1
|
Yang L, Liu L, Zhang P, Pan W, Huang H, Qi Y, Wang Y, Zhang R, Zhou P. Rigid and soft substrates respectively promote the myocardial differentiation and maturation of human embryonic stem cells using elastic PDMS with thick synthetic coating. Colloids Surf B Biointerfaces 2025; 250:114540. [PMID: 39904141 DOI: 10.1016/j.colsurfb.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Cardiovascular disease is the predominant cause of mortality and severe disability. Cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs) have good application prospects for treating this disease. Unfortunately, CMs generated via current methods are relatively immature, as proven by defects such as sarcomer-like structures, calcium processing capacity and mitochondrial maturity. Therefore, in this study, tunable PDMS substrates that modified with sufficiently thick synthetic coatings were prepared to regulate both the myocardial differentiation of hESCs and subsequent maturation. Surprisingly, the effect of substrate elasticity on the critical attachment of hESCs and hESC-CMs vanished when common Matrigel coatings were used, but apparent differences were detected in the synthetic group. Rigid substrates promoted the adhesion of hESCs but not hESC-CMs. Moreover, the PDMS substrates with the highest hardness remarkably promoted the myocardial differentiation of hESCs, which was even better than that of the rigid plate group. The softest PDMS achieved the best performance among the groups in terms of the maturation of hESC-CMs, as confirmed by enhanced functional, metabolic, and ultrastructural maturation. This study reveals the real impact of an elastic substrate on the adhesion, differentiation, and maturation of hESC-CMs, which has value for accelerating the development of clinically applicable mature hESC-CMs with high induction efficiency.
Collapse
Affiliation(s)
- Ling Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Lu Liu
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province 730030, China
| | - Pengxia Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Wen Pan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Hongxin Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Yingbin Wang
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province 730030, China
| | - Rongzhi Zhang
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province 730030, China.
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
2
|
Khalili MR, Ahmadloo S, Mousavi SA, Joghataei MT, Brouki Milan P, Naderi Gharahgheshlagh S, Mohebi SL, Haramshahi SMA, Hosseinpour Sarmadi V. Navigating mesenchymal stem cells doses and delivery routes in heart disease trials: A comprehensive overview. Regen Ther 2025; 29:117-127. [PMID: 40162019 PMCID: PMC11952810 DOI: 10.1016/j.reth.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, various clinical trials have been designed and implemented using mesenchymal stem cells (MSCs) for the treatment of heart diseases. Clinical trials exploring MSC-based treatments have proliferated, yet the lack of standardized protocols for MSC administration remains a significant challenge. Despite the growing popularity of MSC trials, questions persist regarding optimal dosing, administration routes, and frequency to achieve safety and efficacy, particularly in the context of cardiac regeneration. The current study has reviewed the clinical trials that have used MSCs for the treatment of heart diseases since 2009. The findings reveal diverse transplantation methods and varying MSCs quantities, highlighting the absence of a universal guideline for MSCs utilization in heart disease clinical trials.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Salma Ahmadloo
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Seyed Amin Mousavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Lena Mohebi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cao C, Yang L, Song J, Liu Z, Li H, Li L, Fu J, Liu J. Cardiomyocyte regeneration after infarction: changes, opportunities and challenges. Mol Cell Biochem 2025:10.1007/s11010-025-05251-w. [PMID: 40097887 DOI: 10.1007/s11010-025-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Myocardial infarction is a cardiovascular disease that poses a serious threat to human health. The traditional view is that adult mammalian cardiomyocytes have almost no regenerative ability, but recent studies have shown that they have regenerative potential under specific conditions. This article comprehensively describes the research progress of post-infarction cardiomyocyte regeneration, including the characteristics of cardiomyocytes and post-infarction changes, regeneration mechanisms, influencing factors, potential therapeutic strategies, challenges and future development directions, and deeply discusses the specific pathways and targets included in the regeneration mechanism, aiming to provide new ideas and methods for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Ce Cao
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lili Yang
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianshu Song
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zixin Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Haoran Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lei Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianhua Fu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianxun Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China.
| |
Collapse
|
4
|
Jeong SY, Lee KH, Kim SH, Yang MH, Lee G, Kim KH. ( aS)-Glucosciadopitysin, a New Biflavonoid Glycoside from the Leaves of Ginkgo biloba and Osteogenic Activity of Bioflavonoids. PLANTS (BASEL, SWITZERLAND) 2025; 14:261. [PMID: 39861614 PMCID: PMC11768450 DOI: 10.3390/plants14020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The leaves of Ginkgo biloba have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from G. biloba have not been fully identified. Phytochemical investigation of the MeOH extract of G. biloba leaves led to the isolation and identification of a new biflavonoid glycoside, (aS)-glucosciadopitysin (1), along with five flavonoids (2-6), through LC/MS-guided isolation approach. The structure of the new compound 1 was elucidated by the spectroscopic methods, including 1D and 2D NMR analysis, as well as HR-ESIMS. The absolute configuration of sugar moiety was established through acid hydrolysis, followed by chemical derivatization reaction and the axial chirality arising from the biaryl system with substituents was determined by electronic circular dichroism (ECD) calculations. The isolated flavonoids (1-6) were tested for their effects on mesenchymal stem cell (MSC) differentiation at 20 μM using Oil Red O and alkaline phosphatase (ALP) staining. Ginkgetin (2) was further evaluated for osteogenic activity on C3H10T1/2 cells at concentrations of 1, 2.5, 5, and 10 μM for 10 days. ALP staining and RT-PCR assessed the gene expression of osteogenic markers ALP and osteopontin (OPN). Ginkgetin (2) demonstrated the strongest osteogenic activity, significantly increasing the expression of ALP (12.5-fold) and OPN (4.0-fold) at 10 μM, comparable to the positive control, oryzativol A. Ginkgetin (2) shows potential as a therapeutic agent for osteopenia by promoting osteogenesis in MSCs, suggesting its promising role in treating osteoporosis.
Collapse
Affiliation(s)
- Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.Y.J.); (K.H.L.)
| | - Kwang Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.Y.J.); (K.H.L.)
| | - Seon Hee Kim
- Research Institute, Sungkyun Biotech Co., Ltd., Anyang 14118, Republic of Korea;
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.Y.J.); (K.H.L.)
| |
Collapse
|
5
|
Zhuang B, Zhong C, Ma Y, Wang A, Quan H, Hong L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. Int J Mol Sci 2024; 26:231. [PMID: 39796085 PMCID: PMC11720039 DOI: 10.3390/ijms26010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium. Currently, stem cells commonly used in medicine, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), can differentiate into various human cell types without ethical concerns. When combined with ncRNAs, these stem cells can more effectively induce directed differentiation, promote angiogenesis in the infarcted heart, and replenish normal cardiac cells. Additionally, stem cell-derived exosomes, which contain various ncRNAs, can improve myocardial damage in the infarcted region through paracrine mechanisms. However, our understanding of the specific roles and mechanisms of ncRNAs, stem cells, and exosomes secreted by stem cells during different stages of MI remains limited. Therefore, this review systematically categorizes the different stages of MI, aiming to summarize the direct regulatory effects of ncRNAs on an infarcted myocardium at different points of disease progression. Moreover, it explores the specific roles and mechanisms of stem cell therapy and exosome therapy in this complex pathological evolution process. The objective of this review was to provide novel insights into therapeutic strategies for different stages of MI and open new research directions for the application of stem cells and ncRNAs in the field of MI repair.
Collapse
Affiliation(s)
- Bingqi Zhuang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Chongning Zhong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Yuting Ma
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Ao Wang
- Experimental Teaching Center, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Hailian Quan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| |
Collapse
|
6
|
Chu Q, Jiang X, Xiao Y. Rebuilding the myocardial microenvironment to enhance mesenchymal stem cells-mediated regeneration in ischemic heart disease. Front Bioeng Biotechnol 2024; 12:1468833. [PMID: 39372432 PMCID: PMC11452912 DOI: 10.3389/fbioe.2024.1468833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are naturally-derived regenerative materials that exhibit significant potential in regenerative medicine. Previous studies have demonstrated that MSCs-based therapy can improve heart function in ischemia-injured hearts, offering an exciting therapeutic intervention for myocardial ischemic infarction, a leading cause of worldwide mortality and disability. However, the efficacy of MSCs-based therapies is significantly disturbed by the myocardial microenvironment, which undergoes substantial changes following ischemic injury. After the ischemic injury, blood vessels become obstructed and damaged, and cardiomyocytes experience ischemic conditions. This activates the hypoxia-induced factor 1 (HIF-1) pathway, leading to the rapid production of several cytokines and chemokines, including vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1), which are crucial for angiogenesis, cell migration, and tissue repair, but it is not sustainable. MSCs respond to these cytokines and chemokines by homing to the injured site and participating in myocardial regeneration. However, the deteriorated microenvironment in the injured myocardium poses challenges for cell survival, interacting with MSCs, and constraining their homing, retention, and migration capabilities, thereby limiting their regenerative potential. This review discusses how the deteriorated microenvironment negatively affects the ability of MSCs to promote myocardial regeneration. Recent studies have shown that optimizing the microenvironment through the promotion of angiogenesis can significantly enhance the efficacy of MSCs in treating myocardial infarction. This approach harnesses the full therapeutic potential of MSCs-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xin Jiang
- Department of Laboratory Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Innovation Institute for Integration of Medicine and Engineering, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Postgraduate, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Farag A, Koung Ngeun S, Kaneda M, Aboubakr M, Tanaka R. Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment. Biomedicines 2024; 12:1923. [PMID: 39200387 PMCID: PMC11352160 DOI: 10.3390/biomedicines12081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs and adipose-derived (AD)-MSCs using 5-Azacytidine (5-Aza) alone or combined with low doses of Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor (IGF). BM-MSCs and AD-MSCs were differentiated using two protocols: 10 μmol 5-Aza alone and 10 μmol 5-Aza with 1 ng/mL FGF and 10 ng/mL IGF. Morphological, transcriptional, and translational analyses, along with cell viability assessments, were performed. Both the MSC types exhibited similar morphological changes; however, AD-MSCs achieved 70-80% confluence faster than BM-MSCs. Surface marker profiling confirmed CD29 and CD90 positivity and CD45 negativity. The differentiation protocols led to cell flattening and myotube formation, with earlier differentiation in AD-MSCs. The combined protocol reduced cell mortality in BM-MSCs and enhanced the expression of cardiac markers (MEF2c, Troponin I, GSK-3β), particularly in BM-MSCs. Immunofluorescence confirmed cardiac-specific protein expression in all the treated groups. Both MSC types exhibited the expression of cardiac-specific markers indicative of cardiomyogenic differentiation, with the combined treatment showing superior efficiency for BM-MSCs.
Collapse
Affiliation(s)
- Ahmed Farag
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
8
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Matta A, Ohlmann P, Nader V, Moussallem N, Carrié D, Roncalli J. A review of therapeutic approaches for post-infarction left ventricular remodeling. Curr Probl Cardiol 2024; 49:102562. [PMID: 38599556 DOI: 10.1016/j.cpcardiol.2024.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Left ventricular remodeling is an adaptive process initially developed in response to acute myocardial infarction (AMI), but it ends up with negative adverse outcomes such as infarcted wall thinning, ventricular dilation, and cardiac dysfunction. A prolonged excessive inflammatory reaction to cardiomyocytes death and necrosis plays the crucial role in the pathophysiological mechanisms. The pharmacological treatment includes nitroglycerine, β-blockers, ACEi/ARBs, SGLT2i, mineralocorticoid receptor antagonists, and some miscellaneous aspects. Stem cells therapy, CD34+ cells transplantation and gene therapy constitute the promissing therapeutic approaches for post AMI cardiac remodeling, thereby enhancing angiogenesis, cardiomyocytes differenciation and left ventricular function on top of inhibiting apoptosis, inflammation, and collagen deposition. All these lead to reduce infarct size, scar formation and myocardial fibrosis.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Civilian Hospitals of Colmar, Colmar, France; School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon.
| | - Patrick Ohlmann
- Department of Cardiology, Strasbourg University Hospital, Strasbourg, France
| | - Vanessa Nader
- Department of Cardiology, Civilian Hospitals of Colmar, Colmar, France
| | - Nicolas Moussallem
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
| | - Didier Carrié
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | - Jerome Roncalli
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
10
|
Tręda C, Włodarczyk A, Rieske P. The hope, hype and obstacles surrounding cell therapy. J Cell Mol Med 2024; 28:e18359. [PMID: 38770886 PMCID: PMC11107145 DOI: 10.1111/jcmm.18359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Cell therapy offers hope, but it also presents challenges, most particularly the limited ability of human organs and tissues to regenerate. Since many diseases are associated with irreversible pathophysiological or traumatic changes, stem cells and their derivatives are unable to secure healing. Although regenerative medicine offers chances for improvements in many diseases, such as type one diabetes and Parkinson's disease, it cannot eliminate the primary cause of many of them. While successes can be expected for diseases such as sickle cell disease, this is not the case for hereditary diseases with varied mutation types or for ciliopathies, which start in embryogenesis. In this complicated medical environment, synthetic biology offers some solutions, but their implementation will take many years. Still, positive examples such as CAR-T therapy offer hope.
Collapse
Affiliation(s)
- Cezary Tręda
- Department of Tumor BiologyMedical University of LodzLodzPoland
| | | | - Piotr Rieske
- Department of Tumor BiologyMedical University of LodzLodzPoland
| |
Collapse
|
11
|
Diomede F, Guarnieri S, Lanuti P, Konstantinidou F, Gatta V, Rajan TS, Pierdomenico SD, Trubiani O, Marconi GD, Pizzicannella J. Extracellular vesicles (EVs): A promising therapeutic tool in the heart tissue regeneration. Biofactors 2024; 50:509-522. [PMID: 38131134 DOI: 10.1002/biof.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023]
Abstract
Mesenchymal stem cells (MSCs) treatment has been widely explored as a therapy for myocardial infarction, peripheral ischemic vascular diseases, dilated cardiomyopathy, and pulmonary hypertension. Latest in vitro studies suggest that MSCs can differentiate into contractile cardiomyocytes. One of the best-characterized MSCs products are MSCs-derived extracellular vesicles (EVs). EVs are crucial paracrine effectors of MSCs. Based on previous works, paracrine effects of MSCs play a primary role in the regenerative ability. Hence, in the current paper, we focused our attention on an alternative approach, exploiting products derived from human dental pulp stem cells (hDPSCs) rather than MSCs themselves, which may denote a cost-effective and safer approach. The focus has been on EVs and the bioactive molecules they contain to evaluate their ability to influence the differentiation process toward cardiomyogenic lineage. The expression of GATA4, ACTC1, CX43, and Nkx2.5 was evaluated using Immunofluorescence, real time-PCR, and Western blotting analyses. Furthermore, the expression profiling analysis of the microRNA hsa-miR-200c-3p, targeting the GATA4 gene, was studied. The hsa-miR-200c-3p was found significantly down-regulated in both c-hDPSCs + EVs-hDPSCs and c-hDPSCs + EVs-HL-1 compared to untreated c-hDPSCs underlying a possible epigenetic mechanism behind the prevalent up-regulation of its targeted GATA4 gene. The aim of the present work was to develop an in vitro model of hDPSCs able to differentiate into cardiomyocytes in order to investigate the role of EVs derived from hDPSCs and derived from HL-1 cardiomyocyte cell line in modulating the differentiation process toward cardiomyogenic lineage.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Thangavelu Soundara Rajan
- Research and Development Unit, Theertha Biopharma Private limited, KIADB, Industrial Area, Bangalore, India
| | - Sante D Pierdomenico
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Pescara, Italy
| |
Collapse
|
12
|
Viveiros MMH, Zucoloto LH, Shiguematsu ÁI, Rainho CA, Schellini SA. Comparison of techniques for corneal epithelium cell culture for the collection of conditioned medium. Arq Bras Oftalmol 2024; 87:e2022. [PMID: 38655938 PMCID: PMC11619711 DOI: 10.5935/0004-2749.2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 04/26/2024] Open
Abstract
PURPOSES To determine the best protocol in obtaining the higher yield of conditioned culture medium to be used for the bone marrow mesenchymal stem cell differentiation into corneal epithelial cells, five techniques for the primary culture of human corneal epithelial cells were evaluated. METHODS The studied culture techniques of corneal epithelial cells were: explants in culture flasks with and without hydrophilic surface treatment, on amniotic membrane, with enzymatic digestion, and by corneal scraping. The conditioned culture medium collected from these cultures was used to differentiate human bone marrow mesenchymal stem cells into corneal epithelial cells, which were characterized using flow cytometry with pan-cytokeratin and the corneal-specific markers, cytokeratin 3 and cytokeratin 12. RESULTS The culture technique using flasks with hydrophilic surface treatment resulted in the highest yield of conditioned culture medium. Flasks without surface treatment resulted to a very low success rate. Enzymatic digestion and corneal scraping showed contamination with corneal fibroblasts. The culture on amniotic membranes only allowed the collection of culture medium during the 1st cell confluence. The effectiveness of cell differentiation was confirmed by cytometry analysis using the collected conditioned culture medium, as demonstrated by the expressions of cytokeratin 3 (95.3%), cytokeratin 12 (93.4%), and pan-cytokeratin (95.3%). CONCLUSION The culture of corneal epithelial cell explants in flasks with hydrophilic surface treatment is the best technique for collecting a higher yield of conditioned culture medium to be used to differentiate mesenchymal stem cells.
Collapse
Affiliation(s)
- Magda Massae Hata Viveiros
- Department of Ophthalmology, Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista “Júlio de Mesquita Filho,” Botucatu, SP,
Brazil
| | - Luís Henrique Zucoloto
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista
“Júlio de Mesquita Filho,” Botucatu, SP, Brazil
| | - Álvio Issao Shiguematsu
- Department of Ophthalmology, Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista “Júlio de Mesquita Filho,” Botucatu, SP,
Brazil
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Instituto de
Biociências de Botucatu, Universidade Estadual Paulista “Júlio de
Mesquita Filho” Botucatu, SP, Brazil
| | - Silvana Artioli Schellini
- Department of Ophthalmology, Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista “Júlio de Mesquita Filho,” Botucatu, SP,
Brazil
| |
Collapse
|
13
|
Kollampally SCR, Zhang X, Moskwa N, Nelson DA, Sharfstein ST, Larsen M, Xie Y. Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance. Bioengineering (Basel) 2024; 11:375. [PMID: 38671796 PMCID: PMC11048715 DOI: 10.3390/bioengineering11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.
Collapse
Affiliation(s)
- Sujith Chander Reddy Kollampally
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Xulang Zhang
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
- The Jackson Laboratory of Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| |
Collapse
|
14
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
15
|
Hassanzadeh A, Shomali N, Kamrani A, Nasiri H, Ahmadian Heris J, Pashaiasl M, Sadeghi M, Sadeghvand S, Valedkarimi Z, Akbari M. Detailed role of mesenchymal stem cell (MSC)-derived exosome therapy in cardiac diseases. EXCLI JOURNAL 2024; 23:401-420. [PMID: 38741729 PMCID: PMC11089093 DOI: 10.17179/excli2023-6538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/05/2024] [Indexed: 05/16/2024]
Abstract
Coronary heart disease (CHD) continues to be the leading cause of morbidity and mortality. There are numerous therapeutic reperfusion methods, including thrombolytic therapy, primary percutaneous coronary intervention, and anti-remodeling drugs like angiotensin-converting enzyme inhibitors and beta-blockers. Despite this, there is no pharmacological treatment that can effectively stop cardiomyocyte death brought on by myocardial ischemia/reperfusion (I/R) injury. For the purpose of regenerating cardiac tissue, mesenchymal stem cell (MSC) therapy has recently gained more attention. The pleiotropic effects of MSCs are instead arbitrated by the secretion of soluble paracrine factors and are unrelated to their capacity for differentiation. One of these paracrine mediators is the extracellular vesicle known as an exosome. Exosomes deliver useful cargo to recipient cells from MSCs, including peptides, proteins, cytokines, lipids, miRNA, and mRNA molecules. Exosomes take part in intercellular communication processes and help tissues and organs that have been injured or are ill heal. Exosomes alone were found to be the cause of MSCs' therapeutic effects in a variety of animal models, according to studies. Here, we have focused on the recent development in the therapeutic capabilities of exosomal MSCs in cardiac diseases.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, P.O. Box 51376563833, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Ali SR, Ahmad W, Salim A, Durrieu MC, Khan I. Xenogeneic Stem Cell–Induced Cardiac Progenitor Cells Regenerated Infarcted Myocardium in Rat Model. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:110-125. [DOI: 10.1007/s40883-023-00311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 09/11/2024]
|
17
|
Yuan HL, Chang L, Fan WW, Liu X, Li Q, Tian C, Zhao J, Li ZA, Pan XH, Zhu XQ. Application and challenges of stem cells in cardiovascular aging. Regen Ther 2024; 25:1-9. [PMID: 38108044 PMCID: PMC10724492 DOI: 10.1016/j.reth.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
With the rapid development of society and the economy, population aging has become a common challenge faced by many countries in the world today. Structural and functional changes in the cardiovascular system can occur with age, increasing the incidence and severity of cardiovascular diseases in older adults. Due to the limited regenerative capacity of myocardial cells, myocardial infarction and its resulting heart failure and congenital heart disease have become the number one killer of human health. At present, the treatment of cardiovascular diseases includes drug therapy and nondrug therapy. Nondrug therapy mainly includes minimally invasive interventional therapy, surgical diagnosis and treatment, and cell therapy. Long-term drug treatment may cause headache due to vasodilation, lower blood pressure, digestive system dysfunction and other side effects. Surgical treatment is traumatic, difficult to treat, and expensive. In recent years, stem cell therapy has exhibited broad application prospects in basic and clinical research on cardiovascular disease because of its plasticity, self-renewal and multidirectional differentiation potential. Therefore, this paper looks at stem cell therapy for diseases, reviews recent advances in the mechanism and clinical transformation of cardiovascular aging and related diseases in China, and briefly discusses the development trend and future prospects of cardiovascular aging research.
Collapse
Affiliation(s)
- He-Ling Yuan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Le Chang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Wei-Wen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xin Liu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiang Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chuan Tian
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Jing Zhao
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Zi-An Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| |
Collapse
|
18
|
Ghoneim MA, Gabr MM, El-Halawani SM, Refaie AF. Current status of stem cell therapy for type 1 diabetes: a critique and a prospective consideration. Stem Cell Res Ther 2024; 15:23. [PMID: 38281991 PMCID: PMC10823744 DOI: 10.1186/s13287-024-03636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Over the past decade, there had been progress in the development of cell therapy for insulin-dependent diabetes. Nevertheless, important hurdles that need to be overcome still remain. Protocols for the differentiation of pluripotent stem cells into pancreatic progenitors or fully differentiated β-cells have been developed. The resulting insulin-producing cells can control chemically induced diabetes in rodents and were the subject of several clinical trials. However, these cells are immunogenic and possibly teratogenic for their transplantation, and an immunoisolation device and/or immunosuppression is needed. A growing number of studies have utilized genetic manipulations to produce immune evasive cells. Evidence must be provided that in addition to the expected benefit, gene manipulations should not lead to any unforeseen complications. Mesenchymal stem/stromal cells (MSCs) can provide a viable alternative. MSCs are widely available from many tissues. They can form insulin-producing cells by directed differentiation. Experimentally, evidence has shown that the transplantation of allogenic insulin-producing cells derived from MSCs is associated with a muted allogeneic response that does not interfere with their functionality. This can be explained by the immunomodulatory functions of the MSC subpopulation that did not differentiate into insulin-producing cells. Recently, exosomes derived from naive MSCs have been used in the experimental domain to treat diabetes in rodents with varying degrees of success. Several mechanisms for their beneficial functions were proposed including a reduction in insulin resistance, the promotion of autophagy, and an increase in the T regulatory population. However, euglycemia was not achieved in any of these experiments. We suggest that exosomes derived from β-cells or insulin-producing cells (educated) can provide a better therapeutic effect than those derived from undifferentiated cells.
Collapse
|
19
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
20
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
21
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
22
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
23
|
Angrisano T, Varrone F, Ragozzino E, Fico A, Minchiotti G, Brancaccio M. Cripto Is Targeted by miR-1a-3p in a Mouse Model of Heart Development. Int J Mol Sci 2023; 24:12251. [PMID: 37569627 PMCID: PMC10419258 DOI: 10.3390/ijms241512251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
During cardiac differentiation, numerous factors contribute to the development of the heart. Understanding the molecular mechanisms underlying cardiac development will help combat cardiovascular disorders, among the leading causes of morbidity and mortality worldwide. Among the main mechanisms, we indeed find Cripto. Cripto is found in both the syncytiotrophoblast of ampullary pregnancies and the inner cell mass along the primitive streak as the second epithelial-mesenchymal transformation event occurs to form the mesoderm and the developing myocardium. At the same time, it is now known that cardiac signaling pathways are intimately intertwined with the expression of myomiRNAs, including miR-1. This miR-1 is one of the muscle-specific miRs; aberrant expression of miR-1 plays an essential role in cardiac diseases. Given this scenario, our study aimed to evaluate the inverse correlation between Cripto and miR-1 during heart development. We used in vitro models of the heart, represented by embryoid bodies (EBs) and embryonic carcinoma cell lines derived from an embryo-derived teratocarcinoma in mice (P19 cells), respectively. First, through a luciferase assay, we demonstrated that Cripto is a target of miR-1. Following this result, we observed that as the days of differentiation increased, the Cripto gene expression decreased, while the level of miR-1 increased; furthermore, after silencing miR-1 in P19 cells, there was an increase in Cripto expression. Moreover, inducing damage with a cobra cardiotoxin (CTX) in post-differentiation cells, we noted a decreased miR-1 expression and increased Cripto. Finally, in mouse cardiac biopsies, we observed by monitoring gene expression the distribution of Cripto and miR-1 in the right and left ventricles. These results allowed us to detect an inverse correlation between miR-1 and Cripto that could represent a new pharmacological target for identifying new therapies.
Collapse
Affiliation(s)
- Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Elvira Ragozzino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 26100 Rome, Italy;
| | - Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics, “A. Buzzati-Traverso”, CNR, 80131 Naples, Italy; (A.F.); (G.M.)
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics, “A. Buzzati-Traverso”, CNR, 80131 Naples, Italy; (A.F.); (G.M.)
| | - Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
24
|
In vitro cell stretching devices and their applications: From cardiomyogenic differentiation to tissue engineering. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
25
|
Yan W, Yujie Z, Siquan N, Liang X, Di W, Shaohua Y, Zhikun G. Rat and mouse bone marrow mesenchymal stem cells can spontaneously express troponin T. Acta Histochem 2023; 125:152022. [PMID: 36963147 DOI: 10.1016/j.acthis.2023.152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/19/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE This study aims to investigate whether the bone marrow mesenchymal stem cells (BMSCs) of rat and mice can spontaneously express troponin T (cTnT) in vitro. METHODS The BMSCs of rats and mice were cultured in vitro. The expression of cTnT in the BMSCs of rats and mice was detected by immunofluorescence, immunohistochemistry, and Western blot. The detection of cTnT and α-sarcomeric actin coexpression on the surface of BMSCs was determined using immunofluorescence and qRT-PCR. RESULTS In rats and mice, cTnT expression was detected in a portion of BMSCs. The positive rates of cTnT in rats and mice were approximately 10-52 % and 27-60 %, respectively. According to the results of the Western blot analysis, the gray values of cTnT in rats and mice were 0.64 ± 0.02 and 1.08 ± 0.03, respectively. Additionally, the surface of BMSCs can express cTnT and α-sarcomeric actin, which is a marker for striated muscle. CONCLUSION The BMSCs of rats and mice can spontaneously express cTnT and automatically differentiate striated muscles in vitro.
Collapse
Affiliation(s)
- Wang Yan
- The 7th People's Hospital of Zhengzhou, 450000 Zhengzhou, Henan, China; The Key Laboratory of Henan Medical Tissue Regeneration, Xinxiang Medical University, 453003 Xinxiang, Henan, China; The Henan Key Laboratory of Arrhythmia Medicine, 450000 Zhengzhou, Henan, China
| | - Zhao Yujie
- The 7th People's Hospital of Zhengzhou, 450000 Zhengzhou, Henan, China; The Henan Key Laboratory of Arrhythmia Medicine, 450000 Zhengzhou, Henan, China.
| | - Niu Siquan
- The 7th People's Hospital of Zhengzhou, 450000 Zhengzhou, Henan, China
| | - Xu Liang
- The 7th People's Hospital of Zhengzhou, 450000 Zhengzhou, Henan, China
| | - Wang Di
- The 7th People's Hospital of Zhengzhou, 450000 Zhengzhou, Henan, China
| | - Yang Shaohua
- The 7th People's Hospital of Zhengzhou, 450000 Zhengzhou, Henan, China
| | - Guo Zhikun
- The 7th People's Hospital of Zhengzhou, 450000 Zhengzhou, Henan, China; The Key Laboratory of Henan Medical Tissue Regeneration, Xinxiang Medical University, 453003 Xinxiang, Henan, China.
| |
Collapse
|
26
|
Velasco MG, Satué K, Chicharro D, Martins E, Torres-Torrillas M, Peláez P, Miguel-Pastor L, Del Romero A, Damiá E, Cuervo B, Carrillo JM, Cugat R, Sopena JJ, Rubio M. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): The Future of Human and Veterinary Regenerative Medicine. Biomedicines 2023; 11:biomedicines11020636. [PMID: 36831171 PMCID: PMC9953712 DOI: 10.3390/biomedicines11020636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, several studies have been conducted on Muse cells mainly due to their pluripotency, high tolerance to stress, self-renewal capacity, ability to repair DNA damage and not being tumoral. Additionally, since these stem cells can be isolated from different tissues in the adult organism, obtaining them is not considered an ethical problem, providing an advantage over embryonic stem cells. Regarding their therapeutic potential, few studies have reported clinical applications in the treatment of different diseases, such as aortic aneurysm and chondral injuries in the mouse or acute myocardial infarction in the swine, rabbit, sheep and in humans. This review aims to describe the characterization of Muse cells, show their biological characteristics, explain the differences between Muse cells and mesenchymal stem cells, and present their contribution to the treatment of some diseases.
Collapse
Affiliation(s)
- María Gemma Velasco
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Katy Satué
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Emma Martins
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Laura Miguel-Pastor
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - José María Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ramón Cugat
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín Jesús Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
- Correspondence:
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
27
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
28
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
29
|
Wu Z, Li W, Cheng S, Liu J, Wang S. Novel fabrication of bioengineered injectable chitosan hydrogel loaded with conductive nanoparticles to improve therapeutic potential of mesenchymal stem cells in functional recovery after ischemic myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102616. [PMID: 36374915 DOI: 10.1016/j.nano.2022.102616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, myocardial regeneration through stem cell transplantation and tissue engineering has been viewed as a promising technique for treating myocardial infarction. As a result, the researcher attempts to see whether co-culturing modified mesenchymal stem cells with Au@Ch-SF macro-hydrogel and H9C2 may help with tissue regeneration and cardiac function recovery. The gold nanoparticles (Au) incorporated into the chitosan-silk fibroin hydrogel (Au@Ch-SF) were validated using spectral and microscopic examinations. The most essential elements of hydrogel groups were investigated in detail, including weight loss, mechanical strength, and drug release rate. Initially, the cardioblast cells (H9C2 cells) was incubated with Au@Ch-SF macro-hydrogel, followed by mesenchymal stem cells (2 × 105) were transplanted into the Au@Ch-SF macro-hydrogel+H9C2 culture at the ratio of 2:1. Further, cardiac phenotype development, cytokines expression and tissue regenerative performance of modified mesenchymal stem cells treatment were studied through various in vitro and in vivo analyses. The Au@Ch-SF macro-hydrogel gelation time was much faster than that of Ch and Ch-SF hydrogels, showing that Ch and SF exhibited greater intermolecular interactions. The obtained Au@Ch-SF macro-hydrogel has no toxicity on mesenchymal stem cells (MS) or cardiac myoblast (H9C2) cells, according to the biocompatibility investigation. MS cells co-cultured with Au@Ch-SF macro-hydrogel and H9C2 cells also stimulated cardiomyocyte fiber restoration, which has been confirmed in myocardial infarction rats using -MHC and Cx43 myocardial indicators. We developed a novel method of co-cultured therapy using MS cells, Au@Ch-SF macro-hydrogel, and H9C2 cells which could promote the regenerative activities in myocardial ischemia cells. These study findings show that co-cultured MS therapy might be effective for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China.
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| |
Collapse
|
30
|
TEKİN Ö, UYANIKGİL Y, TAŞKIRAN D. Glukagon benzeri peptit-1'in yağ doku kaynaklı mezenkimal kök hücrelerinin kardiyomiyositlere dönüşmesi üzerindeki etkisi. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1180666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amaç: Mezenkimal kök hücreler, çeşitli protokoller kullanılarak in vitro koşullarda kolaylıkla
kardiyomiyositlere farklılaşabilir. Ancak bu protokollerde kullanılan ajanların hücre canlılığı üzerinde bazı
olumsuz etkileri olduğu bildirilmiştir. Azasitidin mezenkimal kök hücreleri kalp kası hücrelerine
farklandırmak için kullanılmaktadır. Bu çalışmanın amacı, bir GLP-1 reseptör agonisti olan Eksenatid'in
insan yağ dokusu kaynaklı kök hücrelerinin kardiyomiyositlere farklılaşması ve canlılığı üzerindeki
etkilerini araştırmaktır.
Gereç ve Yöntem: Azasitidin ve Eksenatid'in insan yağ doku kaynaklı mezenkimal kök hücreler
üzerinde hücre canlılığı ve proliferasyonu üzerindeki etkileri ile sitotoksisite testleri yapıldı. Farklılanma
protokolü için, hücreler dört hafta boyunca Azasitidin ve Eksenatid ile inkübe edildi. Hücrelerin morfolojik
değişiklikleri izlendi ve kardiyomiyojenik farklılaşma belirteçlerinin (cTnI, GATA4 ve MYH7)
ekspresyonları immünohistokimyasal olarak değerlendirildi. Ayrıca kültürlerdeki kardiyak troponin I
(cTnI) seviyeleri enzime bağlı immünosorbent testi kullanılarak ölçüldü. Veriler, tek yönlü varyans analizi
(ANOVA) ve post-hoc testi ile değerlendirildi.
Bulgular: İnsan yağ doku kaynaklı mezenkimal kök hücreler üzerine Azasitidin uygulaması, kontrole
grubuna kıyasla hücre canlılığını önemli ölçüde azaltırken (%54.4) hücrelerin Azasitidin+Eksenatid ile
uygulaması doza bağlı bir şekilde hücre ölümünü önledi. Azasitidin ve Eksenatid uygulanan hücreler,
kardiyomiyojenik farklılaşma ile uyumlu önemli morfolojik değişiklikler ve kardiyomiyojenik belirteçlerde
artış gösterdi. Ayrı ayrı ve birlikte uygulama yapılan gruplarda cTnI seviyeleri kontrole göre anlamlı
derecede yüksek bulundu.
Sonuç: Bu bulgular GLP-1 reseptör agonisti Eksenatid'in, Azasitidin uygulamasının neden olduğu hücre
hasarını azaltarak İnsan yağ doku kaynaklı mezenkimal kök hücrelerin kardiyomiyojenik farklılaşması
üzerinde faydalı etkileri olabileceğini düşündürmektedir.
Collapse
|
31
|
Direct Cardiac Epigenetic Reprogramming through Codelivery of 5'Azacytidine and miR-133a Nanoformulation. Int J Mol Sci 2022; 23:ijms232315179. [PMID: 36499508 PMCID: PMC9739153 DOI: 10.3390/ijms232315179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Direct reprogramming of cardiac fibroblasts to induced cardiomyocytes (iCMs) is a promising approach to cardiac regeneration. However, the low yield of reprogrammed cells and the underlying epigenetic barriers limit its potential. Epigenetic control of gene regulation is a primary factor in maintaining cellular identities. For instance, DNA methylation controls cell differentiation in adults, establishing that epigenetic factors are crucial for sustaining altered gene expression patterns with subsequent rounds of cell division. This study attempts to demonstrate that 5'AZA and miR-133a encapsulated in PLGA-PEI nanocarriers induce direct epigenetic reprogramming of cardiac fibroblasts to cardiomyocyte-like cells. The results present a cardiomyocyte-like phenotype following seven days of the co-delivery of 5'AZA and miR-133a nanoformulation into human cardiac fibroblasts. Further evaluation of the global DNA methylation showed a decreased global 5-methylcytosine (5-medCyd) levels in the 5'AZA and 5'AZA/miR-133a treatment group compared to the untreated group and cells with void nanocarriers. These results suggest that the co-delivery of 5'AZA and miR-133a nanoformulation can induce the direct reprogramming of cardiac fibroblasts to cardiomyocyte-like cells in-vitro, in addition to demonstrating the influence of miR-133a and 5'AZA as epigenetic regulators in dictating cell fate.
Collapse
|
32
|
Mechanotransduction of mesenchymal stem cells (MSCs) during cardiomyocytes differentiation. Heliyon 2022; 8:e11624. [DOI: 10.1016/j.heliyon.2022.e11624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
|
33
|
Qazi REM, Khan I, Haneef K, Malick TS, Naeem N, Ahmad W, Salim A, Mohsin S. Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model. World J Stem Cells 2022; 14:633-657. [PMID: 36157910 PMCID: PMC9453269 DOI: 10.4252/wjsc.v14.i8.633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiovascular diseases are the major cause of mortality worldwide. Regeneration of the damaged myocardium remains a challenge due to mechanical constraints and limited healing ability of the adult heart tissue. Cardiac tissue engineering using biomaterial scaffolds combined with stem cells and bioactive molecules could be a highly promising approach for cardiac repair. Use of biomaterials can provide suitable microenvironment to the cells and can solve cell engraftment problems associated with cell transplantation alone. Mesenchymal stem cells (MSCs) are potential candidates in cardiac tissue engineering because of their multilineage differentiation potential and ease of isolation. Use of DNA methyl transferase inhibitor, such as zebularine, in combination with three-dimensional (3D) scaffold can promote efficient MSC differentiation into cardiac lineage, as epigenetic modifications play a fundamental role in determining cell fate and lineage specific gene expression.
AIM To investigate the role of collagen scaffold and zebularine in the differentiation of rat bone marrow (BM)-MSCs and their subsequent in vivo effects.
METHODS MSCs were isolated from rat BM and characterized morphologically, immunophenotypically and by multilineage differentiation potential. MSCs were seeded in collagen scaffold and treated with 3 μmol/L zebularine in three different ways. Cytotoxicity analysis was done and cardiac differentiation was analyzed at the gene and protein levels. Treated and untreated MSC-seeded scaffolds were transplanted in the rat myocardial infarction (MI) model and cardiac function was assessed by echocardiography. Cell tracking was performed by DiI dye labeling, while regeneration and neovascularization were evaluated by histological and immunohistochemical analysis, respectively.
RESULTS MSCs were successfully isolated and seeded in collagen scaffold. Cytotoxicity analysis revealed that zebularine was not cytotoxic in any of the treatment groups. Cardiac differentiation analysis showed more pronounced results in the type 3 treatment group which was subsequently chosen for the transplantation in the in vivo MI model. Significant improvement in cardiac function was observed in the zebularine treated MSC-seeded scaffold group as compared to the MI control. Histological analysis also showed reduction in fibrotic scar, improvement in left ventricular wall thickness and preservation of ventricular remodeling in the zebularine treated MSC-seeded scaffold group. Immunohistochemical analysis revealed significant expression of cardiac proteins in DiI labeled transplanted cells and a significant increase in the number of blood vessels in the zebularine treated MSC-seeded collagen scaffold transplanted group.
CONCLUSION Combination of 3D collagen scaffold and zebularine treatment enhances cardiac differentiation potential of MSCs, improves cell engraftment at the infarcted region, reduces infarct size and improves cardiac function.
Collapse
Affiliation(s)
- Rida-e-Maria Qazi
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Kanwal Haneef
- Dr.Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Tuba Shakil Malick
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Nadia Naeem
- Dow Research Institute of Biotechnology and Biomedical Sciences (DRIBBS), Dow University of Health and Sciences, Ojha Campus, Karachi 74200, Sindh, Pakistan
| | - Waqas Ahmad
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States
| |
Collapse
|
34
|
Kim YS, Kim M, Cho DI, Lim SY, Jun JH, Kim MR, Kang BG, Eom GH, Kang G, Yoon S, Ahn Y. PSME4 Degrades Acetylated YAP1 in the Nucleus of Mesenchymal Stem Cells. Pharmaceutics 2022; 14:pharmaceutics14081659. [PMID: 36015285 PMCID: PMC9415559 DOI: 10.3390/pharmaceutics14081659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Intensive research has focused on minimizing the infarct area and stimulating endogenous regeneration after myocardial infarction. Our group previously elucidated that apicidin, a histone deacetylase (HDAC) inhibitor, robustly accelerates the cardiac commitment of naïve mesenchymal stem cells (MSCs) through acute loss of YAP1. Here, we propose the novel regulation of YAP1 in MSCs. We found that acute loss of YAP1 after apicidin treatment resulted in the mixed effects of transcriptional arrest and proteasomal degradation. Subcellular fractionation revealed that YAP1 was primarily localized in the cytoplasm. YAP1 was acutely relocalized into the nucleus and underwent proteasomal degradation. Interestingly, phosphor-S127 YAP1 was shuttled into the nucleus, suggesting that a mechanism other than phosphorylation governed the subcellular localization of YAP1. Apicidin successfully induced acetylation and subsequent dissociation of YAP1 from 14-3-3, an essential molecule for cytoplasmic restriction. HDAC6 regulated both acetylation and subcellular localization of YAP1. An acetylation-dead mutant of YAP1 retarded nuclear redistribution upon apicidin treatment. We failed to acquire convincing evidence for polyubiquitination-dependent degradation of YAP1, suggesting that a polyubiquitination-independent regulator determined YAP1 fate. Nuclear PSME4, a subunit of the 26 S proteasome, recognized and degraded acetyl YAP1 in the nucleus. MSCs from PSME4-null mice were injected into infarcted heart, and aberrant sudden death was observed. Injection of immortalized human MSCs after knocking down PSME4 failed to improve either cardiac function or the fibrotic scar area. Our data suggest that acetylation-dependent proteasome subunit PSME4 clears acetyl-YAP1 in response to apicidin treatment in the nucleus of MSCs.
Collapse
Affiliation(s)
- Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Mira Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Dong Im Cho
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Soo Yeon Lim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Ju Hee Jun
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Mi Ra Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Bo Gyeong Kang
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (G.K.); (S.Y.); (Y.A.)
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (G.K.); (S.Y.); (Y.A.)
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (G.K.); (S.Y.); (Y.A.)
| |
Collapse
|
35
|
Munderere R, Kim SH, Kim C, Park SH. The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Eng Regen Med 2022; 19:969-986. [PMID: 35857259 DOI: 10.1007/s13770-022-00467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.
Collapse
Affiliation(s)
- Raissa Munderere
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea. .,Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
36
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
37
|
Recent Advances in the Application of Mesenchymal Stem Cell-Derived Exosomes for Cardiovascular and Neurodegenerative Disease Therapies. Pharmaceutics 2022; 14:pharmaceutics14030618. [PMID: 35335993 PMCID: PMC8949563 DOI: 10.3390/pharmaceutics14030618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Exosomes are naturally occurring nanoscale vesicles that are released and received by almost all cells in the body. Exosomes can be transferred between cells and contain various molecular constitutes closely related to their origin and function, including proteins, lipids, and RNAs. The importance of exosomes in cellular communication makes them important vectors for delivering a variety of drugs throughout the body. Exosomes are ubiquitous in the circulatory system and can reach the site of injury or disease through a variety of biological barriers. Due to its unique structure and rich inclusions, it can be used for the diagnosis and treatment of diseases. Mesenchymal stem-cell-derived exosomes (MSCs-Exo) inherit the physiological functions of MSCs, including repairing and regenerating tissues, suppressing inflammatory responses, and regulating the body’s immunity; therefore, MSCs-Exo can be used as a natural drug delivery carrier with therapeutic effects, and has been increasingly used in the treatment of cardiovascular diseases and neurodegenerative diseases. Here, we summarize the research progress of MSCs-Exo as drug delivery vectors and their application for various drug deliveries, providing ideas and references for the study of MSCs-Exo in recent years.
Collapse
|
38
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
39
|
Genome-wide methylome pattern predictive network analysis reveal mesenchymal stem cell's propensity to undergo cardiovascular lineage. 3 Biotech 2022; 12:12. [PMID: 34966635 PMCID: PMC8660944 DOI: 10.1007/s13205-021-03058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/07/2021] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal stem cells (MSCs) differentiation toward cardiovascular lineage prediction using the global methylome profile will highlight its prospective utility in regenerative medicine. We examined the propensity prediction to cardiovascular lineage using 5-Aza, a well-known cardiac lineage inducer. The customized 180 K microarray was performed and further analysis of global differentially methylated regions by Ingenuity pathway analysis (IPA) in both MSCs and 5-AC-treated MSCs. The cluster enrichment tools sorted differentially enriched genes and further annotated to construct the interactive networks. Prediction analysis revealed pathways pertaining to the cardiovascular lineage found active in the native MSCs, suggesting its higher propensity to undergo cardiac, smooth muscle cell, and endothelial lineages in vitro. Interestingly, gene interaction network also proposed majorly stemness gene network NANOG and KLF6, cardiac-specific transcription factors GATA4, NKX2.5, and TBX5 were upregulated in the native MSCs. Furthermore, the expression of cardiovascular lineage specific markers such as Brachury, CD105, CD90, CD31, KDR and various forms of ACTIN (cardiac, sarcomeric, smooth muscle) were validated in native MSCs using real time PCR and immunostaining and blotting analysis. In 5-AC-treated MSCs, mosaic interactive networks were observed to persuade towards osteogenesis and cardiac lineage, indicating that 5-AC treatment resulted in nonspecific lineage induction in MSCs, while MSCs by default have a higher propensity to undergo cardiovascular lineage. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03058-2.
Collapse
|
40
|
Deng Z, Cao Y, Lou Q, Choi KS, Wang S. Monotonic relation-constrained Takagi-Sugeno-Kang fuzzy system. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Tajabadi M, Goran Orimi H, Ramzgouyan MR, Nemati A, Deravi N, Beheshtizadeh N, Azami M. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions. Biomed Pharmacother 2021; 146:112584. [PMID: 34968921 DOI: 10.1016/j.biopha.2021.112584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Heart muscle injury and an elevated troponin level signify myocardial infarction (MI), which may result in defective and uncoordinated segments, reduced cardiac output, and ultimately, death. Physicians apply thrombolytic therapy, coronary artery bypass graft (CABG) surgery, or percutaneous coronary intervention (PCI) to recanalize and restore blood flow to the coronary arteries, albeit they were not convincingly able to solve the heart problems. Thus, researchers aim to introduce novel substitutional therapies for regenerating and functionalizing damaged cardiac tissue based on engineering concepts. Cell-based engineering approaches, utilizing biomaterials, gene, drug, growth factor delivery systems, and tissue engineering are the most leading studies in the field of heart regeneration. Also, understanding the primary cause of MI and thus selecting the most efficient treatment method can be enhanced by preparing microdevices so-called heart-on-a-chip. In this regard, microfluidic approaches can be used as diagnostic platforms or drug screening in cardiac disease treatment. Additionally, bioprinting technique with whole organ 3D printing of human heart with major vessels, cardiomyocytes and endothelial cells can be an ideal goal for cardiac tissue engineering and remarkable achievement in near future. Consequently, this review discusses the different aspects, advancements, and challenges of the mentioned methods with presenting the advantages and disadvantages, chronological indications, and application prospects of various novel therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
| | - Hanif Goran Orimi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Roya Ramzgouyan
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Nemati
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
42
|
Matheakakis A, Batsali A, Papadaki HA, Pontikoglou CG. Therapeutic Implications of Mesenchymal Stromal Cells and Their Extracellular Vesicles in Autoimmune Diseases: From Biology to Clinical Applications. Int J Mol Sci 2021; 22:10132. [PMID: 34576296 PMCID: PMC8468750 DOI: 10.3390/ijms221810132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are perivascular multipotent stem cells originally identified in the bone marrow (BM) stroma and subsequently in virtually all vascularized tissues. Because of their ability to differentiate into various mesodermal lineages, their trophic properties, homing capacity, and immunomodulatory functions, MSCs have emerged as attractive candidates in tissue repair and treatment of autoimmune disorders. Accumulating evidence suggests that the beneficial effects of MSCs may be primarily mediated via a number of paracrine-acting soluble factors and extracellular vesicles (EVs). EVs are membrane-coated vesicles that are increasingly being acknowledged as playing a key role in intercellular communication via their capacity to carry and deliver their cargo, consisting of proteins, nucleic acids, and lipids to recipient cells. MSC-EVs recapitulate the functions of the cells they originate, including immunoregulatory effects but do not seem to be associated with the limitations and concerns of cell-based therapies, thereby emerging as an appealing alternative therapeutic option in immune-mediated disorders. In the present review, the biology of MSCs will be outlined and an overview of their immunomodulatory functions will be provided. In addition, current knowledge on the features of MSC-EVs and their immunoregulatory potential will be summarized. Finally, therapeutic applications of MSCs and MSC-EVs in autoimmune disorders will be discussed.
Collapse
Affiliation(s)
- Angelos Matheakakis
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Helen A. Papadaki
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Charalampos G. Pontikoglou
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
43
|
Hou N, Xu X, Lv D, Lu Y, Li J, Cui P, Ma R, Luo X, Tang Y, Zheng Y. Tissue-engineered esophagus: recellular esophageal extracellular matrix based on perfusion-decellularized technique and mesenchymal stem cells. Biomed Mater 2021; 16. [PMID: 34384057 DOI: 10.1088/1748-605x/ac1d3d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Perfusion-decellularization was an interesting technique to generate a natural extracellular matrix (ECM) with the complete three-dimensional anatomical structure and vascular system. In this study, the esophageal ECM (E-ECM) scaffold was successfully constructed by perfusion-decellularized technique through the vascular system for the first time. And the physicochemical and biological properties of the E-ECM scaffolds were evaluated. The bone marrow mesenchymal stem cells (BMSCs) were induced to differentiate into myocytesin vitro. E-ECM scaffolds reseeded with myocytes were implanted into the greater omenta to obtain recellular esophageal ECM (RE-ECM), a tissue-engineered esophagus. The results showed that the cells of the esophagi were completely and uniformly removed after perfusion. E-ECM scaffolds retained the original four-layer organizational structure and vascular system with excellent biocompatibility. And the E-ECM scaffolds had no significant difference in mechanical properties comparing with fresh esophagi,p> 0.05. Immunocytochemistry showed positive expression ofα-sarcomeric actin, suggesting that BMSCs had successfully differentiated into myocytes. Most importantly, we found that in the RE-ECM muscularis, the myocytes regenerated linearly and continuously and migrated to the deep, and the tissue vascularization was obvious. The cell survival rates at 1 week and 2 weeks were 98.5 ± 3.0% and 96.4 ± 4.6%, respectively. It was demonstrated that myocytes maintained the ability for proliferation and differentiation for at least 2 weeks, and the cell activity was satisfactory in the RE-ECM. It follows that the tissue-engineered esophagus based on perfusion-decellularized technique and mesenchymal stem cells has great potential in esophageal repair. It is proposed as a promising alternative for reconstruction of esophageal defects in the future.
Collapse
Affiliation(s)
- Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.,Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoli Xu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China.,Department of Otorhinolaryngology, University-Town Hospital, Chongqing Medical University, Chongqing Municipality, People's Republic of China
| | - Die Lv
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Yanqing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Pengcheng Cui
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiaoming Luo
- Department of Biomedical Science, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Ying Tang
- Department of Pathology, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Yun Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
44
|
Functions of Mesenchymal Stem Cells in Cardiac Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1312:39-50. [PMID: 33330961 DOI: 10.1007/5584_2020_598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myocardial infarction (MI) and heart failure (HF) are significant contributors of mortality worldwide. Mesenchymal stem cells (MSCs) hold a great potential for cardiac regenerative medicine-based therapies. Their therapeutic potential has been widely investigated in various in-vitro and in-vivo preclinical models. Besides, they have been tested in clinical trials of MI and HF with various outcomes. Differentiation to lineages of cardiac cells, neovascularization, anti-fibrotic, anti-inflammatory, anti-apoptotic and immune modulatory effects are the main drivers of MSC functions during cardiac repair. However, the main mechanisms regulating these functions and cross-talk between cells are not fully known yet. Increasing line of evidence also suggests that secretomes of MSCs and/or their extracellular vesicles play significant roles in a paracrine manner while mediating these functions. This chapter aims to summarize and highlight cardiac repair functions of MSCs during cardiac repair.
Collapse
|
45
|
Beliën H, Evens L, Hendrikx M, Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev 2021; 42:343-373. [PMID: 34114238 DOI: 10.1002/med.21839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022]
Abstract
Myocardial infarction irreversibly destroys millions of cardiomyocytes in the ventricle, making it the leading cause of heart failure worldwide. Over the past two decades, many progenitor and stem cell types were proposed as the ideal candidate to regenerate the heart after injury. The potential of stem cell therapy has been investigated thoroughly in animal and human studies, aiming at cardiac repair by true tissue replacement, by immune modulation, or by the secretion of paracrine factors that stimulate endogenous repair processes. Despite some successful results in animal models, the outcome from clinical trials remains overall disappointing, largely due to the limited stem cell survival and retention after transplantation. Extensive interest was developed regarding the combinational use of stem cells and various priming strategies to improve the efficacy of regenerative cell therapy. In this review, we provide a critical discussion of the different stem cell types investigated in preclinical and clinical studies in the field of cardiac repair. Moreover, we give an update on the potential of stem cell combinations as well as preconditioning and explore the future promises of these novel regenerative strategies.
Collapse
Affiliation(s)
- Hanne Beliën
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
46
|
Loo SJQ, Wong NK. Advantages and challenges of stem cell therapy for osteoarthritis (Review). Biomed Rep 2021; 15:67. [PMID: 34155451 PMCID: PMC8212446 DOI: 10.3892/br.2021.1443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disorder of the cartilage and is one of the leading causes of disability, particularly amongst the elderly, wherein patients with advanced-stage OA experience chronic pain and functional impairment of the limbs, thus resulting in a significantly reduced quality of life. The currently available treatments primarily revolve around symptom management, and is thus palliative rather than curative. The aim of the present review is to briefly discuss the limitations of some of the currently available treatments for patients with OA, and highlight the value of the potential use of stem cells in cellular therapy, which is widely regarded as the breakthrough that can address the present unmet medical needs for treatment of degenerative diseases, such as OA. The advantages of stem cell therapy, particularly mesenchymal stem cells, and the challenges involved are also discussed in this review.
Collapse
Affiliation(s)
- Stephanie Jyet Quan Loo
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Nyet Kui Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
47
|
Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep 2021; 17:1666-1694. [PMID: 33954876 DOI: 10.1007/s12015-021-10168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are so far the most widely researched stem cells in clinics and used as an experimental cellular therapy module, particularly in cardiac regeneration and repair. Ever since the discovery of cardiomyogenesis induction in MSCs, a wide variety of differentiation protocols have been extensively used in preclinical models. However, pre differentiated MSC-derived cardiomyocytes have not been used in clinical trials; highlighting discrepancies and limitations in its use as a source of derived cardiomyocytes for transplantation to improve the damaged heart function. Therefore, this review article focuses on the strategies used to derive cardiomyocytes-like cells from MSCs isolated from three widely used tissue sources and their differentiation efficiencies. We have further discussed the role of MSCs in inducing angiogenesis as a cellular precursor to endothelial cells and its secretory aspects including exosomes. We have then discussed the strategies used for delivering cells in the damaged heart and how its retention plays a critical role in the overall outcome of the therapy. We have also conversed about the scope of the local and systemic modes of delivery of MSCs and the application of biomaterials to improve the overall delivery efficacy and function. We have finally discussed the advantages and limitations of cell delivery to the heart and the future scope of MSCs in cardiac regenerative therapy.
Collapse
|
48
|
Cardiac Differentiation of Mesenchymal Stem Cells: Impact of Biological and Chemical Inducers. Stem Cell Rev Rep 2021; 17:1343-1361. [PMID: 33864233 DOI: 10.1007/s12015-021-10165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disorders (CVDs) are the leading cause of global death, widely occurs due to irreparable loss of the functional cardiomyocytes. Stem cell-based therapeutic approaches, particularly the use of Mesenchymal Stem Cells (MSCs) is an emerging strategy to regenerate myocardium and thereby improving the cardiac function after myocardial infarction (MI). Most of the current approaches often employ the use of various biological and chemical factors as cues to trigger and modulate the differentiation of MSCs into the cardiac lineage. However, the recent advanced methods of using specific epigenetic modifiers and exosomes to manipulate the epigenome and molecular pathways of MSCs to modify the cardiac gene expression yield better profiled cardiomyocyte like cells in vitro. Hitherto, the role of cardiac specific inducers triggering cardiac differentiation at the cellular and molecular level is not well understood. Therefore, the current review highlights the impact and recent trends in employing biological and chemical inducers on cardiac differentiation of MSCs. Thereby, deciphering the interactions between the cellular microenvironment and the cardiac inducers will help us to understand cardiomyogenesis of MSCs. Additionally, the review also provides an insight on skeptical roles of the cell free biological factors and extracellular scaffold assisted mode for manipulation of native and transplanted stem cells towards translational cardiac research.
Collapse
|
49
|
Mezhevikina LM, Reshetnikov DA, Fomkina MG, Appazov NO, Ibadullayeva SZ, Fesenko EE. Growth characteristics of human bone marrow mesenchymal stromal cells at cultivation on synthetic polyelectrolyte nanofilms in vitro. Heliyon 2021; 7:e06517. [PMID: 33817378 PMCID: PMC8010635 DOI: 10.1016/j.heliyon.2021.e06517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 01/06/2023] Open
Abstract
This study examines the adhesive properties and cytotoxicity of polyelectrolyte nanofilms from polyethyleneimine (PEI), polyallylamine hydrochloride (PAH) and sodium polystyrene sulfonate (PSS) on human bone marrow mesenchymal stromal cells (h-MSCs) and mouse adipose tissue (m-MSC) in vitro. Films are formed on 24- and 96-well culture plates in the combinations: PEI, PAH, PEI-PSS, PEI-PSS-PAH, PEI-PSS-PEI. An analysis of the culture results show that direct contact of h-MSCs with the PEI surface promotes adhesion (93–95% of adhesive cells versus 40% in the control). On the PEI surface, h-MSCs are evenly distributed, form colonies and 80% monolayer after 72 h of culture, as in the control on culture plastic. On nanofilms from PAH and PEI-PSS-PAH, cells grow in the form of rosette-like colonies with long and thin processes similar to neurites. The cytotoxic properties of PSS were revealed in direct contact with h-MSCs (more than 40% of nonviable cells with damaged plasma membranes). On the PSS surface, cells lost their adhesiveness. To culture and stably grow the cell mass of h-MSCs, it is better to use monolayer nanofilms made of highly adhesive and non-toxic PEI polyelectrolyte, which can bind the growth factors of blood serum and platelet lysate, ensuring the growth of h-MSCs under in vitro deprivation conditions.
Collapse
Affiliation(s)
- Lyudmila M Mezhevikina
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Dmitriy A Reshetnikov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Maria G Fomkina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | | | | | - Evgeniy E Fesenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
50
|
Zeng WR, Doran PM. Interactivity of biochemical and physical stimuli during epigenetic conditioning and cardiomyocytic differentiation of stem and progenitor cells derived from adult hearts. Integr Biol (Camb) 2021; 13:73-85. [PMID: 33704437 DOI: 10.1093/intbio/zyab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022]
Abstract
Mixed populations of cardiosphere-derived stem and progenitor cells containing proliferative and cardiomyogenically committed cells were obtained from adult rat hearts. The cells were cultured in either static 2D monolayers or dynamic 3D scaffold systems with fluid flow. Cardiomyocyte lineage commitment in terms of GATA4 and Nkx2.5 expression was significantly enhanced in the dynamic 3D cultures compared with static 2D conditions. Treatment of the cells with 5-azacytidine (5-aza) produced different responses in the two culture systems, as activity of this chemical epigenetic conditioning agent depended on the cell attachment and hydrodynamic conditions provided during culture. Cell growth was unaffected by 5-aza in the static 2D cultures but was significantly reduced under dynamic 3D conditions relative to untreated controls. Myogenic differentiation measured as Mef2c expression was markedly upregulated by 5-aza in the dynamic 3D cultures but downregulated in the static 2D cultures. The ability of the physical environment to modulate the cellular cardiomyogenic response to 5-aza underscores the interactivity of biochemical and physical stimuli applied for cell differentiation. Accordingly, observations about the efficacy of 5-aza as a cardiomyocyte induction agent may not be applicable across different culture systems. Overall, use of dynamic 3D rather than static 2D culture was more beneficial for cardio-specific myogenesis than 5-aza treatment, which generated a more ambiguous differentiation response.
Collapse
Affiliation(s)
- Wendy R Zeng
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|