1
|
Manley W, Tran T, Prusinski M, Brisson D. Comparative ecological analysis and predictive modeling of tick-borne pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae127. [PMID: 39439315 DOI: 10.1093/jme/tjae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Tick-borne diseases constitute the predominant vector-borne health threat in North America. Recent observations have noted a significant expansion in the range of the black-legged tick (Ixodes scapularis Say, Acari: Ixodidae), alongside a rise in the incidence of diseases caused by its transmitted pathogens: Borrelia burgdorferi Johnson (Spirochaetales: Spirochaetaceae), Babesia microti Starcovici (Piroplasmida: Babesiidae), and Anaplasma phagocytophilium Zhu (Rickettsiales: Anaplasmataceae), the causative agents of Lyme disease, babesiosis, and anaplasmosis, respectively. Prior research identified environmental features that influence the ecological dynamics of I. scapularis and B. burgdorferi that can be used to predict the distribution and abundance of these organisms, and thus Lyme disease risk. In contrast, there is a paucity of research into the environmental determinants of B. microti and A. phagocytophilium. Here, we use over a decade of surveillance data to model the impact of environmental features on the infection prevalence of these increasingly common human pathogens in ticks across New York State (NYS). Our findings reveal a consistent northward and westward expansion of B. microti in NYS from 2009 to 2019, while the range of A. phagocytophilum varied at fine spatial scales. We constructed biogeographic models using data from over 650 site-year visits and encompassing more than 250 environmental variables to accurately forecast infection prevalence for each pathogen to a future year that was not included in model training. Several environmental features were identified to have divergent effects on the pathogens, revealing potential ecological differences governing their distribution and abundance. These validated biogeographic models have applicability for disease prevention efforts.
Collapse
Affiliation(s)
- William Manley
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tam Tran
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Geisen V, Pantchev N, Zablotski Y, Kim O, Globokar Vrhovec M, Hartmann K, Bergmann M. Molecular Detection of Anaplasma phagocytophilum in Cats in Europe and Associated Risk Factors. Animals (Basel) 2024; 14:2368. [PMID: 39199902 PMCID: PMC11350889 DOI: 10.3390/ani14162368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Infections with Anaplasma (A.) phagocytophilum in cats seem to be rare. The study aimed to determine whether infections in cats are underestimated and to identify the risk factors for infection. Blood samples of 1015 cats across Europe (2017-2022), sent to IDEXX Laboratories, Germany, were tested for A. phagocytophilum DNA. The influence of the cats' origin on A. phagocytophilum infection was assessed by univariable analysis, while multivariable logistic regression evaluated associations with the cats' sex and age, and the years, and seasonality of the samples' submission. Furthermore, univariable linear regression was used to determine patterns in PCR orders. The number of submitted samples increased significantly during the 6 years (p = 0.042). Anaplasma phagocytophilum DNA was detected in 76/1015 of cats (7.5%, 95% CI 6.0-9.3%). Infections were significantly more common in Northern compared to Central (p < 0.001, OR: 8.70) and Southern Europe (p < 0.001, OR: 39.94). A significantly higher likelihood for infections during the summer compared with winter (p = 0.047, OR: 3.13) was found. Bacteremia with A. phagocytophilum in European cats is not uncommon. Anaplasma phagocytophilum infection should be considered an important risk, particularly in Northern Europe. Effective tick prevention is crucial for managing feline health across Europe, not just in the Mediterranean region.
Collapse
Affiliation(s)
- Vera Geisen
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| | - Nikola Pantchev
- IDEXX Laboratories, D-70806 Kornwestheim, Germany; (N.P.); (O.K.); (M.G.V.)
| | - Yury Zablotski
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| | - Olga Kim
- IDEXX Laboratories, D-70806 Kornwestheim, Germany; (N.P.); (O.K.); (M.G.V.)
| | | | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| | - Michéle Bergmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| |
Collapse
|
3
|
Duron O. Nutritional symbiosis in ticks: singularities of the genus Ixodes. Trends Parasitol 2024; 40:696-706. [PMID: 38942646 DOI: 10.1016/j.pt.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Symbiosis with intracellular bacteria is essential for the nutrition of ticks, particularly through the biosynthesis of B vitamins. Yet, ticks of the genus Ixodes, which include major vectors of human pathogens, lack the nutritional symbionts usually found in other tick genera. This paradox raises questions about the mechanisms that Ixodes ticks use to prevent nutritional deficiencies. Nonetheless, Ixodes ticks commonly harbor other symbionts belonging to the order Rickettsiales. Although these obligate intracellular bacteria are primarily known as human pathogens, Rickettsiales symbionts often dominate the Ixodes microbial community without causing diseases. They also significantly influence Ixodes physiology, synthesize key B vitamins, and are crucial for immatures. These findings underscore unique associations between Rickettsiales and Ixodes ticks distinct from other tick genera.
Collapse
Affiliation(s)
- Olivier Duron
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Montpellier, France.
| |
Collapse
|
4
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. Front Cell Infect Microbiol 2024; 14:1427562. [PMID: 39086604 PMCID: PMC11288922 DOI: 10.3389/fcimb.2024.1427562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
5
|
Li N, Yuan Q, Qi Y, Wu P, Cui S, Zheng G. The Potential Implications of Sex-Specific Differences in the Intestinal Bacteria of the Overwintering Wolf Spider Pardosa astrigera (Araneae: Lycosidae). INSECTS 2024; 15:490. [PMID: 39057223 PMCID: PMC11276740 DOI: 10.3390/insects15070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Gut microbiota can promote the resistance of host arthropods to low-temperature stress. Female Pardosa astrigera have a lower anti-freeze compound level and weaker resistance to cold temperatures than the males in winter, which implies that their intestinal bacteria may be different during overwintering. This study primarily compared the intestinal bacterial communities between the two sexes of P. astrigera in a temperate region using 16S rRNA gene sequencing. Our findings indicated that the Chao1 and Shannon indices of intestinal bacteria in females were significantly higher than those in males, while the Simpson index in females was significantly lower than that in males. The male intestinal bacterial community was characterized by Proteobacteria and Actinobacteriota at the phylum level and by Pseudomonas and Rhodococcus at the genus level, with total relative abundances of 89.58% and 85.22%, respectively, which were also significantly higher than those in females, whose total relative abundances were 47.49% and 43.68%, respectively. In contrast, the total relative abundances of Bacteroidota and Firmicutes were significantly lower in males (4.26% and 4.75%, respectively) than in females (26.25% and 22.31%, respectively). Noteworthy divergences in bacterial communities were also found through an LEfSe analysis between females and males. Additionally, the results of the PICRUSt2 analysis showed that six out of eleven level-2 pathways related to key metabolic functions were significantly (or marginally significantly) higher in females than males, and five other level-2 pathways were significantly (or marginally significantly) lower in females than males. Our results imply that significant gender differences exist in intestinal bacterial communities of overwintering P. astrigera. We suggest that Pseudomonas versuta (belonging to Proteobacteria) and Rhodococcus erythropolis (belonging to Actinobacteriota) may have the potential to play key roles in overwintering P. astrigera.
Collapse
Affiliation(s)
- Ningkun Li
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Quan Yuan
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Yaru Qi
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Pengfeng Wu
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Shuyan Cui
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Guo Zheng
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
- Liaoning Key Laboratory for Biological Evolution and Agricultural Ecology, Shenyang 110034, China
| |
Collapse
|
6
|
Martinez-Villegas L, Lado P, Klompen H, Wang S, Cummings C, Pesapane R, Short SM. The microbiota of Amblyomma americanum reflects known westward expansion. PLoS One 2024; 19:e0304959. [PMID: 38857239 PMCID: PMC11164389 DOI: 10.1371/journal.pone.0304959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Paula Lado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Hans Klompen
- Department of Evolution, Ecology, and Organismal Biology and Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
| | - Selena Wang
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Caleb Cummings
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Risa Pesapane
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
8
|
Ferguson LV, El Nabbout A, Adamo SA. Warming, but not infection with Borrelia burgdorferi, increases off-host winter activity in the ectoparasite, Ixodes scapularis. J Therm Biol 2024; 121:103853. [PMID: 38626664 DOI: 10.1016/j.jtherbio.2024.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/17/2024] [Indexed: 04/18/2024]
Abstract
Warming winters will change patterns of behaviour in temperate and polar arthropods, but we know little about the drivers of winter activity in animals such as ticks. Any changes in behaviour are likely to arise from a combination of both abiotic (e.g. temperature) and biotic (e.g. infection) drivers, and will have important consequences for survival and species interactions. Blacklegged ticks, Ixodes scapularis, have invaded Atlantic Canada and high proportions (30-50%) are infected with the bacteria causing Lyme disease, Borrelia burgdorferi. Infection is correlated with increased overwintering survival of adult females, and ticks are increasingly active in the winter, but it is unclear if infection is associated with activity. Further, we know little about how temperature drives the frequency of winter activity. Here, we exposed wild-caught, adult, female Ixodes scapularis ticks to three different winter temperature regimes (constant low temperatures, increased warming, and increased warming + variability) to determine the thermal and infection conditions that promote or suppress activity. We used automated behaviour monitors to track daily activity in individual ticks and repeated the study with fresh ticks over three years. Following exposure to winter conditions we determined whether ticks were infected with the bacteria B. burgdorferi and if infection was responsible for any patterns in winter activity. Warming conditions promoted increased activity throughout the overwintering period but infection with B. burgdorferi had no impact on the frequency or overall number of ticks active throughout the winter. Individual ticks varied in their levels of activity throughout the winter, such that some were largely dormant for several weeks, while others were active almost daily; however, we do not yet know the drivers behind this individual variation in behaviour. Overall, warming winters will heighten the risk of tick-host encounters.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | - Amal El Nabbout
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| |
Collapse
|
9
|
Christensen SM, Srinivas SN, McFrederick QS, Danforth BN, Buchmann SL, Vannette RL. Symbiotic bacteria and fungi proliferate in diapause and may enhance overwintering survival in a solitary bee. THE ISME JOURNAL 2024; 18:wrae089. [PMID: 38767866 PMCID: PMC11177884 DOI: 10.1093/ismejo/wrae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.
Collapse
Affiliation(s)
- Shawn M Christensen
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Sriram N Srinivas
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, United States
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, NY 14853, United States
| | - Stephen L Buchmann
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85719, United States
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
10
|
Nabbout AE, Ferguson LV, Miyashita A, Adamo SA. Female ticks (Ixodes scapularis) infected with Borrelia burgdorferi have increased overwintering survival, with implications for tick population growth. INSECT SCIENCE 2023; 30:1798-1809. [PMID: 37147777 DOI: 10.1111/1744-7917.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat into these areas. Warming temperatures appear to be one cause of its range expansion to the north. However, other factors are also involved. We show that unfed adult female ticks infected with B. burgdorferi have greater overwintering survival than uninfected female ticks. Locally collected adult female ticks were placed in individual microcosms and allowed to overwinter in both forest and dune grass environments. In the spring we collected the ticks and tested both dead and living ticks for B. burgdorferi DNA. Infected ticks had greater overwintering survival compared with uninfected ticks every winter for three consecutive winters in both forest and dune grass environments. We discuss the most plausible explanations for this result. The increased winter survival of adult female ticks could enhance tick population growth. Our results suggest that, in addition to climate change, B. burgdorferi infection itself may be promoting the northern range expansion of I. scapularis. Our study highlights how pathogens could work synergistically with climate change to promote host range expansion.
Collapse
Affiliation(s)
- Amal El Nabbout
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
11
|
McClung KL, Sundstrom KD, Lineberry MW, Grant AN, Little SE. Seasonality of Amblyomma americanum (Acari: Ixodidae) Activity and Prevalence of Infection with Tick-Borne Disease Agents in North Central Oklahoma. Vector Borne Zoonotic Dis 2023; 23:561-567. [PMID: 37668606 PMCID: PMC10654644 DOI: 10.1089/vbz.2023.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Background: Amblyomma americanum is the most common tick infesting both animals and humans in the southern United States and transmits a variety of zoonotic agents. The rise in tick-borne diseases (TBD) globally imparts a need for more active surveillance of tick populations to accurately quantify prevalence and risk of tick-borne infectious organisms. To better understand TBD risk in north central Oklahoma, this study aimed to describe the current seasonal activity of A. americanum in this region and investigate the seasonality of tick-borne infectious agents. Materials and Methods: Tick collections were performed twice a month for a duration of 2 years at a field site in Payne County, Oklahoma. Total nucleic acid was extracted from a subset of adult A. americanum and tested for Rickettsia spp., Ehrlichia spp., and Borrelia spp. using established PCR protocols. Results: Peak activity times for each life stage were observed, with adults primarily active 1 month earlier than historical seasonal trends describe, and male A. americanum active earlier in the year than female A. americanum. Rickettsia spp., Ehrlichia chaffeensis, Ehrlichia ewingii, and Borrelia lonestari were found in 26.4%, 6.1%, 2.5%, and 1.1% of adult A. americanum, respectively. No seasonal trend in spotted fever group Rickettsia spp. (SFGR) was observed in peak activity months. Conclusions: This study found an apparently shifting phenology for A. americanum adults in Oklahoma. While these results did not show a trend in SFGR, further investigation is needed to better understand the potential seasonality of infection prevalence within A. americanum across the expanding range of this vector, especially considering the extended activity of males in winter months.
Collapse
Affiliation(s)
- Kristin L. McClung
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kellee D. Sundstrom
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Megan W. Lineberry
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, Michigan, USA
| | - Amber N. Grant
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Susan E. Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
12
|
Kjellander P, Bergvall UA, Chirico J, Ullman K, Christensson M, Lindgren PE. Winter activity of Ixodes ricinus in Sweden. Parasit Vectors 2023; 16:229. [PMID: 37430316 DOI: 10.1186/s13071-023-05843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND In Europe, Ixodes ricinus (Acari: Ixodidae) is the most widespread and abundant tick species, acting as a vector for several microorganisms of medical and veterinary importance. In Northern and Central Europe, the tick has a bimodal activity pattern consisting of a peak in spring to the beginning of summer and a second peak at the end of summer. However, several findings of ticks on animals during winter have been reported, which raises the question of whether this is an overwintering strategy or whether ticks are active during winter in Scandinavia. The objectives of our study were to determine (i) whether ticks were active and finding hosts during winter, (ii) whether they parasitize their hosts, and (iii) what climatic factors-i.e., temperature, snow depth and precipitation-govern tick winter activity. METHODS Throughout three winter seasons, we examined wild-living and free-ranging roe deer (Capreolus capreolus) for ticks on 332 occasions. In total, 140 individual roe deer were captured in two climatically contrasting sites in south-central Sweden, Grimsö and the Bogesund research area, respectively. We re-examined individual roe deer up to 10 times within the same winter or approximately once a week (mean 10 days, median 7 days between re-examinations) and recorded the absence or presence of ticks on the animals, and tested to what extent meteorological factors affected tick activity. To determine the attachment day, we used the coxal/scutal index of 18 nymphs and 47 female ticks. RESULTS In total, 243 I. ricinus were collected from 301 roe deer captures between 14 December and 28 February at the Bogesund study site during three subsequent years (2013/2014-2015/2016). We found attached ticks every third to every second examination (32%, 48% and 32% of the examinations, respectively). However, we collected only three I. ricinus females from 31 roe deer captures at the Grimsö study site between 17 December 2015 and 26 February 2016. At the Bogesund study site, based on 192 captures of previously examined deer, we collected 121 ticks, and ticks were found at 33%, 48% and 26% of the examinations during the respective winters. The probability of finding an attached tick on a roe deer at a temperature of -5 °C was > 8% ± 5 (SE), and that probability increased to almost 20% ± 7 (SE) if the air temperature increased to 5 °C. CONCLUSIONS To the best of our knowledge, this is the first time that winter-active nymphs and female ticks have been documented to attach and feed on roe deer during winter (December to February) in Scandinavia. The main weather conditions regulating winter activity for females were temperature and precipitation, and the lowest estimated air temperature for finding an active tick was well below 5 °C. The behaviour of winter-active and blood-feeding ticks was documented over several winters and in two contrasting areas, implying that it is a common phenomenon that should be investigated more thoroughly, since it may have important consequences for the epidemiology of tick-borne pathogens.
Collapse
Affiliation(s)
- Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden.
| | - Ulrika A Bergvall
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Jan Chirico
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Madeleine Christensson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Per-Eric Lindgren
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
- Laboratory Medicine, Microbiological Laboratory, County Hospital Ryhov, Jönköping, Sweden
| |
Collapse
|
13
|
Fernández-Ruiz N, Pinecki-Socias S, Estrada-Peña A, Wu-Chuang A, Maitre A, Obregón D, Cabezas-Cruz A, de Blas I, Nijhof AM. Decontamination protocols affect the internal microbiota of ticks. Parasit Vectors 2023; 16:189. [PMID: 37286996 DOI: 10.1186/s13071-023-05812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
Studies on the microbiota of ticks have promoted hypotheses about the combined effects of the bacterial community, its functional contributions to the tick's physiology or probable competition effects with some tick-borne pathogens. However, knowledge on the origin of the microbiota of newly hatched larvae is missing. This study aimed to elucidate the source(s) of the microbiota in unfed tick larvae, addressing the composition of the "core microbiota" and the best ways to decontaminate eggs for microbiota studies. We applied laboratory degree bleach washes and/or ultraviolet light treatments on engorged Rhipicephalus australis females and/or their eggs. No significant effects of these treatments on the reproductive parameters of females and the hatching rates of eggs were observed. However, the different treatments did show striking effects on the composition of the microbiota. The results indicated that bleach washes disrupted the internal tick microbiota in females, implying that bleach may have entered the tick and subsequently affected the microbiota. Furthermore, the analyses of results demonstrated that the ovary is a main source of tick microbiota, while the contribution of Gené's organ (a part of the female reproductive system that secretes a protective wax coat onto tick eggs) or the male's spermatophore requires further investigation. Further studies are needed to identify best practice protocols for the decontamination of ticks for microbiota studies.
Collapse
Affiliation(s)
- Natalia Fernández-Ruiz
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain.
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain.
| | - Sophia Pinecki-Socias
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Agustín Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Ignacio de Blas
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ard M Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
14
|
Wang N, Ji A, Masoudi A, Li S, Hu Y, Zhang Y, Yu Z, Wang H, Wang H, Liu J. Protein regulation mechanism of cold tolerance in Haemaphysalis longicornis. INSECT SCIENCE 2023; 30:725-740. [PMID: 36285346 DOI: 10.1111/1744-7917.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 06/15/2023]
Abstract
Ticks are external parasitic arthropods that can transmit a variety of pathogens by sucking blood. Low-temperature tolerance is essential for ticks to survive during the cold winter. Exploring the protein regulation mechanism of low-temperature tolerance of Haemaphysalis longicornis could help to explain how ticks survive in winter. In this study, the quantitative proteomics of several tissues of H. longicornis exposed to low temperature were studied by data independent acquisition technology. Totals of 3 699, 3 422, and 1 958 proteins were identified in the salivary gland, midgut, and ovary, respectively. The proteins involved in energy metabolism, cell signal transduction, protein synthesis and repair, and cytoskeleton synthesis changed under low-temperature stress. The comprehensive analysis of the protein regulation of multiple tissues of female ticks exposed to low temperature showed that maintaining cell homeostasis, maintaining cell viability, and enhancing cell tolerance were the most important means for ticks to maintain vital signs under low temperature. The expression of proteins involved in and regulating the above cell activities was the key to the survival of ticks under low temperatures. Through the analysis of a large amount of data, we found that the expression levels of arylamine N-acetyltransferase, inositol polyphosphate multikinase, and dual-specificity phosphatase were up-regulated under low temperature. We speculated that they might have important significance in low-temperature tolerance. Then, we performed RNA interference on the mRNA of these 3 proteins, and the results showed that the ability of female ticks to tolerate low temperatures decreased significantly.
Collapse
Affiliation(s)
- Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Aimeng Ji
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Abolfazl Masoudi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, China
| | - Yefei Zhang
- Hebei Xiaowutai Mountain National Nature Reserve Management Center, Zhangjiakou, Hebei Province, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Han Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
15
|
Mahesh PP, Namjoshi P, Sultana H, Neelakanta G. Immunization against arthropod protein impairs transmission of rickettsial pathogen from ticks to the vertebrate host. NPJ Vaccines 2023; 8:79. [PMID: 37253745 PMCID: PMC10229574 DOI: 10.1038/s41541-023-00678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Human anaplasmosis caused by Anaplasma phagocytophilum is one of the most common tick-borne diseases in the United States. The black-legged ticks, Ixodes scapularis, vector and transmit this bacterium to humans. In this study, we provide evidence that targeting I. scapularis membrane-bound organic anion transporting polypeptide 4056 (IsOATP4056) with an anti-vector vaccine affects transmission of A. phagocytophilum from ticks to the vertebrate host. Anaplasma phagocytophilum induces expression of IsOATP4056 in ticks and tick cells. Increased membrane localization of IsOATP4056 was evident in A. phagocytophilum-infected tick cells. Treatment with high dose (10 µg/ml) but not low dose (5 µg/ml) of EL-6 antibody that targets the largest extracellular loop of IsOATP4056 showed cytotoxic effects in tick cells but not in human keratinocyte cell line (HaCaT). Passive immunization, tick-mediated transmission and in vitro studies performed with mice ordered from two commercial vendors and with tick cells showed that EL-6 antibody not only impairs A. phagocytophilum transmission from ticks to the murine host but also aids in the reduction in the bacterial loads within engorged ticks and in tick cells by activation of arthropod Toll pathway. Furthermore, reduced molting efficiency was noted in ticks fed on EL-6 antibody-immunized mice. Collectively, these results provide a good candidate for the development of anti-tick vaccine to target the transmission of A. phagocytophilum and perhaps other tick-borne pathogens of medical importance.
Collapse
Affiliation(s)
- P P Mahesh
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Prachi Namjoshi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
16
|
Samaddar S, O'Neal AJ, Marnin L, Rolandelli A, Singh N, Wang X, Butler LR, Rangghran P, Laukaitis HJ, Cabrera Paz FE, Fiskum GM, Polster BM, Pedra JHF. Metabolic disruption impacts tick fitness and microbial relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542501. [PMID: 37292783 PMCID: PMC10245996 DOI: 10.1101/2023.05.26.542501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arthropod-borne microbes rely on the metabolic state of a host to cycle between evolutionarily distant species. For instance, arthropod tolerance to infection may be due to redistribution of metabolic resources, often leading to microbial transmission to mammals. Conversely, metabolic alterations aids in pathogen elimination in humans, who do not ordinarily harbor arthropod-borne microbes. To ascertain the effect of metabolism on interspecies relationships, we engineered a system to evaluate glycolysis and oxidative phosphorylation in the tick Ixodes scapularis. Using a metabolic flux assay, we determined that the rickettsial bacterium Anaplasma phagocytophilum and the Lyme disease spirochete Borrelia burgdorferi, which are transstadially transmitted in nature, induced glycolysis in ticks. On the other hand, the endosymbiont Rickettsia buchneri, which is transovarially maintained, had a minimal effect on I. scapularis bioenergetics. Importantly, the metabolite β-aminoisobutyric acid (BAIBA) was elevated during A. phagocytophilum infection of tick cells following an unbiased metabolomics approach. Thus, we manipulated the expression of genes associated with the catabolism and anabolism of BAIBA in I. scapularis and detected impaired feeding on mammals, reduced bacterial acquisition, and decreased tick survival. Collectively, we reveal the importance of metabolism for tick-microbe relationships and unveil a valuable metabolite for I. scapularis fitness.
Collapse
Affiliation(s)
- Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Parisa Rangghran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hanna J Laukaitis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Gary M Fiskum
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
17
|
El-Saadi MI, MacMillan HA, Ferguson LV. Cold-induced immune activation in chill-susceptible insects. CURRENT OPINION IN INSECT SCIENCE 2023:101054. [PMID: 37207832 DOI: 10.1016/j.cois.2023.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Chilling injuries in chill-susceptible insects, like the model dipteran Drosophila melanogaster, have been well-documented as a consequence of stressful low temperature exposures. Cold stress also causes upregulation of genes in the insect immune pathways, some of which are also upregulated following other forms of sterile stress. The adaptive significance and underlying mechanisms surrounding cold-induced immune activation, however, are still unclear. Here, we review recent work on the roles of ROS, DAMPs, and AMPs in insect immune signalling or function. Using this emerging knowledge, we propose a conceptual model linking biochemical and molecular causes of immune activation to its consequences during and following cold stress.
Collapse
Affiliation(s)
- Mahmoud I El-Saadi
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
| | - Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada, B4P 2R6
| |
Collapse
|
18
|
Fountain-Jones NM, Khoo BS, Rau A, Berman JD, Burton EN, Oliver JD. Positive associations matter: Microbial relationships drive tick microbiome composition. Mol Ecol 2023. [PMID: 37173817 DOI: 10.1111/mec.16985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Untangling how factors such as environment, host, associations among bacterial species and dispersal predict microbial composition is a fundamental challenge. In this study, we use complementary machine-learning approaches to quantify the relative role of these factors in shaping microbiome variation of the blacklegged tick Ixodes scapularis. I. scapularis is the most important vector for Borrelia burgdorferi (the causative agent for Lyme disease) in the U.S. as well as a range of other important zoonotic pathogens. Yet the relative role of the interactions between pathogens and symbionts compared to other ecological forces is unknown. We found that positive associations between microbes where the occurrence of one microbe increases the probability of observing another, including between both pathogens and symbionts, was by far the most important factor shaping the tick microbiome. Microclimate and host factors played an important role for a subset of the tick microbiome including Borrelia (Borreliella) and Ralstonia, but for the majority of microbes, environmental and host variables were poor predictors at a regional scale. This study provides new hypotheses on how pathogens and symbionts might interact within tick species, as well as valuable predictions for how some taxa may respond to changing climate.
Collapse
Affiliation(s)
| | - Benedict S Khoo
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Austin Rau
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jesse D Berman
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Erin N Burton
- College of Veterinary Medicine, Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D Oliver
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Scribner J, Wu B, Lamyaithong A, Arcega V, Villanueva DD. Anaplasmosis-Induced Hemophagocytic Lymphohistiocytosis: A Case Report and Review of the Literature. Open Forum Infect Dis 2023; 10:ofad213. [PMID: 37213427 PMCID: PMC10199118 DOI: 10.1093/ofid/ofad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Cases of anaplasmosis have increased steadily and are appearing in states where it is less common. While symptoms are usually mild, in rare cases it can cause hemophagocytic lymphohistiocytosis. Here, we present a case of polymerase chain reaction-confirmed Anaplasma phagocytophilum with morulae on peripheral blood smear associated with biopsy-proven hemophagocytic lymphohistiocytosis.
Collapse
Affiliation(s)
- Jacob Scribner
- Correspondence: Jacob Scribner, DO, Department of Medicine Section of Infectious Diseases, West Virginia University, 64 Medical Center Drive, Box 9163, Morgantown, WV 26506 (); Daphne-Dominique Villanueva, MD, Department of Medicine Section of Infectious Diseases, West Virginia University, 64 Medical Center Drive, Box 9163, Morgantown, WV 26506 ()
| | - Benita Wu
- Department of Internal Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Andre Lamyaithong
- Department of Internal Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Victor Arcega
- Department of Medicine Section of Infectious Diseases, West Virginia University, Morgantown, West Virginia, USA
| | | |
Collapse
|
20
|
Richardson EA, Roe RM, Apperson CS, Ponnusamy L. Rickettsia amblyommatis in Ticks: A Review of Distribution, Pathogenicity, and Diversity. Microorganisms 2023; 11:microorganisms11020493. [PMID: 36838458 PMCID: PMC9960904 DOI: 10.3390/microorganisms11020493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rickettsia amblyommatis is a potentially pathogenic species of Rickettsia within the spotted fever group vectored by ticks. While many studies have been published on this species, there is debate over its pathogenicity and the inhibitory role it plays in diagnosing illnesses caused by other spotted fever group Rickettsia species. Many publications have recorded the high infection prevalence of R. amblyommatis in tick populations at a global scale. While this species is rather ubiquitous, questions remain over the epidemiological importance of this possible human pathogen. With tick-borne diseases on the rise, understanding the exact role that R. amblyommatis plays as a pathogen and inhibitor of infection relative to other tick-borne pathogens will help public health efforts. The goal of this review was to compile the known literature on R. amblyommatis, review what we know about its geographic distribution, tick vectors, and pathogenicity, assess relatedness between various international strains from ticks by phylogenetic analysis and draw conclusions regarding future research needed.
Collapse
|
21
|
Eliash N, Suenaga M, Mikheyev AS. Vector-virus interaction affects viral loads and co-occurrence. BMC Biol 2022; 20:284. [PMID: 36527054 PMCID: PMC9758805 DOI: 10.1186/s12915-022-01463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology. RESULTS Using a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector's transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector's gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load. CONCLUSIONS Combined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course.
Collapse
Affiliation(s)
- Nurit Eliash
- grid.18098.380000 0004 1937 0562Shamir Research Institute, University of Haifa, Katzrin, Israel ,grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Miyuki Suenaga
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Alexander S. Mikheyev
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan ,grid.1001.00000 0001 2180 7477Australian National University, Canberra, ACT, 2600 Australia
| |
Collapse
|
22
|
Rickettsial pathogen inhibits tick cell death through tryptophan metabolite mediated activation of p38 MAP kinase. iScience 2022; 26:105730. [PMID: 36582833 PMCID: PMC9792911 DOI: 10.1016/j.isci.2022.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Anaplasma phagocytophilum modulates various cell signaling pathways in mammalian cells for its survival. In this study, we report that A. phagocytophilum modulates tick tryptophan pathway to activate arthropod p38 MAP kinase for the survival of both this bacterium and its vector host. Increased level of tryptophan metabolite, xanthurenic acid (XA), was evident in A. phagocytophilum-infected ticks and tick cells. Lower levels of cell death markers and increased levels of total and phosphorylated p38 MAPK was noted in A. phagocytophilum-infected ticks and tick cells. Treatment with XA increased phosphorylated p38 MAPK levels and reduced cell death in A. phagocytophilum-infected tick cells. Furthermore, treatment with p38 MAPK inhibitor affected bacterial replication, decreased phosphorylated p38 MAPK levels and increased tick cell death. However, XA reversed these effects. Taken together, we provide evidence that rickettsial pathogen modulates arthropod tryptophan and p38 MAPK pathways to inhibit cell death for its survival in ticks.
Collapse
|
23
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
24
|
Couret J, Schofield S, Narasimhan S. The environment, the tick, and the pathogen - It is an ensemble. Front Cell Infect Microbiol 2022; 12:1049646. [PMID: 36405964 PMCID: PMC9666722 DOI: 10.3389/fcimb.2022.1049646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 03/22/2024] Open
Abstract
Ixodes scapularis is one of the predominant vectors of Borrelia burgdorferi, the agent of Lyme disease in the USA. The geographic distribution of I. scapularis, endemic to the northeastern and northcentral USA, is expanding as far south as Georgia and Texas, and northwards into Canada and poses an impending public health problem. The prevalence and spread of tick-borne diseases are influenced by the interplay of multiple factors including microbiological, ecological, and environmental. Molecular studies have focused on interactions between the tick-host and pathogen/s that determine the success of pathogen acquisition by the tick and transmission to the mammalian host. In this review we draw attention to additional critical environmental factors that impact tick biology and tick-pathogen interactions. With a focus on B. burgdorferi we highlight the interplay of abiotic factors such as temperature and humidity as well as biotic factors such as environmental microbiota that ticks are exposed to during their on- and off-host phases on tick, and infection prevalence. A molecular understanding of this ensemble of interactions will be essential to gain new insights into the biology of tick-pathogen interactions and to develop new approaches to control ticks and tick transmission of B. burgdorferi, the agent of Lyme disease.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Samantha Schofield
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Wu-Chuang A, Bates KA, Obregon D, Estrada-Peña A, King KC, Cabezas-Cruz A. Rapid evolution of a novel protective symbiont into keystone taxon in Caenorhabditis elegans microbiota. Sci Rep 2022; 12:14045. [PMID: 35982076 PMCID: PMC9388637 DOI: 10.1038/s41598-022-18269-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Protective microbes have a major role in shaping host-pathogen interactions, but their relative importance in the structure of the host microbiota remains unclear. Here, we used a network approach to characterize the impact of a novel, experimentally evolved 'protective microbial symbiont' (Enterococcus faecalis) on the structure and predicted function of the natural microbiota of the model organism Caenorhabditis elegans. We used microbial network analysis to identify keystone taxa and describe the hierarchical placement of protective and non-protective symbionts in the microbiota. We found that early colonization with symbionts produce statistically significant changes in the structure of the community. Notably, only the protective E. faecalis became a keystone taxon in the nematode microbiota. Non-protective lineages of the same bacterial species remained comparatively unimportant to the community. Prediction of functional profiles in bacterial communities using PICRUSt2 showed that the presence of highly protective E. faecalis decreased the abundance of ergothioneine (EGT) biosynthesis pathway involved in the synthesis of the antioxidant molecule EGT, a potential public good. These data show that in addition to direct antagonism with virulent pathogens, keystone protective symbionts are linked to modified bacterial community structure and possible reductions in public goods, potentially driving decreased antioxidant defense. We suggest that this response could suppress infection via wholesale microbial community changes to further benefit the host. These findings extend the concept of protective symbionts beyond bodyguards to ecosystem engineers.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Kieran A Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
26
|
Adamo SA, El Nabbout A, Ferguson LV, Zbarsky JS, Faraone N. Balsam fir (Abies balsamea) needles and their essential oil kill overwintering ticks (Ixodes scapularis) at cold temperatures. Sci Rep 2022; 12:12999. [PMID: 35906288 PMCID: PMC9338056 DOI: 10.1038/s41598-022-15164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The blacklegged tick, Ixodes scapularis, vectors Borrelia burgdorferi, a bacterium that causes Lyme Disease. Although synthetic pesticides can reduce tick numbers, there are concerns about their potential effects on beneficial insects, such as pollinators. Plant-based pest control agents such as essential oils could provide an alternative because they have low environmental persistency; however, these products struggle to provide effective control. We found a new natural acaricide, balsam fir (Abies balsamea) needles, that kill overwintering I. scapularis ticks. We extracted the essential oil from the needles, analyzed its chemical composition, and tested it for acaricidal activity. We placed ticks in tubes with substrate and positioned the tubes either in the field or in incubators simulating winter temperatures. We added balsam fir essential oil, or one of the main components of balsam fir essential oil (i.e., ß-pinene), to each tube. We found that both the oil and ß-pinene kill overwintering ticks. Whole balsam fir needles require several weeks to kill overwintering ticks, while the essential oil is lethal within days at low temperatures (≤ 4 °C). Further, low temperatures increased the efficacy of this volatile essential oil. Higher temperatures (i.e., 20 °C) reduce the acaricidal effectiveness of the essential oil by 50% at 0.1% v/v. Low temperatures may promote the effectiveness of other natural control products. Winter is an overlooked season for tick control and should be explored as a possible time for the application of low toxicity products for successful tick management.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H3X5, Canada.
| | - Amal El Nabbout
- Department Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H3X5, Canada
| | - Laura V Ferguson
- Department Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H3X5, Canada
- Department Biology, Acadia University, Wolfville, Canada
| | - Jeffrey S Zbarsky
- Department Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H3X5, Canada
| | | |
Collapse
|
27
|
Kumar D, Downs LP, Embers M, Flynt AS, Karim S. Identification of microRNAs in the Lyme Disease Vector Ixodes scapularis. Int J Mol Sci 2022; 23:5565. [PMID: 35628370 PMCID: PMC9141961 DOI: 10.3390/ijms23105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in many biological processes, including the immune pathways that control bacterial, parasitic, and viral infections. Pathogens probably modify host miRNAs to facilitate successful infection, so they might be useful targets for vaccination strategies. There are few data on differentially expressed miRNAs in the black-legged tick Ixodes scapularis after infection with Borrelia burgdorferi, the causative agent of Lyme disease in the United States. Small RNA sequencing and qRT-PCR analysis were used to identify and validate differentially expressed I. scapularis salivary miRNAs. Small RNA-seq yielded 133,465,828 (≥18 nucleotides) and 163,852,135 (≥18 nucleotides) small RNA reads from Borrelia-infected and uninfected salivary glands for downstream analysis using the miRDeep2 algorithm. As such, 254 miRNAs were identified across all datasets, 25 of which were high confidence and 51 low confidence known miRNAs. Further, 23 miRNAs were differentially expressed in uninfected and infected salivary glands: 11 were upregulated and 12 were downregulated upon pathogen infection. Gene ontology and network analysis of target genes of differentially expressed miRNAs predicted roles in metabolic, cellular, development, cellular component biogenesis, and biological regulation processes. Several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including sphingolipid metabolism; valine, leucine and isoleucine degradation; lipid transport and metabolism; exosome biogenesis and secretion; and phosphate-containing compound metabolic processes, were predicted as targets of differentially expressed miRNAs. A qRT-PCR assay was utilized to validate the differential expression of miRNAs. This study provides new insights into the miRNAs expressed in I. scapularis salivary glands and paves the way for their functional manipulation to prevent or treat B. burgdorferi infection.
Collapse
Affiliation(s)
- Deepak Kumar
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (A.S.F.)
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Latoyia P. Downs
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Alex Sutton Flynt
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (A.S.F.)
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Shahid Karim
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (A.S.F.)
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| |
Collapse
|
28
|
Witmer FDW, Nawrocki TW, Hahn M. Modeling Geographic Uncertainty in Current and Future Habitat for Potential Populations of Ixodes pacificus (Acari: Ixodidae) in Alaska. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:976-986. [PMID: 35134194 PMCID: PMC9113094 DOI: 10.1093/jme/tjac001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 06/14/2023]
Abstract
Ixodes pacificus Cooley & Kohls is the primary vector of Lyme disease spirochetes to humans in the western United States. Although not native to Alaska, this tick species has recently been found on domestic animals in the state. Ixodes pacificus has a known native range within the western contiguous United States and southwest Canada; therefore, it is not clear if introduced individuals can successfully survive and reproduce in the high-latitude climate of Alaska. To identify areas of suitable habitat within Alaska for I. pacificus, we used model parameters from two existing sets of ensemble habitat distribution models calibrated in the contiguous United States. To match the model input covariates, we calculated climatic and land cover covariates for the present (1980-2014) and future (2070-2100) climatologies in Alaska. The present-day habitat suitability maps suggest that the climate and land cover in Southeast Alaska and portions of Southcentral Alaska could support the establishment of I. pacificus populations. Future forecasts suggest an increase in suitable habitat with considerable uncertainty for many areas of the state. Repeated introductions of this non-native tick to Alaska increase the likelihood that resident populations could become established.
Collapse
Affiliation(s)
- Frank D W Witmer
- Department of Computer Science and Engineering, University of Alaska Anchorage, Anchorage, AK, USA
| | - Timm W Nawrocki
- Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, AK, USA
| | - Micah Hahn
- Institute for Circumpolar Health Studies, University of Alaska Anchorage, Anchorage, AK, USA
| |
Collapse
|
29
|
Glass A, Springer A, Strube C. A 15-year monitoring of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in questing ticks in the city of Hanover, Germany. Ticks Tick Borne Dis 2022; 13:101975. [DOI: 10.1016/j.ttbdis.2022.101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 01/29/2023]
|
30
|
Exploring the effects of pathogen infection on tick behaviour from individuals to populations. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Rickettsial Pathogen Perturbs Tick Circadian Gene to Infect the Vertebrate Host. Int J Mol Sci 2022; 23:ijms23073545. [PMID: 35408905 PMCID: PMC8998576 DOI: 10.3390/ijms23073545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 11/20/2022] Open
Abstract
Ixodes scapularis is a medically important tick that transmits several microbes to humans, including rickettsial pathogen Anaplasma phagocytophilum. In nature, these ticks encounter several abiotic factors including changes in temperature, humidity, and light. Many organisms use endogenously generated circadian pathways to encounter abiotic factors. In this study, we provide evidence for the first time to show that A. phagocytophilum modulates the arthropod circadian gene for its transmission to the vertebrate host. We noted a circadian oscillation in the expression of arthropod clock, bmal1, period and timeless genes when ticks or tick cells were exposed to alternate 12 h light: 12 h dark conditions. Moreover, A. phagocytophilum significantly modulates the oscillation pattern of expression of these genes. In addition, increased levels of clock and bmal1 and decreased expression of Toll and JAK/STAT pathway immune genes such as pelle and jak, respectively, were noted during A. phagocytophilum transmission from ticks to the vertebrate host. RNAi-mediated knockdown of clock gene expression in ticks resulted in the reduced expression of jak and pelle that increased bacterial transmission from ticks to the murine host. Furthermore, clock-deficient ticks fed late and had less engorgement weights. These results indicate an important role for circadian modulation of tick gene expression that is critical for arthropod blood feeding and transmission of pathogens from vector to the vertebrate host.
Collapse
Affiliation(s)
- Supreet Khanal
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
| | - Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
| | - John F. Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA;
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA 23529, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA 23529, USA
- Correspondence: ; Tel.: +1-(865)-974-5715
| |
Collapse
|
32
|
Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-Cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022; 13:854803. [PMID: 35369485 PMCID: PMC8969565 DOI: 10.3389/fmicb.2022.854803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
33
|
Box ICH, Matthews BJ, Marshall KE. Molecular evidence of intertidal habitats selecting for repeated ice-binding protein evolution in invertebrates. J Exp Biol 2022; 225:274373. [PMID: 35258616 DOI: 10.1242/jeb.243409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Ice-binding proteins (IBPs) have evolved independently in multiple taxonomic groups to improve their survival at sub-zero temperatures. Intertidal invertebrates in temperate and polar regions frequently encounter sub-zero temperatures, yet there is little information on IBPs in these organisms. We hypothesized that there are far more IBPs than are currently known and that the occurrence of freezing in the intertidal zone selects for these proteins. We compiled a list of genome-sequenced invertebrates across multiple habitats and a list of known IBP sequences and used BLAST to identify a wide array of putative IBPs in those invertebrates. We found that the probability of an invertebrate species having an IBP was significantly greater in intertidal species than in those primarily found in open ocean or freshwater habitats. These intertidal IBPs had high sequence similarity to fish and tick antifreeze glycoproteins and fish type II antifreeze proteins. Previously established classifiers based on machine learning techniques further predicted ice-binding activity in the majority of our newly identified putative IBPs. We investigated the potential evolutionary origin of one putative IBP from the hard-shelled mussel Mytilus coruscus and suggest that it arose through gene duplication and neofunctionalization. We show that IBPs likely readily evolve in response to freezing risk and that there is an array of uncharacterized IBPs, and highlight the need for broader laboratory-based surveys of the diversity of ice-binding activity across diverse taxonomic and ecological groups.
Collapse
Affiliation(s)
- Isaiah C H Box
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, CanadaV6T 1Z4
| | - Benjamin J Matthews
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, CanadaV6T 1Z4
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, CanadaV6T 1Z4
| |
Collapse
|
34
|
Agwunobi DO, Pei T, Bai R, Wang Z, Shi X, Zhang M, Yu Z, Liu J. miR-2a and miR-279 are functionally associated with cold tolerance in Dermacentor silvarum (Acari: Ixodidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100946. [PMID: 34872025 DOI: 10.1016/j.cbd.2021.100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Ticks are obligate blood-sucking ectoparasites that can attack mammals, birds, reptiles as well as amphibians. Dermacentor silvarum, an important vector of various pathogenic bacteria, viruses, and protozoans, is widely distributed in China. MicroRNAs (miRNAs) are ~22 nucleotide non-coding small RNA molecules, involved in the regulation of various physiological and cellular processes. Previous studies demonstrated the vital roles of miRNAs during the reproduction and development of ticks, whereas, the regulatory/functional roles of microRNAs during the cold response of ticks remain unexplored. Here, we identified and functionally explored D. silvarum miRNAs involved in cold response to gain further understanding of the molecular regulatory mechanisms underlying cold stress in ticks. The microRNA libraries of D. silvarum were established via high-throughput sequencing after exposure to different cold treatments. A total of 147 miRNAs, including 44 known miRNAs and 103 new miRNAs, were identified. The verification of six highly differentially expressed miRNAs (miR-2a, miR-5305, miR-7, miR-279, miR-993, and novel-3) via RT-qPCR were consistent with the high-throughput sequence results. miR-2a peaked by day 6 and miR-279 expression was lowest by day 3 after cold treatment. The potential target genes of miR-2a and miR-279 were the glycogen phosphorylase (GPase) gene and serine gene, respectively. After injecting D. silvarum ticks with miR-2a and miR-279 antagonists, their respective target genes were up-regulated and vice-versa after injection with the agonists. These results indicated that these two miRNAs and their target genes may be involved in the cold response of D. silvarum ticks.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
35
|
Rosendale AJ, Leonard RK, Patterson IW, Arya T, Uhran MR, Benoit JB. Metabolomic and transcriptomic responses of ticks during recovery from cold shock reveal mechanisms of survival. J Exp Biol 2022; 225:275159. [PMID: 35179594 DOI: 10.1242/jeb.236497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Ticks are blood-feeding ectoparasites but spend most of their life off-host where they may have to tolerate low winter temperatures. Rapid cold-hardening (RCH) is a process commonly used by arthropods, including ticks, to improve survival of acute low temperature exposure. However, little is known about the underlying mechanisms in ticks associated with RCH, cold shock, and recovery from these stresses. In the present study, we investigated the extent to which RCH influences gene expression and metabolism during recovery from cold stress in Dermacentor variabilis, the American dog tick, using a combined transcriptomics and metabolomics approach. Following recovery from RCH, 1,860 genes were differentially expressed in ticks, whereas only 99 genes responded during recovery to direct cold shock. Recovery from RCH resulted in an upregulation of various pathways associated with ion binding, transport, metabolism, and cellular structures seen in the response of other arthropods to cold. The accumulation of various metabolites, including several amino acids and betaine, corresponded to transcriptional shifts in the pathways associated with these molecules, suggesting congruent metabolome and transcriptome changes. Ticks receiving exogenous betaine and valine demonstrated enhanced cold tolerance, suggesting cryoprotective effects of these metabolites. Overall, many of the responses during recovery from cold shock in ticks were similar to those observed in other arthropods, but several adjustments may be distinct from other currently examined taxa.
Collapse
Affiliation(s)
- Andrew J Rosendale
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Ryan K Leonard
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Isaac W Patterson
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Thomas Arya
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Melissa R Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
36
|
Abstract
AbstractEvidence climate change is impacting ticks and tick-borne infections is generally lacking. This is primarily because, in most parts of the world, there are no long-term and replicated data on the distribution and abundance of tick populations, and the prevalence and incidence of tick-borne infections. Notable exceptions exist, as in Canada where the northeastern advance of Ixodes scapularis and Lyme borreliosis in the USA prompted the establishment of tick and associated disease surveillance. As a result, the past 30 years recorded the encroachment and spread of I. scapularis and Lyme borreliosis across much of Canada concomitant with a 2-3 °C increase in land surface temperature. A similar northerly advance of I. ricinus [and associated Lyme borreliosis and tick-borne encephalitis (TBE)] has been recorded in northern Europe together with expansion of this species’ range to higher altitudes in Central Europe and the Greater Alpine Region, again concomitant with rising temperatures. Changes in tick species composition are being recorded, with increases in more heat tolerant phenotypes (such as Rhipicephalus microplus in Africa), while exotic species, such as Haemaphysalis longicornis and Hyalomma marginatum, are becoming established in the USA and Southern Europe, respectively. In the next 50 years these trends are likely to continue, whereas, at the southern extremities of temperate species’ ranges, diseases such as Lyme borreliosis and TBE may become less prevalent. Where socioeconomic conditions link livestock with livelihoods, as in Pakistan and much of Africa, a One Health approach is needed to tackling ticks and tick-borne infections under the increasing challenges presented by climate change.
Collapse
|
37
|
O’Connor C, Prusinski MA, Jiang S, Russell A, White J, Falco R, Kokas J, Vinci V, Gall W, Tober K, Haight J, Oliver J, Meehan L, Sporn LA, Brisson D, Backenson PB. A Comparative Spatial and Climate Analysis of Human Granulocytic Anaplasmosis and Human Babesiosis in New York State (2013-2018). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2453-2466. [PMID: 34289040 PMCID: PMC8824452 DOI: 10.1093/jme/tjab107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 05/25/2023]
Abstract
Human granulocytic anaplasmosis (HGA) and human babesiosis are tick-borne diseases spread by the blacklegged tick (Ixodes scapularis Say, Acari: Ixodidae) and are the result of infection with Anaplasma phagocytophilum and Babesia microti, respectively. In New York State (NYS), incidence rates of these diseases increased concordantly until around 2013, when rates of HGA began to increase more rapidly than human babesiosis, and the spatial extent of the diseases diverged. Surveillance data of tick-borne pathogens (2007 to 2018) and reported human cases of HGA (n = 4,297) and human babesiosis (n = 2,986) (2013-2018) from the New York State Department of Health (NYSDOH) showed a positive association between the presence/temporal emergence of each pathogen and rates of disease in surrounding areas. Incidence rates of HGA were higher than human babesiosis among White and non-Hispanic/non-Latino individuals, as well as all age and sex groups. Human babesiosis exhibited higher rates among non-White individuals. Climate, weather, and landscape data were used to build a spatially weighted zero-inflated negative binomial (ZINB) model to examine and compare associations between the environment and rates of HGA and human babesiosis. HGA and human babesiosis ZINB models indicated similar associations with forest cover, forest land cover change, and winter minimum temperature; and differing associations with elevation, urban land cover change, and winter precipitation. These results indicate that tick-borne disease ecology varies between pathogens spread by I. scapularis.
Collapse
Affiliation(s)
- Collin O’Connor
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Melissa A Prusinski
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Shiguo Jiang
- State University of New York, University at Albany, Department of Geography and Planning, Albany, NY, USA
| | - Alexis Russell
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
- Wadsworth Center, Division of Infectious Disease, Albany, NY, USA
| | - Jennifer White
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Richard Falco
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
| | - John Kokas
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
- Retired
| | - Vanessa Vinci
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
| | - Wayne Gall
- New York State Deparment of Health, Bureau of Communicable Disease Control, Buffalo, NY, USA
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Buffalo, NY, USA
| | - Keith Tober
- New York State Deparment of Health, Bureau of Communicable Disease Control, Buffalo, NY, USA
- Retired
| | - Jamie Haight
- New York State Department of Health, Bureau of Communicable Disease Control, Falconer, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
| | - Lisa Meehan
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
- Wadsworth Center, Division of Environmental Health Sciences, Albany, NY, USA
| | - Lee Ann Sporn
- Paul Smith’s College, Department of Natural Science, Paul Smiths, NY, USA
| | - Dustin Brisson
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| |
Collapse
|
38
|
Whitlow AM, Schürch R, Mullins D, Eastwood G. The Influence of Southwestern Virginia Environmental Conditions on the Potential Ability of Haemaphysalis longicornis, Amblyomma americanum, and Amblyomma maculatum to Overwinter in the Region. INSECTS 2021; 12:insects12111000. [PMID: 34821800 PMCID: PMC8622198 DOI: 10.3390/insects12111000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary A tick’s ability to survive in cold, harsh winter conditions is influenced by numerous factors including the tick species, the variability in temperature, and the suitability of the overwintering habitat (containing insulation to retain heat). We investigated the influence of elevation and insulation coverage on the survivability of three newly invading ticks, Amblyomma americanum, Amblyomma maculatum, and Haemaphysalis longicornis and one native tick species already established in southwestern Virginia, Dermacentor variabilis. For the invasive species, we found that life stage was the only determining factor in survival for Haemaphysalis longicornis and Amblyomma americanum, whereas, Amblyomma maculatum survival was largely influenced by insulation coverage. Dermacentor variabilis survivability was not affected by elevation or insulation coverage in this study. Abstract Ticks are susceptible to environmental conditions and, to ensure survival during winter conditions, they adopt a wide variety of physiological and behavioral adaptations including utilization of a suitable niche with insulation (e.g., leaf coverage). To investigate the potential overwintering survival of three tick populations emerging within Appalachian Virginia (Haemaphysalis longicornis, Amblyomma americanum, and Amblyomma maculatum), both a laboratory experiment assessing super-cooling points and a two-factor (elevation and insulation coverage) field experiment assessing overwintering survivability were conducted across a natural southwestern Virginian winter (2020–2021). Dermacentor variabilis adults were included in this study as an example of a well-established species in this region known to overwinter in these conditions. Our study indicated that A. americanum and H. longicornis wintering tolerance is based on life stage rather than external factors such as insulation (e.g., leaf litter) and elevation. Amblyomma maculatum was more likely to survive without insulation. The ability to withstand the extreme temperatures of new regions is a key factor determining the survivability of novel tick species and is useful in assessing the invasion potential of arthropod vectors.
Collapse
Affiliation(s)
- Amanda Marie Whitlow
- Department of Entomology, Virginia Tech Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.M.W.); (R.S.); (D.M.)
| | - Roger Schürch
- Department of Entomology, Virginia Tech Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.M.W.); (R.S.); (D.M.)
| | - Donald Mullins
- Department of Entomology, Virginia Tech Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.M.W.); (R.S.); (D.M.)
| | - Gillian Eastwood
- Department of Entomology, Virginia Tech Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.M.W.); (R.S.); (D.M.)
- Global Change Center, Virginia Tech Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Correspondence:
| |
Collapse
|
39
|
Iltis C, Tougeron K, Hance T, Louâpre P, Foray V. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context. Environ Microbiol 2021; 24:18-29. [PMID: 34713541 DOI: 10.1111/1462-2920.15826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Temperature influences the ecology and evolution of insects and their symbionts by impacting each partner independently and their interactions, considering the holobiont as a primary unit of selection. There are sound data about the responses of these partnerships to constant temperatures and sporadic thermal stress (mostly heat shock). However, the current understanding of the thermal ecology of insect-microbe holobionts remains patchy because the complex thermal fluctuations (at different spatial and temporal scales) experienced by these organisms in nature have often been overlooked experimentally. This may drastically constrain our ability to predict the fate of mutualistic interactions under climate change, which will alter both mean temperatures and thermal variability. Here, we tackle down these issues by focusing on the effects of temperature fluctuations on the evolutionary ecology of insect-microbe holobionts. We propose potentially worth-investigating research avenues to (i) evaluate the relevance of theoretical concepts used to predict the biological impacts of temperature fluctuations when applied to holobionts; (ii) acknowledge the plastic (behavioural thermoregulation, physiological acclimation) and genetic responses (evolution) expressed by holobionts in fluctuating thermal environments; and (iii) explore the potential impacts of previously unconsidered patterns of temperature fluctuations on the outcomes and the dynamic of these insect-microbe associations.
Collapse
Affiliation(s)
- Corentin Iltis
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Kévin Tougeron
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium.,UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, Amiens, 80039, France
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Philippe Louâpre
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| | - Vincent Foray
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc Grandmont, Tours, 37200, France
| |
Collapse
|
40
|
Javed N, Bhatti A, Paradkar PN. Advances in Understanding Vector Behavioural Traits after Infection. Pathogens 2021; 10:pathogens10111376. [PMID: 34832532 PMCID: PMC8621129 DOI: 10.3390/pathogens10111376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Vector behavioural traits, such as fitness, host-seeking, and host-feeding, are key determinants of vectorial capacity, pathogen transmission, and epidemiology of the vector-borne disease. Several studies have shown that infection with pathogens can alter these behavioural traits of the arthropod vector. Here, we review relevant publications to assess how pathogens modulate the behaviour of mosquitoes and ticks, major vectors for human diseases. The research has shown that infection with pathogens alter the mosquito’s flight activity, mating, fecundity, host-seeking, blood-feeding, and adaptations to insecticide bed nets, and similarly modify the tick’s locomotion, questing heights, vertical and horizontal walks, tendency to overcome obstacles, and host-seeking ability. Although some of these behavioural changes may theoretically increase transmission potential of the pathogens, their effect on the disease epidemiology remains to be verified. This study will not only help in understanding virus–vector interactions but will also benefit in establishing role of these behavioural changes in improved epidemiological models and in devising new vector management strategies.
Collapse
Affiliation(s)
- Nouman Javed
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, Geelong, VIC 3220, Australia;
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3220, Australia;
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3220, Australia;
| | - Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, Geelong, VIC 3220, Australia;
- Correspondence:
| |
Collapse
|
41
|
Monitoring Risk: Tick and Borrelia burgdorferi Public Participatory Surveillance in the Canadian Maritimes, 2012-2020. Pathogens 2021; 10:pathogens10101284. [PMID: 34684234 PMCID: PMC8538556 DOI: 10.3390/pathogens10101284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Ticks are vectors of many diseases, including Lyme disease (Ld). Lyme disease is an emerging disease in Canada caused by infection with the Lyme borreliosis (Lb) members of the Borrelia genus of spirochaete bacteria, of which Borrelia burgdorferi is regionally the most prevalent. The primary tick vector in central and eastern Canada, Ixodes scapularis, is increasing in numbers and in the geographical extent of established populations. This study documents the distribution of ticks recovered by passive surveillance, and their B. burgdorferi infection prevalence, in three Canadian Maritime provinces from 2012-2020. These regions represent areas in which tick populations are widely established, establishing, and considered non-established. Using a community science approach by partnering with veterinarians and members of the public, we collected over 7000 ticks from the 3 provinces. The three species found most often on companion animals and humans were I. scapularis (76.9%), Ixodes cookei (10.4%) and Dermacentor variabilis (8.9%). The most common hosts were dogs (60.5%), cats (16.8%) and humans (17.6%). As is typical of passive surveillance tick collections, the majority of ticks recovered were adult females; for I. scapularis 90.2%, 5.3%, 3.9% and 0.6% of the total of 5630 ticks recovered for this species were adult females, adult males, nymphs and larvae, respectively. The majority of B. burgdorferi-infected ticks were I. scapularis, as expected. Borrelia infection prevalence in I scapularis was higher in Nova Scotia (20.9%), the province with the most endemic regions, than New Brunswick (14.1%) and Prince Edward Island (9.1%), provinces thought to have established and non-established tick populations, respectively. The province-wide Borrelia infection prevalence generally increased in these latter tow provinces over the course of the study. The host did not have a significant effect on B. burgdorferi infection prevalence; I. scapularis ticks from dogs, cats, humans was, 13.3% (n = 3622), 15.6% (n = 817), 17.9% (n = 730), respectively. No I. scapularis larvae were found infected (n = 33) but B. burgdorferi was detected in 14.8% of both adults (n = 5140) and nymphs (n = 215). The incidence of B. burgdorferi infection also did not differ by engorgement status 15.0% (n = 367), 15.1% (n = 3101) and 14.4% (n = 1958) of non-engorged, engorged and highly engorged ticks, respectively, were infected. In New Brunswick, at the advancing front of tick population establishment, the province-wide infection percentages generally increased over the nine-year study period and all health district regions showed increased tick recoveries and a trend of increased percentages of Borrelia-infected ticks over the course of the study. Within New Brunswick, tick recoveries but not Borrelia infection prevalence were significantly different from endemic and non-endemic regions, suggesting cryptic endemic regions existed prior to their designation as a risk area. Over the 9 years of the study, tick recoveries increased in New Brunswick, the primary study region, and I. scapularis recoveries spread northwards and along the coast, most but not all new sites of recoveries were predicted by climate-based models, indicating that ongoing tick surveillance is necessary to accurately detect all areas of risk. Comparison of tick recoveries and public health risk areas indicates a lag in identification of risk areas. Accurate and timely information on tick distribution and the incidence of Borrelia and other infections are essential for keeping the public informed of risk and to support disease prevention behaviors.
Collapse
|
42
|
Agwunobi DO, Zhang M, Shi X, Zhang S, Zhang M, Wang T, Masoudi A, Yu Z, Liu J. DNA Methyltransferases Contribute to Cold Tolerance in Ticks Dermacentor silvarum and Haemaphysalis longicornis (Acari: Ixodidae). Front Vet Sci 2021; 8:726731. [PMID: 34513977 PMCID: PMC8426640 DOI: 10.3389/fvets.2021.726731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022] Open
Abstract
DNA methylation, mediated by DNA methyltransferases (Dnmts), is a typical epigenetic process that plays an important role in affecting organism acclimatization and adaptation to environmental changes. However, information about Dnmts and their associations with the cold tolerance of ticks remains meager. Hence, in the present study, the Dnmts in important vector ticks Dermacentor silvarum and Haemaphysalis longicornis were cloned and identified, and their functions in cold response were further explored. Results showed that the length of DsDnmt and DsDnmt1 in D. silvarum, and HlDnmt1 and HlDnmt in H. longicornis were 1,284, 549, 1,500, and 1,613 bp, respectively. Bioinformatics in protein analysis revealed that they were all unstable hydrophilic proteins and were mainly characterized with Dcm (DNA cytosine methyltransferase domain), Dnmt1-RFD (DNA methyltransferase replication foci domain), zf-CXXC (zinc finger-CXXC domain), and BAH (Bromo adjacent homology domain). The relative expression of these Dnmts was reduced after cold treatment for 3 days (P < 0.05), and increased with the extension of treatment. Western blot revealed that Dnmt1 decreased first and then increased significantly (P < 0.05) in both tick species, whereas other Dnmts fluctuated at varying degrees. RNA interference significantly silenced the genes Dnmts (P < 0.01), and mortality increased significantly (P < 0.05), when exposed to sub-lethal temperature, underscoring the important roles of Dnmts during the cold response of D. silvarum and H. longicornis. The above results lay the foundation for further understanding of the epigenetic regulation of DNA methylation in cold acclimatization and adaptation of ticks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
43
|
Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends Parasitol 2021; 37:722-733. [PMID: 33962878 PMCID: PMC8282638 DOI: 10.1016/j.pt.2021.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
Ixodes scapularis and Ixodes pacificus are the predominant vectors of multiple human pathogens, including Borrelia burgdorferi, one of the causative agents of Lyme disease in North America. Differences in the habitats and host preferences of these closely related tick species present an opportunity to examine key aspects of the tick microbiome. While advances in sequencing technologies have accelerated a descriptive understanding of the tick microbiome, molecular and mechanistic insights into the tick microbiome are only beginning to emerge. Progress is stymied by technical difficulties in manipulating the microbiome and by biological variables related to the life cycle of Ixodid ticks. This review highlights these challenges and examines avenues to understand the significance of the tick microbiome in tick biology.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA.
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland School of Medicine, College Park, MD 20472, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20472, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| |
Collapse
|
44
|
Ogden NH, Beard CB, Ginsberg HS, Tsao JI. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1536-1545. [PMID: 33112403 PMCID: PMC9620468 DOI: 10.1093/jme/tjaa220] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 05/09/2023]
Abstract
The global climate has been changing over the last century due to greenhouse gas emissions and will continue to change over this century, accelerating without effective global efforts to reduce emissions. Ticks and tick-borne diseases (TTBDs) are inherently climate-sensitive due to the sensitivity of tick lifecycles to climate. Key direct climate and weather sensitivities include survival of individual ticks, and the duration of development and host-seeking activity of ticks. These sensitivities mean that in some regions a warming climate may increase tick survival, shorten life-cycles and lengthen the duration of tick activity seasons. Indirect effects of climate change on host communities may, with changes in tick abundance, facilitate enhanced transmission of tick-borne pathogens. High temperatures, and extreme weather events (heat, cold, and flooding) are anticipated with climate change, and these may reduce tick survival and pathogen transmission in some locations. Studies of the possible effects of climate change on TTBDs to date generally project poleward range expansion of geographical ranges (with possible contraction of ranges away from the increasingly hot tropics), upslope elevational range spread in mountainous regions, and increased abundance of ticks in many current endemic regions. However, relatively few studies, using long-term (multi-decade) observations, provide evidence of recent range changes of tick populations that could be attributed to recent climate change. Further integrated 'One Health' observational and modeling studies are needed to detect changes in TTBD occurrence, attribute them to climate change, and to develop predictive models of public- and animal-health needs to plan for TTBD emergence.
Collapse
Affiliation(s)
- Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC, Canada J2S 2M2
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada J2S 2M2
- Corresponding author,
| | - C. Ben Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Howard S. Ginsberg
- U.S. Geological Survey, Patuxent Wildlife Research Center, Rhode Island Field Station, University of Rhode Island, Kingston, RI 02881
| | - Jean I. Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
45
|
Mateos-Hernández L, Obregón D, Wu-Chuang A, Maye J, Bornères J, Versillé N, de la Fuente J, Díaz-Sánchez S, Bermúdez-Humarán LG, Torres-Maravilla E, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-Microbiota Vaccines Modulate the Tick Microbiome in a Taxon-Specific Manner. Front Immunol 2021; 12:704621. [PMID: 34322135 PMCID: PMC8312226 DOI: 10.3389/fimmu.2021.704621] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
The lack of tools for the precise manipulation of the tick microbiome is currently a major limitation to achieve mechanistic insights into the tick microbiome. Anti-tick microbiota vaccines targeting keystone bacteria of the tick microbiota alter tick feeding, but their impact on the taxonomic and functional profiles of the tick microbiome has not been tested. In this study, we immunized a vertebrate host model (Mus musculus) with live bacteria vaccines targeting keystone (i.e., Escherichia-Shigella) or non-keystone (i.e., Leuconostoc) taxa of tick microbiota and tested the impact of bacterial-specific antibodies (Abs) on the structure and function of tick microbiota. We also investigated the effect of these anti-microbiota vaccines on mice gut microbiota composition. Our results showed that the tick microbiota of ticks fed on Escherichia coli-immunized mice had reduced Escherichia-Shigella abundance and lower species diversity compared to ticks fed on control mice immunized with a mock vaccine. Immunization against keystone bacteria restructured the hierarchy of nodes in co-occurrence networks and reduced the resistance of the bacterial network to taxa removal. High levels of E. coli-specific IgM and IgG were negatively correlated with the abundance of Escherichia-Shigella in tick microbiota. These effects were not observed when Leuconostoc was targeted with vaccination against Leuconostoc mesenteroides. Prediction of functional pathways in the tick microbiome using PICRUSt2 revealed that E. coli vaccination reduced the abundance of lysine degradation pathway in tick microbiome, a result validated by qPCR. In contrast, the gut microbiome of immunized mice showed no significant alterations in the diversity, composition and abundance of bacterial taxa. Our results demonstrated that anti-tick microbiota vaccines are a safe, specific and an easy-to-use tool for manipulation of vector microbiome. These results guide interventions for the control of tick infestations and pathogen infection/transmission.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Dasiel Obregón
- School of Environmental Sciences University of Guelph, Guelph, ON, Canada
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Jennifer Maye
- SEPPIC Paris La Défense, La Garenne Colombes, 92250, France
| | | | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | - Edgar Torres-Maravilla
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ladislav Šimo
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
46
|
Fieler AM, Rosendale AJ, Farrow DW, Dunlevy MD, Davies B, Oyen K, Xiao Y, Benoit JB. Larval thermal characteristics of multiple ixodid ticks. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110939. [PMID: 33794367 PMCID: PMC8500258 DOI: 10.1016/j.cbpa.2021.110939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Temperature limits the geographic ranges of several tick species. Little is known about the thermal characteristics of these pests outside of a few studies on survival related to thermal tolerance. In this study, thermal tolerance limits, thermal preference, and the impact of temperature on activity levels and metabolic rate were examined in larvae for six species of ixodid ticks. Tolerance of low temperatures ranged from -15 to -24 °C with Dermacentor andersoni surviving the lowest temperatures. High temperature survival ranged from 41 to 47 °C, with Rhipicephalus sanguineus sensu lato having the highest upper lethal limit. Ixodes scapularis showed the lowest survival at both low and high temperatures. Thermal preference temperatures were tested from 0 to 41 °C. The majority of species preferred temperatures between 17 and 22 °C, while Dermacentor variabilis preferred significantly lower temperatures, near 12 °C. Overall activity was measured across a range of temperatures from 10 to 60 °C, and most tick species had the greatest activity near 30 °C. Metabolic rate was the greatest between 30 and 40 °C for all tick species and was relatively stable from 5 to 20 °C. The optimal temperature for tick larvae is likely near the thermal preference for each species, where oxygen consumption is low and activity occurs that will balance questing and conservation of nutrient reserves. In summary, tick species vary greatly in their thermal characteristics, and our results will be critical to predict distribution of these ectoparasites with changing climates.
Collapse
Affiliation(s)
- Alicia M Fieler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Megan D Dunlevy
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
47
|
Benoit JB, Oyen K, Finch G, Gantz JD, Wendeln K, Arya T, Lee RE. Cold hardening improves larval tick questing under low temperatures at the expense of longevity. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110966. [PMID: 33895321 PMCID: PMC9936387 DOI: 10.1016/j.cbpa.2021.110966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Questing in ticks is essential for locating a host, and this behavioral response can occur at regionally specific low temperatures for most tick species. Little is known about the dynamics between tick questing behavior and temperature in ticks, specifically how this may impact other aspects of tick biology. Here, we examine whether cold hardening increases questing in three larval tick species (Ixodes uriae, Dermacentor variabilis, and Amblyomma americanum) at low temperatures and whether cold hardening impacts longevity. Rapid cold hardening and prolonged cold acclimation benefitted ticks by decreasing the temperature of chill coma onset, and increased survival, activity, and questing in ticks at low temperatures. Oxygen consumption increased at low temperatures following acclimation in larvae, suggesting this process has a distinct metabolic expense. This increased metabolism associated with hardening led to a substantial reduction in larval longevity as nutrient reserves are limited and cannot be replenished until a host is located. These studies suggest that tick larvae, and likely other developmental stages, require a delicate balance between the need for questing at low temperatures and survival until the first blood meal.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221,Author for correspondence: Joshua B. Benoit, Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, , Phone: 513-556-9714
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - J. D. Gantz
- Department of Biology and Health Science, Hendrix College, Conway, AR
| | - Katherine Wendeln
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Thomas Arya
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Richard E. Lee
- Department of Biology, Miami University, Oxford, OH 45056
| |
Collapse
|
48
|
Cao Y, Dietrich CH. Phylogenomics of flavobacterial insect nutritional endosymbionts with implications for Auchenorrhyncha phylogeny. Cladistics 2021; 38:38-58. [DOI: 10.1111/cla.12474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yanghui Cao
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign IL61820USA
| | - Christopher H. Dietrich
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign IL61820USA
| |
Collapse
|
49
|
Infection with Borrelia afzelii and manipulation of the egg surface microbiota have no effect on the fitness of immature Ixodes ricinus ticks. Sci Rep 2021; 11:10686. [PMID: 34021230 PMCID: PMC8140075 DOI: 10.1038/s41598-021-90177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Arthropod vectors carry vector-borne pathogens that cause infectious disease in vertebrate hosts, and arthropod-associated microbiota, which consists of non-pathogenic microorganisms. Vector-borne pathogens and the microbiota can both influence the fitness of their arthropod vectors, and hence the epidemiology of vector-borne diseases. The bacterium Borrelia afzelii, which causes Lyme borreliosis in Europe, is transmitted among vertebrate reservoir hosts by Ixodes ricinus ticks, which also harbour a diverse microbiota of non-pathogenic bacteria. The purpose of this controlled study was to test whether B. afzelii and the tick-associated microbiota influence the fitness of I. ricinus. Eggs obtained from field-collected adult female ticks were surface sterilized (with bleach and ethanol), which reduced the abundance of the bacterial microbiota in the hatched I. ricinus larvae by 28-fold compared to larvae that hatched from control eggs washed with water. The dysbiosed and control larvae were subsequently fed on B. afzelii-infected or uninfected control mice, and the engorged larvae were left to moult into nymphs under laboratory conditions. I. ricinus larvae that fed on B. afzelii-infected mice had a significantly faster larva-to-nymph moulting time compared to larvae that fed on uninfected control mice, but the effect was small (2.4% reduction) and unlikely to be biologically significant. We found no evidence that B. afzelii infection or reduction of the larval microbiota influenced the four other life history traits of the immature I. ricinus ticks, which included engorged larval weight, unfed nymphal weight, larva-to-nymph moulting success, and immature tick survival. A retrospective power analysis found that our sampling effort had sufficient power (> 80%) to detect small effects (differences of 5% to 10%) of our treatments. Under the environmental conditions of this study, we conclude that B. afzelii and the egg surface microbiota had no meaningful effects on tick fitness and hence on the R0 of Lyme borreliosis.
Collapse
|
50
|
Lippi CA, Gaff HD, White AL, St. John HK, Richards AL, Ryan SJ. Exploring the Niche of Rickettsia montanensis (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae), Using Multiple Species Distribution Model Approaches. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1083-1092. [PMID: 33274379 PMCID: PMC8122238 DOI: 10.1093/jme/tjaa263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 05/03/2023]
Abstract
The American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae), is a vector for several human disease-causing pathogens such as tularemia, Rocky Mountain spotted fever, and the understudied spotted fever group rickettsiae (SFGR) infection caused by Rickettsia montanensis. It is important for public health planning and intervention to understand the distribution of this tick and pathogen encounter risk. Risk is often described in terms of vector distribution, but greatest risk may be concentrated where more vectors are positive for a given pathogen. When assessing species distributions, the choice of modeling framework and spatial layers used to make predictions are important. We first updated the modeled distribution of D. variabilis and R. montanensis using maximum entropy (MaxEnt), refining bioclimatic data inputs, and including soil variables. We then compared geospatial predictions from five species distribution modeling frameworks. In contrast to previous work, we additionally assessed whether the R. montanensis positive D. variabilis distribution is nested within a larger overall D. variabilis distribution, representing a fitness cost hypothesis. We found that 1) adding soil layers improved the accuracy of the MaxEnt model; 2) the predicted 'infected niche' was smaller than the overall predicted niche across all models; and 3) each model predicted different sizes of suitable niche, at different levels of probability. Importantly, the models were not directly comparable in output style, which could create confusion in interpretation when developing planning tools. The random forest (RF) model had the best measured validity and fit, suggesting it may be most appropriate to these data.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab Group, Department of Geography, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Holly D Gaff
- Department of Biological Sciences, Old Dominion University, Norfolk, VA
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
| | - Alexis L White
- Quantitative Disease Ecology and Conservation (QDEC) Lab Group, Department of Geography, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Heidi K St. John
- Viral and Rickettsial Disease Program (VRDD) Naval Medical Research Center, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD
| | - Allen L Richards
- Viral and Rickettsial Disease Program (VRDD) Naval Medical Research Center, Silver Spring, MD
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab Group, Department of Geography, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Corresponding author, e-mail:
| |
Collapse
|