1
|
Xiao Q, Tang L, Chen S, Mei Y, Wang C, Yang J, Shang J, Li S, Wang W. Two-Pronged Attack: Dual Activation of Fat Reduction Using Near-Infrared-Responsive Nanosandwich for Targeted Anti-Obesity Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406985. [PMID: 39324577 DOI: 10.1002/advs.202406985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Excessive fat accumulation and chronic inflammation are two typical characteristics of obesity. AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, is involved in adipogenesis, lipogenesis, and inflammation modulation in adipose tissue (AT). Thus, effective lipid reduction and anti-inflammation through AMPK regulation play vital roles in treating obesity. Herein, an anti-obesity nanosandwich is fabricated through attaching polymetformin (PolyMet) onto photothermal agent black phosphorus nanosheets (BP). PolyMet activates AMPK to inhibit adipogenesis, promote browning, and mitigate AT inflammation by decreasing macrophage infiltration, repolarizing macrophage phenotype, and downregulating pro-inflammatory cytokines. Additionally, BP induces lipolysis and apoptosis of adipocytes and macrophages through a photothermal effect. By further functionalization using hyaluronic acid (HA) and MMP2 substrate-linking P3 peptide-modified HA (P3-HA), an enhanced anti-obesity effect is obtained by dual-targeting of P3 and HA, and HA-mediated CD44 poly-clustering after MMP2 cleavage. Upon laser irradiation, the designed nanosandwich (P3-HA/PM@BP) effectively inhibits obesity development in obese mice, increases M2/M1 ratio in AT, reduces the serum levels of cholesterol/triglyceride and improves insulin sensitivity, exhibiting promising research potential to facilitate the clinical development of modern anti-obesity therapies.
Collapse
Affiliation(s)
- Qiaqia Xiao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Siying Chen
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Chuying Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Yang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Shang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
2
|
Ziegler AK, Damgaard A, Mackey AL, Schjerling P, Magnusson P, Olesen AT, Kjaer M, Scheele C. An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Sci Rep 2019; 9:12069. [PMID: 31427677 PMCID: PMC6700172 DOI: 10.1038/s41598-019-48587-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Visceral adipose tissue is an immunogenic tissue, which turns detrimental during obesity by activation of proinflammatory macrophages. During aging, chronic inflammation increases proportional to visceral adipose tissue (VAT) mass and associates with escalating morbidity and mortality. Here, we utilize a mouse model to investigate the inflammatory status of visceral adipose tissue in lean aging mice and assess the effects of exercise training interventions. We randomized adult (11 months; n = 21) and old (23 months; n = 27) mice to resistance training (RT) or endurance training (ET), or to a sedentary control group (S). Strikingly, we observed an anti-inflammatory phenotype in the old mice, consisting of higher accumulation of M2 macrophages and IL-10 expression, compared to the adult mice. In concordance, old mice also had less VAT mass and smaller adipocytes compared to adult mice. In both age groups, exercise training enhanced the anti-inflammatory phenotype and increased PGC1-α mRNA expression. Intriguingly, the brown adipose tissue marker UCP1 was modestly higher in old mice, while remained unchanged by the intervention. In conclusion, in the absence of obesity, visceral adipose tissue possesses a pronounced anti-inflammatory phenotype during aging which is further enhanced by exercise.
Collapse
Affiliation(s)
- A K Ziegler
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - A Damgaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Copenhagen, Denmark
| | - A T Olesen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C Scheele
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Dias ASO, Santos ICL, Delphim L, Fernandes G, Endlich LR, Cafasso MOSD, Maranhão AL, da Silva SR, Andrade RM, Agrawal A, Linhares UC, Bento CAM. Serum leptin levels correlate negatively with the capacity of vitamin D to modulate the in vitro cytokines production by CD4 + T cells in asthmatic patients. Clin Immunol 2019; 205:93-105. [PMID: 31173888 DOI: 10.1016/j.clim.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Both obesity and low vitamin D levels have been associated with allergic asthma (AA) severity. In the present study, severity of AA was associated with obesity but to the in vitro IgE production. In those patients, higher levels of IL-5, IL-6 and IL-17 were quantified in CD4+ T-cell cultures as compared with patients with mild and moderate AA. In addition, the lowest IL-10 levels were detected in the cell cultures from patients with a worse prognosis. Interestingly, the occurrence of AA elevates the plasma levels of leptin, and this adipokine was positively correlated with the release of IL-5, IL-6 and IL-17, but inversely correlated with IL-10 production, by CD4+ T-cells from patients. In AA-derived CD4+ T-cell cultures, 1,25(OH)2D3 was less efficient at inhibiting IL-5, IL-6 and IL-17 production, and up regulating IL-10 release, as those from healthy subjects. Interestingly, the in vitro immunomodulatory effects of vitamin D were inversely correlated with serum leptin levels. In summary, our findings suggested that obesity, probably due to the overproduction of leptin, negatively impacts AA as it favors imbalance between Th2/Th17 and regulatory phenotypes. The deleterious effects of leptin may also be due to its ability to counter-regulate the immunosuppressive effects of vitamin D.
Collapse
Affiliation(s)
- Aleida S O Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Brazil
| | - Isabelle C L Santos
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Letícia Delphim
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Larissa R Endlich
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | | | - Ana Lúcia Maranhão
- Pulmonology Service, Federal University of the State of Rio de Janeiro, Brazil
| | | | - Regis M Andrade
- Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Brazil
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA, USA
| | - Ulisses C Linhares
- Department of Morphological Sciences, Federal University of the State of Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Miranda K, Mehrpouya-Bahrami P, Nagarkatti PS, Nagarkatti M. Cannabinoid Receptor 1 Blockade Attenuates Obesity and Adipose Tissue Type 1 Inflammation Through miR-30e-5p Regulation of Delta-Like-4 in Macrophages and Consequently Downregulation of Th1 Cells. Front Immunol 2019; 10:1049. [PMID: 31134094 PMCID: PMC6523050 DOI: 10.3389/fimmu.2019.01049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity is characterized by chronic low-grade inflammation that contributes to development of cardiometabolic disorders. Cannabinoid receptor 1 (CB1) antagonists attenuate diet-induced obesity (DIO) and related inflammation, although the precise anti-inflammatory mechanisms involved have not been fully explored. In the current study we used a mouse model of DIO intervention to determine the microRNA (miRNA, miR)-mediated anti-obesity and anti-inflammatory effects of the CB1 antagonist, AM251. DIO mice that were fed high-fat diet (HFD) for 12 weeks were treated with AM251 (10 mg/kg) for an additional 4 weeks. HFD + AM251 mice experienced rapid and prolonged weight loss and reduced inflammatory M1 adipose tissue macrophage (ATM) infiltration. To investigate miRNA-mediated regulation of ATMs, F4/80+ cells from stromal vascular fractions (SVF) of epididymal fat were subjected to miR microarray analysis. Several miRs were differentially expressed in AM251-treated mice that were independent of calorie restriction. Prominently, miR-30e-5p was upregulated in ATMs from HFD + AM251 mice while the miR-30e-5p target, DLL4, was downregulated. Consistent with a decrease in DLL4-Notch signaling, fat storage and pro-inflammatory cytokine/chemokine expression was reduced following AM251 treatment. Furthermore, we found that AM251-treated macrophages can suppress DLL4-mediated Th1 polarization in CD4+ T cells. Together these data demonstrate that blocking CB1 receptors leads to upregulation of miR-30e-5p and down regulation of DLL4 in ATMs, which in turn suppress DLL4-Notch signaling-induced polarization of inflammatory Th1 cells and adipocyte energy storage. This combined effect of ATMs and T cells leads to an anti-inflammatory state and attenuation of DIO. These data support therapeutic potential of miR-30 in the treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Pegah Mehrpouya-Bahrami
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
5
|
Newman AW, Miller A, Leal Yepes FA, Bitsko E, Nydam D, Mann S. The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. J Dairy Sci 2019; 102:1693-1701. [DOI: 10.3168/jds.2018-15362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
|
6
|
Lee YS, Lee C, Jun HS. Infrequent Feeding of Restricted Amounts of Food Induces Stress and Adipose Tissue Inflammation, Contributing to Impaired Glucose Metabolism. Int J Med Sci 2018; 15:1667-1675. [PMID: 30588190 PMCID: PMC6299402 DOI: 10.7150/ijms.28503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/13/2018] [Indexed: 11/21/2022] Open
Abstract
Food restriction has been recommended as an effective strategy for body weight loss. However, food restriction can alter biological rhythms and leads to physiological stress. However, relatively little is known about the physiological impact of different methods of food restriction. Therefore, we investigated whether different schedules of restricted food intake induce physiological stress and then contribute to glucose metabolism disorder. C57BL/6 mice were fed a high fat diet (60% fat) for 8 weeks and then randomly divided into three groups: the control group was continuously fed the high fat diet; the two food restriction groups were fed 50% of food consumed by the control mice with one group (FR1) being fed the full amount once a day and the other group (FR2) being fed the same total amount as FR1 twice a day for 3 days. We found increased body weight loss, the serum triglyceride levels, the expression of lipolysis-related genes, and serum corticosterone levels in the FR1 group compared with the FR2 group. The immune cell population infiltrating the adipose tissue and the expression of monocyte chemoattractant protein (MCP-1) and toll-like receptor (TLR-4) mRNA were increased in the FR1 group compared with the control. To determine whether long-term dietary manipulation is associated with metabolic disorders, mice were fed a restricted diet for 3 days alternating with an unrestricted diet for the following 4 days and this was repeated for 8 weeks. The alternating FR1 group showed impaired glucose tolerance compared with the alternating FR2 group. These results indicate that infrequent feeding of restricted amounts of food could induce stress hormones, lipolysis, adipose tissue immune cell infiltration and inflammation, which in turn may promote glucose metabolism disorder.
Collapse
Affiliation(s)
- Young-Sun Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 Korea
| | - Changmi Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 Korea.,College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, 405-760 Korea
| |
Collapse
|
7
|
Saetang J, Sangkhathat S. Role of innate lymphoid cells in obesity and metabolic disease (Review). Mol Med Rep 2017; 17:1403-1412. [PMID: 29138853 PMCID: PMC5780078 DOI: 10.3892/mmr.2017.8038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti‑obese immune regulators by secreting anti‑inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon‑γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity‑associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Tumor Biology Research Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
8
|
Langhi C, Arias N, Rajamoorthi A, Basta J, Lee RG, Baldán Á. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res 2016; 58:81-91. [PMID: 27884961 PMCID: PMC5234712 DOI: 10.1194/jlr.m069799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Obesity is a component of the metabolic syndrome, mechanistically linked to diabetes, fatty liver disease, and cardiovascular disease. Proteins that regulate the metabolic fate of intracellular lipid droplets are potential therapeutic candidates to treat obesity and its related consequences. CIDEC (cell death-inducing DFFA-like effector C), also known in mice as Fsp27 (fat-specific protein 27), is a lipid droplet-associated protein that prevents lipid mobilization and promotes intracellular lipid storage. The consequences of complete loss of FSP27 on hepatic metabolism and on insulin resistance are controversial, as both healthy and deleterious lipodystrophic phenotypes have been reported in Fsp27−/− mice. To test whether therapeutic silencing of Fsp27 might be useful to improve obesity, fatty liver, and glycemic control, we used antisense oligonucleotides (ASOs) in both nutritional (high-fat diet) and genetic (leptin-deficient ob/ob) mouse models of obesity, hyperglycemia, and hepatosteatosis. We show that partial silencing Fsp27 in either model results in the robust decrease in visceral fat, improved insulin sensitivity and whole-body glycemic control, and tissue-specific changes in transcripts controlling lipid oxidation and synthesis. These data suggest that partial reduction of FSP27 activity (e.g., using ASOs) might be exploited therapeutically in insulin-resistant obese or overweight patients.
Collapse
Affiliation(s)
- Cédric Langhi
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104
| | - Noemí Arias
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104
| | - Ananthi Rajamoorthi
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104
| | - Jeannine Basta
- Department of Internal Medicine, Saint Louis University, Saint Louis, MO 63104
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92010
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University, Saint Louis, MO 63104 .,Center for Cardiovascular Research Saint Louis University, Saint Louis, MO 63104.,Liver Center, Saint Louis University, Saint Louis, MO 63104
| |
Collapse
|
9
|
Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Sci Rep 2016; 6:36083. [PMID: 27786292 PMCID: PMC5081535 DOI: 10.1038/srep36083] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
The fibroblast cell line of 3T3-L1 was used as a cell model for screening and evaluating the feasibility of probiotic components in improving animal lipid metabolisms. The extracts from 12 Lactobacillus strains caused significantly reduced triacylglycerol (TAG) accumulation but with severe inflammation induction in 3T3-L1 adipocytes. Interestingly, exopolysaccharides (EPS) from LGG (Lactobacillus rhamnosus GG) significantly decreased the TAG accumulation without any inflammation. The anti-obesity effect of EPS was confirmed in high-fat-diets feeding mice. Fat pads of mice injected with EPS (50 mg/kg) every two days for two weeks were significantly reduced with much smaller adipocytes, compared with the counterparts. The levels of TAG and cholesterol ester in liver, as well as serum TAG, were decreased in EPS injected mice. In addition, down-regulated inflammation was observed in adipose tissue and liver. Interestingly, the expression of TLR2 in adipose tissue and 3T3-L1 cells was significantly increased by EPS addition. Moreover, the reverse of TAG accumulation in TLR2 knockdown 3T3-L1 in the presence of EPS confirmed that the inhibition effect of EPS on adipogenesis was mediated by TLR2. EPS from LGG has the potential for therapeutic development to intervene lipid metabolic disorders in mammals.
Collapse
|
10
|
Hu X, Cifarelli V, Sun S, Kuda O, Abumrad NA, Su X. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment. J Lipid Res 2016; 57:663-73. [PMID: 26912395 DOI: 10.1194/jlr.m066530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.
Collapse
Affiliation(s)
- Xiaoqian Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110 Department of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Vincenza Cifarelli
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Shishuo Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
11
|
Apostolopoulos V, de Courten MPJ, Stojanovska L, Blatch GL, Tangalakis K, de Courten B. The complex immunological and inflammatory network of adipose tissue in obesity. Mol Nutr Food Res 2015; 60:43-57. [PMID: 26331761 DOI: 10.1002/mnfr.201500272] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/22/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022]
Abstract
A number of approaches have been utilized in the prevention, management, and treatment of obesity, including, surgery, medication, diet, exercise, and overall lifestyle changes. Despite these interventions, the prevalence of obesity and the various disorders related to it is growing. In obesity, there is a constant state of chronic low-grade inflammation which is characterized by activation and infiltration of pro-inflammatory immune cells and a dysregulated production of high levels of pro-inflammatory cytokines. This pro-inflammatory milieu contributes to insulin resistance, type-2 diabetes, cardiovascular disease, and other related co-morbidities. The roles of the innate (macrophages, neutrophils, eosinophils, mast cells, NK cells, MAIT cells) and the adaptive (CD4 T cells, CD8 T cells, regulatory T cells, and B cells) immune responses and the roles of adipokines and cytokines in adipose tissue inflammation and obesity are discussed. An understanding of the crosstalk between the immune system and adipocytes may shed light in better treatment modalities for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | | | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Gregory L Blatch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Kathy Tangalakis
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and preventative Medicine, Monash University, VIC, Australia.,Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
12
|
Houlahan KE, Prokopec SD, Sun RX, Moffat ID, Lindén J, Lensu S, Okey AB, Pohjanvirta R, Boutros PC. Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin. Toxicol Appl Pharmacol 2015; 288:223-31. [PMID: 26232522 DOI: 10.1016/j.taap.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates. In laboratory animals, exposure to TCDD causes numerous metabolic abnormalities, including a wasting syndrome. We therefore investigated the molecular effects of TCDD exposure on WAT by profiling the transcriptomic response of WAT to 100μg/kg of TCDD at 1 or 4days in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. A comparative analysis was conducted simultaneously in identically treated TCDD-resistant Han/Wistar (Kuopio; H/W) rats one day after exposure to the same dose. We sought to identify transcriptomic changes coinciding with the onset of toxicity, while gaining additional insight into later responses. More transcriptional responses to TCDD were observed at 4days than at 1day post-exposure, suggesting WAT shows mostly secondary responses. Two classic AHR-regulated genes, Cyp1a1 and Nqo1, were significantly induced by TCDD in both strains, while several genes involved in the immune response, including Ms4a7 and F13a1 were altered in L-E rats alone. We compared genes affected by TCDD in rat WAT and human adipose cells, and observed little overlap. Interestingly, very few genes involved in lipid metabolism exhibited altered expression levels despite the pronounced lipid mobilization from peripheral fat pads by TCDD in L-E rats. Of these genes, the lipolysis-associated Lpin1 was induced slightly over 2-fold in L-E rat WAT on day 4.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Stephenie D Prokopec
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ren X Sun
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ivy D Moffat
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Jere Lindén
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Allan B Okey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland.
| | - Paul C Boutros
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Iyer A, Brown L, Whitehead JP, Prins JB, Fairlie DP. Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease. FASEB J 2015; 29:3612-25. [PMID: 26065858 DOI: 10.1096/fj.15-271155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
Abstract
The growth and survival of multicellular organisms depend upon their abilities to acquire and metabolize nutrients, efficiently store and harness energy, and sense and fight infection. Systems for sensing and using nutrients have consequently coevolved alongside systems for sensing and responding to danger signals, including pathogens, and share many of the same cell signaling proteins and networks. Diets rich in carbohydrates and fats can overload these systems, leading to obesity, metabolic dysfunction, impaired immunity, and cardiovascular disease. Excessive nutrient intake promotes adiposity, typically altering adipocyte function and immune cell distribution, both of which trigger metabolic dysfunction. Here, we discuss novel mechanistic links between metabolism and immunity that underlie metabolic dysfunction in obesity. We aim to stimulate debate about how the endocrine and immune systems are connected through autocrine, paracrine, and neuroendocrine signaling in sophisticated networks that are only now beginning to be resolved. Understanding the expression and action of signaling proteins, together with modulating their receptors or pattern recognition using agonists or antagonists, will enable rational intervention in immunometabolism that may lead to novel treatments for obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Abishek Iyer
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - Lindsay Brown
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - Jonathan P Whitehead
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - Johannes B Prins
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - David P Fairlie
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| |
Collapse
|
14
|
Dey A, Allen J, Hankey-Giblin PA. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol 2015; 5:683. [PMID: 25657646 PMCID: PMC4303141 DOI: 10.3389/fimmu.2014.00683] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022] Open
Abstract
The explosion of new information in recent years on the origin of macrophages in the steady-state and in the context of inflammation has opened up numerous new avenues of investigation and possibilities for therapeutic intervention. In contrast to the classical model of macrophage development, it is clear that tissue-resident macrophages can develop from yolk sac-derived erythro-myeloid progenitors, fetal liver progenitors, and bone marrow-derived monocytes. Under both homeostatic conditions and in response to pathophysiological insult, the contribution of these distinct sources of macrophages varies significantly between tissues. Furthermore, while all of these populations of macrophages appear to be capable of adopting the polarized M1/M2 phenotypes, their respective contribution to inflammation, resolution of inflammation, and tissue repair remains poorly understood and is likely to be tissue- and disease-dependent. A better understanding of the ontology and polarization capacity of macrophages in homeostasis and disease will be essential for the development of novel therapies that target the inherent plasticity of macrophages in the treatment of acute and chronic inflammatory disease.
Collapse
Affiliation(s)
- Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Physiology, The Pennsylvania State University , University Park, PA , USA
| | - Joselyn Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University , University Park, PA , USA
| | - Pamela A Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Physiology, The Pennsylvania State University , University Park, PA , USA ; Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University , University Park, PA , USA
| |
Collapse
|
15
|
Wagner M, Samdal Steinskog ES, Wiig H. Adipose tissue macrophages: the inflammatory link between obesity and cancer? Expert Opin Ther Targets 2014; 19:527-38. [DOI: 10.1517/14728222.2014.991311] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Cipolletta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 2014; 142:517-25. [PMID: 24484282 DOI: 10.1111/imm.12262] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022] Open
Abstract
Foxp3(+) CD4(+) regulatory T (Treg) cells, recognized to be one of the most important defences of the human body against an inappropriate immune response, have recently gained attention from those outside immunology thanks to the compelling evidence for their capability to exert non-canonical immune functions in a variety of tissues in health and disease. The recent discovery of the differences between tissue-resident Treg cells and those derived from lymphoid organs is affecting the mindset of many investigators now questioning the broad applicability of observations originally based on peripheral blood/lymphoid organ cells. So far, the best characterized 'Treg flavour' comes from studies focused on their role in suppressing adipose tissue inflammation and obesity-driven insulin resistance. Adipose tissue derived Treg cells are distinct from their counterparts in lymphoid organs based on their transcriptional profile, T-cell receptor repertoire, and cytokine and chemokine receptor expression pattern. These cells are abundant in visceral adipose tissue of lean mice but their number is greatly reduced in insulin-resistant animal models of obesity. Interestingly, peroxisome-proliferator-activated receptor γ expression by visceral adipose tissue Treg cells is crucial for their accumulation, phenotype and function in the fat and surprisingly necessary for complete restoration of insulin sensitivity in obese mice by the anti-diabetic drug Pioglitazone. This review surveys recent findings relating to the unique phenotype and function of adipose tissue-resident Treg cells, speculates on the nature of their dynamics in lean and obese mouse models, and analyses their potential therapeutic application in the treatment of type 2 diabetes.
Collapse
|
17
|
Stouch AN, Zaynagetdinov R, Barham WJ, Stinnett AM, Slaughter JC, Yull FE, Hoffman HM, Blackwell TS, Prince LS. IκB kinase activity drives fetal lung macrophage maturation along a non-M1/M2 paradigm. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1184-93. [PMID: 24981452 PMCID: PMC4108541 DOI: 10.4049/jimmunol.1302516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In preterm infants, exposure to inflammation increases the risk of bronchopulmonary dysplasia, a chronic, developmental lung disease. Although macrophages are the key cells that initiate lung inflammation, less is known about lung macrophage phenotype and maturation. We hypothesized that fetal lung macrophages mature into distinct subpopulations during mouse development, and that activation could influence macrophage maturation. Expression of the fetal macrophage markers CD68, CD86, CD206, Ym1, fibrinogen-like protein 2, and indolamine-2, 3-dioxygenase was developmentally regulated, with each marker having different temporal patterns. Flow cytometry analysis showed macrophages within the fetal lung were less diverse than the distinctly separate subpopulations in newborn and adult lungs. Similar to adult alveolar macrophages, fetal lung macrophages responded to the TLR4 agonist LPS and the alternative activation cytokines IL-4 and IL-13. Using a macrophage-specific constitutively active IκB Kinase transgenic model (IKFM), we demonstrated that macrophage activation increased proinflammatory gene expression and reduced the response of fetal lung macrophages to IL-4 and IL-13. Activation also increased fetal lung macrophage proliferation. Fetal IKFM lungs contained increased percentages of more mature, CD11b(low)F4/80(high) cells that also expressed higher levels of the alternative activation markers CD204 and CD206. Development of fetal lung macrophages into mature alveolar macrophages may therefore include features of both proinflammatory and alternative activation paradigms.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Enzyme Activation/immunology
- Female
- Gene Expression Regulation, Developmental/immunology
- Gene Expression Regulation, Enzymologic/immunology
- Humans
- I-kappa B Kinase/metabolism
- I-kappa B Kinase/physiology
- Immunophenotyping
- Inflammation/enzymology
- Inflammation/immunology
- Inflammation/pathology
- Lung Diseases/enzymology
- Lung Diseases/immunology
- Lung Diseases/pathology
- Macrophage Activation/immunology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/pathology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
Collapse
Affiliation(s)
- Ashley N Stouch
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - Rinat Zaynagetdinov
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - Whitney J Barham
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - Amanda M Stinnett
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - James C Slaughter
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - Fiona E Yull
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - Timothy S Blackwell
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; Rady Children's Hospital, San Diego, CA 92123;Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; andDepartment of Biostatistics, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
18
|
Wagner M. A dangerous duo in adipose tissue: high-mobility group box 1 protein and macrophages. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2014; 87:127-33. [PMID: 24910558 PMCID: PMC4031786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-mobility group box 1 (HMGB1) protein first made headlines 40 years ago as a non-histone nuclear protein that regulates gene expression. Not so long ago, it was also shown that HMGB1 has an additional surprising function. When released into the extracellular milieu, HMGB1 triggers an inflammatory response by serving as an endogenous danger signal. The pro-inflammatory role of HMGB1 is now well-established and has been associated with several diseases, including sepsis, rheumatoid arthritis, and atherosclerosis. Yet very little is known about its role in obesity, wherein adipose tissue is typified by a persistent, smoldering inflammatory response instigated by high macrophage infiltrate that potentiates the risk of obesity-associated comorbidities. This mini-review focuses on the putative causal relationship between HMGB1 and macrophage pro-inflammatory activation in pathologically altered adipose tissue associated with obesity.
Collapse
Affiliation(s)
- Marek Wagner
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
19
|
Flock MR, Rogers CJ, Prabhu KS, Kris-Etherton PM. Immunometabolic role of long-chain omega-3 fatty acids in obesity-induced inflammation. Diabetes Metab Res Rev 2013; 29:431-45. [PMID: 23592441 DOI: 10.1002/dmrr.2414] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/17/2013] [Accepted: 03/06/2013] [Indexed: 01/01/2023]
Abstract
Inflammation links obesity with the development of insulin resistance. Macrophages and phagocytic immune cells communicate with metabolic tissues to direct an inflammatory response caused by overnutrition and expanding adipose tissue. Marine-derived omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), modulate inflammatory signalling events, providing various anti-inflammatory and cardioprotective benefits. Moreover, EPA and DHA may improve insulin sensitivity by generating proresolving lipid mediators and promoting alternatively activated macrophages. This review will assess the role of EPA and DHA in ameliorating obesity-induced inflammation, evaluating clinical evidence and mechanisms of action. The pathophysiology of insulin resistance resulting from obesity-induced inflammation will be discussed, highlighting the relationship between metabolism and immunity, and in particular, how EPA and DHA work with both systems to modulate immunometabolic complications and chronic disease.
Collapse
Affiliation(s)
- Michael R Flock
- The Pennsylvania State University, Nutritional Sciences, University Park, PA, United States
| | | | | | | |
Collapse
|
20
|
Iyer A, Lim J, Poudyal H, Reid RC, Suen JY, Webster J, Prins JB, Whitehead JP, Fairlie DP, Brown L. An inhibitor of phospholipase A2 group IIA modulates adipocyte signaling and protects against diet-induced metabolic syndrome in rats. Diabetes 2012; 61:2320-9. [PMID: 22923652 PMCID: PMC3425408 DOI: 10.2337/db11-1179] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity, type 2 diabetes, and cardiovascular disease correlate with infiltration to adipose tissue of different immune cells, with uncertain influences on metabolism. Rats were fed a diet high in carbohydrates and saturated fats to develop diet-induced obesity over 16 weeks. This nutritional overload caused overexpression and secretion of phospholipase A(2) group IIA (pla2g2a) from immune cells in adipose tissue rather than adipocytes, whereas expression of adipose-specific phospholipase A(2) (pla2g16) was unchanged. These immune cells produce prostaglandin E(2) (PGE(2)), which influences adipocyte signaling. We found that a selective inhibitor of human pla2g2a (5-(4-benzyloxyphenyl)-(4S)-(phenyl-heptanoylamino)-pentanoic acid [KH064]) attenuated secretion of PGE(2) from human immune cells stimulated with the fatty acid, palmitic acid, or with lipopolysaccharide. Oral administration of KH064 (5 mg/kg/day) to rats fed the high-carbohydrate, high-fat diet prevented the overexpression of pla2g2a and the increased macrophage infiltration and elevated PGE(2) concentrations in adipose tissue. The treatment also attenuated visceral adiposity and reversed most characteristics of metabolic syndrome, producing marked improvements in insulin sensitivity, glucose intolerance, and cardiovascular abnormalities. We suggest that pla2g2a may have a causal relationship with chronic adiposity and metabolic syndrome and that its inhibition in vivo may be a valuable new approach to treat obesity, type 2 diabetes, and metabolic dysfunction in humans.
Collapse
Affiliation(s)
- Abishek Iyer
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Hemant Poudyal
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y. Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Julie Webster
- Mater Medical Research Institute (MMRI), South Brisbane, Queensland, Australia
| | - Johannes B. Prins
- Mater Medical Research Institute (MMRI), South Brisbane, Queensland, Australia
| | | | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Corresponding authors: Lindsay Brown, , and David Fairlie,
| | - Lindsay Brown
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Corresponding authors: Lindsay Brown, , and David Fairlie,
| |
Collapse
|
21
|
Donato AJ, Henson GD, Morgan RG, Enz RA, Walker AE, Lesniewski LA. TNF-α impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity. Am J Physiol Heart Circ Physiol 2012; 303:H672-9. [PMID: 22821989 DOI: 10.1152/ajpheart.00271.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We tested the hypothesis that high fat (HF) feeding results in endothelial dysfunction in resistance arteries of epididymal white adipose tissue (eWAT) and is mediated by adipose tissue inflammation. When compared with normal chow (NC)-fed mice (n = 17), HF-fed male B6D2F1 mice were glucose intolerant and insulin resistant as assessed by glucose tolerance test (area under the curve; HF, 18,174 ± 1,889 vs. NC, 15,814 ± 666 mg·dl(-1)·min(-1); P < 0.05) and the homeostatic model assessment (HF, 64.1 ± 4.3 vs. NC, 85.7 ± 6.4; P = 0.05). HF diet-induced metabolic dysfunction was concomitant with a proinflammatory eWAT phenotype characterized by greater macrophage infiltration (HF, 3.9 ± 0.8 vs. NC, 0.8 ± 0.4%; P = 0.01) and TNF-α (HF, 22.6 ± 4.3 vs. NC, 11.4 ± 2.5 pg/dl; P < 0.05) and was associated with resistance artery dysfunction, evidenced by impaired endothelium-dependent dilation (EDD) (maximal dilation; HF, 49.2 ± 10.7 vs. NC, 92.4 ± 1.4%; P < 0.01). Inhibition of nitric oxide (NO) synthase by N(ω)-nitro-L-arginine methyl ester (L-NAME) reduced dilation in NC (28.9 ± 6.3%; P < 0.01)- and tended to reduce dilation in HF (29.8 ± 9.9%; P = 0.07)-fed mice, eliminating the differences in eWAT artery EDD between NC- and HF-fed mice, indicative of reduced NO bioavailability in eWAT resistance arteries after HF feeding. In vitro treatment of excised eWAT arteries with recombinant TNF-α (rTNF) impaired EDD (P < 0.01) in NC (59.7 ± 10.9%)- but not HF (59.0 ± 9.3%)-fed mice. L-NAME reduced EDD in rTNF-treated arteries from both NC (21.9 ± 6.4%)- and HF (29.1 ± 9.2%)-fed mice (both P < 0.01). In vitro treatment of arteries with a neutralizing antibody against TNF-α (abTNF) improved EDD in HF (88.2 ± 4.6%; P = 0.05)-fed mice but was without effect on maximal dilation in NC (89.0 ± 5.1%)-fed mice. L-NAME reduced EDD in abTNF-treated arteries from both NC (25.4 ± 7.5%)- and HF (27.1 ± 16.8%)-fed mice (both P < 0.01). These results demonstrate that inflammation in the visceral adipose tissue resulting from diet-induced obesity impairs endothelial function and NO bioavailability in the associated resistance arteries. This dysfunction may have important implications for adipose tissue blood flow and appropriate tissue function.
Collapse
Affiliation(s)
- Anthony J Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, 84148, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wagner M, Bjerkvig R, Wiig H, Melero-Martin JM, Lin RZ, Klagsbrun M, Dudley AC. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis 2012; 15:481-95. [PMID: 22614697 DOI: 10.1007/s10456-012-9276-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/25/2012] [Indexed: 02/07/2023]
Abstract
Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b(+) macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to over-express ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b(+) macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages.
Collapse
Affiliation(s)
- Marek Wagner
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
23
|
Shapiro H, Lutaty A, Ariel A. Macrophages, meta-inflammation, and immuno-metabolism. ScientificWorldJournal 2011; 11:2509-29. [PMID: 22235182 PMCID: PMC3253544 DOI: 10.1100/2011/397971] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023] Open
Abstract
Current research depicts specific modes of immunity and energy metabolism as being interrelated at the molecular, cellular, organ and organism level. Hence, whereas M2 (alternatively-activated) macrophages dominate insulin-sensitive adipose tissue in the lean, M1-skewed (classically-activated) macrophages accumulate in parallel to adiposity in the obese, and promote inflammation and insulin resistance, that is, meta-inflammation. The latest frontier of immuno-metabolism explores the coregulation of energy metabolism and immune function within hematopoietic cells. M1-skewed macrophages are sustained in edematous, hypoxic tissues by anaerobic glycolysis, whereas mitochondrial biogenesis and respiration dominates in M2 cells. We review the underlying mechanisms and the consequences of the transition from M2 to M1 predominance in adipose tissue, as well as the extracellular signals and transcription factors that control macrophage phenotypes and impose distinct metabolic modes.
Collapse
Affiliation(s)
- Haim Shapiro
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel
| | | | | |
Collapse
|
24
|
van den Borst B, Gosker HR, Wesseling G, de Jager W, Hellwig VACV, Snepvangers FJ, Schols AMWJ. Low-grade adipose tissue inflammation in patients with mild-to-moderate chronic obstructive pulmonary disease. Am J Clin Nutr 2011; 94:1504-12. [PMID: 22071714 DOI: 10.3945/ajcn.111.023911] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Low-grade systemic inflammation is common in chronic obstructive pulmonary disease (COPD), but its source remains unclear. Adipose tissue is a potent producer of inflammatory mediators and may contribute to systemic inflammation in COPD, possibly via hypoxia. OBJECTIVE We studied the influence of COPD and exercise-induced oxygen desaturation on adipose tissue inflammation (ATI) and its contribution to systemic inflammation. DESIGN Subcutaneous adipose tissue biopsies were investigated in 28 clinically stable COPD patients [forced expiratory volume in 1 s: 58 ± 16% predicted; BMI (in kg/m(2)): 24.9 ± 2.9] and 15 age-, sex-, and body composition-matched healthy control subjects. Fat mass was measured with dual-energy X-ray absorptiometry. Patients were prestratified by oxygen desaturation assessed by incremental cycle ergometry. The adipocyte size and adipose tissue expression of 19 inflammatory and hypoxia-related genes were measured, and adipose tissue macrophages (ATMs) were histologically quantified. Systemic inflammatory markers included C-reactive protein (CRP) and a panel of 20 adipokines. RESULTS COPD patients had comparable fat mass but higher CRP and HOMA-IR than did control subjects. COPD patients and control subjects had comparable adipose tissue gene expression, adipocyte size, ATM infiltration, and systemic adipokine concentrations. Desaturating COPD patients had no different ATI status than did nondesaturating COPD patients. COPD patients with high CRP had significantly greater ATM infiltration than did patients with low CRP, which was independent of BMI and fat mass. CONCLUSIONS In COPD patients, mild-to-moderate COPD, per se, does not enhance ATI or its contribution to systemic inflammation compared with in well-matched healthy control subjects. However, to our knowledge, our study provides a first indication for a possible role of ATMs in the systemic inflammatory response in COPD that requires additional investigation. This trial was registered at www.trialregister.nl as NTR1402.
Collapse
Affiliation(s)
- Bram van den Borst
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Center+, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) mediate acetylation and deacetylation of histone proteins and transcription factors. There is abundant evidence that these enzymes regulate the acetylation state of many cytoplasmic proteins, including lysine residues in important metabolic enzymes. Lysine acetylation regulates major cellular functions as a common post-transcriptional modification of proteins, conserved from prokaryotes to humans. In this article, we refer to HATs and HDACs broadly as lysine acetyltransferases (KATs) and deacetylases (KDACs). Lysine acetylation is vitally important in both immunological and metabolic pathways and may regulate the balance between energy storage and expenditure. Obesity, type II diabetes and cardiovascular disease (metabolic syndrome) are widely recognised as features of a chronic low-grade inflammatory state, involving significant alterations in primary immunometabolism. Identifying effective therapeutic and preventive options to treat this multi-factorial syndrome has proven to be very challenging, with an emerging focus on developing anti-inflammatory agents that can combat adiposity and metabolic disease. Here, we summarise current evidence and understanding of innate immune and metabolic pathways relevant to adiposity and metabolic disease regulated by lysine acetylation. Developing this understanding in greater detail may facilitate strategic development of novel and enzyme-specific lysine deacetylase modulators that regulate both metabolic and immune systems.
Collapse
|
26
|
Early-onset obesity and the unwanted promise of thrombosis. J Thromb Thrombolysis 2011; 32:125-8. [DOI: 10.1007/s11239-011-0575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Affiliation(s)
- Rick M Maizels
- Centre for Immunity, Infection and Evolution and the Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|