1
|
Kim SS, Kim S, Kim Y, Ha Y, Lee H, Im H, Yang JY, Shin DS, Hwang KS, Son Y, Park SB, Kim KY, Lee HS, Kim KT, Cho SH, Bae MA, Park HC. Neurotoxic effects of citronellol induced by the conversion of kynurenine to 3-hydroxykynurenine. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136965. [PMID: 39733753 DOI: 10.1016/j.jhazmat.2024.136965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity in vivo. Exposure to citronellol (2, 4 and 8 mg/L) in zebrafish larvae induced a range of neurotoxic effects, including locomotor impairments, anxiety-like behaviors, oxidative stress, an inflammatory response, and apoptosis in the brain. Additionally, citronellol exposure compromised the blood-brain barrier (BBB) integrity, permitting the infiltration of inflammatory cell into the brain. Neurotoxic effects were further sustained by increased kynurenine (KYN) metabolism to the neurotoxic metabolite 3-hydroxykynurenine (3-HK), accompanied by altered neurosteroid levels, including reduced progesterone and allopregnanolone, and elevated cortisol. Similar metabolic dysregulation was observed in mouse models following oral administration (345, 690 and 3450 mg/kg) and in human brain organoids exposed to citronellol (1, 10 and 100 μM), suggesting conserved mechanisms across species. Notably, experiments using zebrafish, mice and brain-chip systems confirmed that citronellol crosses the BBB and accumulates in the brain. Overall, we identified a novel neurotoxic pathway involving the KYN to 3-HK metabolic pathway, oxidative stress, and neuroinflammation, underscoring the potential risks of prolonged citronellol exposure.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Suhyun Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Yeonhwa Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea
| | - Youngran Ha
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Hyunji Im
- Medical Science Research Center, Ansan Hospital, Korea University, Ansan, Gyeonggi-do, Republic of Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Yuji Son
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sung Bum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Ki Young Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Han-Seul Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, KRICT, Daejeon, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea.
| | - Hae-Chul Park
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Jin Y, Kozan D, Young ED, Hensley MR, Shen MC, Wen J, Moll T, Anderson JL, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver steatosis. J Lipid Res 2024; 65:100637. [PMID: 39218217 DOI: 10.1016/j.jlr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. Unlike murine models, to which various standardized high lipid diets such as a high-cholesterol diet (HCD) are available, there has yet to be a uniformly adopted zebrafish HCD protocol. In this study, we have developed an improved HCD protocol and thoroughly tested its impact on zebrafish lipid deposition and lipoprotein regulation in a dose- and time-dependent manner. The diet stability, reproducibility, and fish palatability were also validated. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LPs) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae for 8 days produced hepatic steatosis that became more stable and sever after 1 day of fasting and was associated with an opaque liver phenotype (dark under transmitted light). Unlike larvae, adult fish fed HCD for 14 days followed by a 3-day fast did not develop a stable fatty liver phenotype, though the fish had higher ApoB-LP levels in plasma and an upregulated lipogenesis gene fasn in adipose tissue. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eric D Young
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Division of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Monica R Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Kim JD, Jain A, Fang L. Mitigating Vascular Inflammation by Mimicking AIBP Mechanisms: A New Therapeutic End for Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2024; 25:10314. [PMID: 39408645 PMCID: PMC11477018 DOI: 10.3390/ijms251910314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of lipoproteins and lipids within the vascular wall, underlies a heart attack, stroke, and peripheral artery disease. Endothelial inflammation is the primary component driving atherosclerosis, promoting leukocyte adhesion molecule expression (e.g., E-selectin), inducing chemokine secretion, reducing the production of nitric oxide (NO), and enhancing the thrombogenic potential. While current therapies, such as statins, colchicine, anti-IL1β, and sodium-glucose cotransporter 2 (SGLT2) inhibitors, target systemic inflammation, none of them addresses endothelial cell (EC) inflammation, a critical contributor to disease progression. Targeting endothelial inflammation is clinically significant because it can mitigate the root cause of atherosclerosis, potentially preventing disease progression, while reducing the side effects associated with broader anti-inflammatory treatments. Recent studies highlight the potential of the APOA1 binding protein (AIBP) to reduce systemic inflammation in mice. Furthermore, its mechanism of action also guides the design of a potential targeted therapy against a particular inflammatory signaling pathway. This review discusses the unique advantages of repressing vascular inflammation or enhancing vascular quiescence and the associated benefits of reducing thrombosis. This approach offers a promising avenue for more effective and targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
4
|
Gao P, Chang C, Liang J, Du F, Zhang R. Embryonic Amoxicillin Exposure Has Limited Impact on Liver Development but Increases Susceptibility to NAFLD in Zebrafish Larvae. Int J Mol Sci 2024; 25:2744. [PMID: 38473993 DOI: 10.3390/ijms25052744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Amoxicillin is commonly used in clinical settings to target bacterial infection and is frequently prescribed during pregnancy. Investigations into its developmental toxicity and effects on disease susceptibility are not comprehensive. Our present study examined the effects of embryonic amoxicillin exposure on liver development and function, especially the effects on susceptibility to non-alcoholic fatty liver disease (NAFLD) using zebrafish as an animal model. We discovered that embryonic amoxicillin exposure did not compromise liver development, nor did it induce liver toxicity. However, co-treatment of amoxicillin and clavulanic acid diminished BESP expression, caused bile stasis and induced liver toxicity. Embryonic amoxicillin exposure resulted in elevated expression of lipid synthesis genes and exacerbated hepatic steatosis in a fructose-induced NAFLD model, indicating embryonic amoxicillin exposure increased susceptibility to NAFLD in zebrafish larvae. In summary, this research broadens our understanding of the risks of amoxicillin usage during pregnancy and provides evidence for the impact of embryonic amoxicillin exposure on disease susceptibility in offspring.
Collapse
Affiliation(s)
- Peng Gao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Cheng Chang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Fen Du
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
5
|
Welty FK, Daher R, Garelnabi M. Fish and Omega-3 Fatty Acids: Sex and Racial Differences in Cardiovascular Outcomes and Cognitive Function. Arterioscler Thromb Vasc Biol 2024; 44:89-107. [PMID: 37916414 PMCID: PMC10794037 DOI: 10.1161/atvbaha.122.318125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Both cardiovascular disease (CVD) and cognitive decline are common features of aging. One in 5 deaths is cardiac for both men and women in the United States, and an estimated 50 million are currently living with dementia worldwide. In this review, we summarize sex and racial differences in the role of fish and its very long chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in preventing CVD events and cognitive decline. In prospective studies, women with higher nonfried and fatty fish intake and women and Black individuals with higher plasma levels of EPA and DHA had a lower risk of CVD. In randomized controlled trials of EPA and DHA supplementation in primary CVD prevention, Black subjects benefited in a secondary outcome. In secondary CVD prevention, both men and women benefited, and Asians benefited as a prespecified subgroup. Fish and omega-3 polyunsaturated fatty acids are associated with prevention of cognitive decline in prospective studies. In randomized controlled trials of EPA and DHA supplementation, women have cognitive benefit. DHA seems more beneficial than EPA, and supplementation is more beneficial when started before cognitive decline. Although studies in women and racial groups are limited, life-long intake of nonfried and fatty fish lowers the risk of CVD and cognitive decline, and randomized controlled trials also show the benefit of EPA and DHA supplementation. These findings should be factored into recommendations for future research and clinical recommendations as dietary modalities could be cost-effective for disease prevention.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston (F.K.W.)
| | - Ralph Daher
- Department of Internal Medicine, Cooper University Healthcare, Camden, NJ (R.D.)
| | - Mahdi Garelnabi
- Department of Biomedical and Nutritional Sciences, U Mass Lowell Center for Population Health, University of Massachusetts (M.G.)
| |
Collapse
|
6
|
Jin Y, Kozan D, Anderson JL, Hensley M, Shen MC, Wen J, Moll T, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565134. [PMID: 37961364 PMCID: PMC10635069 DOI: 10.1101/2023.11.01.565134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Monica Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Hao T, Fang W, Xu D, Chen Q, Liu Q, Cui K, Cao X, Li Y, Mai K, Ai Q. Phosphatidylethanolamine alleviates OX-LDL-induced macrophage inflammation by upregulating autophagy and inhibiting NLRP1 inflammasome activation. Free Radic Biol Med 2023; 208:402-417. [PMID: 37660837 DOI: 10.1016/j.freeradbiomed.2023.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Oxidized low-density lipoprotein (OX-LDL)-induced inflammation and autophagy dysregulation are important events in the progression of atherosclerosis. Phosphatidylethanolamine (PE), a multifunctional phospholipid that is enriched in cells, has been proven to be directly involved in autophagy which is closely associated with inflammation. However, whether PE can influence OX-LDL-induced autophagy dysregulation and inflammation has not been reported. In the present study, we revealed that OX-LDL significantly induced macrophage inflammation through the CD36-NLRP1-caspase-1 signaling pathway in fish. Meanwhile, cellular PE levels were significantly decreased in response to OX-LDL induction. Based on the relationship between PE and autophagy, we then examined the effect of PE supplementation on OX-LDL-mediated autophagy impairment and inflammation induction in macrophages. As expected, exogenous PE restored impaired autophagy and alleviated inflammation in OX-LDL-stimulated cells. Notably, autophagy inhibitors reversed the inhibitory effect of PE on OX-LDL-induced maturation of IL-1β, indicating that the regulation of PE on OX-LDL-induced inflammation is dependent on autophagy. Furthermore, the positive effect of PE on OX-LDL-induced inflammation was relatively conserved in mouse and fish macrophages. In conclusion, we elucidated the role of the CD36-NLRP1-caspase-1 signaling pathway in OX-LDL-induced inflammation in fish and revealed for the first time that altering PE abundance in OX-LDL-treated cells could alleviate inflammasome-mediated inflammation by inducing autophagy. Given the relationship between OX-LDL-induced inflammation and atherosclerosis, this study prompts that the use of PE-rich foods promises to be a new strategy for atherosclerosis treatment in vertebrates.
Collapse
Affiliation(s)
- Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Domingues N, Gaifem J, Matthiesen R, Saraiva DP, Bento L, Marques ARA, Soares MIL, Sampaio J, Klose C, Surma MA, Almeida MS, Rodrigues G, Gonçalves PA, Ferreira J, E Melo RG, Pedro LM, Simons K, Pinho E Melo TMVD, Cabral MG, Jacinto A, Silvestre R, Vaz W, Vieira OV. Cholesteryl hemiazelate identified in CVD patients causes in vitro and in vivo inflammation. J Lipid Res 2023; 64:100419. [PMID: 37482218 PMCID: PMC10450993 DOI: 10.1016/j.jlr.2023.100419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1β and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties.
Collapse
Affiliation(s)
- Neuza Domingues
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana Gaifem
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Diana P Saraiva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luís Bento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - André R A Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria I L Soares
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | | | | | | | - Manuel S Almeida
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal
| | | | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal
| | - Ryan Gouveia E Melo
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte (CHULN), Lisboa, Portugal
| | - Luís Mendes Pedro
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte (CHULN), Lisboa, Portugal
| | | | - Teresa M V D Pinho E Melo
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences, University of Coimbra, Coimbra, Portugal
| | - M Guadalupe Cabral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Antonio Jacinto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Winchil Vaz
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, (NMS, FCM), Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Chen Z, Liu H, Zhao X, Mamateli S, Liu C, Wang L, Yu J, Liu Y, Cai J, Qiao T. Oridonin attenuates low shear stress-induced endothelial cell dysfunction and oxidative stress by activating the nuclear factor erythroid 2-related factor 2 pathway. BMC Complement Med Ther 2022; 22:180. [PMID: 35799227 PMCID: PMC9261036 DOI: 10.1186/s12906-022-03658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
Background Atherosclerosis (AS) is the primary cause of cardiovascular disease and the incidence is extremely common; however, there are currently few drugs that can effectively treat AS. Although oridonin has been widely used to treat inflammation and cancer for numerous years, to the best of our knowledge, its protective effect against AS has not been reported. Therefore, the present study aimed to investigate whether oridonin attenuated AS. Methods By using text mining, chemometric and chemogenomic methods, oridonin was predicted to be a beneficial agent for the treatment of AS. A parallel flow chamber was used to establish a low shear stress (LSS)-induced endothelial cell (EC) dysfunction model. Briefly, ECs were exposed to 3 dyn/cm2 LSS for 30 min and subsequently treated with oridonin or transfected with a small interfering RNA (siRNA) targeting nuclear factor erythroid 2-related factor 2 (NRF2). Reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH) and glutathione disulfide (GSSG) in EA.hy926 cells were analyzed to determine the level of oxidative stress. The nitric oxide (NO) levels and mRNA expression levels of endothelial NO synthase (eNOS), endothelin-1 (ET-1) and prostaglandin synthase (PGIS) in EA.hy926 cells were analyzed to determine EC dysfunction. Furthermore, the mRNA and protein expression levels of NRF2 were analyzed using reverse transcription-quantitative PCR and western blot. In addition, zebrafish were fed with a high-cholesterol diet to establish a zebrafish AS model, which was used to observe lipid accumulation and inflammation under a fluorescence microscope. Results We found LSS led to oxidative stress and EC dysfunction; this was primarily indicated through the significantly decreased SOD and GSH content, the significantly increased MDA, GSSG and ROS content, the upregulated mRNA expression levels of ET-1, and the downregulated NO levels and mRNA expression levels of eNOS and PGIS in ECs. Notably, oridonin could improve LSS-induced oxidative stress and EC dysfunction, and the effects of oridonin were reversed by the transfection with NRF2 siRNA. Oridonin also attenuated lipid accumulation and neutrophil recruitment at the LSS regions in the zebrafish AS model. Conclusions In conclusion, the results of the present study suggested that oridonin may ameliorate LSS-induced EC dysfunction and oxidative stress by activating NRF2, thereby attenuating AS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03658-2.
Collapse
|
10
|
Vasyutina M, Alieva A, Reutova O, Bakaleiko V, Murashova L, Dyachuk V, Catapano AL, Baragetti A, Magni P. The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism 2022; 129:155138. [PMID: 35051509 DOI: 10.1016/j.metabol.2022.155138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Dyslipidemias and atherosclerosis play a pivotal role in cardiovascular risk and disease. Although some pathophysiological mechanisms underlying these conditions have been unveiled, several knowledge gaps still remain. Experimental models, both in vitro and in vivo, have been instrumental to our better understanding of such complex processes. The latter have often been based on rodent species, either wild-type or, in several instances, genetically modified. In this context, the zebrafish may represent an additional very useful in vivo experimental model for dyslipidemia and atherosclerosis. Interestingly, the lipid metabolism of zebrafish shares several features with that present in humans, recapitulating some molecular features and pathophysiological aspects in a better way than that of rodents. The zebrafish model may be of help to address questions related to exposome factors as well as to genetic features, aiming to dissect selected aspects of the more complex scenario observed in humans. Indeed, exposome-related dyslipidemia/atherosclerosis research in zebrafish may target different scientific questions, related to nutrition, microbiota, temperature, light exposure at the larval stage, exposure to chemicals and epigenetic consequences of such external factors. Addressing genetic features related to dyslipidemia/atherosclerosis using the zebrafish model is already a reality and active research is now ongoing in this promising area. Novel technologies (gene and genome editing) may help to identify new candidate genes involved in dyslipidemia and dyslipidemia-related diseases. Based on these considerations, the zebrafish experimental model appears highly suitable for the study of exposome factors, genes and molecules involved in the development of atherosclerosis-related disease as well as for the validation of novel potential treatment options.
Collapse
Affiliation(s)
- Marina Vasyutina
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia.
| | - Asiiat Alieva
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | - Olga Reutova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Lada Murashova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Alberico L Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
11
|
Manuneedhi Cholan P, Morris S, Luo K, Chen J, Boland JA, McCaughan GW, Britton WJ, Oehlers SH. Transplantation of high fat fed mouse microbiota into zebrafish larvae identifies MyD88-dependent acceleration of hyperlipidaemia by Gram-positive cell wall components. Biofactors 2022; 48:329-341. [PMID: 34665899 DOI: 10.1002/biof.1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/06/2022]
Abstract
Gut dysbiosis is an important modifier of pathologies including cardiovascular disease but our understanding of the role of individual microbes is limited. Here, we have used transplantation of mouse microbiota into microbiota-deficient zebrafish larvae to study the interaction between members of a mammalian high fat diet-associated gut microbiota with a lipid rich diet challenge in a tractable model species. We find zebrafish larvae are more susceptible to hyperlipidaemia when exposed to the mouse high fat-diet-associated microbiota and that this effect can be driven by two individual bacterial species fractionated from the mouse high fat-diet-associated microbiota. We find Stenotrophomonas maltophilia increases the hyperlipidaemic potential of chicken egg yolk to zebrafish larvae independent of direct interaction between S. maltophilia and the zebrafish host. Colonization by live, or exposure to heat-killed, Enterococcus faecalis accelerates hyperlipidaemia via host MyD88 signaling. The hyperlipidaemic effect is replicated by exposure to the Gram-positive toll-like receptor agonists peptidoglycan and lipoteichoic acid in a MyD88-dependent manner. In this work, we demonstrate the applicability of zebrafish as a tractable host for the identification of gut microbes that can induce conditional host phenotypes via microbiota transplantation and subsequent challenge with a high fat diet.
Collapse
Affiliation(s)
- Pradeep Manuneedhi Cholan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Simone Morris
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kaiming Luo
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jinbiao Chen
- Liver Injury and Cancer Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jade A Boland
- Liver Injury and Cancer Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Geoff W McCaughan
- Liver Injury and Cancer Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Discipline of Infectious Diseases & Immunology and Sydney Institute for Infectious Diseases, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
12
|
Verwilligen RAF, Mulder L, Rodenburg FJ, Van Dijke A, Hoekstra M, Bussmann J, Van Eck M. Stabilin 1 and 2 are important regulators for cellular uptake of apolipoprotein B-containing lipoproteins in zebrafish. Atherosclerosis 2022; 346:18-25. [PMID: 35247629 DOI: 10.1016/j.atherosclerosis.2022.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Scavenger receptors form a superfamily of membrane-bound receptors that bind and internalize different types of ligands, including pro-atherogenic oxidized low-density lipoproteins (oxLDLs). In vitro studies have indicated a role for the liver sinusoidal endothelial cell receptors stabilin 1 (stab1) and 2 (stab2) in oxLDL clearance. In this study, we evaluated the potential role of stab1 and stab2 in lipoprotein uptake in zebrafish, an upcoming model for studying cholesterol metabolism and atherosclerosis. METHODS Lipoproteins were injected in the duct of Cuvier of wild-type (ABTL) or stab1 and stab2 mutant (stab1-/-stab2-/-) zebrafish larvae at 3 days post-fertilization. To examine the effect of stabilin deficiency on lipoprotein and cholesterol metabolism, zebrafish larvae were challenged with a high cholesterol diet (HCD; 4% w/w) for 10 days. RESULTS Lipoprotein injections showed impaired uptake of both LDL and oxLDL into the vessel wall of caudal veins of stab1-/-stab2-/- zebrafish, which was paralleled by redistribution to tissue macrophages. Total body cholesterol levels did not differ between HCD-fed stab1-/-stab2-/- and ABTL zebrafish. However, stab1-/-stab2-/- larvae exhibited 1.4-fold higher mRNA expression levels of ldlra involved in (modified) LDL uptake, whereas the expression levels of scavenger receptors scarb1 and cd36 were significantly decreased. CONCLUSIONS We have shown that stabilins 1 and 2 have an important scavenging function for apolipoprotein B-containing lipoproteins in zebrafish and that combined deficiency of these two proteins strongly upregulates the clearance of lipoproteins by macrophages within the caudal vein. Our current study highlights the use of zebrafish as model to study lipoprotein metabolism and liver sinusoidal endothelial cell function.
Collapse
Affiliation(s)
- Robin A F Verwilligen
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| | - Lindsay Mulder
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | | | - Amy Van Dijke
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Menno Hoekstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Jeroen Bussmann
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Miranda Van Eck
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| |
Collapse
|
13
|
Gora AH, Rehman S, Kiron V, Dias J, Fernandes JMO, Olsvik PA, Siriyappagouder P, Vatsos I, Schmid-Staiger U, Frick K, Cardoso M. Management of Hypercholesterolemia Through Dietary ß-glucans–Insights From a Zebrafish Model. Front Nutr 2022; 8:797452. [PMID: 35096942 PMCID: PMC8790573 DOI: 10.3389/fnut.2021.797452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Consumption of lipid-rich foods can increase the blood cholesterol content. β-glucans have hypocholesterolemic effect. However, subtle changes in their molecular branching can influence bioactivity. Therefore, a comparative investigation of the cholesterol-lowering potential of two β-glucans with different branching patterns and a cholesterol-lowering drug, namely simvastatin was undertaken employing the zebrafish (Danio rerio) model of diet-induced hypercholesterolemia. Fish were allocated to 5 dietary treatments; a control group, a high cholesterol group, two β-glucan groups, and a simvastatin group. We investigated plasma total cholesterol, LDL and HDL cholesterol levels, histological changes in the tissues, and explored intestinal transcriptomic changes induced by the experimental diets. Dietary cholesterol likely caused the suppression of endogenous cholesterol biosynthesis, induced dysfunction of endoplasmic reticulum and mitochondria, and altered the histomorphology of the intestine. The two β-glucans and simvastatin significantly abated the rise in plasma cholesterol levels and restored the expression of specific genes to alleviate the endoplasmic reticulum-related effects induced by the dietary cholesterol. Furthermore, the distinct patterns of transcriptomic changes in the intestine elicited by the oat and microalga β-glucans impacted processes such as fatty acid metabolism, protein catabolic processes, and nuclear division. Oat and microalgal β-glucans also altered the pattern of lipid deposition in the liver. Our study provides insights into the effectiveness of different β-glucans to alleviate dysfunctions in lipid metabolism caused by dietary cholesterol.
Collapse
Affiliation(s)
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Viswanath Kiron
| | | | | | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ioannis Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Innovation Field Algae Biotechnology-Development, Stuttgart, Germany
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
14
|
He LF, Wang C, Zhang YF, Guo CC, Wan Y, Li YX. Effect of Emodin on Hyperlipidemia and Hepatic Lipid Metabolism in Zebrafish Larvae Fed a High-Cholesterol Diet. Chem Biodivers 2021; 19:e202100675. [PMID: 34866324 DOI: 10.1002/cbdv.202100675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Hyperlipidemia (HLP) is a complex pathological condition results from lipid metabolism disorder, which is closely related to obesity, atherosclerosis and steatohepatitis. Emodin (EM), a natural anthraquinone, exhibits prominent hypolipidemic effects. However, its exact mechanism is still unclear. In this study, we successfully established hyperlipidemic zebrafish model induced by 4 % high-cholesterol diet (HCD) for 10 days and explored the anti-hyperlipidemic roles and underlying mechanisms of EM. The results indicated that EM attenuated the mortality and body mass index (BMI) of zebrafish with HLP, and ameliorated abnormal lipid levels involved in TC, TG, LDL-C and HDL-C levels. Besides, EM effectively reduced lipid accumulation in blood vessels and liver, alleviated hepatic histological damage, and inhibited vascular neutrophil inflammation. Finally, the mRNA expression of molecules related to lipid metabolism were studied by using real-time quantitative polymerase chain reaction (RT-qPCR) to investigated the underlying mechanism. Further results found that treatment with EM up-regulated AMPKα, LDLR, ABCA1 and ABCG1, and down-regulated SREBP-2, PCSK9 and HMGCR expression. In conclusion, EM showed a prominent mitigative effect on lipid metabolism disorder in zebrafish larvae with HCD-stimulated HLP, which was associated with the enhancement of LDL-C uptake and reverse cholesterol transport, and inhibition of cholesterol synthesis.
Collapse
Affiliation(s)
- Lin-Feng He
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Cheng Wang
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Ya-Fang Zhang
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Chao-Cheng Guo
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yan Wan
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yun-Xia Li
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| |
Collapse
|
15
|
Pant DC, Nazarko TY. Selective autophagy: the rise of the zebrafish model. Autophagy 2021; 17:3297-3305. [PMID: 33228439 PMCID: PMC8632090 DOI: 10.1080/15548627.2020.1853382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Selective autophagy is a specific elimination of certain intracellular substrates by autophagic pathways. The most studied macroautophagy pathway involves tagging and recognition of a specific cargo by the autophagic membrane (phagophore) followed by the complete sequestration of targeted cargo from the cytosol by the double-membrane vesicle, autophagosome. Until recently, the knowledge about selective macroautophagy was minimal, but now there is a panoply of links elucidating how phagophores engulf their substrates selectively. The studies of selective autophagy processes have further stressed the importance of using the in vivo models to validate new in vitro findings and discover the physiologically relevant mechanisms. However, dissecting how the selective autophagy occurs yet remains difficult in living organisms, because most of the organelles are relatively inaccessible to observation and experimental manipulation in mammals. In recent years, zebrafish (Danio rerio) is widely recognized as an excellent model for studying autophagic processes in vivo because of its optical accessibility, genetic manipulability and translational potential. Several selective autophagy pathways, such as mitophagy, xenophagy, lipophagy and aggrephagy, have been investigated using zebrafish and still need to be studied further, while other selective autophagy pathways, such as pexophagy or reticulophagy, could also benefit from the use of the zebrafish model. In this review, we shed light on how zebrafish contributed to our understanding of these selective autophagy processes by providing the in vivo platform to study them at the organismal level and highlighted the versatility of zebrafish model in the selective autophagy field.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CMA: chaperone-mediated autophagy; CQ: chloroquine; HsAMBRA1: human AMBRA1; KD: knockdown; KO: knockout; LD: lipid droplet; MMA: methylmalonic acidemia; PD: Parkinson disease; Tg: transgenic.
Collapse
Affiliation(s)
- Devesh C. Pant
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Dendrobium catenatum Lindl. Water Extracts Attenuate Atherosclerosis. Mediators Inflamm 2021; 2021:9951946. [PMID: 34475805 PMCID: PMC8407999 DOI: 10.1155/2021/9951946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives Dendrobium catenatum Lindl. (DH) is a Chinese herbal medicine, which is often used to make tea to improve immunity in China. Rumor has it that DH has a protective effect against cardiovascular disease. However, it is not clear how DH can prevent cardiovascular disease, such as atherosclerosis (AS). Therefore, the purpose of this study is to study whether DH can prevent AS and the underlying mechanisms. Methods Zebrafish larvae were fed with high-cholesterol diet (HCD) to establish a zebrafish AS model. Then, we used DH water extracts (DHWE) to pretreat AS zebrafish. The plaque formation was detected by HE, EVG, and oil red O staining. Neutrophil and macrophage counts were calculated to evaluate the inflammation level. Reactive oxygen species (ROS) activity, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in zebrafish were measured to reflect oxidative stress. The cholesterol accumulation and the levels of lipid, triglyceride (TG), and total cholesterol (TC) were measured to reflect lipid metabolism disorder. Then, parallel flow chamber was utilized to establish a low shear stress- (LSS-) induced endothelial cell (EC) dysfunction model. EA.hy926 cells were exposed to LSS (3 dyn/cm2) for 30 min and treated with DHWE. The levels of ROS, SOD, MDA, glutathione (GSH), and glutathiol (GSSG) in EA.hy926 cells were analysed to determine oxidative stress. The release of nitric oxide (NO), endothelin-1 (ET-1), and epoprostenol (PGI2) in EA.hy926 cells was measured to reflect EC dysfunction. The mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in EA.hy926 cells was detected to reflect EC dysfunction inflammation. Results The results showed that DHWE significantly reduced cholesterol accumulation and macrophage infiltration in early AS. Finally, DHWE significantly alleviate the lipid metabolism disorder, oxidative stress, and inflammation to reduce the plaque formation of AS zebrafish larval model. Meanwhile, we also found that DHWE significantly improved LSS-induced EC dysfunction and oxidative stress in vitro. Conclusion Our results indicate that DHWE could be used as a prevention method to prevent AS.
Collapse
|
17
|
Tang D, Geng F, Yu C, Zhang R. Recent Application of Zebrafish Models in Atherosclerosis Research. Front Cell Dev Biol 2021; 9:643697. [PMID: 33718384 PMCID: PMC7947229 DOI: 10.3389/fcell.2021.643697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is one of the leading causes of death worldwide. Establishing animal models of atherosclerosis is of great benefit for studying its complicated pathogenesis and screening and evaluating related drugs. Although researchers have generated a variety of models for atherosclerosis study in rabbits, mice and rats, the limitations of these models make it difficult to monitor the development of atherosclerosis, and these models are unsuitable for large scale screening of potential therapeutic targets. On the contrast, zebrafish can fulfill these purposes thanks to their fecundity, rapid development ex utero, embryonic transparency, and conserved lipid metabolism process. Thus, zebrafish have become a popular alternative animal model for atherosclerosis research. In this mini review, we summarize different zebrafish models used to study atherosclerosis, focusing on the latest applications of these models to the dynamic monitoring of atherosclerosis progression, mechanistic study of therapeutic intervention and drug screening, and assessment of the impacts of other risk factors.
Collapse
Affiliation(s)
- Dandan Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To provide an update on dietary measures to lower levels of LDL-C and triglyceride and reduce cardiovascular (CVD) outcomes. RECENT FINDINGS Fifty-year follow-up in the Seven Countries Study confirmed that cholesterol levels correlate with saturated fat intake and all-cause mortality and age at death. In the PURE study, refined carbohydrate increased CVD risk whereas saturated fat did not despite increasing LDL-C levels; limitations are discussed. Reports on CVD risk with eggs provide conflicting results. Plant-based diets with healthful complex carbohydrates reduced CVD. The REDUCE-IT trial lowered triglyceride 21.6% and reduced CVD events 26.1% with an omega-3 fatty acid, An omega-3 fatty acid index at least 4% with EPA and docosahexaenoic acid prevented coronary plaque progression. A clinician guide to counsel patients on nutrition and heart healthy diets was recently published. SUMMARY Based on the evidence, individuals should continue to minimize saturated fats and refined carbohydrates, eliminate trans-fat and increase fruits, vegetables, whole grains, low-fat dairy, and fish or other omega-3 fatty acids. Adhering to a Mediterranean diet is strongly recommended because of lowering CVD and total mortality. High-dose omega-3 fatty acids lower triglyceride, reduce CVD and prevent coronary plaque progression.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Protective Activities of Dendrobium huoshanense C. Z. Tang et S. J. Cheng Polysaccharide against High-Cholesterol Diet-Induced Atherosclerosis in Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8365056. [PMID: 32724495 PMCID: PMC7366212 DOI: 10.1155/2020/8365056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Cardiovascular disease is the highest cause of death, and atherosclerosis (AS) is the primary pathogenesis of many cardiovascular diseases. In this study, we aim to investigate the possible pharmaceutical effects of Dendrobium huoshanense C. Z. Tang et S. J. Cheng polysaccharide (DHP) in AS. We fed zebrafish with high-cholesterol diet (HCD) to establish a zebrafish AS model and treated with DHP and observed plaque formation and neutrophil counts under a fluorescence microscope. Next, a parallel flow chamber was utilized to establish low shear stress- (LSS-) induced endothelial cell (EC) dysfunction model. We observed that DHP significantly improved HCD-induced lipid deposition, oxidative stress, and inflammatory response, mainly showing that DHP significantly increased superoxide dismutase (SOD) activity, decreased plaque formation, and decreased neutrophil recruitment and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS). Furthermore, DHP significantly improved LSS-induced oxidative stress and EC dysfunction. Our results indicated that DHP can exert treatment effects on AS, which may attribute to its hypolipidemic, antioxidant, anti-inflammatory activities and improving LSS-induced EC dysfunction. DHP has promising potential for further development as a functional natural medicine source targeted at AS prevention.
Collapse
|
20
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Tian C, Huang R, Tang F, Lin Z, Cheng N, Han X, Li S, Zhou P, Deng S, Huang H, Zhao H, Xu J, Li Z. Transient Receptor Potential Ankyrin 1 Contributes to Lysophosphatidylcholine-Induced Intracellular Calcium Regulation and THP-1-Derived Macrophage Activation. J Membr Biol 2019; 253:43-55. [PMID: 31820013 DOI: 10.1007/s00232-019-00104-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
Lysophosphatidylcholine (LPC) is a major atherogenic lipid that stimulates an increase in mitochondrial reactive oxygen species (mtROS) and the release of cytokines under inflammasome activation. However, the potential receptors of LPC in macrophages are poorly understood. Members of the transient receptor potential (TRP) channel superfamily, which is crucially involved in transducing environmental irritant stimuli into nociceptor activity, are potential receptors of LPC. In this study, we investigated whether LPC can induce the activation of transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily. The functional expression of TRPA1 was first detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and calcium imaging in human acute monocytic leukemia cell line (THP-1)-derived macrophages. The mechanism by which LPC induces the activation of macrophages through TRPA1 was verified by cytoplasmic and mitochondrial calcium imaging, mtROS detection, a JC-1 assay, enzyme-linked immunosorbent assay, the CCK-8 assay and the lactate dehydrogenase (LDH) cytotoxic assay. LPC induced the activation of THP-1-derived macrophages via calcium influx, and this activation was suppressed by potent and selective inhibitors of TRPA1. These results indicated that TRPA1 can mediate mtROS generation, mitochondrial membrane depolarization, the secretion of IL-1β and cytotoxicity through cellular and mitochondrial Ca2+ influx in LPC-treated THP-1-derived macrophages. Therefore, the inhibition of TRPA1 may protect THP-1-derived macrophages against LPC-induced injury.
Collapse
Affiliation(s)
- Chao Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Rongqi Huang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Feng Tang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Zuoxian Lin
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Na Cheng
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China.,Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiaobo Han
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Shuai Li
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Peng Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hualin Huang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Huifang Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Junjie Xu
- Guangzhou JYK Biotechnology Company Limited, Guangzhou, Guangdong, China
| | - Zhiyuan Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. .,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kai-Yuan Road, Guangzhou Science Park, Guangzhou, 510530, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China. .,Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China. .,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Luo H, Li QQ, Wu N, Shen YG, Liao WT, Yang Y, Dong E, Zhang GM, Liu BR, Yue XZ, Tang XQ, Yang HS. Chronological in vivo imaging reveals endothelial inflammation prior to neutrophils accumulation and lipid deposition in HCD-fed zebrafish. Atherosclerosis 2019; 290:125-135. [DOI: 10.1016/j.atherosclerosis.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
|
23
|
PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a Human Antibody Detects Clinically Relevant Atherothrombosis. J Am Coll Cardiol 2019; 71:321-335. [PMID: 29348025 DOI: 10.1016/j.jacc.2017.11.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidation-specific epitopes (OSEs) are proinflammatory, and elevated levels in plasma predict cardiovascular events. OBJECTIVES The purpose of this study was to develop novel positron emission tomography (PET) probes to noninvasively image OSE-rich lesions. METHODS An antigen-binding fragment (Fab) antibody library was constructed from human fetal cord blood. After multiple rounds of screening against malondialdehyde-acetaldehyde (MAA) epitopes, the Fab LA25 containing minimal nontemplated insertions in the CDR3 region was identified and characterized. In mice, pharmacokinetics, biodistribution, and plaque specificity studies were performed with Zirconium-89 (89Zr)-labeled LA25. In rabbits, 89Zr-LA25 was used in combination with an integrated clinical PET/magnetic resonance (MR) system. 18F-fluorodeoxyglucose PET and dynamic contrast-enhanced MR imaging were used to evaluate vessel wall inflammation and plaque neovascularization, respectively. Extensive ex vivo validation was carried out through a combination of gamma counting, near infrared fluorescence, autoradiography, immunohistochemistry, and immunofluorescence. RESULTS LA25 bound specifically to MAA epitopes in advanced and ruptured human atherosclerotic plaques with accompanying thrombi and in debris from distal protection devices. PET/MR imaging 24 h after injection of 89Zr-LA25 showed increased uptake in the abdominal aorta of atherosclerotic rabbits compared with nonatherosclerotic control rabbits, confirmed by ex vivo gamma counting and autoradiography. 18F-fluorodeoxyglucose PET, dynamic contrast-enhanced MR imaging, and near-infrared fluorescence signals were also significantly higher in atherosclerotic rabbit aortas compared with control aortas. Enhanced liver uptake was also noted in atherosclerotic animals, confirmed by the presence of MAA epitopes by immunostaining. CONCLUSIONS 89Zr-LA25 is a novel PET radiotracer that may allow noninvasive phenotyping of high-risk OSE-rich lesions.
Collapse
|
24
|
Montasser ME, O’Hare EA, Wang X, Howard AD, McFarland R, Perry JA, Ryan KA, Rice K, Jaquish CE, Shuldiner AR, Miller M, Mitchell BD, Zaghloul NA, Chang YPC. An APOO Pseudogene on Chromosome 5q Is Associated With Low-Density Lipoprotein Cholesterol Levels. Circulation 2018; 138:1343-1355. [PMID: 29593015 PMCID: PMC6162188 DOI: 10.1161/circulationaha.118.034016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Elevated levels of low-density lipoprotein cholesterol (LDL-C) are a major risk factor for cardiovascular disease via its contribution to the development and progression of atherosclerotic lesions. Although the genetic basis of LDL-C has been studied extensively, currently known genetic variants account for only ≈20% of the variation in LDL-C levels. METHODS Through an array-based association analysis in 1102 Amish subjects, we identified a variant strongly associated with LDL-C levels. Using a combination of genetic analyses, zebrafish models, and in vitro experiments, we sought to identify the causal gene driving this association. RESULTS We identified a founder haplotype associated with a 15 mg/dL increase in LDL-C on chromosome 5. After recombination mapping, the associated region contained 8 candidate genes. Using a zebrafish model to evaluate the relevance of these genes to cholesterol metabolism, we found that expression of the transcribed pseudogene, APOOP1, increased LDL-C and vascular plaque formation. CONCLUSIONS Based on these data, we propose that APOOP1 regulates levels of LDL-C in humans, thus identifying a novel mechanism of lipid homeostasis.
Collapse
Affiliation(s)
- May E. Montasser
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Elizabeth A. O’Hare
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiaochun Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Alicia D. Howard
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rebecca McFarland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - James A. Perry
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kenneth Rice
- Dept of Biostatistics, University of Washington, Seattle, WA
| | | | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael Miller
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Norann A. Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yen-Pei C. Chang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
25
|
Haghikia A, Landmesser U. Lipoproteins and Cardiovascular Redox Signaling: Role in Atherosclerosis and Coronary Disease. Antioxid Redox Signal 2018; 29:337-352. [PMID: 28817963 DOI: 10.1089/ars.2017.7052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Lipoproteins, such as low-density lipoprotein, play a causal role in the development of atherosclerosis and coronary disease. Recent Advances: Lipoproteins can stimulate vascular production of reactive oxygen species, which act as important signaling molecules in the cardiovascular system contributing to the pathophysiology of endothelial dysfunction, hypertension, and atherosclerosis. CRITICAL ISSUES Modified lipoproteins have emerged as important regulators of redox signaling, such as oxidized or carbamylated low-density lipoprotein or modified high-density lipoproteins, that contain oxidized lipids, an altered protein cargo, and associated small molecules, such as symmetric dimethylarginine. FUTURE DIRECTIONS In this review, we provide an overview on signaling pathways stimulated by modified lipoproteins in the cardiovascular system and their potential role in cardiovascular disease development. Moreover, we highlight novel aspects of how gut microbiome-related mechanisms-a growing research field-may contribute to lipoprotein modification with subsequent impact on cardiovascular redox signaling. Antioxid. Redox Signal. 29, 337-352.
Collapse
Affiliation(s)
- Arash Haghikia
- 1 Department of Cardiology, Charité Universitätsmedizin Berlin , Berlin, Germany
- 2 German Center for Cardiovascular Research (DZHK) , partner site Berlin, Berlin, Germany
| | - Ulf Landmesser
- 1 Department of Cardiology, Charité Universitätsmedizin Berlin , Berlin, Germany
- 2 German Center for Cardiovascular Research (DZHK) , partner site Berlin, Berlin, Germany
- 3 Berlin Institute of Health (BIH) , Berlin, Germany
| |
Collapse
|
26
|
Schneider DA, Choi SH, Agatisa-Boyle C, Zhu L, Kim J, Pattison J, Sears DD, Gordts PLSM, Fang L, Miller YI. AIBP protects against metabolic abnormalities and atherosclerosis. J Lipid Res 2018; 59:854-863. [PMID: 29559522 PMCID: PMC5928435 DOI: 10.1194/jlr.m083618] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells and macrophages. In zebrafish and mice, AIBP-mediated regulation of cholesterol levels in the plasma membrane of endothelial cells controls angiogenesis. The goal of this work was to evaluate metabolic changes and atherosclerosis in AIBP loss-of-function and gain-of-function animal studies. Here, we show that Apoa1bp-/-Ldlr-/- mice fed a high-cholesterol, high-fat diet had exacerbated weight gain, liver steatosis, glucose intolerance, hypercholesterolemia, hypertriglyceridemia, and larger atherosclerotic lesions compared with Ldlr-/- mice. Feeding Apoa1bp-/-Ldlr-/- mice a high-cholesterol, normal-fat diet did not result in significant differences in lipid levels or size of atherosclerotic lesions from Ldlr-/- mice. Conversely, adeno-associated virus-mediated overexpression of AIBP reduced hyperlipidemia and atherosclerosis in high-cholesterol, high-fat diet-fed Ldlr-/- mice. Injections of recombinant AIBP reduced aortic inflammation in Ldlr-/- mice fed a short high-cholesterol, high-fat diet. Conditional overexpression of AIBP in zebrafish also reduced diet-induced vascular lipid accumulation. In experiments with isolated macrophages, AIBP facilitated cholesterol efflux to HDL, reduced lipid rafts content, and inhibited inflammatory responses to lipopolysaccharide.jlr Our data demonstrate that AIBP confers protection against diet-induced metabolic abnormalities and atherosclerosis.
Collapse
Affiliation(s)
- Dina A Schneider
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Soo-Ho Choi
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Laurence Zhu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030
| | - Jungsu Kim
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Jennifer Pattison
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Dorothy D Sears
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093.,Family Medicine and Public Health, University of California at San Diego, La Jolla, CA 92093
| | - Philip L S M Gordts
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030
| | - Yury I Miller
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
27
|
Anti-hypercholesterolemic Effect of Berbamine Isolated from Rhizoma Coptidis in Hypercholesterolemic Zebrafish Induced by High-Cholesterol Diet. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:292-306. [PMID: 29755560 PMCID: PMC5937099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anti-hypercholesterolemic effect of berbamine (BBM) isolated from Rhizoma Coptidis (RC) was investigated in hypercholesterolemic zebrafish model induced by high-cholesterol (HC) diet. Zebrafish embryo assay revealed no significant difference in morphology and cell death with the treatment of BBM less than 20 μg/mL. In zebrafish larvae, the fluorescently labeled cholesterol in caudal artery was reduced dose-dependently after BBM treatment. For adult zebrafish, administration of 0.2% BBM exhibited a significant decrease in plasma total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-c) levels by 37%, 38% and 28%, respectively, along with a fall in lipid content in liver. Further investigation suggested that the mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and microsomal triglyceride transfer protein (MTP) in liver were down-regulated and the transcription levels of liver gene low-density lipoprotein receptor (LDLR) and cytochrome P450 polypeptide 1a of subfamily A of family 7 (CYP7A1a) were significantly up-regulated with BBM treatment. Histological study showed that BBM can alleviate hepatic steatosis induced by HC diet. These data suggested that BBM has anti-hypercholesterolemic and hepatoprotective effects. The mechanism probably related to the up-regulation of cholesterol transport and bile acid synthesis as well as inhibition of cholesterol synthesis and lipoprotein assembly or secretion.
Collapse
|
28
|
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, Rossi AG, Tran L, Tucker C, Tyler CR, Stone V. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 2017; 48:252-271. [PMID: 29239234 DOI: 10.1080/10408444.2017.1404965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.
Collapse
Affiliation(s)
| | - Rachel Verdon
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Suzanne Gillies
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - David M Brown
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | | | - Theodore B Henry
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Adriano G Rossi
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Lang Tran
- c Institute of Occupational Medicine , Edinburgh , UK
| | - Carl Tucker
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Charles R Tyler
- d Department of Biosciences , College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | - Vicki Stone
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
29
|
Liu C, Kim YS, Kim J, Pattison J, Kamaid A, Miller YI. Modeling hypercholesterolemia and vascular lipid accumulation in LDL receptor mutant zebrafish. J Lipid Res 2017; 59:391-399. [PMID: 29187523 DOI: 10.1194/jlr.d081521] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/11/2017] [Indexed: 12/11/2022] Open
Abstract
Elevated plasma LDL cholesterol is the dominant risk factor for the development of atherosclerosis and cardiovascular disease. Deficiency in the LDL receptor (LDLR) is a major cause of familial hypercholesterolemia in humans, and the LDLR knockout mouse is a major animal model of atherosclerosis. Here we report the generation and characterization of an ldlr mutant zebrafish as a new animal model to study hypercholesterolemia and vascular lipid accumulation, an early event in the development of human atherosclerosis. The ldlr mutant zebrafish were characterized by activated SREBP-2 pathway and developed moderate hypercholesterolemia when fed a normal diet. However, a short-term, 5-day feeding of ldlr mutant larvae with a high-cholesterol diet (HCD) resulted in exacerbated hypercholesterolemia and accumulation of vascular lipid deposits. Lomitapide, an inhibitor of apoB lipoprotein secretion, but not the antioxidant probucol, significantly reduced accumulation of vascular lipid deposits in HCD-fed ldlr mutant larvae. Furthermore, ldlr mutants were defective in hepatic clearance of lipopolysaccharides, resulting in reduced survival. Taken together, our data suggest that the ldlr knockout zebra-fish is a versatile model for studying the function of the LDL receptor, hypercholesterolemia, and related vascular pathology in the context of early atherosclerosis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Young Sook Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine Republic of Korea, Daejeon, South Korea
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jennifer Pattison
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Andrés Kamaid
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine Republic of Korea, Daejeon, South Korea.,Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine Republic of Korea, Daejeon, South Korea
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
30
|
Choi W, Kim HM, Park S, Yeom E, Doh J, Lee SJ. Variation in wall shear stress in channel networks of zebrafish models. J R Soc Interface 2017; 14:rsif.2016.0900. [PMID: 28148768 DOI: 10.1098/rsif.2016.0900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
Physiological functions of vascular endothelial cells (ECs) vary depending on wall shear stress (WSS) magnitude, and the functional change affects the pathologies of various cardiovascular systems. Several in vitro and in vivo models have been used to investigate the functions of ECs under different WSS conditions. However, these models have technical limitations in precisely mimicking the physiological environments of ECs and monitoring temporal variations of ECs in detail. Although zebrafish (Danio rerio) has several strategies to overcome these technical limitations, zebrafish cannot be used as a perfect animal model because applying various WSS conditions on blood vessels of zebrafish is difficult. This study proposes a new zebrafish model in which various WSS can be applied to the caudal vein. The WSS magnitude is controlled by blocking some parts of blood-vessel networks. The accuracy and reproducibility of the proposed method are validated using an equivalent circuit model of blood vessels in zebrafish. The proposed method is applied to lipopolysaccharide (LPS)-stimulated zebrafish as a typical application. The proposed zebrafish model can be used as an in vivo animal model to investigate the relationship between WSS and EC physiology or WSS-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Woorak Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Hye Mi Kim
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Sungho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Junsang Doh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| |
Collapse
|
31
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
32
|
Byun YS, Yang X, Bao W, DeMicco D, Laskey R, Witztum JL, Tsimikas S. Oxidized Phospholipids on Apolipoprotein B-100 and Recurrent Ischemic Events Following Stroke or Transient Ischemic Attack. J Am Coll Cardiol 2017; 69:147-158. [DOI: 10.1016/j.jacc.2016.10.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
|
33
|
Leibundgut G, Lee JH, Strauss BH, Segev A, Tsimikas S. Acute and long-term effect of percutaneous coronary intervention on serially-measured oxidative, inflammatory, and coagulation biomarkers in patients with stable angina. J Thromb Thrombolysis 2016; 41:569-80. [PMID: 26964999 DOI: 10.1007/s11239-016-1351-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To derive insights into the temporal changes in oxidative, inflammatory and coagulation biomarkers in patients with stable angina undergoing percutaneous coronary intervention (PCI). PCI is associated with a variety of biochemical and mechanical stresses to the vessel wall. Oxidized phospholipids are present on plasminogen (OxPL-PLG) and potentiate fibrinolysis in vitro. We recently showed that OxPL-PLG increase following acute myocardial infarction, suggesting that they are involved in atherothrombosis. Plasma samples were collected before, immediately after, 6 and 24 h, 3 and 7 days, and 1, 3, and 6 months after PCI in 125 patients with stable angina undergoing uncomplicated PCI. Plasminogen levels, OxPL-PLG, and an array of 16 oxidative, inflammatory and coagulation biomarkers were measured with established assays. OxPL-PLG and plasminogen declined significantly immediately post-PCI, rebounded to baseline, peaked at 3 days and slowly returned to baseline by 6 months (p < 0.0001 by ANOVA). The temporal trends to maximal peak in biomarkers were as follows: immediately post PCI: OxPL-apoB and lipoprotein (a); Day 1-the inflammatory biomarker IL-6; Day 3-CRP and coagulation biomarkers OxPL-PLG, plasminogen and tissue plasminogen activity; Day 3 to 7-plasminogen activator inhibitor activity, and complement factor H binding to malondialdehyde-LDL and MDA-LDL IgG; Day 7-30 MDA-LDL IgM, CuOxLDL IgM, and ApoB-IC IgM and IgG; >30 days uPA activity, uPA antigen, CuOxLDL IgG and peptide mimotope to MDA-LDL. Most of the biomarkers trended to baseline by 6 months. PCI results in a specific, temporal sequence of changes in plasma biomarkers. These observations provide insights into the effects of iatrogenic barotrauma and plaque disruption during PCI and suggest avenues of investigation to explain complications of PCI and development of targeted therapies to enhance procedural success.
Collapse
Affiliation(s)
- Gregor Leibundgut
- Division of Cardiology, University of Basel, Basel, Switzerland.,Vascular Medicine Program, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92993-0682, USA
| | - Jun-Hee Lee
- Division of Cardiology, Kang-Dong Sacred Heart Hospital, Hallym University Medical Center, Seoul, Korea
| | - Bradley H Strauss
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada.,Schulich Heart Center, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| | - Amit Segev
- The Heart Centre, Chaim Sheba Medical Centre, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sotirios Tsimikas
- Vascular Medicine Program, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92993-0682, USA.
| |
Collapse
|
34
|
Otis JP, Farber SA. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J Vis Exp 2016. [PMID: 27842350 DOI: 10.3791/54735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish are emerging as a model of dietary lipid processing and metabolic disease. This protocol describes how to feed larval zebrafish a lipid-rich meal, which consists of an emulsion of chicken egg yolk liposomes created by sonicating egg yolk in embryo media. Detailed instructions are provided to screen larvae for egg yolk consumption so that larvae that fail to feed will not confound experimental results. The chicken egg yolk liposomes can be spiked with fluorescent lipid analogs, including fatty acids and cholesterol, enabling both systemic and subcellular visualization of dietary lipid processing. Several methods are described to mount larvae that are conducive to short- and long-term live imaging with both upright and inverted objectives at high and low magnification. Additionally presented is an assay to quantify larval food intake by extracting the lipids of larvae fed fluorescent lipid analogs, spotting the lipids on a thin layer chromatography plate, and quantifying the fluorescence. Finally, critical aspects of the procedures, important controls, options for modifying the protocols to address specific experimental questions, and potential limitations are discussed. These techniques can be applied not only to focused, hypothesis driven inquiries, but also to a variety of screens and live imaging techniques to study dietary lipid metabolism and the control of food intake.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Embryology, Carnegie Institution for Science
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science; Department of Biology, Johns Hopkins University;
| |
Collapse
|
35
|
Domingues N, Estronca LMBB, Silva J, Encarnação MR, Mateus R, Silva D, Santarino IB, Saraiva M, Soares MIL, Pinho E Melo TMVD, Jacinto A, Vaz WLC, Vieira OV. Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:210-220. [PMID: 27793708 DOI: 10.1016/j.bbalip.2016.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages. These features, coupled to others such as inflammation, are typically seen in atherosclerosis. OBJECTIVE To obtain insights into the mechanism of cholesteryl hemiester-induced pathological changes in lysosome function and induction of inflammation in vitro and assess their impact in vivo. METHODS AND RESULTS We have examined the effects of ChS on macrophages (murine cell lines and primary cultures) in detail. Specifically, lysosomal morphology, pH, and proteolytic capacity were examined. Exposure of macrophages to sub-toxic ChS concentrations caused enlargement of the lysosomes, changes in their luminal pH, and accumulation of cargo in them. In primary mouse bone marrow-derived macrophages (BMDM), ChS-exposure increased the secretion of IL-1β, TNF-α and IL-6. In zebrafish larvae (wild-type AB and PU.1:EGFP), fed with a ChS-enriched diet, we observed lipid accumulation, myeloid cell-infiltration in their vasculature and decrease in larval survival. Under the same conditions the effects of ChS were more profound than the effects of free cholesterol (FC). CONCLUSIONS Our data strongly suggest that cholesteryl hemiesters are pro-atherogenic lipids able to mimic features of Ox-LDL both in vitro and in vivo.
Collapse
Affiliation(s)
- Neuza Domingues
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Luís M B B Estronca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - João Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Marisa R Encarnação
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Rita Mateus
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Diogo Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Inês B Santarino
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Maria I L Soares
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | | | - António Jacinto
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Otília V Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
36
|
Cooke JP. Mechanisms of Atherosclerosis: New Insights and Novel Therapeutic Approaches. Methodist Debakey Cardiovasc J 2016; 11:154-5. [PMID: 26634021 DOI: 10.14797/mdcj-11-3-154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- John P Cooke
- Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
37
|
Zhu L, Fang L. AIBP: A Novel Molecule at the Interface of Cholesterol Transport, Angiogenesis, and Atherosclerosis. Methodist Debakey Cardiovasc J 2016; 11:160-5. [PMID: 26634023 DOI: 10.14797/mdcj-11-3-160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease, which is often driven by hypercholesterolemia and subsequent coronary atherosclerosis, is the number-one cause of morbidity and mortality in the United States. Based on long-term epidemiological studies, high-density lipoprotein cholesterol (HDL-C) levels are inversely correlated with risk for coronary artery disease (CAD). HDL-mediated reverse cholesterol transport (RCT) is responsible for cholesterol removal from the peripheral tissues and return to the liver for final elimination.1 In atherosclerosis, intraplaque angiogenesis promotes plaque growth and increases plaque vulnerability. Conceivably, the acceleration of RCT and disruption of intraplaque angiogenesis would inhibit atherosclerosis and reduce CAD. We have identified a protein called apoA-I binding protein (AIBP) that augments HDL functionality by accelerating cholesterol efflux. Furthermore, AIBP inhibits vascular endothelial growth factor receptor 2 activation in endothelial cells and limits angiogenesis.2 The following discusses the prospect of using AIBP as a novel therapeutic approach for the treatment of CAD.
Collapse
Affiliation(s)
- Laurence Zhu
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| | - Longhou Fang
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
38
|
Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman HR, Hwang LH, Faull KF, Lusis AJ, Reddy ST, Fogelman AM. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res 2016; 57:832-47. [PMID: 26965826 DOI: 10.1194/jlr.m064352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Mouse chow supplemented with lysophosphatidylcholine with oleic acid at sn-1 and a hydroxyl group at sn-2 (LysoPC 18:1) increased LysoPC 18:1 in tissue of the jejunum of LDL receptor (LDLR)-null mice by 8.9 ± 1.7-fold compared with chow alone. Western diet (WD) contained dramatically less phosphatidylcholine 18:1 or LysoPC 18:1 compared with chow, but feeding WD increased LysoPC 18:1 in the jejunum by 7.5 ± 1.4-fold compared with chow. Feeding LysoPC 18:1 or feeding WD increased oxidized phospholipids in the jejunum by 5.2 ± 3.0-fold or 8.6 ± 2.2-fold, respectively, in LDLR-null mice (P < 0.0004), and 2.6 ± 1.5-fold or 2.4 ± 0.92-fold, respectively, in WT C57BL/6J mice (P < 0.0001). Adding 0.06% by weight of a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) decreased LysoPC 18:1 in the jejunum of LDLR-null mice on both diets (P < 0.0001), and prevented the increase in oxidized phospholipids in the jejunum in LDLR-null and WT mice on both diets (P < 0.008). Tg6F decreased inflammatory cells in the villi of the jejunum, decreased dyslipidemia, and decreased systemic inflammation in LDLR-null and WT mice on both diets. We conclude that Tg6F reduces diet-induced inflammation by reducing the content of unsaturated LysoPC and oxidized phospholipids in the jejunum of mice.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Mohamad Navab
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Greg Hough
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Victor Grijalva
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Pallavi Mukherjee
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Hannah R Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Lin H Hwang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Aldons J Lusis
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Srinivasa T Reddy
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Alan M Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| |
Collapse
|
39
|
Yang J, Shah S, Olson TM, Xu X. Modeling GATAD1-Associated Dilated Cardiomyopathy in Adult Zebrafish. J Cardiovasc Dev Dis 2016; 3. [PMID: 28955713 PMCID: PMC5611887 DOI: 10.3390/jcdd3010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Animal models have played a critical role in validating human dilated cardiomyopathy (DCM) genes, particularly those that implicate novel mechanisms for heart failure. However, the disease phenotype may be delayed due to age-dependent penetrance. For this reason, we generated an adult zebrafish model, which is a simpler vertebrate model with higher throughput than rodents. Specifically, we studied the zebrafish homologue of GATAD1, a recently identified gene for adult-onset autosomal recessive DCM. We showed cardiac expression of gatad1 transcripts, by whole mount in situ hybridization in zebrafish embryos, and demonstrated nuclear and sarcomeric I-band subcellular localization of Gatad1 protein in cardiomyocytes, by injecting a Tol2 plasmid encoding fluorescently-tagged Gatad1. We next generated gatad1 knock-out fish lines by TALEN technology and a transgenic fish line that expresses the human DCM GATAD1-S102P mutation in cardiomyocytes. Under stress conditions, longitudinal studies uncovered heart failure (HF)-like phenotypes in stable KO mutants and a tendency toward HF phenotypes in transgenic lines. Based on these efforts of studying a gene-based inherited cardiomyopathy model, we discuss the strengths and bottlenecks of adult zebrafish as a new vertebrate model for assessing candidate cardiomyopathy genes.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW Rochester, MN 55905, USA; (J.Y.); (S.S.)
| | - Sahrish Shah
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW Rochester, MN 55905, USA; (J.Y.); (S.S.)
| | - Timothy M. Olson
- Department of Internal Medicine, Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, 200 First St. SW Rochester, MN 55905, USA;
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic College of Medicine, 200 First St. SW Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW Rochester, MN 55905, USA; (J.Y.); (S.S.)
- Department of Internal Medicine, Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, 200 First St. SW Rochester, MN 55905, USA;
- Correspondence: ; Tel.: +1-507-284-0685; Fax: +1-507-538-6418
| |
Collapse
|
40
|
Schlegel A. Zebrafish Models for Dyslipidemia and Atherosclerosis Research. Front Endocrinol (Lausanne) 2016; 7:159. [PMID: 28018294 PMCID: PMC5159437 DOI: 10.3389/fendo.2016.00159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death. Elevated circulating concentrations of lipids are a central pathogenetic driver of atherosclerosis. While numerous effective therapies for this condition have been developed, there is substantial unmet need for this pandemic illness. Here, I will review nutritional, physiological, genetic, and pathological discoveries in the emerging zebrafish model for studying dyslipidemia and atherosclerosis. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of dyslipidemia and atherosclerosis targets are stressed through summary of recent findings. An emerging literature shows that zebrafish, through retention of a cetp ortholog gene and high sensitivity to ingestion of excess cholesterol, rapidly develops hypercholesterolemia, with a pattern of distribution of lipid species in lipoprotein particles similar to humans. Furthermore, recent studies leveraging the optical transparency of zebrafish larvae to monitor the fate of these ingested lipids have provided exciting insights to the development of dyslipidemia and atherosclerosis. Future directions for investigation are considered, with particular attention to the potential for in vivo cell biological study of atherosclerotic plaques.
Collapse
Affiliation(s)
- Amnon Schlegel
- University of Utah Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- *Correspondence: Amnon Schlegel,
| |
Collapse
|
41
|
Seto SW, Kiat H, Lee SMY, Bensoussan A, Sun YT, Hoi MPM, Chang D. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. Eur J Pharmacol 2015; 768:77-86. [PMID: 26494630 DOI: 10.1016/j.ejphar.2015.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 01/12/2023]
Abstract
The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date.
Collapse
Affiliation(s)
- Sai-Wang Seto
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, NSW, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia; Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Simon M Y Lee
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Alan Bensoussan
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yu-Ting Sun
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Maggie P M Hoi
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
42
|
Liu C, Gates KP, Fang L, Amar MJ, Schneider DA, Geng H, Huang W, Kim J, Pattison J, Zhang J, Witztum JL, Remaley AT, Dong PD, Miller YI. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. Dis Model Mech 2015; 8:989-98. [PMID: 26044956 PMCID: PMC4527288 DOI: 10.1242/dmm.019836] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
Apolipoprotein C-II (APOC2) is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases. Highlighted Article: Apoc2 loss-of-function zebrafish display severe hypertriglyceridemia, which is characteristic of human patients with defective lipoprotein lipase activity.
Collapse
Affiliation(s)
- Chao Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keith P Gates
- Sanford Children's Health Research Center, Programs in Genetic Disease and Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Longhou Fang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Dina A Schneider
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Honglian Geng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Huang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jungsu Kim
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Pattison
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - P Duc Dong
- Sanford Children's Health Research Center, Programs in Genetic Disease and Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Yury I Miller
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Otis JP, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-Davidi I, Tempelhof H, Yaniv K, Farber SA. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 2015; 8:295-309. [PMID: 25633982 PMCID: PMC4348566 DOI: 10.1242/dmm.018754] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and serves as a springboard for future investigations to elucidate their roles in development and disease in the larval zebrafish model.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erin M Zeituni
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - James H Thierer
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Alexandria C Brown
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erica D Boehm
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Derek M Cerchione
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Alexis M Ceasrine
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Inbal Avraham-Davidi
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Hanoch Tempelhof
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Karina Yaniv
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
44
|
Schlegel A, Gut P. Metabolic insights from zebrafish genetics, physiology, and chemical biology. Cell Mol Life Sci 2015; 72:2249-60. [PMID: 25556679 PMCID: PMC4439526 DOI: 10.1007/s00018-014-1816-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023]
Abstract
Metabolic diseases—atherosclerotic cardiovascular disease, type 2 diabetes mellitus, obesity, and non-alcoholic fatty liver disease––have reached pandemic proportions. Across gene, cell, organ, organism, and social-environmental scales, fundamental discoveries of the derangements that occur in these diseases are required to develop effective new treatments. Here we will review genetic, physiological, pathological and chemical biological discoveries in the emerging zebrafish model for studying metabolism and metabolic diseases. We present a synthesis of recent studies using forward and reverse genetic tools to make new contributions to our understanding of lipid trafficking, diabetes pathogenesis and complications, and to β-cell biology. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of metabolic disease targets are stressed by our summary of recent findings. We conclude by arguing that metabolic research using zebrafish will benefit from adoption of conventional blood and tissue metabolite measurements, employment of modern imaging techniques, and development of more rigorous metabolic flux methods.
Collapse
Affiliation(s)
- Amnon Schlegel
- University of Utah Molecular Medicine Program, School of Medicine, University of Utah, 15 North 2030 East, Room 3240B, Salt Lake City, UT, 84112, USA,
| | | |
Collapse
|
45
|
Chen Z, Wen L, Martin M, Hsu CY, Fang L, Lin FM, Lin TY, Geary MJ, Geary GG, Zhao Y, Johnson DA, Chen JW, Lin SJ, Chien S, Huang HD, Miller YI, Huang PH, Shyy JYJ. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation 2014; 131:805-14. [PMID: 25550450 DOI: 10.1161/circulationaha.114.013675] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. METHODS AND RESULTS Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. CONCLUSIONS Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction.
Collapse
Affiliation(s)
- Zhen Chen
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.).
| | - Liang Wen
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Marcy Martin
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Chien-Yi Hsu
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Longhou Fang
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Feng-Mao Lin
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Ting-Yang Lin
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - McKenna J Geary
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Greg G Geary
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Yongli Zhao
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - David A Johnson
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Jaw-Wen Chen
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Shing-Jong Lin
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Shu Chien
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Hsien-Da Huang
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Yury I Miller
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - Po-Hsun Huang
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.)
| | - John Y-J Shyy
- From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.).
| |
Collapse
|
46
|
Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: progress and future directions. J Cardiovasc Transl Res 2014; 7:719-36. [PMID: 25297940 DOI: 10.1007/s12265-014-9590-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/12/2014] [Indexed: 12/17/2022]
Abstract
Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to non-invasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using "natural" antibodies, lipopeptides, and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents, and guide optimal therapy of high-risk atherosclerotic lesions.
Collapse
|
47
|
Santoro MM. Zebrafish as a model to explore cell metabolism. Trends Endocrinol Metab 2014; 25:546-54. [PMID: 24997878 DOI: 10.1016/j.tem.2014.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Cell metabolism plays a key role in many essential biological processes. The recent availability of novel technologies and organisms to model cell metabolism in vivo is expanding current knowledge of cell metabolism. In this context, the zebrafish (Danio rerio) is emerging as a valuable model system to learn about the metabolic routes critical for cellular homeostasis. Here, the most recent methods and studies on cell metabolism are summarized, which support the overall value for the zebrafish model system not only to study metabolism but also metabolic disease states. It is envisioned that this small vertebrate system will help in the understanding of pathogenesis for numerous metabolic-related disorders in humans and in the identification of their therapeutic treatments.
Collapse
Affiliation(s)
- Massimo M Santoro
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, B-3000, Belgium; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, Leuven, B-3000, Belgium.
| |
Collapse
|
48
|
O'Hare EA, Wang X, Montasser ME, Chang YPC, Mitchell BD, Zaghloul NA. Disruption of ldlr causes increased LDL-c and vascular lipid accumulation in a zebrafish model of hypercholesterolemia. J Lipid Res 2014; 55:2242-53. [PMID: 25201834 DOI: 10.1194/jlr.m046540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hyperlipidemia and arterial cholesterol accumulation are primary causes of cardiovascular events. Monogenic forms of hyperlipidemia and recent genome-wide association studies indicate that genetics plays an important role. Zebrafish are a useful model for studying the genetic susceptibility to hyperlipidemia owing to conservation of many components of lipoprotein metabolism, including those related to LDL, ease of genetic manipulation, and in vivo observation of lipid transport and vascular calcification. We sought to develop a genetic model for lipid metabolism in zebrafish, capitalizing on one well-understood player in LDL cholesterol (LDL-c) transport, the LDL receptor (ldlr), and an established in vivo model of hypercholesterolemia. We report that morpholinos targeted against the gene encoding ldlr effectively suppressed its expression in embryos during the first 8 days of development. The ldlr morphants exhibited increased LDL-c levels that were exacerbated by feeding a high cholesterol diet. Increased LDL-c was ameliorated in morphants upon treatment with atorvastatin. Furthermore, we observed significant vascular and liver lipid accumulation, vascular leakage, and plaque oxidation in ldlr-deficient embryos. Finally, upon transcript analysis of several cholesterol-regulating genes, we observed changes similar to those seen in mammalian systems, suggesting that cholesterol regulation may be conserved in zebrafish. Taken together, these observations indicate conservation of ldlr function in zebrafish and demonstrate the utility of transient gene knockdown in embryos as a genetic model for hyperlipidemia.
Collapse
Affiliation(s)
- Elizabeth A O'Hare
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Xiaochun Wang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - May E Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Yen-Pei C Chang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Norann A Zaghloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Cruz-Garcia L, Schlegel A. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids. J Lipid Res 2014; 55:1944-58. [PMID: 25030662 DOI: 10.1194/jlr.m052845] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liver X receptors (Lxrs) are master regulators of cholesterol catabolism, driving the elimination of cholesterol from the periphery to the lumen of the intestine. Development of pharmacological agents to activate Lxrs has been hindered by synthetic Lxr agonists' induction of hepatic lipogenesis and hypertriglyceridemia. Elucidating the function of Lxrs in regulating enterocyte lipid handling might identify novel aspects of lipid metabolism that are pharmacologically amenable. We took a genetic approach centered on the single Lxr gene nr1h3 in zebrafish to study the role of Lxr in enterocyte lipid metabolism. Loss of nr1h3 function causes anticipated gene regulatory changes and cholesterol intolerance, collectively reflecting high evolutionary conservation of zebrafish Lxra function. Intestinal nr1h3 activation delays transport of absorbed neutral lipids, with accumulation of neutral lipids in enterocyte cytoplasmic droplets. This delay in transport of ingested neutral lipids protects animals from hypercholesterolemia and hepatic steatosis induced by a high-fat diet. On a gene regulatory level, Lxra induces expression of acsl3a, which encodes acyl-CoA synthetase long-chain family member 3a, a lipid droplet-anchored protein that directs fatty acyl chains into lipids. Forced overexpression of acls3a in enterocytes delays, in part, the appearance of neutral lipids in the vasculature of zebrafish larvae. Activation of Lxr in the intestine cell-autonomously regulates the rate of delivery of absorbed lipids by inducting a temporary lipid intestinal droplet storage depot.
Collapse
Affiliation(s)
- Lourdes Cruz-Garcia
- University of Utah Molecular Medicine (U2M2) Program,University of Utah, Salt Lake City, UT 84112 Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes,University of Utah, Salt Lake City, UT 84112
| | - Amnon Schlegel
- University of Utah Molecular Medicine (U2M2) Program,University of Utah, Salt Lake City, UT 84112 Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes,University of Utah, Salt Lake City, UT 84112 Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
50
|
Genetic experimental preparations for studying atherosclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014. [PMID: 24751424 DOI: 10.1016/b978-0-12-386930-2.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Atherosclerosis is a pathological process with several inputs (biological, chemical, physiological, and others) interacting slowly over a lifetime leading to coronary artery disease, significant morbidity, and a limited lifespan. Over the past two decades, biologists have used experimental preparations from cells, animals, and man to understand the biology of atherosclerosis. Much has been discovered but our use of the standard gene-targeted experimental preparations is now nearing its limit. Better preparations to answer the remaining questions in the field of atherosclerosis biology are needed.
Collapse
|