1
|
Ji RC. The emerging importance of lymphangiogenesis in aging and aging-associated diseases. Mech Ageing Dev 2024; 221:111975. [PMID: 39089499 DOI: 10.1016/j.mad.2024.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Lymphatic aging represented by cellular and functional changes, is involved in increased geriatric disorders, but the intersection between aging and lymphatic modulation is less clear. Lymphatic vessels play an essential role in maintaining tissue fluid homeostasis, regulating immune function, and promoting macromolecular transport. Lymphangiogenesis and lymphatic remodeling following cellular senescence and organ deterioration are crosslinked with the progression of some lymphatic-associated diseases, e.g., atherosclerosis, inflammation, lymphoedema, and cancer. Age-related detrimental tissue changes may occur in lymphatic vessels with diverse etiologies, and gradually shift towards chronic low-grade inflammation, so-called inflammaging, and lead to decreased immune response. The investigation of the relationship between advanced age and organ deterioration is becoming an area of rapidly increasing significance in lymphatic biology and medicine. Here we highlight the emerging importance of lymphangiogenesis and lymphatic remodeling in the regulation of aging-related pathological processes, which will help to find new avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
2
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2024:10.1007/s00204-024-03874-4. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
3
|
Nasrabadi ME, Al-Harrasi A, Mohammadi S, Zarif Azam Kardani F, Rahmati M, Memarian A. Pioglitazone as a potential modulator in autoimmune diseases: a review on its effects in systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and multiple sclerosis. Expert Rev Clin Immunol 2024:1-11. [PMID: 39279585 DOI: 10.1080/1744666x.2024.2401614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Current medications for autoimmune disorders often induce broad-ranging side effects, prompting a growing interest in therapies with more specific immune system modulation. Pioglitazone, known for its anti-diabetic properties, is increasingly recognized for significant immunomodulatory potential. Beyond its traditional use in diabetes management, pioglitazone emerges as a promising therapeutic candidate for autoimmune disorders. AREAS COVERED This comprehensive review explores pioglitazone's impact on four prominent autoimmune conditions: systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and multiple sclerosis. We focus on pioglitazone's diverse effects on immune cells and cytokines in these diseases, highlighting its potential as a valuable therapeutic option for autoimmune diseases. Here we have reviewed the latest and most current research literature available on PubMed, based on research published in the last 15 years. EXPERT OPINION Pioglitazone as an immunomodulatory agent can regulate T cell differentiation, inhibit inflammatory cytokines, and promote anti-inflammatory macrophages. While further clinical studies are needed to fully understand its mechanisms and optimize treatment strategies, pioglitazone represents a potential therapeutic approach to improve outcomes for patients with these challenging autoimmune conditions. The future of autoimmune disease research may involve personalized treatment approaches, and collaborative efforts to improve patient quality of life.
Collapse
Affiliation(s)
- Mohammad Esmail Nasrabadi
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fateme Zarif Azam Kardani
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Memarian
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Mistry HD, Klossner R, Scaife PJ, Eisele N, Kurlak LO, Kallol S, Albrecht C, Gennari-Moser C, Briggs LV, Broughton Pipkin F, Mohaupt MG. Alterations of Placental Sodium in Preeclampsia: Trophoblast Responses. Hypertension 2024; 81:1924-1934. [PMID: 38966986 PMCID: PMC11319085 DOI: 10.1161/hypertensionaha.124.23001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Evidence suggests that increasing salt intake in pregnancy lowers blood pressure, protecting against preeclampsia. We hypothesized that sodium (Na+) evokes beneficial placental signals that are disrupted in preeclampsia. METHODS Blood and urine were collected from nonpregnant women of reproductive age (n=26) and pregnant women with (n=50) and without (n=55) preeclampsia, along with placental biopsies. Human trophoblast cell lines and primary human trophoblasts were cultured with varying Na+ concentrations. RESULTS Women with preeclampsia had reduced placental and urinary Na+ concentrations, yet increased urinary angiotensinogen and reduced active renin, aldosterone concentrations, and osmotic response signal TonEBP (tonicity-responsive enhancer binding protein) expression. In trophoblast cell cultures, TonEBP was consistently increased upon augmented Na+ exposure. Mechanistically, inhibiting Na+/K+-ATPase or adding mannitol evoked the TonEBP response, whereas inhibition of cytoskeletal signaling abolished it. CONCLUSIONS Enhanced Na+ availability induced osmotic gradient-dependent cytoskeletal signals in trophoblasts, resulting in proangiogenic responses. As placental salt availability is compromised in preeclampsia, adverse systemic responses are thus conceivable.
Collapse
Affiliation(s)
- Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course and Population Health Sciences, King’s College London, United Kingdom (H.D.M.)
| | - Rahel Klossner
- Teaching Hospital Internal Medicine, Lindenhofgruppe, Switzerland (R.K., M.G.M.)
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Paula J. Scaife
- Clinical, Metabolic and Molecular Physiology (P.J.S.), University of Nottingham, United Kingdom
| | - Nicole Eisele
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Lesia O. Kurlak
- Stroke Trials Unit (School of Medicine) (L.O.K.), University of Nottingham, United Kingdom
| | - Sampada Kallol
- Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.K., C.A.)
| | - Christiane Albrecht
- Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.K., C.A.)
| | - Carine Gennari-Moser
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Louise V. Briggs
- Advanced Material Research Group, Faculty of Engineering (L.V.B.), University of Nottingham, United Kingdom
| | | | - Markus G. Mohaupt
- Teaching Hospital Internal Medicine, Lindenhofgruppe, Switzerland (R.K., M.G.M.)
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| |
Collapse
|
5
|
Navaneethabalakrishnan S, Goodlett B, Smith H, Cardenas A, Burns A, Mitchell B. Differential changes in end organ immune cells and inflammation in salt-sensitive hypertension: effects of lowering blood pressure. Clin Sci (Lond) 2024; 138:901-920. [PMID: 38949825 PMCID: PMC11250109 DOI: 10.1042/cs20240698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We reported that salt-sensitive hypertension (SSHTN) is associated with increased pro-inflammatory immune cells, inflammation, and inflammation-associated lymphangiogenesis in the kidneys and gonads of male and female mice. However, it is unknown whether these adverse end organ effects result from increased blood pressure (BP), elevated levels of salt, or both. We hypothesized that pharmaceutically lowering BP would not fully alleviate the renal and gonadal immune cell accumulation, inflammation, and lymphangiogenesis associated with SSHTN. SSHTN was induced in male and female C57BL6/J mice by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/ml) in their drinking water for 2 weeks, followed by a 2-week washout period. Subsequently, the mice received a 3-week 4% high salt diet (SSHTN). The treatment group underwent the same SSHTN induction protocol but received hydralazine (HYD; 250 mg/L) in their drinking water during the diet phase (SSHTN+HYD). Control mice received tap water and a standard diet for 7 weeks. In addition to decreasing systolic BP, HYD treatment generally decreased pro-inflammatory immune cells and inflammation in the kidneys and gonads of SSHTN mice. Furthermore, the decrease in BP partially alleviated elevated renal and gonadal lymphatics and improved renal and gonadal function in mice with SSHTN. These data demonstrate that high systemic pressure and salt differentially act on end organ immune cells, contributing to the broader understanding of how BP and salt intake collectively shape immune responses and highlight implications for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Hannah L. Smith
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Alyssa Cardenas
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Asia Burns
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
6
|
Kitada K. Gut bacteria-derived extracellular vesicles and hypertension. Hypertens Res 2024; 47:1994-1995. [PMID: 38769140 DOI: 10.1038/s41440-024-01712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 7610793, Japan.
| |
Collapse
|
7
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
8
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
10
|
Padoan F, Guarnaroli M, Brugnara M, Piacentini G, Pietrobelli A, Pecoraro L. Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines 2024; 12:911. [PMID: 38672265 PMCID: PMC11048674 DOI: 10.3390/biomedicines12040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nutrition management is fundamental for children with chronic kidney disease (CKD). Fluid balance and low-protein and low-sodium diets are the more stressed fields from a nutritional point of view. At the same time, the role of micronutrients is often underestimated. Starting from the causes that could lead to potential micronutrient deficiencies in these patients, this review considers all micronutrients that could be administered in CKD to improve the prognosis of this disease.
Collapse
Affiliation(s)
| | | | - Milena Brugnara
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy (A.P.)
| | | | | | | |
Collapse
|
11
|
Bai L, Wang Y, Du S, Si Y, Chen L, Li L, Li Y. Lymphangiogenesis: A new strategy for heart disease treatment (Review). Int J Mol Med 2024; 53:35. [PMID: 38391009 PMCID: PMC10903933 DOI: 10.3892/ijmm.2024.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Liding Bai
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yanyan Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Siqi Du
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yumeng Si
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lu Chen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yuhong Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
12
|
Rossitto G, Bertoldi G, Rutkowski JM, Mitchell BM, Delles C. Sodium, Interstitium, Lymphatics and Hypertension-A Tale of Hydraulics. Hypertension 2024; 81:727-737. [PMID: 38385255 PMCID: PMC10954399 DOI: 10.1161/hypertensionaha.123.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Blood pressure is regulated by vascular resistance and intravascular volume. However, exchanges of electrolytes and water between intra and extracellular spaces and filtration of fluid and solutes in the capillary beds blur the separation between intravascular, interstitial and intracellular compartments. Contemporary paradigms of microvascular exchange posit filtration of fluids and solutes along the whole capillary bed and a prominent role of lymphatic vessels, rather than its venous end, for their reabsorption. In the last decade, these concepts have stimulated greater interest in and better understanding of the lymphatic system as one of the master regulators of interstitial volume homeostasis. Here, we describe the anatomy and function of the lymphatic system and focus on its plasticity in relation to the accumulation of interstitial sodium in hypertension. The pathophysiological relevance of the lymphatic system is exemplified in the kidneys, which are crucially involved in the control of blood pressure, but also hypertension-mediated cardiac damage. Preclinical modulation of the lymphatic reserve for tissue drainage has demonstrated promise, but has also generated conflicting results. A better understanding of the hydraulic element of hypertension and the role of lymphatics in maintaining fluid balance can open new approaches to prevent and treat hypertension and its consequences, such as heart failure.
Collapse
Affiliation(s)
- Giacomo Rossitto
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | - Giovanni Bertoldi
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | | | - Brett M. Mitchell
- Dept. of Medical Physiology, Texas A&M University School of Medicine, USA
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
13
|
Kitada K, Nishiyama A. Potential Role of the Skin in Hypertension Risk Through Water Conservation. Hypertension 2024; 81:468-475. [PMID: 37942635 DOI: 10.1161/hypertensionaha.123.20700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Previous basic and clinical investigations have identified various pathogenic factors and determinants of risk that contribute to hypertension. Nevertheless, the pathogenesis of hypertension has not been fully elucidated. Moreover, despite the availability of antihypertensive medications for the management of blood pressure, treatments that address the full spectrum of the pathophysiological defects underpinning hypertension remain to be identified. To further investigate the mechanisms of primary hypertension, it is imperative to consider novel potential aspects, such as fluid management by the skin, in addition to the conventional risk factors. There is a close association between body fluid regulation and blood pressure, and the kidney, which, as the principal organ responsible for body fluid homeostasis, is the primary target for research in the field of hypertension. In addition, the skin functions as a biological barrier, potentially contributing to body fluid regulation. In this review, we propose the hypothesis that changes in skin water conservation are associated with hypertension risk based on recent findings. Further studies are required to clarify whether this novel hypothesis is limited to specific hypertension or applies to physiological blood pressure regulation.
Collapse
Affiliation(s)
- Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan
| |
Collapse
|
14
|
Bagordo D, Rossi GP, Delles C, Wiig H, Rossitto G. Tangram of Sodium and Fluid Balance. Hypertension 2024; 81:490-500. [PMID: 38084591 PMCID: PMC10863667 DOI: 10.1161/hypertensionaha.123.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism is presented as a prototype.
Collapse
Affiliation(s)
- Domenico Bagordo
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Gian Paolo Rossi
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| |
Collapse
|
15
|
Miyauchi H, Geisberger S, Luft FC, Wilck N, Stegbauer J, Wiig H, Dechend R, Jantsch J, Kleinewietfeld M, Kempa S, Müller DN. Sodium as an Important Regulator of Immunometabolism. Hypertension 2024; 81:426-435. [PMID: 37675565 PMCID: PMC10863658 DOI: 10.1161/hypertensionaha.123.19489] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Salt sensitivity concerns blood pressure alterations after a change in salt intake (sodium chloride). The heart is a pump, and vessels are tubes; sodium can affect both. A high salt intake increases cardiac output, promotes vascular dysfunction and capillary rarefaction, and chronically leads to increased systemic vascular resistance. More recent findings suggest that sodium also acts as an important second messenger regulating energy metabolism and cellular functions. Besides endothelial cells and fibroblasts, sodium also affects innate and adaptive immunometabolism, immune cell function, and influences certain microbes and microbiota-derived metabolites. We propose the idea that the definition of salt sensitivity should be expanded beyond high blood pressure to cellular and molecular salt sensitivity.
Collapse
Affiliation(s)
- Hidetaka Miyauchi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| | - Sabrina Geisberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
| | - Friedrich C. Luft
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
| | - Nicola Wilck
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| | - Johannes Stegbauer
- Department of Nephrology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany (J.S.)
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany (J.S.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Ralf Dechend
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
- HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, Germany (R.D.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Germany (J.J.)
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne, University Hospital Cologne and Faculty of Medicine, University of Cologne, Germany (J.J.)
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium (M.K.)
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium (M.K.)
- University Multiple Sclerosis Center, Hasselt University/Campus Diepenbeek, Belgium (M.K.)
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
| | - Dominik N. Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| |
Collapse
|
16
|
Ono M, Izumi Y, Maruyama K, Yasuoka Y, Hiramatsu A, Aramburu J, López-Rodríguez C, Nonoguchi H, Kakizoe Y, Adachi M, Kuwabara T, Mukoyama M. Characterization of gene expression in the kidney of renal tubular cell-specific NFAT5 knockout mice. Am J Physiol Renal Physiol 2024; 326:F394-F410. [PMID: 38153851 DOI: 10.1152/ajprenal.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states. Pathophysiological roles of NFAT5 in renal tubular cells, however, still remain obscure. We conducted comprehensive analysis by performing transcription start site (TSS) sequencing on the kidney of inducible and renal tubular cell-specific NFAT5 knockout (KO) mice. Mice were subjected to unilateral ureteral obstruction to examine the relevance of renal tubular NFAT5 in renal fibrosis. TSS sequencing analysis identified 722 downregulated TSSs and 1,360 upregulated TSSs, which were differentially regulated ≤-1.0 and ≥1.0 in log2 fold, respectively. Those TSSs were annotated to 532 downregulated genes and 944 upregulated genes, respectively. Motif analysis showed that sequences that possibly bind to NFAT5 were enriched in TSSs of downregulated genes. Gene Ontology analysis with the upregulated genes suggested disorder of innate and adaptive immune systems in the kidney. Unilateral ureteral obstruction significantly exacerbated renal fibrosis in the renal medulla in KO mice compared with wild-type mice, accompanied by enhanced activation of immune responses. In conclusion, NFAT5 in renal tubules could have pathophysiological roles in renal fibrosis through modulating innate and adaptive immune systems in the kidney.NEW & NOTEWORTHY TSS-Seq analysis of the kidney from renal tubular cell-specific NFAT5 KO mice uncovered novel genes that are possibly regulated by NFAT5 in the kidney under physiological conditions. The study further implied disorders of innate and adaptive immune systems in NFAT5 KO mice, thereby exacerbating renal fibrosis at pathological states. Our results may implicate the involvement of renal tubular NFAT5 in the progression of renal fibrosis. Further studies would be worthwhile for the development of novel therapy to treat chronic kidney disease.
Collapse
Affiliation(s)
- Makoto Ono
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kosuke Maruyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Hiramatsu
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, Saitama, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
17
|
Jiang Y, Perez-Moreno M. Translational frontiers: insight from lymphatics in skin regeneration. Front Physiol 2024; 15:1347558. [PMID: 38487264 PMCID: PMC10937408 DOI: 10.3389/fphys.2024.1347558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The remarkable regenerative ability of the skin, governed by complex molecular mechanisms, offers profound insights into the skin repair processes and the pathogenesis of various dermatological conditions. This understanding, derived from studies in human skin and various model systems, has not only deepened our knowledge of skin regeneration but also facilitated the development of skin substitutes in clinical practice. Recent research highlights the crucial role of lymphatic vessels in skin regeneration. Traditionally associated with fluid dynamics and immune modulation, these vessels are now recognized for interacting with skin stem cells and coordinating regeneration. This Mini Review provides an overview of recent advancements in basic and translational research related to skin regeneration, focusing on the dynamic interplay between lymphatic vessels and skin biology. Key highlights include the critical role of stem cell-lymphatic vessel crosstalk in orchestrating skin regeneration, emerging translational approaches, and their implications for skin diseases. Additionally, the review identifies research gaps and proposes potential future directions, underscoring the significance of this rapidly evolving research arena.
Collapse
Affiliation(s)
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Sinnathamby ES, Urban BT, Clark RA, Roberts LT, De Witt AJ, Wenger DM, Mouhaffel A, Willett O, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. Etiology of Drug-Induced Edema: A Review of Dihydropyridine, Thiazolidinedione, and Other Medications Causing Edema. Cureus 2024; 16:e53400. [PMID: 38435190 PMCID: PMC10908346 DOI: 10.7759/cureus.53400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Edema is an accumulation of fluid in the body's tissues that affects millions of Americans yearly. It can affect multiple body parts, for example, the brain or eyes, but often occurs in the periphery, including the feet and legs. Medications, such as dihydropyridine and thiazolidinediones (TZDs), can be the etiology of edema. Edema can develop in association with problems in the vasculature or lymphatic flow. In recent years, a better understanding of these drug-induced mechanisms has been appreciated. Specifically, dihydropyridines can increase hydrostatic pressure and cause selective pre-capillary vessel vasodilation. TZDs can cause edema through increased vascular permeability and increased hydrostatic pressure. Specifically, peroxisome proliferator-activated receptor gamma (PPARγ) stimulation increases vascular endothelial permeability, vascular endothelial growth factor (VEGF) secretion, renal sodium, and fluid retention. Other drugs that can cause edema include neuropathic pain agents, dopamine agonists, antipsychotics, nitrates, nonsteroidal anti-inflammatory (NSAIDS), steroids, angiotensin-converting enzyme (ACE) inhibitors, and insulin. There are various clinical presentations of edema. Since multiple mechanisms can induce edema, it is important to understand the basic mechanisms and pathophysiology of drug-induced edema. Edema can even become fatal. For example, angioedema can occur from ACE inhibitor therapy. In this regard, it is considered a medical emergency when there is laryngeal involvement. This review aims to thoroughly appreciate the multiple causes of drug-induced edema and the ways it can be treated or prevented.
Collapse
Affiliation(s)
- Evan S Sinnathamby
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC) New Orleans, New Orleans, USA
| | - Bretton T Urban
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC) New Orleans, New Orleans, USA
| | - Robert A Clark
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC) New Orleans, New Orleans, USA
| | - Logan T Roberts
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC) New Orleans, New Orleans, USA
| | - Audrey J De Witt
- School of Medicine, Louisiana State University (LSU) Health, Shreveport, USA
| | - Danielle M Wenger
- School of Medicine, The University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Aya Mouhaffel
- Department of Anesthesiology, Louisiana State University (LSU) Health, Shreveport, USA
| | - Olga Willett
- Department of Anesthesiology, Louisiana State University (LSU) Health, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University (LSU) Health, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University (LSU) Health, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University (LSU) Health, Shreveport, USA
| | | |
Collapse
|
19
|
Radvanyi Z, Yoo EJ, Kandasamy P, Salas-Bastos A, Monnerat S, Refardt J, Christ-Crain M, Hayashi H, Kondo Y, Jantsch J, Rubio-Aliaga I, Sommer L, Wagner CA, Hediger MA, Kwon HM, Loffing J, Pathare G. Extracellular sodium regulates fibroblast growth factor 23 (FGF23) formation. J Biol Chem 2024; 300:105480. [PMID: 37992803 PMCID: PMC10770535 DOI: 10.1016/j.jbc.2023.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
The bone-derived hormone fibroblast growth factor-23 (FGF23) has recently received much attention due to its association with chronic kidney disease and cardiovascular disease progression. Extracellular sodium concentration ([Na+]) plays a significant role in bone metabolism. Hyponatremia (lower serum [Na+]) has recently been shown to be independently associated with FGF23 levels in patients with chronic systolic heart failure. However, nothing is known about the direct impact of [Na+] on FGF23 production. Here, we show that an elevated [Na+] (+20 mM) suppressed FGF23 formation, whereas low [Na+] (-20 mM) increased FGF23 synthesis in the osteoblast-like cell lines UMR-106 and MC3T3-E1. Similar bidirectional changes in FGF23 abundance were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. Furthermore, arginine vasopressin, which is often responsible for hyponatremia, did not affect FGF23 production. Next, we performed a comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low versus high [Na+], which revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9-mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these in vitro observations, we found that hyponatremia patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.
Collapse
Affiliation(s)
- Zsuzsa Radvanyi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre of Competence in Research "Kidney Control of Homeostasis", Zurich, Switzerland
| | - Eun Jin Yoo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | | | - Sophie Monnerat
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Himeka Hayashi
- Department of Animal Sciences, Teikyo University of Science, Yamanashi, Japan
| | - Yasuhiko Kondo
- Department of Animal Sciences, Teikyo University of Science, Yamanashi, Japan
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany; Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Isabel Rubio-Aliaga
- Swiss National Centre of Competence in Research "Kidney Control of Homeostasis", Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Swiss National Centre of Competence in Research "Kidney Control of Homeostasis", Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Hyug Moo Kwon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre of Competence in Research "Kidney Control of Homeostasis", Zurich, Switzerland
| | - Ganesh Pathare
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre of Competence in Research "Kidney Control of Homeostasis", Zurich, Switzerland.
| |
Collapse
|
20
|
Czarnowska E, Ratajska A, Jankowska-Steifer E, Flaht-Zabost A, Niderla-Bielińska J. Extracellular matrix molecules associated with lymphatic vessels in health and disease. Histol Histopathol 2024; 39:13-34. [PMID: 37350542 DOI: 10.14670/hh-18-641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Lymphatic vessels (LyVs), responsible for fluid, solute, and immune cell homeostasis in the body, are closely associated with the adjacent extracellular matrix (ECM) molecules whose structural and functional impact on LyVs is currently more appreciated, albeit not entirely elucidated. These molecules, serving as a platform for various connective tissue cell activities and affecting LyV biology should be considered also as an integral part of the lymphatic system. Any alterations and changes in ECM molecules over the course of disease impair the function and structure of the LyV network. Remodeling of LyV cells, which are components of lymphatic vessel walls, also triggers alterations in ECM molecules and interstitial tissue composition. Therefore, in this review we aimed to present the current knowledge on ECM in tissues and particularly on molecules surrounding lymphatics in normal conditions and in disease.
Collapse
Affiliation(s)
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
21
|
Titze JM. Lymph vessels, Na + and the teleological science of hypertension. Nat Rev Nephrol 2023; 19:692-693. [PMID: 37714934 DOI: 10.1038/s41581-023-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Affiliation(s)
- Jens M Titze
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Division of Nephrology, Duke University, Durham, NC, USA.
| |
Collapse
|
22
|
Vlachovsky SG, Di Ciano LA, Oddo EM, Azurmendi PJ, Silberstein C, Ibarra FR. Role of Female Sex Hormones and Immune Response in Salt-Sensitive Hypertension Development: Evidence from Experimental Models. Curr Hypertens Rep 2023; 25:405-419. [PMID: 37676461 DOI: 10.1007/s11906-023-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSEOF REVIEW Female sex hormones have systemic effects unrelated to their reproductive function. We describe experiences of different research groups and our own, on aspects related to the importance of female sex hormones on blood pressure (BP) regulation and salt-sensitivity-mediated BP response and salt sensitivity without alterations in BP, as well as renal sodium handling and interactions with the immune system. RECENT FINDINGS Changes in sodium intake in normotensive premenopausal women cause more BP variations than in men. After menopause, women often develop arterial hypertension (HT) with a profile of sodium sensitivity. Besides, experimental results have shown that in adult rat models resembling the postmenopausal hormonal state induced by ovariectomy, controlling BP is not enough to avoid renal and other tissue infiltration with immune cells, which does not occur when sodium intake is low or normal. Therefore, excess sodium promotes an inflammatory state with the involvement of immune cells. The evidence of activation of adaptive immunity, besides changes in T cell subpopulations, includes changes in sodium transporters and receptors. More studies are needed to evaluate the particular sodium sensitivity of women and its meaning. Changes in lifestyle and sodium intake reduction are the main therapeutic steps. However, to face the actual burden of salt-sensitive HT in postmenopausal women and its associated inflammatory/immune changes, it seems reasonable to work on immune cell activity by considering the peripheral blood mononuclear cell phenotypes of molecules and transport proteins related to sodium handle, both to screen for and treat cell activation.
Collapse
Affiliation(s)
- Sandra G Vlachovsky
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Luis A Di Ciano
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
| | - Elisabet M Oddo
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Pablo J Azurmendi
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Claudia Silberstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| | - Fernando R Ibarra
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| |
Collapse
|
23
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Chachaj A, Stanimirova I, Chabowski M, Gomułkiewicz A, Hodurek P, Glatzel-Plucińska N, Olbromski M, Piotrowska A, Kuzan A, Grzegrzółka J, Ratajczak-Wielgomas K, Nowak A, Szahidewicz-Krupska E, Wiśniewski J, Bromke MA, Podhorska-Okołów M, Gamian A, Janczak D, Dzięgiel P, Szuba A. Sodium accumulation in the skin is associated with higher density of skin lymphatic vessels in patients with arterial hypertension. Adv Med Sci 2023; 68:276-289. [PMID: 37639949 DOI: 10.1016/j.advms.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Recent studies, conducted mainly on the rodent model, have demonstrated that regulatory pathway in the skin provided by glycosaminoglycans, nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGF-C) and process of lymphangiogenesis may play an important role in extrarenal regulation of sodium (Na+) balance, body water volume, and blood pressure. We aimed to investigate the concentrations and relations among the main factors of this pathway in human skin to confirm that this regulatory axis also exists in humans. PATIENTS AND METHODS Skin specimens from patients diagnosed with arterial hypertension and from control group were histologically and molecularly examined. RESULTS The primary hypertensive and control groups did not differ in Na+ concentrations in the skin. However, the patients with hypertension and higher skin Na+ concentration had significantly greater density of skin lymphatic vessels. Higher skin Na+concentration was associated with higher skin water content. In turn, skin water content correlated with factors associated with lymphangiogenesis, i.e. NFAT5, VEGF-C, and podoplanin (PDPN) mRNA expression in the skin. The strong mutual pairwise correlations of the expressions of NFAT5, VEGF-C, vascular endothelial growth factor D (VEGF-D) and PDPN mRNA were noted in the skin in all of the studied groups. CONCLUSIONS Our study confirms that skin interstitium and the lymphatic system may be important players in the pathophysiology of arterial hypertension in humans. Based on the results of our study and existing literature in this field, we propose the hypothetical model which might explain the phenomenon of salt-sensitivity.
Collapse
Affiliation(s)
- Angelika Chachaj
- Department of Angiology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | | | - Mariusz Chabowski
- Department of Surgery, 4th Military Hospital in Wroclaw, Wroclaw, Poland; Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Hodurek
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Nowak
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Szahidewicz-Krupska
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Wiśniewski
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland; Department of Physiotherapy, Wroclaw University, School of Physical Education, Wroclaw, Poland
| | - Andrzej Szuba
- Department of Angiology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Xia W, Wang Q, Lin S, Wang Y, Zhang J, Wang H, Yang X, Hu Y, Liang H, Lu Y, Zhu Z, Liu D. A high-salt diet promotes hypertrophic scarring through TRPC3-mediated mitochondrial Ca 2+ homeostasis dysfunction. Heliyon 2023; 9:e18629. [PMID: 37588604 PMCID: PMC10425910 DOI: 10.1016/j.heliyon.2023.e18629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Diet High in salt content have been associated with cardiovascular disease and chronic inflammation. We recently demonstrated that transient receptor potential canonical 3 (TRPC3) channels regulate myofibroblast transdifferentiation in hypertrophic scars. Here, we examined how high salt activation of TRPC3 participates in hypertrophic scarring during wound healing. In vitro, we confirmed that high salt increased the TRPC3 protein expression and the marker of myofibroblast alpha smooth muscle actin (α-SMA) in wild-type mice (WT) primary cultured dermal fibroblasts but not Trpc3-/- mice. Activation of TRPC3 by high salt elevated cytosolic Ca2+ influx and mitochondrial Ca2+ uptake in dermal fibroblasts in a TRPC3-dependent manner. High salt activation of TRPC3 enhanced mitochondrial respiratory dysfunction and excessive ROS production by inhibiting pyruvate dehydrogenase action, that activated ROS-triggered Ca2+ influx and the Rho kinase/MLC pathway in WT mice but not Trpc3-/- mice. In vivo, a persistent high-salt diet promoted myofibroblast transdifferentiation and collagen deposition in a TRPC3-dependent manner. Therefore, this study demonstrates that high salt enhances myofibroblast transdifferentiation and promotes hypertrophic scar formation through enhanced mitochondrial Ca2+ homeostasis, which activates the ROS-mediated pMLC/pMYPT1 pathway. TRPC3 deficiency antagonizes high salt diet-induced hypertrophic scarring. TRPC3 may be a novel target for hypertrophic scarring during wound healing.
Collapse
Affiliation(s)
- Weijie Xia
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yuanyuan Wang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Junbo Zhang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Hailin Wang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yuangang Lu
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| |
Collapse
|
26
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
27
|
Chattopadhyay A, Tully J, Shan J, Sheikh S, Ohliger M, Gordon JW, Mauro T, Abuabara K. Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clin Exp Dermatol 2023; 48:733-743. [PMID: 36970766 DOI: 10.1093/ced/llad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Indexed: 07/20/2023]
Abstract
A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.
Collapse
Affiliation(s)
- Aheli Chattopadhyay
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Janell Tully
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Judy Shan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sidra Sheikh
- Kaiser Permanente, Department of Physical Medicine & Rehabilitation, Oakland, CA, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Theodora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Akbari A, McIntyre CW. Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease. J Clin Med 2023; 12:4381. [PMID: 37445416 PMCID: PMC10342976 DOI: 10.3390/jcm12134381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Sodium imbalance is a hallmark of chronic kidney disease (CKD). Excess tissue sodium in CKD is associated with hypertension, inflammation, and cardiorenal disease. Sodium magnetic resonance imaging (23Na MRI) has been increasingly utilized in CKD clinical trials especially in the past few years. These studies have demonstrated the association of excess sodium tissue accumulation with declining renal function across whole CKD spectrum (early- to end-stage), biomarkers of systemic inflammation, and cardiovascular dysfunction. In this article, we review recent advances of 23Na MRI in CKD and discuss its future role with a focus on the skin, the heart, and the kidney itself.
Collapse
Affiliation(s)
- Alireza Akbari
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Christopher W. McIntyre
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Departments of Medicine, Pediatrics and Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
29
|
Nosalski R, Guzik TJ. Skin sodium, lymphatics, and blood pressure: a non-canonical mechanism of salt-sensitive hypertension. Eur Heart J 2023:ehad290. [PMID: 37376748 DOI: 10.1093/eurheartj/ehad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- Ryszard Nosalski
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
- Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Krakow, Poland
| |
Collapse
|
30
|
Masenga SK, Kirabo A. Hypertensive heart disease: risk factors, complications and mechanisms. Front Cardiovasc Med 2023; 10:1205475. [PMID: 37342440 PMCID: PMC10277698 DOI: 10.3389/fcvm.2023.1205475] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Hypertensive heart disease constitutes functional and structural dysfunction and pathogenesis occurring primarily in the left ventricle, the left atrium and the coronary arteries due to chronic uncontrolled hypertension. Hypertensive heart disease is underreported and the mechanisms underlying its correlates and complications are not well elaborated. In this review, we summarize the current understanding of hypertensive heart disease, we discuss in detail the mechanisms associated with development and complications of hypertensive heart disease especially left ventricular hypertrophy, atrial fibrillation, heart failure and coronary artery disease. We also briefly highlight the role of dietary salt, immunity and genetic predisposition in hypertensive heart disease pathogenesis.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Cam-Pus, Livingstone, Zambia
- School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
31
|
Bronzini M, Maglione A, Rosso R, Matta M, Masuzzo F, Rolla S, Clerico M. Feeding the gut microbiome: impact on multiple sclerosis. Front Immunol 2023; 14:1176016. [PMID: 37304278 PMCID: PMC10248010 DOI: 10.3389/fimmu.2023.1176016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial neurological disease characterized by chronic inflammation and immune-driven demyelination of the central nervous system (CNS). The rising number of MS cases in the last decade could be partially attributed to environmental changes, among which the alteration of the gut microbiome driven by novel dietary habits is now of particular interest. The intent of this review is to describe how diet can impact the development and course of MS by feeding the gut microbiome. We discuss the role of nutrition and the gut microbiota in MS disease, describing preclinical studies on experimental autoimmune encephalomyelitis (EAE) and clinical studies on dietary interventions in MS, with particular attention to gut metabolites-immune system interactions. Possible tools that target the gut microbiome in MS, such as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally, we discuss the open questions and the prospects of these microbiome-targeted therapies for people with MS and for future research.
Collapse
Affiliation(s)
- Matteo Bronzini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | | | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
32
|
Speed J, Pollock D, Clemmer J. Don't sweat the small stuff: skin mechanisms of sodium homeostasis and associations with long-term blood pressure. Clin Sci (Lond) 2023; 137:769-772. [PMID: 37199254 PMCID: PMC10195985 DOI: 10.1042/cs20230163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Despite the overwhelming evidence that the kidney is the principal regulator of chronic blood pressure though the ability to sense pressure and adjust blood volume accordingly, recent clinical and preclinical evidence suggests that skin clearance of Na+ through sweat significantly contributes to long-term blood pressure and risk of hypertension. Evidence indicates that changes in skin Na+ content negatively associate with renal function, and factors that influence the concentration of Na+ in sweat are affected by major regulators of Na+ excretion by the kidney such as angiotensin and aldosterone. In addition, known regulatory mechanisms that regulate the amount of sweat produced do not include changes in Na+ intake or blood volume. Because of these reasons, it will be hard to quantify the contribution of Na+ clearance through sweat to blood pressure regulation and hypertension. While Chen et al. demonstrate significant negative associations between sweat Na+ concentration and blood pressure, it is likely that Na+ clearance through the skin has a short-term influence on blood pressure and sweat Na+ concentration is most likely a biomarker of renal function and its key role in hypertension.
Collapse
Affiliation(s)
- Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - David M. Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, U.K
| | - John S. Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
33
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
34
|
Albertin G, Astolfi L, Fede C, Simoni E, Contran M, Petrelli L, Tiengo C, Guidolin D, De Caro R, Stecco C. Detection of Lymphatic Vessels in the Superficial Fascia of the Abdomen. Life (Basel) 2023; 13:life13030836. [PMID: 36983991 PMCID: PMC10058564 DOI: 10.3390/life13030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Recently, the superficial fascia has been recognized as a specific anatomical structure between the two adipose layers-the superficial adipose tissue (SAT) and the deep adipose tissue (DAT). The evaluation of specific characteristics of cells, fibers, blood circulation, and innervation has shown that the superficial fascia has a clear and distinct anatomical identity, but knowledge about lymphatic vessels in relation to the superficial fascia has not been described. The aim of this study was to evaluate the presence of lymphatic vessels in the hypodermis, with a specific focus on the superficial fascia and in relation to the layered subdivision of the subcutaneous tissue into SAT and DAT. Tissue specimens were harvested from three adult volunteer patients during abdominoplasty and stained with D2-40 antibody for the lymphatic endothelium. In the papillary dermis, a huge presence of lymphatic vessels was highlighted, parallel to the skin surface and embedded in the loose connective tissue. In the superficial adipose tissue, thin lymphatic vessels (mean diameter of 11.6 ± 7.71 µm) were found, close to the fibrous septa connecting the dermis to the deeper layers. The deep adipose tissue showed a comparable overall content of lymphatic vessels with respect to the superficial layer; they followed the blood vessel and had a larger diameter. In the superficial fascia, the lymphatic vessels showed higher density and a larger diameter, in both the longitudinal and transverse directions along the fibers, as well as vessels that intertwined with one another, forming a rich network of vessels. This study demonstrated a different distribution of the lymphatic vessels in the various subcutaneous layers, especially in the superficial fascia, and the demonstration of the variable gauge of the vessels leads us to believe that they play different functional roles in the collection and transport of interstitial fluid-important factors in various surgical and rehabilitation fields.
Collapse
Affiliation(s)
- Giovanna Albertin
- Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova, 35122 Padova, Italy
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35129 Padova, Italy
- Interdepartmental Research Center of International Auditory Processing Project in Venice (I-APPROVE), Department of Neurosciences, University of Padova, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, 30122 Venezia, Italy
| | - Caterina Fede
- Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova, 35122 Padova, Italy
| | - Edi Simoni
- Bioacoustics Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35129 Padova, Italy
- Interdepartmental Research Center of International Auditory Processing Project in Venice (I-APPROVE), Department of Neurosciences, University of Padova, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, 30122 Venezia, Italy
| | - Martina Contran
- Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova, 35122 Padova, Italy
| | - Lucia Petrelli
- Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova, 35122 Padova, Italy
| | - Cesare Tiengo
- Clinic of Plastic Surgery, Padova University Hospital, 35128 Padova, Italy
| | - Diego Guidolin
- Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova, 35122 Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova, 35122 Padova, Italy
| | - Carla Stecco
- Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova, 35122 Padova, Italy
| |
Collapse
|
35
|
The role of the osmosensitive transcription factor NFAT5 in corneal edema resorption after injury. Exp Mol Med 2023; 55:565-573. [PMID: 36869067 PMCID: PMC10073147 DOI: 10.1038/s12276-023-00954-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 03/05/2023] Open
Abstract
The osmosensitive transcription factor nuclear factor of activated T cells 5 (NFAT5; or tonicity-responsive enhancer binding protein; TonEBP) plays a key role in macrophage-driven regulation of cutaneous salt and water balance. In the immune-privileged and transparent cornea, disturbances in fluid balance and pathological edema result in corneal transparency loss, which is one of the main causes of blindness worldwide. The role of NFAT5 in the cornea has not yet been investigated. We analyzed the expression and function of NFAT5 in naive corneas and in an established mouse model of perforating corneal injury (PCI), which causes acute corneal edema and transparency loss. In uninjured corneas, NFAT5 was mainly expressed in corneal fibroblasts. In contrast, after PCI, NFAT5 expression was highly upregulated in recruited corneal macrophages. NFAT5 deficiency did not alter corneal thickness in steady state; however, loss of NFAT5 led to accelerated resorption of corneal edema after PCI. Mechanistically, we found that myeloid cell-derived NFAT5 is crucial for controlling corneal edema, as edema resorption after PCI was significantly enhanced in mice with conditional loss of NFAT5 in the myeloid cell lineage, presumably due to increased pinocytosis of corneal macrophages. Collectively, we uncovered a suppressive role for NFAT5 in corneal edema resorption, thereby identifying a novel therapeutic target to combat edema-induced corneal blindness.
Collapse
|
36
|
Van Beusecum JP, Rianto F, Teakell J, Kon V, Sparks MA, Hoorn EJ, Kirabo A, Ramkumar N. Novel Concepts in Nephron Sodium Transport: A Physiological and Clinical Perspective. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:124-136. [PMID: 36868728 DOI: 10.1053/j.akdh.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 04/13/2023]
Abstract
The kidneys play a critical role in maintaining total body sodium (Na+) balance across a wide range of dietary intake, accomplished by a concerted effort involving multiple Na+ transporters along the nephron. Furthermore, nephron Na+ reabsorption and urinary Na+ excretion are closely linked to renal blood flow and glomerular filtration such that perturbations in either of them can modify Na+ transport along the nephron, ultimately resulting in hypertension and other Na+-retentive states. In this article, we provide a brief physiological overview of nephron Na+ transport and illustrate clinical syndromes and therapeutic agents that affect Na+ transporter function. We highlight recent advances in kidney Na+ transport, particularly the role of immune cells, lymphatics, and interstitial Na+ in regulating Na+ reabsorption, the emergence of potassium (K+) as a regulator of Na+ transport, and the evolution of the nephron to modulate Na+ transport.
Collapse
Affiliation(s)
- Justin P Van Beusecum
- Ralph H. Johnson VA Medical Center, Charleston, SC; Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Jade Teakell
- Division of Renal Diseases and Hypertension, Department of Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Valentina Kon
- Division of Nephrology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah Health, Salt Lake City, UT.
| |
Collapse
|
37
|
Chen J, Chew K, Mary S, Boder P, Bagordo D, Rossi G, Touyz R, Delles C, Rossitto G. Skin-specific mechanisms of body fluid regulation in hypertension. Clin Sci (Lond) 2023; 137:239-250. [PMID: 36648486 PMCID: PMC10621731 DOI: 10.1042/cs20220609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Increasing evidence suggests excess skin Na+ accumulation in hypertension; however, the role of skin-specific mechanisms of local Na+/water regulation remains unclear. We investigated the association between measures of sweat and trans-epidermal water loss (TEWL) with Na+ content in the skin ([Na+]skin) and clinical characteristics in consecutive hypertensive patients. We obtained an iontophoretic pilocarpine-induced sweat sample, a skin punch biopsy for chemical analysis, and measures of TEWL from the upper limbs. Serum vascular endothelial growth factor-c (VEGF-c) and a reflectance measure of haemoglobin skin content served as surrogates of skin microvasculature. In our cohort (n = 90; age 21-86 years; females = 49%), sweat composition was independent of sex and BMI. Sweat Na+ concentration ([Na+]sweat) inversely correlated with [K+]sweat and was higher in patients on ACEIs/ARBs (P < 0.05). A positive association was found between [Na+]sweat and [Na+]skin, independent of sex, BMI, estimated Na+ intake and use of ACEi/ARBs (Padjusted = 0.025); both closely correlated with age (P < 0.01). Office DBP, but not SBP, inversely correlated with [Na+]sweat independent of other confounders (Padjusted = 0.03). Total sweat volume and Na+ loss were lower in patients with uncontrolled office BP (Padjusted < 0.005 for both); sweat volume also positively correlated with serum VEGF-c and TEWL. Lower TEWL was paralleled by lower skin haemoglobin content, which increased less after vasodilatory pilocarpine stimulation when BMI was higher (P = 0.010). In conclusion, measures of Na+ and water handling/regulation in the skin were associated with relevant clinical characteristics, systemic Na+ status and blood pressure values, suggesting a potential role of the skin in body-fluid homeostasis and therapeutic targeting of hypertension.
Collapse
Affiliation(s)
- Jun Yu Chen
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Khai Syuen Chew
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Sheon Mary
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Philipp Boder
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Domenico Bagordo
- Emergency Medicine and Hypertension, DIMED, Università degli Studi di Padova, Italy
| | - Gian Paolo Rossi
- Emergency Medicine and Hypertension, DIMED, Università degli Studi di Padova, Italy
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Canada
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Giacomo Rossitto
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
- Emergency Medicine and Hypertension, DIMED, Università degli Studi di Padova, Italy
| |
Collapse
|
38
|
Côrte-Real BF, Hamad I, Arroyo Hornero R, Geisberger S, Roels J, Van Zeebroeck L, Dyczko A, van Gisbergen MW, Kurniawan H, Wagner A, Yosef N, Weiss SNY, Schmetterer KG, Schröder A, Krampert L, Haase S, Bartolomaeus H, Hellings N, Saeys Y, Dubois LJ, Brenner D, Kempa S, Hafler DA, Stegbauer J, Linker RA, Jantsch J, Müller DN, Kleinewietfeld M. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab 2023; 35:299-315.e8. [PMID: 36754020 DOI: 10.1016/j.cmet.2023.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) are central for peripheral tolerance, and their deregulation is associated with autoimmunity. Dysfunctional autoimmune Tregs display pro-inflammatory features and altered mitochondrial metabolism, but contributing factors remain elusive. High salt (HS) has been identified to alter immune function and to promote autoimmunity. By investigating longitudinal transcriptional changes of human Tregs, we identified that HS induces metabolic reprogramming, recapitulating features of autoimmune Tregs. Mechanistically, extracellular HS raises intracellular Na+, perturbing mitochondrial respiration by interfering with the electron transport chain (ETC). Metabolic disturbance by a temporary HS encounter or complex III blockade rapidly induces a pro-inflammatory signature and FOXP3 downregulation, leading to long-term dysfunction in vitro and in vivo. The HS-induced effect could be reversed by inhibition of mitochondrial Na+/Ca2+ exchanger (NCLX). Our results indicate that salt could contribute to metabolic reprogramming and that short-term HS encounter perturb metabolic fitness and long-term function of human Tregs with important implications for autoimmunity.
Collapse
Affiliation(s)
- Beatriz F Côrte-Real
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Sabrina Geisberger
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Integrative Proteomics and Metabolomics, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Joris Roels
- VIB-UGent Center for Inflammation Research, 9052 Gent, Belgium; VIB BioImaging Core, 9052 Gent, Belgium
| | - Lauren Van Zeebroeck
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Aleksandra Dyczko
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Henry Kurniawan
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub Investigator, San Francisco, CA 94158, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA; Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Susanne N Y Weiss
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Klaus G Schmetterer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Stefanie Haase
- Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, 9052 Gent, Belgium
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Dirk Brenner
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5230 Odense, Denmark
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Integrative Proteomics and Metabolomics, 13125 Berlin, Germany
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, 50935 Cologne, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium.
| |
Collapse
|
39
|
Martin K, Toussaint ND, Tan SJ, Hewitson TD. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res 2023; 46:408-416. [PMID: 36434290 DOI: 10.1038/s41440-022-01096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Sodium chloride, as salt, gives rise to hypertension. Nevertheless, individual susceptibility to the ramifications of sodium chloride is heterogeneous. The conventional nephron-centric regulation of sodium with neurohormonal inputs and responses is now expanded to include an intricate extrarenal pathway including the endothelium, skin, lymphatics, and immune cells. An overabundance of sodium is buffered and regulated by the skin interstitium. Excess sodium passes through (and damages) the vascular endothelium and can be dynamically stored in the skin, modulated by skin immune cells and lymphatics. This excess interstitially stored sodium is implicated in hypertension, cardiovascular dysfunction, metabolic disruption, and inflammatory dysregulation. This extrarenal pathway of regulating sodium represents a novel target for better blood pressure management, rebalancing disturbed inflammation, and hence addressing cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
41
|
Al-Hajj S, Lemoine R, Chadet S, Goumard A, Legay L, Roxburgh E, Heraud A, Deluce N, Lamendour L, Burlaud-Gaillard J, Gatault P, Büchler M, Roger S, Halimi JM, Baron C. High extracellular sodium chloride concentrations induce resistance to LPS signal in human dendritic cells. Cell Immunol 2023; 384:104658. [PMID: 36566700 DOI: 10.1016/j.cellimm.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.
Collapse
Affiliation(s)
- Sally Al-Hajj
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Annabelle Goumard
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Laura Legay
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Ellena Roxburgh
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Audrey Heraud
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Nora Deluce
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Lucille Lamendour
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- U1259 Morphogenesis and Antigenicity of HIV and Hepatitis virus (MAVIVH), University of Tours, Tours, France; IBISA Facility of Electronic Microscopy, University Hospital of Tours, Tours, France
| | - Philippe Gatault
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Mathias Büchler
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France.
| | - Jean-Michel Halimi
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| |
Collapse
|
42
|
In obese hypertensives cholecalciferol inhibits circulating TH17 cells but not macrophage infiltration on adipose tissue. Clin Immunol 2023; 247:109244. [PMID: 36706826 DOI: 10.1016/j.clim.2023.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
In arterial hypertension, increased Th17 cells and reduced Tregs are the hallmarks of immunological dysfunction and the basis for the investigation of immunomodulatory drugs. Although cholecalciferol is not a primary immunomodulator, it has recognized action on immune cells, leading us to hypothesise if cholecalciferol can induce a more tolerogenic phenotype in obese hypertensives. In a phase-2, single-centre, randomised, open, 24-week trial, we assigned adults with obesity-associated hypertension and vitamin D deficiency to receive usual therapy plus 50,000 IU/week of cholecalciferol or usual therapy alone. The primary endpoint was the percentual variation in T CD4+, T CD8+, Tregs, and Th17 cells. Secondary endpoints included the percentual variation in Th1, Tc1, Tc17, and monocytes and variation in the number of perivascular and non-perivascular macrophages, T CD4+ and T CD8+ lymphocytes in subcutaneous abdominal adipose tissue. A control group of 12 overweight normotensives was also evaluated for peripheral immune cells. A total of 36 obese hypertensives were randomised, 18 in each group. In comparison with normotensive controls, hypertensives presented higher percentages of T lymphocytes (p = 0.016), Tregs (p = 0.014), and non-classical monocytes (p < 0.001). At week 24, Th17 cells increased in control group (p = 0.017) but remained stable in cholecalciferol group. For Tregs, downregulation towards the values of normotensive controls was observed (p = 0.003), and in multivariate analysis, an increased loading in the setting of the cells of adaptive immunity observed (eigenvalue 1.78, p < 0.001). No changes were documented for monocytes. In adipose tissue, a baseline negative correlation between vitamin D and perivascular macrophages was observed (r = -0.387, p = 0.024) that persisted in the control group (r = -0.528, p = 0.024) but not in the cholecalciferol group, which presented an increase in non-perivascular macrophages (p = 0.029) at week 24. No serious adverse events were reported for all the participants. In this trial, we found that supplementation with cholecalciferol interfered with peripheral and adipose tissue immune cell profile, downregulating peripheral Th17 cells, but increasing the number of infiltrating subcutaneous adipose tissue macrophages. (Funded by Núcleo Estudos Hipertensão da Beira Interior; EudraCT number: 2015-003910-26).
Collapse
|
43
|
van Doorn L, Visser WJ, van Dorst DCH, Mirabito Colafella KM, Koolen SLW, de Mik AVE, Garrelds IM, Bovée DM, de Hoop EO, Bins S, Eskens FALM, Hoorn EJ, Jan Danser AH, Mathijssen RHJ, Versmissen J. Dietary sodium restriction prevents vascular endothelial growth factor inhibitor-induced hypertension. Br J Cancer 2023; 128:354-362. [PMID: 36357702 PMCID: PMC9647750 DOI: 10.1038/s41416-022-02036-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor inhibitors (VEGFIs) are effective anticancer agents which often induce hypertension. VEGFI-induced hypertension is sodium-sensitive in animal studies. Therefore, the efficacy of dietary sodium restriction (DSR) to prevent VEGFI-induced hypertension in cancer patients was studied. METHODS Cancer patients with VEGFI-induced hypertension (day mean >135/85 mmHg or a rise in systolic and/or diastolic BP ≥ 20 mmHg) were treated with DSR (aiming at <4 g salt/day). The primary endpoint was the difference in daytime mean arterial blood pressure (MAP) increase between the treatment cycle with and without DSR. RESULTS During the first VEGFI treatment cycle without DSR, mean daytime MAP increased from 95 to 110 mmHg. During the subsequent treatment cycle with DSR, mean daytime MAP increased from 94 to 102 mmHg. Therefore, DSR attenuated the increase in mean daytime MAP by 7 mmHg (95% CI 1.3-12.0, P = 0.009). DSR prevented the rise in the endothelin-1/renin ratio that normally accompanies VEGFI-induced hypertension (P = 0.020) and prevented the onset of proteinuria: 0.15 (0.10-0.25) g/24 h with DSR versus 0.19 (0.11-0.32) g/24 h without DSR; P = 0.005. DISCUSSION DSR significantly attenuated VEGFI induced BP rise and proteinuria and thus is an effective non-pharmacological intervention.
Collapse
Affiliation(s)
- Leni van Doorn
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Wesley J. Visser
- grid.5645.2000000040459992XDivision of Dietetics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Daan C. H. van Dorst
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDivision of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Katrina M. Mirabito Colafella
- grid.5645.2000000040459992XDivision of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands ,grid.1002.30000 0004 1936 7857Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC Australia
| | - Stijn L. W. Koolen
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anneke van Egmond- de Mik
- grid.5645.2000000040459992XDivision of Dietetics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ingrid M. Garrelds
- grid.5645.2000000040459992XDivision of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Dominique M. Bovée
- grid.5645.2000000040459992XDivision of Dietetics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Esther Oomen- de Hoop
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sander Bins
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ferry A. L. M. Eskens
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ewout J. Hoorn
- grid.5645.2000000040459992XDivision of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A. H. Jan Danser
- grid.5645.2000000040459992XDivision of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ron H. J. Mathijssen
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jorie Versmissen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands. .,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
44
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
45
|
Contributions of renal water loss and skin water conservation to blood pressure elevation in spontaneously hypertensive rats. Hypertens Res 2023; 46:32-39. [PMID: 36229521 DOI: 10.1038/s41440-022-01044-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 02/03/2023]
Abstract
We recently reported that skin vasoconstriction to suppress transepidermal water loss (TEWL) leads to hypertension in renal injury model rats with impaired urine concentration ability. In this study, we investigated the pathogenesis of hypertension in spontaneously hypertensive rats (SHRs) from the perspective of renal water loss and skin water conservation. We compared the urinary concentration ability, body sodium and water balance, blood pressure, and TEWL in SHRs and control normotensive Wistar-Kyoto rats (WKYs). SHRs showed significantly higher urine volume and lower urinary osmolality than those of WKYs, while there were no significant differences in water intake, urinary osmolyte excretion, and plasma osmolarity between the groups. SHRs exhibited significantly higher blood pressure, skin sodium content, and lower TEWL compared with those is WKYs. Skin vasodilation, induced by elevating body temperature, increased TEWL in both SHRs and WKYs, and significantly reduced blood pressure in SHRs but not WKYs. These findings suggest that physiological adaptation can reduce dermal water loss in SHRs to compensate for renal water loss. Vasoconstriction required for successful cutaneous water conservation explains SHR hypertension. Renal concentration ability and skin barrier function for water conservation may become a novel therapeutic target for essential hypertension.
Collapse
|
46
|
Mitochondria directly sense osmotic stress to trigger rapid metabolic remodeling via regulation of pyruvate dehydrogenase phosphorylation. J Biol Chem 2022; 299:102837. [PMID: 36581206 PMCID: PMC9879793 DOI: 10.1016/j.jbc.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
A high-salt diet significantly impacts various diseases, ilncluding cancer and immune diseases. Recent studies suggest that the high-salt/hyperosmotic environment in the body may alter the chronic properties of cancer and immune cells in the disease context. However, little is known about the acute metabolic changes in hyperosmotic stress. Here, we found that hyperosmotic stress for a few minutes induces Warburg-like metabolic remodeling in HeLa and Raw264.7 cells and suppresses fatty acid oxidation. Regarding Warburg-like remodeling, we determined that the pyruvate dehydrogenase phosphorylation status was altered bidirectionally (high in hyperosmolarity and low in hypoosmolarity) to osmotic stress in isolated mitochondria, suggesting that mitochondria themselves have an acute osmosensing mechanism. Additionally, we demonstrate that Warburg-like remodeling is required for HeLa cells to maintain ATP levels and survive under hyperosmotic conditions. Collectively, our findings suggest that cells exhibit acute metabolic remodeling under osmotic stress via the regulation of pyruvate dehydrogenase phosphorylation by direct osmosensing within mitochondria.
Collapse
|
47
|
Mukohda M, Mizuno R, Saito F, Matsui T, Ozaki H. Hypertension is linked to enhanced lymphatic contractile response via RGS16/RhoA/ROCK pathway. Am J Physiol Heart Circ Physiol 2022; 323:H1118-H1129. [PMID: 36306212 DOI: 10.1152/ajpheart.00496.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lymph capillary network can be expected to alter blood pressure via regulating interstitial electrolyte and volume balance. However, the pathophysiology of lymphatic vessel in hypertension is poorly understood. In this study, we examined lymph vessel function focusing on contractile response in hypertensive rats. It was found that thoracic ducts isolated from adult (10-14 wk old) spontaneously hypertensive rats (SHRs) exhibited increased agonist-mediated contraction compared with age-matched Wistar-Kyoto (WKY) rats, whereas lymphatic contractions in younger (4 wk old) SHRs, exhibiting normal blood pressure, were no different compared with age-matched control rats. Tight regulation of blood pressure with antihypertensive drugs (hydrochlorothiazide/hydralazine) did not prevent the augmented lymphatic contraction in adult SHRs; however, treatment of SHRs with angiotensin II (ANG II) type 1 receptor blocker (losartan) for 6 wk abolished the augmentation of lymphatic contractions. In addition, ANG II infusion in Wistar rat caused augmented lymphatic contractile responses in the thoracic duct. The augmented contractions in adult SHRs were diminished by a ROCK inhibitor (Y-27632). Consistently, the thoracic ducts in SHRs showed significantly higher phosphorylation of myosin phosphatase targeting protein-1 than WKY rats. Furthermore, gene expression profiling of adult SHR lymphatics showed marked loss of regulator of G-protein signaling 16 (RGS16) mRNA, which was confirmed by the real-time PCR. Treatment with the RGS inhibitor CCG-63808 enhanced contractions in thoracic ducts from Wistar rats, which were abolished by the ROCK inhibitor. It is concluded that lymphatic contractile function was enhanced in hypertensive model rats, which could be mediated by dysregulation of the ROCK pathway possibly through RGS16.NEW & NOTEWORTHY Lymph capillary controls interstitial electrolyte and volume balance, which may blunt increased blood pressure. However, the function of lymphatic vessel in hypertension is poorly understood. Our study showed that the lymphatic smooth muscle contractility is hyperreactive in two different hypertensive models. The lymphatic dysfunction could be mediated by dysregulation of ROCK pathway possibly through RGS16. The present finding supports a new concept showing the functional relationship between lymphatic contractile activity and hypertension.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Fumiyo Saito
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Toshiyasu Matsui
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroshi Ozaki
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
48
|
Crorkin P, Hao S, Ferreri NR. Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-α (Tumor Necrosis Factor-α) on Blood Pressure and Renal Function. Hypertension 2022; 79:2656-2670. [PMID: 36129177 PMCID: PMC9649876 DOI: 10.1161/hypertensionaha.122.19464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.
Collapse
Affiliation(s)
- Patrick Crorkin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | | |
Collapse
|
49
|
Rossitto G, Delles C. Mechanisms of sodium-mediated injury in cardiovascular disease: old play, new scripts. FEBS J 2022; 289:7260-7273. [PMID: 34355504 DOI: 10.1111/febs.16155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
There is a strong association between salt intake and cardiovascular diseases, particularly hypertension, on the population level. The mechanisms that explain this association remain incompletely understood and appear to extend beyond blood pressure. In this review, we describe some of the 'novel' roles of Na+ in cardiovascular health and disease: energetic implications of sodium handling in the kidneys; local accumulation in tissue; fluid dynamics; and the role of the microvasculature, with particular focus on the lymphatic system. We describe the interplay between these factors that involves body composition, metabolic signatures, inflammation and composition of the extracellular and intracellular milieus.
Collapse
Affiliation(s)
- Giacomo Rossitto
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK.,Department of Medicine (DIMED), University of Padua, Italy
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
50
|
Thowsen IM, Reikvam T, Skogstrand T, Samuelsson AM, Müller DN, Tenstad O, Alitalo K, Karlsen T, Wiig H. Genetic Engineering of Lymphangiogenesis in Skin Does Not Affect Blood Pressure in Mouse Models of Salt-Sensitive Hypertension. Hypertension 2022; 79:2451-2462. [DOI: 10.1161/hypertensionaha.122.19777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background:
Recent studies have indicated that sodium storage is influenced by macrophages that secrete VEGF-C (vascular endothelial growth factor) during salt stress thus stimulating lymphangiogenesis, thereby acting as a buffer against increased blood pressure (BP). We aimed to explore the role of dermal lymphatics in BP and sodium homeostasis. Our hypothesis was that mice with reduced dermal lymphatic vessels were more prone to develop salt-sensitive hypertension, and that mice with hyperplastic vessels were protected.
Methods:
Mice with either hypoplastic (Chy), absent (K14-VEGFR3 [vascular endothelial growth factor receptor 3]-Ig), or hyperplastic (K14-VEGF-C) dermal lymphatic vessels and littermate controls were given high-salt diet (4% NaCl in the chow), deoxycorticosterone acetate (DOCA)-salt diet and 1% saline to drink or nitric oxide blocker diet L-N
G
-nitro arginine methyl ester (followed by high salt diet). BP was measured by telemetric recording, and tissue sodium content by ion chromatography.
Results:
In contrast to previous studies, high salt diet did not induce an increase in BP or sodium storage in any of the mouse strains investigated. DOCA-salt, on the other hand, gave an increase in BP in Chy and K14-VEGFR3-Ig not different from their corresponding WT controls. DOCA induced salt storage in skin and muscle, but to the same extent in mice with dysfunctional lymphatic vessels and WT controls. Lymph flow as assessed by tracer washout was not affected by the diet in any of the mouse strains.
Conclusions:
Our results suggest that dermal lymphatic vessels are not involved in salt storage or blood pressure regulation in these mouse models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Irene Matre Thowsen
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Tore Reikvam
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Anne-Maj Samuelsson
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
- Department of Medicine, Haukeland University Hospital, Bergen, Norway (A.-M.S.)
| | - Dominik N. Müller
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany (D.N.M.)
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (K.A.)
| | - Tine Karlsen
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| |
Collapse
|