here, we review the advances in practicing PM in patients with primary systemic vasculitides (PSVs). We summarize recent genetic studies and discuss current knowledge on the contribution of epigenetic factors and extracellular vesicles (EVs) in disease progression and treatment response. Implementation of PM in PSVs is a developing field that will require analysis of a large cohort of patients to validate data from genomics, transcriptomics, metabolomics, proteomics, and epigenomics studies for accurate disease profiling. This multi-omics approach to study disease pathogeneses should ultimately provide a powerful tool for stratification of patients to receive tailored optimal therapies and for monitoring their disease activity.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Zehra Serap Arici
- Department of Paediatric Rheumatology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Pediatric Rheumatology, Istituto Ortopedico Gaetano Pini, Milan, Italy
| | - Roberta Audrey Berard
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Weng CH, Liu ZC. Drug-induced anti-neutrophil cytoplasmic antibody-associated vasculitis. Chin Med J (Engl) 2019; 132:2848-2855. [PMID: 31856057 PMCID: PMC6940077 DOI: 10.1097/cm9.0000000000000539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE In recent years, an increasing number of drugs have been proved to be associated with the induction of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). This article reviews the latest research progress on drug-induced AAV. DATA SOURCES We conducted a comprehensive and detailed search of the PubMed database. The search terms mainly included drug-induced, ANCA, and vasculitis. STUDY SELECTION We summarized the original articles and reviews on drug-induced AAV in recent years. The extracted information included the definition, epidemiology, associated drugs, pathogenesis, clinical features, diagnosis, treatment, and prognosis of drug-induced AAV. We also focused on the differences between drug-induced AAV and primary vasculitis. RESULTS The offending drugs leading to drug-induced AAV are almost from pharmacologic categories and we need to be vigilant when using these drugs. The pathogenesis of drug-induced AAV might be multifactorial. The formation of neutrophil extracellular traps is an important mechanism for the development of drug-induced AAV. The clinical features of drug-induced AAV are similar to those of primary AAV. Understanding the difference between drug-induced AAV and primary AAV is helpful to identify drug-induced AAV. Stopping the offending drug at once after diagnosis may be sufficient for those patients with mild symptoms. Immunosuppressive therapy should only be used in patients with vital organs involvement. CONCLUSIONS Patients with drug-induced AAV usually have a good prognosis if they stop using the offending drug immediately. Recent advances in research on AAV are expected to help us better understand the pathogenesis of drug-induced AAV.
Collapse
Affiliation(s)
- Cheng-Hua Weng
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | | |
Collapse
|
47
|
Surmiak M, Hubalewska-Mazgaj M, Wawrzycka-Adamczyk K, Musiał J, Sanak M. Delayed neutrophil apoptosis in granulomatosis with polyangiitis: dysregulation of neutrophil gene signature and circulating apoptosis-related proteins. Scand J Rheumatol 2019; 49:57-67. [PMID: 31610684 DOI: 10.1080/03009742.2019.1634219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: Neutrophil apoptosis is mandatory for resolving inflammation and is regulated by expression of pro- and anti-apoptotic genes. We studied neutrophils isolated from patients with granulomatosis with polyangiitis (GPA) to investigate apoptosis alterations and to identify transcriptional and circulating factors affecting this process.Method: We enrolled 36 patients (18 in active stage, 18 in remission) and 18 healthy controls. Circulating levels of tumour necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage migration inhibitory factor, plasminogen activator inhibitor-1, interferon-γ, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, platelet endothelial cell adhesion molecule-1, soluble Fas (sFas), sFas ligand, survivin, and pentraxin-3 (PTX3) were evaluated by enzyme-linked immunosorbent assay/Luminex; circulating apoptotic neutrophils by flow cytometry; and apoptosis-related gene transcripts by real-time polymerase chain reaction.Results: Patients had decreased fractions of circulating apoptotic neutrophils and delayed neutrophil apoptosis was present in vitro. Circulating levels of TNF-α, GM-CSF, sFas, and PTX3 were higher in GPA. Delayed neutrophil apoptosis was accompanied by decreased mRNA of pro-apoptotic genes and transcription factors (DIABLO, PMAIP1, BAX, CASP3, CASP7, RUNX3, E2F1, TP53) and increased anti-apoptotic CFLAR and BCL2A1 mRNA. TNF-α and sFas levels correlated with circulating apoptotic neutrophils and expression of apoptosis genes. Stimulation with TNF-α of neutrophils from controls significantly down-regulated E2F1 and CASP3 expression.Conclusions: Circulating neutrophils in GPA have anti-apoptotic phenotype involving both intrinsic and extrinsic pathways of apoptosis. This is accompanied by increased levels of circulating pro-survival factors (GM-CSF, TNF-α, sFas), independent of disease activity. Anti-apoptotic phenotype of neutrophils in GPA is reproduced by exposure to low concentrations of TNF-α.
Collapse
Affiliation(s)
- M Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - M Hubalewska-Mazgaj
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - K Wawrzycka-Adamczyk
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - J Musiał
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - M Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
48
|
Arends CM, Weiss M, Christen F, Eulenberg-Gustavus C, Rousselle A, Kettritz R, Eckardt KU, Chan W, Hoyer K, Frick M, Bullinger L, Bieringer M, Schreiber A, Damm F. Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica 2019; 105:e264-e267. [PMID: 31582546 DOI: 10.3324/haematol.2019.223305] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Christopher Maximilian Arends
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Marlene Weiss
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin.,Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Friederike Christen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin
| | - Anthony Rousselle
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin.,Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Kai-Uwe Eckardt
- Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Willy Chan
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Kaja Hoyer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Mareike Frick
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin
| | - Lars Bullinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg
| | - Markus Bieringer
- HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, Charité, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin .,Charité - Universitätsmedizin Berlin, Department of Nephrology and Intensive Care Medicine, Berlin
| | - Frederik Damm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg
| |
Collapse
|
49
|
Strunk D, Schmidt-Pogoda A, Beuker C, Milles LS, Korsukewitz C, Meuth SG, Minnerup J. Biomarkers in Vasculitides of the Nervous System. Front Neurol 2019; 10:591. [PMID: 31244756 PMCID: PMC6562258 DOI: 10.3389/fneur.2019.00591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Besides being affected by the rare and severe primary angiitis of the central nervous system (PACNS) the nervous system is also affected by primary systemic vasculitides (PSV). In contrast to PACNS, PSV affect not only the central but also the peripheral nervous system, resulting in a large array of potential symptoms. Given the high burden of disease, difficulties in distinguishing between differential diagnoses, and incomplete pathophysiological insights, there is an urgent need for additional precise diagnostic tools to enable an earlier diagnosis and initiation of effective treatments. Methods available to date, such as inflammatory markers, antibodies, cerebrospinal fluid (CSF) analysis, imaging, and biopsy, turn out to be insufficient to meet all current challenges. We highlight the use of biomarkers as an approach to extend current knowledge and, ultimately, improve patient management. Biomarkers are considered to be useful for disease diagnosis and monitoring, for predicting response to treatment, and for prognosis in clinical practice, as well as for establishing outcome parameters in clinical trials. In this article, we review the recent literature on biomarkers which have been applied in the context of different types of nervous system vasculitides including PACNS, giant-cell arteritis, Takayasu's arteritis, polyarteritis nodosa, ANCA (anti-neutrophil cytoplasm antibody)-associated vasculitides, cryoglobulinemic vasculitis, IgA vasculitis, and Behçet's disease. Overall, the majority of biomarkers is not specific for vasculitides of the nervous system.
Collapse
Affiliation(s)
- Daniel Strunk
- Department of Neurology, Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Antje Schmidt-Pogoda
- Department of Neurology, Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Carolin Beuker
- Department of Neurology, Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Lennart S Milles
- Department of Neurology, Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Catharina Korsukewitz
- Department of Neurology, Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Jens Minnerup
- Department of Neurology, Institute for Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Affandi AJ, Carvalheiro T, Ottria A, Broen JCA, Bossini-Castillo L, Tieland RG, Bon LV, Chouri E, Rossato M, Mertens JS, Garcia S, Pandit A, de Kroon LMG, Christmann RB, Martin J, van Roon JAG, Radstake TRDJ, Marut W. Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis. Ann Rheum Dis 2019; 78:1249-1259. [DOI: 10.1136/annrheumdis-2018-214991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
ObjectivesSystemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology.MethodsIn total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model.ResultsHere, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis.ConclusionsWe show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.
Collapse
|