1
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Lopatina T, Sarcinella A, Brizzi MF. Tumour Derived Extracellular Vesicles: Challenging Target to Blunt Tumour Immune Evasion. Cancers (Basel) 2022; 14:cancers14164020. [PMID: 36011012 PMCID: PMC9406972 DOI: 10.3390/cancers14164020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumour onset and development occur because of specific immune support. The immune system, which is originally able to perceive and eliminate incipient cancer cells, becomes suppressed and hijacked by cancer. For these purposes, tumour cells use extracellular vesicles (TEVs). Specific molecular composition allows TEVs to reprogram immune cells towards tumour tolerance. Circulating TEVs move from their site of origin to other organs, preparing “a fertile soil” for metastasis formation. This implies that TEV molecular content can provide a valuable tool for cancer biomarker discovery and potential targets to reshape the immune system into tumour recognition and eradication. Abstract Control of the immune response is crucial for tumour onset and progression. Tumour cells handle the immune reaction by means of secreted factors and extracellular vesicles (EV). Tumour-derived extracellular vesicles (TEV) play key roles in immune reprogramming by delivering their cargo to different immune cells. Tumour-surrounding tissues also contribute to tumour immune editing and evasion, tumour progression, and drug resistance via locally released TEV. Moreover, the increase in circulating TEV has suggested their underpinning role in tumour dissemination. This review brings together data referring to TEV-driven immune regulation and antitumour immune suppression. Attention was also dedicated to TEV-mediated drug resistance.
Collapse
|
3
|
Safarzadeh E, Mohammadi A, Mansoori B, Duijf PHG, Hashemzadeh S, Khaze V, Kazemi T, Derakhshani A, Silvestris N, Baradaran B. STAT3 Silencing and TLR7/8 Pathway Activation Repolarize and Suppress Myeloid-Derived Suppressor Cells From Breast Cancer Patients. Front Immunol 2021; 11:613215. [PMID: 33679700 PMCID: PMC7933669 DOI: 10.3389/fimmu.2020.613215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer cells escape immune destruction. From this perspective, myeloid-derived suppressor cells (MDSCs), which are immunosuppressive in various cancers including breast cancer (BC), are significant. However, the precise mechanisms are unknown. We isolated HLA-DR-CD33+ MDSCs and CD3+ T cells from BC patients’ peripheral blood and healthy donors through MACS and immunophenotyped by flow cytometry. Transfection of short-interfering RNAs and treatment with a TLR7/8 agonist altered pathway activities in vitro. Gene expression was analyzed using qRT-PCR, western blotting, and immunohistochemistry. Our findings showed an association between the progression of BC and increased levels of circulating HLA-DR-CD33+ MDSCs. These cells strongly suppress both autologous and analogous CD3+ T cell proliferation and enter the tumor microenvironment. We also identified increased STAT3 signaling and increased IDO and IL-10 expression in BC-derived MDSCs as immunosuppression mechanisms. Further, STAT3 inhibition and TLR7/8 pathway stimulation reduce the immunosuppressive activity of patient-derived MDSCs on T cells by inducing MDSC repolarization and differentiation into mature myeloid cells. This also alters the expression of critical cytokines and transcription factors in CD3+ T cells and, importantly, reduces breast cancer cells’ proliferation. Finally, while chemotherapy is able to significantly reduce circulating MDSCs’ level in patients with breast cancer, these MDSCs remained highly T cell-suppressive. We identified a novel molecular mechanism of MDSC-mediated immunosuppression. STAT3 inhibition and TLR7/8 pathway stimulation in MDSCs repolarize and suppress MDSCs from breast cancer patients. This offers new opportunities for BC immunotherapy.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology and Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Translational Research Institute (TRI), University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO), University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
5
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
6
|
Heidari F, Ramezani A, Erfani N, Razmkhah M. Indoleamine 2, 3-Dioxygenase: A Professional Immunomodulator and Its Potential Functions in Immune Related Diseases. Int Rev Immunol 2020; 41:346-363. [DOI: 10.1080/08830185.2020.1836176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Borek B, Gajda T, Golebiowski A, Blaszczyk R. Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorg Med Chem 2020; 28:115658. [PMID: 32828425 DOI: 10.1016/j.bmc.2020.115658] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
Arginase is an enzyme that converts l-arginine to l-ornithine and urea in the urea cycle. There are two isoforms of arginase in mammals: ARG-1 and ARG-2. l-Arginine level changes occur in patients with various types of affliction. An overexpression of arginase leads to the depletion of arginine and then to inhibition of the growth of T and NK cells, and in effect to the tumor escape of the immune response. Based on those observations, an inhibition of arginase is proposed as a method to improve anti-tumor immune responses (via an activation and proliferation of T and NK cells). Boronic acid derivatives as arginase inhibitors are leading, potential therapeutic agents for the treatment of several diseases. All these compounds are derived from the original 2-(S)-amino-6-boronohexanoic acid (ABH), the first boronic acid arginase inhibitor proposed by Christianson et al. This article focuses on the review of such sub-class of arginase inhibitors and highlights their SAR and PK properties. It covers molecules published until early 2020, including patent applications.
Collapse
Affiliation(s)
- Bartlomiej Borek
- OncoArendi Therapeutics SA, 101 Żwirki i Wigury St, 02-089 Warsaw, Poland.
| | - Tadeusz Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Technical University of Lodz, 116 Stefana Żeromskiego St, 90-924 Łódź, Poland
| | - Adam Golebiowski
- OncoArendi Therapeutics SA, 101 Żwirki i Wigury St, 02-089 Warsaw, Poland
| | - Roman Blaszczyk
- OncoArendi Therapeutics SA, 101 Żwirki i Wigury St, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Zhang Y, Qiu Z, Qiu Y, Su T, Qu P, Jia A. Functional Regulation of Ginsenosides on Myeloid Immunosuppressive Cells in the Tumor Microenvironment. Integr Cancer Ther 2020; 18:1534735419886655. [PMID: 31729239 PMCID: PMC6859683 DOI: 10.1177/1534735419886655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ginsenosides, the key components isolated from ginseng, have been extensively studied in antitumor treatment. Numerous studies have shown that ginsenosides have direct function in tumor cells through the induction of cancer cell apoptosis and the inhibition of cancer cell growth and enhance the antitumor immunity through the activation of cytotoxic T lymphocytes and natural killer cells. However, little is known about the function of ginsenosides on myeloid immunosuppressive cells including dendritic cells in tumor, tumor-associated macrophages, and myeloid-derived suppressor cells in the tumor microenvironments. Those myeloid immunosuppressive cells play important roles in promoting tumor angiogenesis, invasion, and metastasis. In the review, we summarize the regulatory functions of ginsenosides on myeloid immunosuppressive cells in tumor microenvironment, providing the novel therapeutic methods for clinical cancer treatment.
Collapse
Affiliation(s)
- Yanfei Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Zhidong Qiu
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ye Qiu
- Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Ting Su
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Peng Qu
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ailing Jia
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
9
|
Li X, Xiang Y, Li F, Yin C, Li B, Ke X. WNT/β-Catenin Signaling Pathway Regulating T Cell-Inflammation in the Tumor Microenvironment. Front Immunol 2019; 10:2293. [PMID: 31616443 PMCID: PMC6775198 DOI: 10.3389/fimmu.2019.02293] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/11/2019] [Indexed: 01/26/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors has greatly prolonged the overall survival of cancer patients in melanoma and many other cancer types. However, only a subset of patients shows clinical responses from these interventions, which was predicated by the T cell-inflamed tumor microenvironment. T cell-inflamed phenotype is characterized by the infiltration of CD8+ T cells, CD8α/CD103-lineage dendritic cells (DCs), as well as high density of forkhead box P3 (FoxP3)+ regulatory T cells (Tregs) that are associated with the efficacy of immune checkpoint blockade. A number of regulators has been associated with T cell-inflammation in the tumor microenvironment, and WNT/β-catenin signaling is one of the best characterized. The tumor-intrinsic WNT/β-catenin signaling activation is frequently associated with poor spontaneous T cell infiltration across most human cancers. In this article, we review the essential roles of WNT/β-catenin signaling in the T cell-inflamed and non-T cell-inflamed tumor microenvironment, including the development and function of immune cells, activation of immune exclusion of tumor cells, and cancer immunosurveillance. We also discuss the impact of this pathway in driving the non-T cell-inflamed tumor microenvironment in other tumor types. To improve immunotherapy efficacy, we argue that targeting Wnt/β-catenin signaling should be a high priority for combinational cancer therapy to restore T cell infiltration.
Collapse
Affiliation(s)
- Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yanwei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengqian Yin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xisong Ke
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Leibold AT, Monaco GN, Dey M. The role of the immune system in brain metastasis. CURRENT NEUROBIOLOGY 2019; 10:33-48. [PMID: 31097897 PMCID: PMC6513348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metastatic brain tumors are the most common brain tumors in adults. With numerous successful advancements in systemic treatment of most common cancer types, brain metastasis is becoming increasingly important in the overall prognosis of cancer patients. Brain metastasis of peripheral tumor is the result of complex interplay of primary tumor, immune system and central nervous system microenvironment. Once formed, brain metastases hide behind the blood brain barrier and become inaccessible to chemotherapies that are otherwise successful in targeting systemic cancer. The approval of immune checkpoint inhibitors for several common cancers such as advanced melanoma and lung cancers brings with it the opportunity and obligation to further understand the mechanisms of immunosuppression by tumors that spread to the brain as well as the interaction between the brain environment and tumor microenvironment. In this review paper we define the central role of the immune system in the development of brain metastases. We performed a comprehensive review of the literature to outline the molecular mechanisms of immunosuppression used by tumors and how the immune system interacts with the central nervous system to facilitate brain metastasis. In particular we discuss the tumor-type-specific mechanisms of metastasis of cancers that preferentially metastasize to the brain as well as the therapies that effectively modulate the immune response, such as immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Adam T Leibold
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Gina N Monaco
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Liu S, Han Z, Trivett AL, Lin H, Hannifin S, Yang D, Oppenheim JJ. Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma. Cancer Immunol Immunother 2019; 68:1059-1071. [PMID: 30972427 PMCID: PMC6584267 DOI: 10.1007/s00262-019-02326-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
Lung cancer is currently the leading cause of cancer-related mortality with very limited effective therapy. Screening of a variety of traditional Chinese medicines (TCMs) for their capacity to inhibit the proliferation of human lung cancer A549 cells and to induce the in vitro maturation of human DCs led to the identification of cryptotanshinone (CT), a compound purified from the TCM Salvia miltiorrhiza Bunge. Here, CT was shown to inhibit the proliferation of mouse Lewis lung carcinoma (LLC) cells by upregulating p53, downregulating cyclin B1 and Cdc2, and, consequently, inducing G2/M cell-cycle arrest of LLC cells. In addition, CT promoted maturation of mouse and human DCs with upregulation of costimulatory and MHC molecules and stimulated DCs to produce TNFα, IL-1β, and IL-12p70, but not IL-10 in vitro. CT-induced maturation of DCs depended on MyD88 and also involved the activation of NF-κB, p38, and JNK. CT was effective in the treatment of LLC tumors and, when used in combination with low doses of anti-PD-L1, cured LLC-bearing mice with the induction of subsequent anti-LLC long-term specific immunity. CT treatment promoted T-cell infiltration and elevated the expression of genes typical of Th1 polarization in LLC tumor tissue. The therapeutic effect of CT and low doses of anti-PD-L1 was reduced by depletion of CD4 and CD8 T cells. This paper provides the first report that CT induces immunological antitumor activities and may provide a new promising antitumor immunotherapeutic.
Collapse
Affiliation(s)
- Shuo Liu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA.,Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA
| | - Anna L Trivett
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA
| | - Hongsheng Lin
- Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Sean Hannifin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA.
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Rm 21-89/31-19, Bldg 560, 1050 Boyles Street, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
12
|
Hong E, Dobrovolskaia MA. Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Adv Drug Deliv Rev 2019; 141:3-22. [PMID: 29339144 DOI: 10.1016/j.addr.2018.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Cancer is a complex systemic disorder that affects many organs and tissues and arises from the altered function of multiple cellular and molecular mechanisms. One of the systems malfunctioning in cancer is the immune system. Restoring and improving the ability of the immune system to effectively recognize and eradicate cancer is the main focus of immunotherapy, a topic which has garnered recent and significant interest. The initial excitement about immunotherapy, however, has been challenged by its limited efficacy in certain patient populations and the development of adverse effects such as therapeutic resistance and autoimmunity. At the same time, a number of advances in the field of nanotechnology have sought to address the challenges faced by modern immunotherapeutics and allow these therapeutic strategies to realize their full potential. This endeavour requires an understanding of not only the immunological barriers in cancer but also the mechanisms by which modern technologies and immunotherapeutics modulate the function of the immune system. Herein, we summarize the major barriers relevant to cancer immunotherapy and review current progress in addressing these obstacles using various approaches and clinically approved therapies. We then discuss the remaining challenges and how they can be addressed by nanotechnology. We lay out translational considerations relevant to the therapies described and propose a framework for the development of next-generation nanotechnology-enabled immunotherapies.
Collapse
|
13
|
Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017; 343:103713. [PMID: 29129292 DOI: 10.1016/j.cellimm.2017.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.
Collapse
Affiliation(s)
- Jonathan Schupp
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Franziska K Krebs
- Department of Dermatology, University Medical Center, Mainz, Germany; German Cancer Consortium (DKTK), partner site Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niklas Zimmer
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Emily Trzeciak
- The Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
14
|
Tomić S, Janjetović K, Mihajlović D, Milenković M, Kravić-Stevović T, Marković Z, Todorović-Marković B, Spitalsky Z, Micusik M, Vučević D, Čolić M, Trajković V. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 2017; 146:13-28. [DOI: 10.1016/j.biomaterials.2017.08.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
15
|
Development of a Curative Therapeutic Vaccine (TheraVac) for the Treatment of Large Established Tumors. Sci Rep 2017; 7:14186. [PMID: 29079801 PMCID: PMC5660153 DOI: 10.1038/s41598-017-14655-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/16/2017] [Indexed: 01/12/2023] Open
Abstract
Harnessing immune system to treat cancer requires simultaneous generation of tumor-specific CTLs and curtailment of tumor immunosuppressive environment. Here, we developed an immunotherapeutic regimen capable of eliminating large established mouse tumors using HMGN1, a DC-activating TLR4 agonist capable of inducing anti-tumor immunity. Intratumoral delivery of HMGN1 with low dose of Cytoxan cured mice bearing small (∅ ≈ 0.5 cm), but not large (∅ ≈ 1.0 cm) CT26 tumors. Screening for activators capable of synergizing with HMGN1 in activating DC identified R848. Intratumoral delivery of HMGN1 and R848 plus Cytoxan eradicated large established CT26 tumors. The resultant tumor-free mice were resistant to subsequent challenge with CT26, indicating the generation of CT26-specific protective immunity. This immunotherapeutic regimen caused homing of tumor-infiltrating DC to draining lymph nodes and increased infiltration of T cells into tumor tissues. Cytoxan in this regimen could be replaced by anti-CTLA4) or anti-PD-L1. Importantly, this immunotherapeutic regimen was also curative for large established mouse Renca and EG7 tumors. Thus, we have developed a curative therapeutic vaccination regimen dubbed ‘TheraVac’ consisting of HMGN1 and R848 plus a checkpoint inhibitor, that can, without using exogenous tumor-associated antigen(s), eliminate various large tumors and induce tumor-specific immunity.
Collapse
|
16
|
Li Y, Hu N, Yang D, Oxenkrug G, Yang Q. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J 2017; 284:948-966. [DOI: 10.1111/febs.14026] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/15/2016] [Accepted: 01/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yang Li
- State Key Laboratory of Genetic Engineering Department of Biochemistry School of Life Sciences Fudan University Shanghai China
| | - Nan Hu
- State Key Laboratory of Genetic Engineering Department of Biochemistry School of Life Sciences Fudan University Shanghai China
| | - Dan Yang
- State Key Laboratory of Genetic Engineering Department of Biochemistry School of Life Sciences Fudan University Shanghai China
| | - Gregory Oxenkrug
- Psychiatry and Inflammation Program Department of Psychiatry Tufts University School of Medicine and Tufts Medical Center Boston MA USA
| | - Qing Yang
- State Key Laboratory of Genetic Engineering Department of Biochemistry School of Life Sciences Fudan University Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) East China University of Science and Technology Shanghai China
| |
Collapse
|
17
|
Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:19-31. [PMID: 29275462 PMCID: PMC6693322 DOI: 10.1007/978-3-319-67577-0_2] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most cancers express tumor antigens that can be recognized by T cells of the host. The fact that cancers become clinically evident nonetheless implies that immune escape must occur. Two major subsets of human melanoma metastases have been identified based on gene expression profiling. One subgroup has a T cell-inflamed phenotype that includes expression of chemokines, T cell markers, and a type I IFN signature. In contrast, the other major subset lacks this phenotype and has been designated as non-T cell-inflamed. The mechanisms of immune escape are likely distinct in these two phenotypes, and therefore the optimal immunotherapeutic interventions necessary to promote clinical responses may be different. The T cell-inflamed tumor microenvironment subset shows the highest expression of negative regulatory factors, including PD-L1, IDO, FoxP3+ Tregs, and evidence for T cell-intrinsic anergy. Therapeutic strategies to overcome these inhibitory mechanisms are being pursued, and anti-PD-1 mAbs have been FDA approved. The presence of multiple inhibitory mechanisms in the same tumor microenvironment argues that combination therapies may be advantageous, several of which are in clinical testing. A new paradigm may be needed to promote de novo inflammation in cases of the non-T cell-infiltrated tumor microenvironment. Natural innate immune sensing of tumors appears to occur via the host STING pathway, type I IFN production, and cross-priming of T cells via CD8α+ DCs. New strategies are being developed to engage this pathway therapeutically, such as through STING agonists. The molecular mechanisms that mediate the presence or absence of the T cell-inflamed tumor microenvironment are being elucidated using parallel genomics platforms. The first oncogene pathway identified that mediates immune exclusion is the Wnt/β-catenin pathway, suggesting that new pharmacologic strategies to target this pathway should be developed to restore immune access to the tumor microenvironment.
Collapse
|
18
|
Lu Y, Zhu Y, Wang X, Wang F, Peng J, Hou H, Sun Z. FOXO3 rs12212067: T > G Association with Active Tuberculosis in Han Chinese Population. Inflammation 2016. [PMID: 26223437 DOI: 10.1007/s10753-015-0217-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well known that the human innate immune and adaptive immune response play important role in tuberculosis (TB) infection and progress. Emerging evidence shows that FOXO3 plays an important role in the human immune system. Recent research has shown that the FOXO3 genetic variants are associated malaria infection. In this study, 268 confirmed TB patients, 321 patients with latent tuberculosis infection (LTBI), and 475 TB-free controls were recruited; the single-nucleotide polymorphism (SNP) rs12212067: T > G in FOXO3 was genotyped using predesigned TaqMan® allelic discrimination assays. The results showed that the G allele of rs12212067 in FOXO3 was more common in health control and the latent TB group compared with the active TB group (p = 0.048, odds ratio (OR) 95 % confidence intervals (CI) = 1.37 (1.00-1.89); p = 0.042, OR 95 % CI = 1.42 (1.01-1.99), respectively); furthermore, within active TB patients, the G allele of rs12212067 in FOXO3 was more frequent in extra-pulmonary tuberculosis (EPTB) group compared to pulmonary tuberculosis (PTB) group (p = 0.035, OR 95 % CI = 0.57 (0.33-0.97). In conclusion, this study found that rs12212067 in FOXO3 was associated with increased risk of active TB. The minor G allele might be a protection factor which was found more common in latent TB patients and healthy controls than active TB patients.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, 430030, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, 430030, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, 430030, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, 430030, China
| | - Jing Peng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, 430030, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, 430030, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, 430030, China.
| |
Collapse
|
19
|
Liu L, Yi H, Wang C, He H, Li P, Pan H, Sheng N, Ji M, Cai L, Ma Y. Integrated Nanovaccine with MicroRNA-148a Inhibition Reprograms Tumor-Associated Dendritic Cells by Modulating miR-148a/DNMT1/SOCS1 Axis. THE JOURNAL OF IMMUNOLOGY 2016; 197:1231-41. [DOI: 10.4049/jimmunol.1600182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/08/2016] [Indexed: 12/26/2022]
|
20
|
Nayama M, Collinet P, Salzet M, Vinatier D. [Immunological aspects of ovarian cancer: Therapeutic perspectives]. ACTA ACUST UNITED AC 2016; 45:1020-1036. [PMID: 27320132 DOI: 10.1016/j.jgyn.2016.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023]
Abstract
Ovarian cancer is recognized by the immunological system of its host. Initially, it is effective to destroy and eliminate the cancer. But gradually, resistant tumor cells more aggressive and those able to protect themselves by inducing immune tolerance will be selected. Immunotherapy to be effective should consider both components of immune response with an action on cytotoxic immune effectors and action on tolerance mechanisms. The manipulations of the immune system should be cautious, because the immune effects are not isolated. A theoretically efficient handling may simultaneously cause an adverse effect which was not envisaged and could neutralize the benefits of treatment. Knowledge of tolerance mechanisms set up by the tumor is for the clinician a prerequisite before they prescribe these treatments. For each cancer, the knowledge of its immunological status is a prerequisite to propose adapted immunological therapies.
Collapse
Affiliation(s)
- M Nayama
- Service de gynécologie obstétrique, maternité Issaka-Gazoby, BP 10975, Niamey, Niger
| | - P Collinet
- CHU de Lille, 59000 Lille, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France
| | - M Salzet
- EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France
| | - D Vinatier
- CHU de Lille, 59000 Lille, France; EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France.
| |
Collapse
|
21
|
MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia. Mediators Inflamm 2016; 2016:1438686. [PMID: 27382188 PMCID: PMC4921629 DOI: 10.1155/2016/1438686] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/18/2016] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia has been defined as the aging-related disease with the declined mass, strength, and function of skeletal muscle, which is the major cause of frailty and falls in elders. The activation of inflammatory signal pathways due to diseases and aging is suggested to reveal the critical impact on sarcopenia. Several proinflammatory cytokines, especially interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), play crucial roles in modulation of inflammatory signaling pathway during the aging-related loss of skeletal muscle. MicroRNAs (miRNAs) have emerged as the important regulators for the mass and functional maintenance of skeletal muscle through regulating gene expression of proinflammatory cytokines. In this paper, we have systematically discussed regulatory mechanisms of miRNAs for the expression and secretion of inflammatory cytokines during sarcopenia, which will provide some novel targets and therapeutic strategies for controlling aging-related atrophy of skeletal muscle and corresponding chronic inflammatory diseases.
Collapse
|
22
|
Sniping the scout: Targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res 2016; 107:27-41. [DOI: 10.1016/j.phrs.2016.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
23
|
Ning Y, Xu D, Zhang X, Bai Y, Ding J, Feng T, Wang S, Xu N, Qian K, Wang Y, Qi C. β-glucan restores tumor-educated dendritic cell maturation to enhance antitumor immune responses. Int J Cancer 2016; 138:2713-23. [PMID: 26773960 DOI: 10.1002/ijc.30002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
Tumors can induce the generation and accumulation of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) in a tumor microenvironment, contributing to tumor escape from immunological attack. Although dendritic cell-based cancer vaccines can initiate antitumor immune responses, tumor-educated dendritic cells (TEDCs) involved in the tolerance induction have attracted much attention recently. In this study, we investigated the effect of β-glucan on TEDCs and found that β-glucan treatment could promote the maturation and migration of TEDCs and that the suppressive function of TEDCs was significantly decreased. Treatment with β-glucan drastically decreased the levels of regulatory T (Treg) cells but increased the infiltration of macrophages, granulocytes and DCs in tumor masses, thus elicited Th1 differentiation and cytotoxic T-lymphocyte responses and led to a delay in tumor progression. These findings reveal that β-glucan can inhibit the regulatory function of TEDCs, therefore revealing a novel function for β-glucan in immunotherapy and suggesting its potential clinical benefit. β-Glucan directly abrogated tumor-educated dendritic cells-associated immune suppression, promoted Th1 differentiation and cytotoxic T-lymphocyte priming and improved antitumor responses.
Collapse
Affiliation(s)
- Yongling Ning
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Dongqin Xu
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Xiaohang Zhang
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Yu Bai
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Jun Ding
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Tongbao Feng
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of General Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Shizhong Wang
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Ning Xu
- Section of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Lund, S-221 85, Sweden
| | - Keqing Qian
- Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Yong Wang
- Department of General Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| |
Collapse
|
24
|
Santhanam S, Alvarado DM, Ciorba MA. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res 2016; 167:67-79. [PMID: 26297050 PMCID: PMC4684437 DOI: 10.1016/j.trsl.2015.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death in the United States. Cytotoxic therapies cause significant adverse effects for most patients and do not offer cure in many advanced cases of CRC. Immunotherapy is a promising new approach to harness the body's own immune system and inflammatory response to attack and clear the cancer. Tryptophan metabolism along the kynurenine pathway (KP) is a particularly promising target for immunotherapy. Indoleamine 2,3-dioxygenase 1 (IDO1) is the most well studied of the enzymes that initiate this pathway and it is commonly overexpressed in CRC. Herein, we provide an in-depth review of how tryptophan metabolism and KP metabolites shape factors important to CRC pathogenesis including the host mucosal immune system, pivotal transcriptional pathways of neoplastic growth, and luminal microbiota. This pathway's role in other gastrointestinal (GI) malignancies such as gastric, pancreatic, esophageal, and GI stromal tumors is also discussed. Finally, we highlight how currently available small molecule inhibitors and emerging methods for therapeutic targeting of IDO1 might be applied to colon, rectal, and colitis-associated cancer.
Collapse
Affiliation(s)
- Srikanth Santhanam
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo
| | - David M Alvarado
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo.
| |
Collapse
|
25
|
Kim Y, Clements DR, Sterea AM, Jang HW, Gujar SA, Lee PWK. Dendritic Cells in Oncolytic Virus-Based Anti-Cancer Therapy. Viruses 2015; 7:6506-25. [PMID: 26690204 PMCID: PMC4690876 DOI: 10.3390/v7122953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that have a notable role in the initiation and regulation of innate and adaptive immune responses. In the context of cancer, appropriately activated DCs can induce anti-tumor immunity by activating innate immune cells and tumor-specific lymphocytes that target cancer cells. However, the tumor microenvironment (TME) imposes different mechanisms that facilitate the impairment of DC functions, such as inefficient antigen presentation or polarization into immunosuppressive DCs. These tumor-associated DCs thus fail to initiate tumor-specific immunity, and indirectly support tumor progression. Hence, there is increasing interest in identifying interventions that can overturn DC impairment within the TME. Many reports thus far have studied oncolytic viruses (OVs), viruses that preferentially target and kill cancer cells, for their capacity to enhance DC-mediated anti-tumor effects. Herein, we describe the general characteristics of DCs, focusing on their role in innate and adaptive immunity in the context of the TME. We also examine how DC-OV interaction affects DC recruitment, OV delivery, and anti-tumor immunity activation. Understanding these roles of DCs in the TME and OV infection is critical in devising strategies to further harness the anti-tumor effects of both DCs and OVs, ultimately enhancing the efficacy of OV-based oncotherapy.
Collapse
Affiliation(s)
- Youra Kim
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Derek R Clements
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Andra M Sterea
- Department of Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Hyun Woo Jang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
- Department of Strategy and Organizational Performance, IWK Health Centre, Halifax, NS B3K 6R8, Canada.
| | - Patrick W K Lee
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
26
|
Hsu YL, Hsieh CJ, Tsai EM, Hung JY, Chang WA, Hou MF, Kuo PL. Didymin reverses phthalate ester-associated breast cancer aggravation in the breast cancer tumor microenvironment. Oncol Lett 2015; 11:1035-1042. [PMID: 26893687 DOI: 10.3892/ol.2015.4008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
The present study demonstrated two novel findings. To the best of our knowledge, it is the first study to demonstrate that regulated upon activation, normal T-cell expressed and secreted (RANTES), produced by breast tumor-associated monocyte-derived dendritic cells (TADCs) following breast cancer cell exposure to phthalate esters, may contribute to the progression of cancer via enhancement of cancer cell proliferation, migration and invasion. Furthermore, the present study revealed that didymin, a dietary flavonoid glycoside present in citrus fruits, was able to reverse phthalate ester-mediated breast cancer aggravation. MDA-MB-231 cells were treated with butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP) or di-2-ethylhexyl phthalate (DEHP). Subsequently, the conditioned medium (CM) was harvested and cultured with monocyte-derived dendritic cells (mdDCs). Cultures of MDA-MB-231 cells with the conditioned medium of BBP-, DBP- or DEHP-MDA-MB-231 tumor-associated mdDCs (BBP-, DBP- or DEHP-MDA-TADC-CM) demonstrated enhanced proliferation, migration and invasion. Exposure of the MDA-MB-231 cells to DBP induced the MDA-TADCs to produce the inflammatory cytokine RANTES, which subsequently induced MDA-MB-231 cell proliferation, migration and invasion. Depleting RANTES reversed the effects of DBP-MDA-TADC-mediated MDA-MB-231 cell proliferation, migration and invasion. In addition, didymin was observed to suppress phthalate-mediated breast cancer cell proliferation, migration and invasion. The present study suggested that didymin was capable of preventing phthalate ester-associated cancer aggravation.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Chia-Jung Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.; Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Feng Hou
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
27
|
Summary of the 2014 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2015; 49:767-72. [PMID: 26520175 DOI: 10.1016/j.alcohol.2015.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 02/08/2023]
Abstract
On November 21, 2014 the 19th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at Loyola University Chicago Health Sciences Campus in Maywood, Illinois. The meeting focused broadly on inflammatory cell signaling responses in the context of alcohol and alcohol-use disorders, and was divided into four plenary sessions focusing on the gut and liver, lung infections, general systemic effects of alcohol, and neuro-inflammation. One common theme among many talks was the differential roles of macrophages following both chronic and acute alcohol intoxication. Macrophages were shown to play significant roles in regulating inflammation, oxidative stress, and viral infection following alcohol exposure in the liver, lungs, adipose tissue, and brain. Other work examined the role of alcohol on disease progression in a variety of pathologies including psoriasis, advanced stage lung disease, and cancer.
Collapse
|
28
|
Holtzhausen A, Zhao F, Evans KS, Tsutsui M, Orabona C, Tyler DS, Hanks BA. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res 2015; 3:1082-95. [PMID: 26041736 PMCID: PMC4927300 DOI: 10.1158/2326-6066.cir-14-0167] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/22/2015] [Indexed: 12/11/2022]
Abstract
The β-catenin signaling pathway has been demonstrated to promote the development of a tolerogenic dendritic cell (DC) population capable of driving regulatory T-cell (Treg) differentiation. Further studies have implicated tolerogenic DCs in promoting carcinogenesis in preclinical models. The molecular mechanisms underlying the establishment of immune tolerance by this DC population are poorly understood, and the methods by which developing cancers can co-opt this pathway to subvert immune surveillance are currently unknown. This work demonstrates that melanoma-derived Wnt5a ligand upregulates the durable expression and activity of the indoleamine 2,3-dioxygenase-1 (IDO) enzyme by local DCs in a manner that depends upon the β-catenin signaling pathway. These data indicate that Wnt5a-conditioned DCs promote the differentiation of Tregs in an IDO-dependent manner, and that this process serves to suppress melanoma immune surveillance. We further show that the genetic silencing of the PORCN membrane-bound O-acyl transferase, which is necessary for melanoma Wnt ligand secretion, enhances antitumor T-cell immunity, and that the pharmacologic inhibition of this enzyme synergistically suppresses melanoma progression when combined with anti-CTLA-4 antibody therapy. Finally, our data suggest that β-catenin signaling activity, based on a target gene expression profile that includes IDO in human sentinel lymph node-derived DCs, is associated with melanoma disease burden and diminished progression-free survival. This work implicates the Wnt-β-catenin signaling pathway as a novel therapeutic target in the melanoma immune microenvironment and demonstrates the potential impact of manipulating DC function as a strategy for optimizing tumor immunotherapy.
Collapse
Affiliation(s)
- Alisha Holtzhausen
- Department of Pharmacology and Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Fei Zhao
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kathy S Evans
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Masahito Tsutsui
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Ciriana Orabona
- Department of Experimental Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Douglas S Tyler
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Brent A Hanks
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
29
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
30
|
Marlow G, Han DY, Triggs CM, Ferguson LR. Food Intolerance: Associations with the rs12212067 Polymorphism of FOXO3 in Crohn's Disease Patients in New Zealand. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2015; 8:70-80. [PMID: 26226934 DOI: 10.1159/000435783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/04/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Diet is known to play a major role in Crohn's disease (CD). It has also been reported that the minor G allele from the rs12212067 polymorphism (T>G) in FOXO3 is associated with milder CD. The aim of this study was to investigate the association between the rs12212067 polymorphism and food intolerances for a total of 253 foods. METHODS Tolerances and intolerances were recorded on a self-reported dietary questionnaire. Each food was scored on a 5-point ordinal scale: beneficial effects as '+ +' or '+', adverse effects as '- -' or '-', and 'makes no difference' as '='. Dietary and genotype data were available for a total of 283 CD patients. RESULTS We identified 17 foods with beneficial effects in our study which were significantly associated with the G allele of the FOXO3 rs12212067 polymorphism. Of these, sweet potatoes had the highest reported frequency of beneficial responses. We also identified 4 foods with detrimental effects in more than 25% of our study population. These were mustard, wasabi, and raw and cooked tomatoes, which again were significantly associated with the G allele in FOXO3. CONCLUSIONS There was strong evidence that adverse effects of mustard, wasabi, and raw and cooked tomatoes were significantly associated with the G allele of FOXO3 and that these foods should be avoided by people carrying this allele.
Collapse
Affiliation(s)
- Gareth Marlow
- Discipline of Nutrition, Faculty of Medical and Health Sciences, Auckland, New Zealand
| | | | | | | |
Collapse
|
31
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|
32
|
Andersen MH. Immune Regulation by Self-Recognition: Novel Possibilities for Anticancer Immunotherapy. J Natl Cancer Inst 2015; 107:djv154. [PMID: 26063792 DOI: 10.1093/jnci/djv154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Circulating T cells that specifically target normal self-proteins expressed by regulatory immune cells were first described in patients with cancer, but can also be detected in healthy individuals. The adaptive immune system is distinguished for its ability to differentiate between self-antigens and foreign antigens. Thus, it was remarkable to discover T cells that apparently lacked tolerance to important self-proteins, eg, IDO, PD-L1, and FoxP3, expressed in regulatory immune cells. The ability of self-reactive T cells to react to and eliminate regulatory immune cells can influence general immune reactions. This suggests that they may be involved in immune homeostasis. It is here proposed that these T cells should be termed antiregulatory T cells (anti-Tregs). The role of anti-Tregs in immune-regulatory networks may be diverse. For example, pro-inflammatory self-reactive T cells that react to regulatory immune cells may enhance local inflammation and inhibit local immune suppression. Further exploration is warranted to investigate their potential role under different malignant conditions and the therapeutic possibilities they possess. Utilizing anti-Tregs for anticancer immunotherapy implies the direct targeting of cancer cells in addition to regulatory immune cells. Anti-Tregs provide the immune system with yet another level of immune regulation and contradict the notion that immune cells involved in the adjustment of immune responses only act as suppressor cells.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
33
|
Mac Keon S, Ruiz MS, Gazzaniga S, Wainstok R. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models. Front Immunol 2015; 6:243. [PMID: 26042126 PMCID: PMC4438595 DOI: 10.3389/fimmu.2015.00243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/06/2015] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.
Collapse
Affiliation(s)
- Soledad Mac Keon
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina
| | - María Sol Ruiz
- Centro de Investigaciones Oncológicas, Fundación para la Investigación, Docencia y Prevención del Cáncer (FUCA) , Buenos Aires , Argentina
| | - Silvina Gazzaniga
- Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Rosa Wainstok
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina ; Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
34
|
Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2985-91. [PMID: 25795789 PMCID: PMC4369768 DOI: 10.4049/jimmunol.1403134] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in the tumor microenvironment, which is known to affect disease progression in many human malignancies. Infiltration by mature, active DCs into the tumors confers an increase in immune activation and recruitment of disease-fighting immune effector cells and pathways. DCs are the preferential target of infiltrating T cells. However, tumor cells have means of suppressing DC function or of altering the tumor microenvironment in such a way that immune-suppressive DCs are recruited. Advances in understanding these changes have led to promising developments in cancer-therapeutic strategies targeting tumor-infiltrating DCs to subdue their immunosuppressive functions and enhance their immune-stimulatory capacity.
Collapse
Affiliation(s)
| | - Purushottam Lamichhane
- Department of Immunology, Mayo Clinic, Rochester, MN 55906; and Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| | - Lavakumar Karyampudi
- Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, MN 55906; and Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| |
Collapse
|
35
|
Jachetti E, Caputo S, Mazzoleni S, Brambillasca CS, Parigi SM, Grioni M, Piras IS, Restuccia U, Calcinotto A, Freschi M, Bachi A, Galli R, Bellone M. Tenascin-C Protects Cancer Stem-like Cells from Immune Surveillance by Arresting T-cell Activation. Cancer Res 2015; 75:2095-108. [PMID: 25808872 DOI: 10.1158/0008-5472.can-14-2346] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
Precociously disseminated cancer cells may seed quiescent sites of future metastasis if they can protect themselves from immune surveillance. However, there is little knowledge about how such sites might be achieved. Here, we present evidence that prostate cancer stem-like cells (CSC) can be found in histopathologically negative prostate draining lymph nodes (PDLN) in mice harboring oncogene-driven prostate intraepithelial neoplasia (mPIN). PDLN-derived CSCs were phenotypically and functionally identical to CSC obtained from mPIN lesions, but distinct from CSCs obtained from frank prostate tumors. CSC derived from either PDLN or mPIN used the extracellular matrix protein Tenascin-C (TNC) to inhibit T-cell receptor-dependent T-cell activation, proliferation, and cytokine production. Mechanistically, TNC interacted with α5β1 integrin on the cell surface of T cells, inhibiting reorganization of the actin-based cytoskeleton therein required for proper T-cell activation. CSC from both PDLN and mPIN lesions also expressed CXCR4 and migrated in response to its ligand CXCL12, which was overexpressed in PDLN upon mPIN development. CXCR4 was critical for the development of PDLN-derived CSC, as in vivo administration of CXCR4 inhibitors prevented establishment in PDLN of an immunosuppressive microenvironment. Taken together, our work establishes a pivotal role for TNC in tuning the local immune response to establish equilibrium between disseminated nodal CSC and the immune system.
Collapse
Affiliation(s)
- Elena Jachetti
- Division of Immunology, Transplantation and Infectious Diseases, Cellular Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Caputo
- Division of Immunology, Transplantation and Infectious Diseases, Cellular Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. Università Vita-Salute San Raffaele, Milan, Italy
| | - Stefania Mazzoleni
- Division of Regenerative Medicine, Neural Stem Cell Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Svetlana Brambillasca
- Division of Immunology, Transplantation and Infectious Diseases, Cellular Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Martina Parigi
- Division of Immunology, Transplantation and Infectious Diseases, Cellular Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Grioni
- Division of Immunology, Transplantation and Infectious Diseases, Cellular Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Umberto Restuccia
- Mass Spectrometry Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Calcinotto
- Division of Immunology, Transplantation and Infectious Diseases, Cellular Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. Mass Spectrometry Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Freschi
- Unità Operativa Anatomia Patologica, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- Mass Spectrometry Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossella Galli
- Division of Regenerative Medicine, Neural Stem Cell Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Diseases, Cellular Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
36
|
Vaught DB, Stanford JC, Cook RS. Efferocytosis creates a tumor microenvironment supportive of tumor survival and metastasis. ACTA ACUST UNITED AC 2015; 2. [PMID: 29264372 DOI: 10.14800/ccm.666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Programmed cell death, or apoptosis, occurs in nearly all tissues of all multi-cellular organisms. In order to avoid leakage of intracellular contents, which could generate tissue damaging inflammation, apoptotic cells are cleared from tissues by phagocytes, which then dispatch the engulfed dying cell through the lysosomal pathway. Phagocytic clearance of apoptotic cells is referred to as efferocytosis. One key feature of efferocytosis is the production and release of wound healing cytokines by the phagocyte, which acts to resolve inflammation, and promote tissue repair. Phagocytic engulfment of apoptotic cells coupled with cytokine modulation aimed at immune suppression ensures that physiological programmed cell death does not induce inflammation and tissue damage. However, cytokines involved in wound healing and immune suppression are notorious for their role in the tumor microenvironment, increasing tumor cell motility and promoting evasion of anti-tumor immunity. Therefore, current and future studies aimed at targeting important players of efferocytosis should reveal new and efficacious therapeutic approaches for limiting cancer progression and relapse.
Collapse
Affiliation(s)
- David B Vaught
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232 USA
| | - Jamie C Stanford
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232 USA
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232 USA.,Department of Breast Cancer Research Program Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37232 USA
| |
Collapse
|
37
|
Woo SR, Corrales L, Gajewski TF. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol 2015; 36:250-6. [PMID: 25758021 DOI: 10.1016/j.it.2015.02.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/01/2023]
Abstract
A major subset of patients with advanced solid tumors show a spontaneous T cell-inflamed tumor microenvironment, which has prognostic import and is associated with clinical response to immunotherapies. As such, understanding the mechanisms governing the generation of spontaneous T cell responses in only a subset of patients is critical for advancing immunotherapeutic approaches further. Here, we discuss the characteristics of T cell-inflamed versus non-inflamed tumors, including a type I interferon (IFN) signature associated with T cell priming against tumor antigens. We review recent findings that have pointed towards the STING (stimulator of interferon genes) pathway of cytosolic DNA sensing as an important innate immune sensing mechanism driving type I IFN production in the tumor context. Knowledge of this pathway is guiding the further development of novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Seng-Ryong Woo
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Leticia Corrales
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
38
|
Hsu YL, Hung JY, Tsai YM, Tsai EM, Huang MS, Hou MF, Kuo PL. 6-shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1730-8. [PMID: 25621970 DOI: 10.1021/jf504934m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study has two novel findings: it is not only the first to demonstrate that tumor-associated dendritic cells (TADCs) facilitate lung and breast cancer metastasis in vitro and in vivo by secreting inflammatory mediator CC-chemokine ligand 2 (CCL2), but it is also the first to reveal that 6-shogaol can decrease cancer development and progression by inhibiting the production of TADC-derived CCL2. Human lung cancer A549 and breast cancer MDA-MB-231 cells increase TADCs to express high levels of CCL2, which increase cancer stem cell features, migration, and invasion, as well as immunosuppressive tumor-associated macrophage infiltration. 6-Shogaol decreases cancer-induced up-regulation of CCL2 in TADCs, preventing the enhancing effects of TADCs on tumorigenesis and metastatic properties in A549 and MDA-MB-231 cells. A549 and MDA-MB-231 cells enhance CCL2 expression by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and the activation of STAT3 induced by A549 and MDA-MB-231 is completely inhibited by 6-shogaol. 6-Shogaol also decreases the metastasis of lung and breast cancers in mice. 6-Shogaol exerts significant anticancer effects on lung and breast cells in vitro and in vivo by targeting the CCL2 secreted by TADCs. Thus, 6-shogaol may have the potential of being an efficacious immunotherapeutic agent for cancers.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, ‡School of Medicine, and ⊥Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.
Collapse
|
40
|
Lombardi VC, Khaiboullina SF, Rizvanov AA. Plasmacytoid dendritic cells, a role in neoplastic prevention and progression. Eur J Clin Invest 2015; 45 Suppl 1:1-8. [PMID: 25524580 DOI: 10.1111/eci.12363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) are multifunctional bone-marrow-derived immune cells that are key players in bridging the innate and adaptive immune systems. Activation of pDCs through toll-like receptor agonists has proven to be an effective treatment for some neoplastic disorders. MATERIALS AND METHODS In this mini-review, we will explore the fascinating contribution of pDCs to neoplastic pathology and discuss their potential utilization in cancer immunotherapy. RESULTS Current research suggests that pDCs have cytotoxic potential and can effectively induce apoptosis of tumour-derived cells lines. They are also reported to display tolerogenic function with the ability to suppress T-cell proliferation, analogous to regulatory T cells. In this capacity, they are critical in the suppression of autoimmunity but can be exploited by tumour cells to circumvent the expansion of tumour-specific T cells, thereby allowing tumours to persist. CONCLUSION Several forms of skin cancer are successfully treated with the topical drug Imiquimod, which activates pDCs through toll-like receptor 7 engagement. Additionally, pDC-based anticancer vaccines have shown encouraging results for the treatment of melanoma in early trials. Future studies regarding the contributions of pDCs to malignancy will likely afford many opportunities for immunotherapy strategies.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, University of Nevada, Reno, NV, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | | | | |
Collapse
|
41
|
Demoulin S, Herfs M, Somja J, Roncarati P, Delvenne P, Hubert P. HMGB1 secretion during cervical carcinogenesis promotes the acquisition of a tolerogenic functionality by plasmacytoid dendritic cells. Int J Cancer 2014; 137:345-58. [PMID: 25492101 DOI: 10.1002/ijc.29389] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022]
Abstract
Acquisition of an impaired functionality by plasmacytoid dendritic cells (pDCs) contributing to cancer progression has been documented in different types of cancers. In the present study, we postulate that molecules secreted by (pre)neoplastic epithelial cells of the genital tract (cervix/vulva) might attract pDCs but also modify their proper functionality, allowing these cells to initiate a tolerogenic response interfering with antitumor immunity. We demonstrated that pDCs are recruited during the cervical metaplasia-dysplasia-cancer sequence, through the action of their chemoattractant, chemerin. We showed that stimulated-pDCs exposed to cervical/vulvar tumor microenvironment display an altered phenotype. We also demonstrated that cervical/vulvar neoplastic keratinocytes inhibit the proper function of pDCs by decreasing their IFNα secretion in response to CpG oligonucleotides. In parallel, we observed that (pre)neoplastic areas of the cervix are infiltrated by FoxP3(+) Treg cells which colocalize with pDCs. Accordingly, pDCs cocultured with cervical/vulvar neoplastic keratinocytes have the capacity to induce a Treg cell differentiation from naïve CD4(+) T cells, which is in agreement with the development of a tolerogenic response. We identified HMGB1 as a soluble factor produced by neoplastic keratinocytes from the genital tract involved in pDCs functional alteration. Indeed, this molecule inhibited pDC maturation, decreased IFNα secretion following TLR9 stimulation and forced these cells to become tolerogenic. In contrast, inhibition of HMGB1 restored pDC phenotype. Our findings indicate that the use of inhibitory molecules notably directed against HMGB1 in cervical/vulvar (pre)neoplastic lesions might prevent alterations of pDCs functionality and represent an attractive therapeutic strategy to overcome immune tolerance in cancers.
Collapse
Affiliation(s)
- Stéphanie Demoulin
- Department of Pathology, Laboratory of Experimental Pathology, University of Liège, GIGA-Cancer, 4000, Liège, Belgium
| | - Michael Herfs
- Department of Pathology, Laboratory of Experimental Pathology, University of Liège, GIGA-Cancer, 4000, Liège, Belgium
| | - Joan Somja
- Department of Pathology, University Hospital of Liège, 4000, Liège, Belgium
| | - Patrick Roncarati
- Department of Pathology, Laboratory of Experimental Pathology, University of Liège, GIGA-Cancer, 4000, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital of Liège, 4000, Liège, Belgium
| | - Pascale Hubert
- Department of Pathology, Laboratory of Experimental Pathology, University of Liège, GIGA-Cancer, 4000, Liège, Belgium
| |
Collapse
|
42
|
Mitchell RA, Yaddanapudi K. Stromal-dependent tumor promotion by MIF family members. Cell Signal 2014; 26:2969-78. [PMID: 25277536 PMCID: PMC4293307 DOI: 10.1016/j.cellsig.2014.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/25/2022]
Abstract
Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT.
Collapse
Affiliation(s)
- Robert A Mitchell
- JG Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Kavitha Yaddanapudi
- JG Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
43
|
Hagerling C, Casbon AJ, Werb Z. Balancing the innate immune system in tumor development. Trends Cell Biol 2014; 25:214-20. [PMID: 25444276 DOI: 10.1016/j.tcb.2014.11.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
Cells of the innate immune system have a dual role in cancer development in both tumor initiation and progression. Innate immune cells can, on the one hand, aid malignant transformation and tumor outgrowth and, on the other hand, prevent tumor progression. The innate immune system has the ability to tune the inflammatory response and is a key player in cancer-related inflammation, which can precede the development of malignancy or be induced by oncogenic changes promoting a protumor inflammatory milieu. In this review, we discuss the emerging cellular and molecular mechanisms of the innate immune system and inflammation in tumor initiation and progression, and point to the outstanding questions that remain.
Collapse
Affiliation(s)
- Catharina Hagerling
- University of California, San Francisco, Department of Anatomy, 513 Parnassus Avenue HSW1320, San Francisco, CA 94143, USA
| | - Amy-Jo Casbon
- University of California, San Francisco, Department of Anatomy, 513 Parnassus Avenue HSW1320, San Francisco, CA 94143, USA
| | - Zena Werb
- University of California, San Francisco, Department of Anatomy, 513 Parnassus Avenue HSW1320, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014; 2:105. [PMID: 25505783 PMCID: PMC4244808 DOI: 10.3389/fchem.2014.00105] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.
Collapse
Affiliation(s)
- João Conniot
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana M Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Joana G Fernandes
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Liana C Silva
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Rogério Gaspar
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Steve Brocchini
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| | - Helena F Florindo
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa Lisboa, Portugal
| | - Teresa S Barata
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy London, UK
| |
Collapse
|
45
|
Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ, Svoronos N, Nguyen JM, Sarmin F, Borowsky ME, Tchou J, Conejo-Garcia JR. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 2014; 41:427-439. [PMID: 25238097 DOI: 10.1016/j.immuni.2014.08.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/27/2014] [Indexed: 12/15/2022]
Abstract
Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Tom L Stephen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Melanie R Rutkowski
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Michael J Allegrezza
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Alfredo Perales-Puchalt
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Amelia J Tesone
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jenny M Nguyen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Fahmida Sarmin
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Mark E Borowsky
- Helen F. Graham Cancer Center, Christiana Care Health System, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Julia Tchou
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104-1693, USA; Rena Rowan Breast Center, University of Pennsylvania, Philadelphia, PA 19104-1693, USA; Abramson Cancer Center Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-1693, USA
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Larsen SK, Ahmad SM, Idorn M, Met Ö, Martinenaite E, Svane IM, Straten PT, Andersen MH. Spontaneous presence of FOXO3-specific T cells in cancer patients. Oncoimmunology 2014; 3:e953411. [PMID: 25960934 DOI: 10.4161/21624011.2014.953411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8+ T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3 may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises a significant immunosuppressive mechanism, such that FOXO3 targeting by means of specific T cells is an attractive clinical therapy to boost anticancer immunity. In addition, the natural occurrence of FOXO3-specific CTLs in the periphery suggests that these T cells hold a function in the complex network of immune regulation in cancer patients.
Collapse
Key Words
- APC, antigen presenting cell
- CTL
- CTL, cytotoxic T lymphocyte
- CTLA4, cytotoxic T-lymphocyte associated protein 4
- DC, dendritic cell
- FOXO3
- FOXO3, forkhead box O3
- IDO, indoleamine-2,3-dioxygenase
- PBMC, peripheral blood mononuclear cell
- TADC, tumor-associated DCs
- TGFβ, tumor growth factor β
- TNFα, tumor necrosis factor α
- Tregs, regulatory T cell
- antigens
- immune regulation
- tumor-associated dendritic cells
Collapse
Affiliation(s)
- Stine Kiaer Larsen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Manja Idorn
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| |
Collapse
|
47
|
Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, Cai L, Ma Y. Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 2014; 38:50-60. [PMID: 25457983 DOI: 10.1016/j.biomaterials.2014.10.050] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/18/2014] [Indexed: 12/16/2022]
Abstract
Although cancer vaccine-based immunotherapy holds great potential for cancer treatment, tumor-induced dendritic cell (DC) dysfunction remains to be the major obstacle for developing effective vaccines. Compared with normal DCs, tumor-associated DCs (TADCs) are less matured with poor responsiveness to Toll-like receptor (TLR) stimulation, which has been related with STAT3 hyperactivity. In the present study, Poly I:C (PIC, a TLR3 agonist), STAT3 siRNA and OVA antigen were co-encapsulated by poly (ethylene glycol)-b-poly (L-lysine)-b-poly (L-leucine) (PEG-PLL-PLLeu) polypeptide micelles to generate PMP/OVA/siRNA nanovaccine, which was aimed to effectively overcome DC dysfunction in vivo by deleting STAT3 gene in situ. The results showed that PMP/OVA/siRNA simultaneously facilitated the cellular uptake of OVA antigen and siRNA about 3-200 folds, and decreased STAT3 expression in TADCs over 50% both in vitro and in vivo. PMP/OVA/siRNA also elevated CD86 and CD40 expression as well as IL-12 production by TADCs more effectively than PMP/OVA did, indicating its strong potency of inducing TADC maturation and activation. Moreover, the immunization of PMP/OVA/siRNA rather than PMP/OVA effectively abrogated immunosuppression in the tumor microenvironment by increasing mature DCs and decreasing immunosuppressive cells in tumor-draining lymph nodes, which thereby led to potent anti-tumor immune responses and dramatic tumor regression with prolonged survival. Hence, in vivo co-delivery of immunopotentiator (PIC) and immunosuppressive gene silencer (STAT3 siRNA) by nanovaccines are expected to be a promising strategy to improve the therapeutic efficacy of cancer vaccines by modulating TADCs and overcoming tumor immunosupression.
Collapse
Affiliation(s)
- Zichao Luo
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China
| | - Ce Wang
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China
| | - Huqiang Yi
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China
| | - Ping Li
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China
| | - Hong Pan
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China
| | - Lanlan Liu
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China
| | - Lintao Cai
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China
| | - Yifan Ma
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China.
| |
Collapse
|
48
|
Dong B, Minze LJ, Xue W, Chen W. Molecular insights into the development of T cell-based immunotherapy for prostate cancer. Expert Rev Clin Immunol 2014; 10:1547-57. [DOI: 10.1586/1744666x.2014.962515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
FoxO3 is a negative regulator of primary CD8+ T-cell expansion but not of memory formation. Immunol Cell Biol 2014; 93:120-5. [PMID: 25245112 PMCID: PMC4324096 DOI: 10.1038/icb.2014.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/10/2014] [Accepted: 08/25/2014] [Indexed: 01/04/2023]
Abstract
The generation of CD8+ T cells by vaccination represents an important goal for protective immunity to infectious pathogens. It is thus of utmost importance to understand the mechanisms involved in the generation of optimal CD8+ T cell responses. The forkhead box O (FoxO) family of transcription factors plays a crucial role in cellular responses to environmental change. Among them, FoxO3 is critically involved in the regulation of cellular proliferation, apoptosis, metabolism, and stress resistance to withdrawal of nutrients or cytokine growth factors. Since the role of FoxO3 has been poorly studied in the immune system, here we have evaluated its involvement in the CD8+ T cell response. We observe that CD8+ T cells deficient for FoxO3 undergo a significantly greater primary expansion than their wild-type counterparts in response to both infectious (vaccinia virus) or non-infectious (non replicating cellular vaccine) immunogens, resulting in a larger cohort of cells following contraction. These survivors, however, do not undergo a greater secondary response than wild type. Taken together, our data show that FoxO3 is a negative regulator of the CD8+ T cells response, specifically during the primary expansion.
Collapse
|
50
|
Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ, Svoronos N, Nguyen JM, Sarmin F, Borowsky ME, Tchou J, Conejo-Garcia JR. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 2014. [PMID: 25238097 DOI: 10.1016/j.immuni.2014.08.012.pmid:25238097;pmcid:pmc4174366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Tom L Stephen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Melanie R Rutkowski
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Michael J Allegrezza
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Alfredo Perales-Puchalt
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Amelia J Tesone
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jenny M Nguyen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Fahmida Sarmin
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Mark E Borowsky
- Helen F. Graham Cancer Center, Christiana Care Health System, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Julia Tchou
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104-1693, USA; Rena Rowan Breast Center, University of Pennsylvania, Philadelphia, PA 19104-1693, USA; Abramson Cancer Center Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-1693, USA
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|