1
|
Hu Y, Zhang C, Wang S, Xiong H, Xie W, Zeng Z, Cai H, Wang QK, Lu Z. 14-3-3ε/YWHAE regulates the transcriptional expression of cardiac sodium channel Na V1.5. Heart Rhythm 2024; 21:2320-2329. [PMID: 38750908 DOI: 10.1016/j.hrthm.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cardiac voltage-gated sodium channel alpha subunit 5 (NaV1.5) encoded by SCN5A is associated with arrhythmia disorders. However, the molecular mechanism underlying NaV1.5 expression remains to be fully elucidated. Previous studies have reported that the 14-3-3 family acts as an adaptor involved in regulating kinetic characteristics of cardiac ion channels. OBJECTIVE The purpose of this study was to establish 14-3-3ε/YWHAE, a member of the 14-3-3 family, as a crucial regulator of NaV1.5 and to explore the potential role of 14-3-3ε in the heart. METHODS Western blotting, patch clamping, real-time reverse transcription-polymerase chain reaction, RNA immunoprecipitation, electrocardiogram recording, echocardiography, and histologic analysis were performed. RESULTS YWHAE overexpression significantly reduced the expression level of SCN5A mRNA and sodium current density, whereas YWHAE knockdown significantly increased SCN5A mRNA expression and sodium current density in HEK293/NaV1.5 and H9c2 cells. Similar results were observed in mice injected with adeno-associated virus serotype 9-mediated YWHAE knockdown. The effect of 14-3-3ε on NaV1.5 expression was abrogated by knockdown of TBX5, a transcription factor of NaV1.5. An interaction between 14-3-3ε protein and TBX5 mRNA was identified, and YWHAE overexpression significantly decreased TBX5 mRNA stability without affecting SCN5A mRNA stability. In addition, mice subjected to adeno-associated virus serotype 9-mediated YWHAE knockdown exhibited shorter R-R intervals and higher prevalence of premature ventricular contractions. CONCLUSION Our data unveil a novel regulatory mechanism of NaV1.5 by 14-3-3ε and highlight the significance of 14-3-3ε in transcriptional regulation of NaV1.5 expression and cardiac arrhythmias.
Collapse
Affiliation(s)
- Yushuang Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, PR China
| | - Chi Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, PR China
| | - Hongbo Xiong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, PR China
| | - Wen Xie
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, PR China
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, PR China
| | - HuanHuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, PR China
| | - Qing Kenneth Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Burnicka-Turek O, Trampel KA, Laforest B, Broman MT, Khan Z, Rytkin E, Li B, Schaffer E, Gadek M, Shen KM, Efimov IR, Moskowitz IP. Coordinated Tbx3 / Tbx5 transcriptional control of the adult ventricular conduction system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610377. [PMID: 39257760 PMCID: PMC11383707 DOI: 10.1101/2024.08.29.610377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The cardiac conduction system (CCS) orchestrates the electrical impulses that enable coordinated contraction of the cardiac chambers. The T-box transcription factors TBX3 and TBX5 are required for cardiac conduction system development and associated with overlapping and distinct human cardiac conduction system diseases. We evaluated the coordinated role of Tbx3 and Tbx5 in the murine ventricular conduction system (VCS). We engineered a compound Tbx3:Tbx5 conditional knockout allele for both genes located in cis on mouse chromosome 5. Conditional deletion of both T-box transcriptional factors in the ventricular conduction system, using the VCS-specific Mink:Cre, caused loss of VCS function and molecular identity. Combined Tbx3 and Tbx5 deficiency in the adult VCS led to conduction defects, including prolonged PR and QRS intervals and elevated susceptibility to ventricular tachycardia. These electrophysiologic defects occurred prior to detectable alterations in cardiac contractility or histologic morphology, indicative of a primary conduction system defect. Tbx3:Tbx5 double knockout VCS cardiomyocytes revealed a transcriptional shift towards non-CCS-specialized working myocardium, suggesting reprogramming of their cellular identity. Furthermore, optical mapping revealed a loss of VCS-specific conduction system propagation. Collectively, these findings indicate that Tbx3 and Tbx5 coordinate to control VCS molecular fate and function, with implications for understanding cardiac conduction disorders in humans.
Collapse
Affiliation(s)
- Ozanna Burnicka-Turek
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Katy A. Trampel
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Brigitte Laforest
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Michael T. Broman
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, IL, 60637, USA
| | - Zoheb Khan
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Eric Rytkin
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Binjie Li
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Ella Schaffer
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Margaret Gadek
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Kaitlyn M. Shen
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Igor R. Efimov
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Ivan P. Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Oh Y, Abid R, Dababneh S, Bakr M, Aslani T, Cook DP, Vanderhyden BC, Park JG, Munshi NV, Hui CC, Kim KH. Transcriptional regulation of the postnatal cardiac conduction system heterogeneity. Nat Commun 2024; 15:6550. [PMID: 39095365 PMCID: PMC11297185 DOI: 10.1038/s41467-024-50849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.
Collapse
Affiliation(s)
- Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rimshah Abid
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marwan Bakr
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Termeh Aslani
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Grunert M, Dorn C, Rickert-Sperling S. Cardiac Transcription Factors and Regulatory Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:295-311. [PMID: 38884718 DOI: 10.1007/978-3-031-44087-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
5
|
van der Maarel LE, Christoffels VM. Development of the Cardiac Conduction System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:185-200. [PMID: 38884712 DOI: 10.1007/978-3-031-44087-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.
Collapse
Affiliation(s)
- Lieve E van der Maarel
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
7
|
Theisen B, Holtz A, Rajagopalan V. Noncoding RNAs and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Arrhythmic Brugada Syndrome. Cells 2023; 12:2398. [PMID: 37830612 PMCID: PMC10571919 DOI: 10.3390/cells12192398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Hundreds of thousands of people die each year as a result of sudden cardiac death, and many are due to heart rhythm disorders. One of the major causes of these arrhythmic events is Brugada syndrome, a cardiac channelopathy that results in abnormal cardiac conduction, severe life-threatening arrhythmias, and, on many occasions, death. This disorder has been associated with mutations and dysfunction of about two dozen genes; however, the majority of the patients do not have a definite cause for the diagnosis of Brugada Syndrome. The protein-coding genes represent only a very small fraction of the mammalian genome, and the majority of the noncoding regions of the genome are actively transcribed. Studies have shown that most of the loci associated with electrophysiological traits are located in noncoding regulatory regions and are expected to affect gene expression dosage and cardiac ion channel function. Noncoding RNAs serve an expanding number of regulatory and other functional roles within the cells, including but not limited to transcriptional, post-transcriptional, and epigenetic regulation. The major noncoding RNAs found in Brugada Syndrome include microRNAs; however, others such as long noncoding RNAs are also identified. They contribute to pathogenesis by interacting with ion channels and/or are detectable as clinical biomarkers. Stem cells have received significant attention in the recent past, and can be differentiated into many different cell types including those in the heart. In addition to contractile and relaxational properties, BrS-relevant electrophysiological phenotypes are also demonstrated in cardiomyocytes differentiated from stem cells induced from adult human cells. In this review, we discuss the current understanding of noncoding regions of the genome and their RNA biology in Brugada Syndrome. We also delve into the role of stem cells, especially human induced pluripotent stem cell-derived cardiac differentiated cells, in the investigation of Brugada syndrome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Benjamin Theisen
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Austin Holtz
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Viswanathan Rajagopalan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
- Arkansas Biosciences Institute, Jonesboro, AR 72401, USA
| |
Collapse
|
8
|
Moras E, Gandhi K, Narasimhan B, Brugada R, Brugada J, Brugada P, Krittanawong C. Genetic and Molecular Mechanisms in Brugada Syndrome. Cells 2023; 12:1791. [PMID: 37443825 PMCID: PMC10340412 DOI: 10.3390/cells12131791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Brugada syndrome is a rare hereditary arrhythmia disorder characterized by a distinctive electrocardiogram pattern and an elevated risk of ventricular arrhythmias and sudden cardiac death in young adults. Despite recent advances, it remains a complex condition, encompassing mechanisms, genetics, diagnosis, arrhythmia risk stratification, and management. The underlying electrophysiological mechanism of Brugada syndrome requires further investigation, with current theories focusing on abnormalities in repolarization, depolarization, and current-load match. The genetic basis of the syndrome is strong, with mutations found in genes encoding subunits of cardiac sodium, potassium, and calcium channels, as well as genes involved in channel trafficking and regulation. While the initial discovery of mutations in the SCN5A gene provided valuable insights, Brugada syndrome is now recognized as a multifactorial disease influenced by several loci and environmental factors, challenging the traditional autosomal dominant inheritance model. This comprehensive review aims to provide a current understanding of Brugada syndrome, focusing on its pathophysiology, genetic mechanisms, and novel models of risk stratification. Advancements in these areas hold the potential to facilitate earlier diagnosis, improve risk assessments, and enable more targeted therapeutic interventions.
Collapse
Affiliation(s)
- Errol Moras
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kruti Gandhi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bharat Narasimhan
- Debakey Cardiovascular Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ramon Brugada
- Cardiology, Cardiac Genetics Clinical Unit, Hospital Universitari Josep Trueta, Hospital Santa Caterina, 17007 Girona, Spain
- Cardiovascular Genetics Center and Clinical Diagnostic Laboratory, Institut d’Investigació Biomèdica Girona-IdIBGi, 17190 Salt, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clínic, 08036 Barcelona, Spain
- Pediatric Arrhythmia Unit, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Brugada
- Cardiovascular Division, Free University of Brussels (UZ Brussel) VUB, B-1050 Brussels, Belgium
- Medical Centre Prof. Brugada, B-9300 Aalst, Belgium
- Arrhythmia Unit, Helicopteros Sanitarios Hospital (HSH), Puerto Banús, 29603 Marbella, Spain
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Hartmann N, Knierim M, Maurer W, Dybkova N, Hasenfuß G, Sossalla S, Streckfuss-Bömeke K. Molecular and Functional Relevance of Na V1.8-Induced Atrial Arrhythmogenic Triggers in a Human SCN10A Knock-Out Stem Cell Model. Int J Mol Sci 2023; 24:10189. [PMID: 37373335 DOI: 10.3390/ijms241210189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In heart failure and atrial fibrillation, a persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. We have recently shown that NaV1.8 contributes to arrhythmogenesis by inducing a INaL. Genome-wide association studies indicate that mutations in the SCN10A gene (NaV1.8) are associated with increased risk for arrhythmias, Brugada syndrome, and sudden cardiac death. However, the mediation of these NaV1.8-related effects, whether through cardiac ganglia or cardiomyocytes, is still a subject of controversial discussion. We used CRISPR/Cas9 technology to generate homozygous atrial SCN10A-KO-iPSC-CMs. Ruptured-patch whole-cell patch-clamp was used to measure the INaL and action potential duration. Ca2+ measurements (Fluo 4-AM) were performed to analyze proarrhythmogenic diastolic SR Ca2+ leak. The INaL was significantly reduced in atrial SCN10A KO CMs as well as after specific pharmacological inhibition of NaV1.8. No effects on atrial APD90 were detected in any groups. Both SCN10A KO and specific blockers of NaV1.8 led to decreased Ca2+ spark frequency and a significant reduction of arrhythmogenic Ca2+ waves. Our experiments demonstrate that NaV1.8 contributes to INaL formation in human atrial CMs and that NaV1.8 inhibition modulates proarrhythmogenic triggers in human atrial CMs and therefore NaV1.8 could be a new target for antiarrhythmic strategies.
Collapse
Affiliation(s)
- Nico Hartmann
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Maria Knierim
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Clinic for Cardio-Thoracic and Vascular Surgery, University Medical Center, 37075 Göttingen, Germany
| | - Wiebke Maurer
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Nataliya Dybkova
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Gerd Hasenfuß
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Samuel Sossalla
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Departments of Cardiology at Kerckhoff Heart and Lung Center, Bad Nauheim and University of Giessen, 61231 Bad Nauheim, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
10
|
Zhou P, VanDusen NJ, Zhang Y, Cao Y, Sethi I, Hu R, Zhang S, Wang G, Ye L, Mazumdar N, Chen J, Zhang X, Guo Y, Li B, Ma Q, Lee JY, Gu W, Yuan GC, Ren B, Chen K, Pu WT. Dynamic changes in P300 enhancers and enhancer-promoter contacts control mouse cardiomyocyte maturation. Dev Cell 2023; 58:898-914.e7. [PMID: 37071996 PMCID: PMC10231645 DOI: 10.1016/j.devcel.2023.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023]
Abstract
Cardiomyocyte differentiation continues throughout murine gestation and into the postnatal period, driven by temporally regulated expression changes in the transcriptome. The mechanisms that regulate these developmental changes remain incompletely defined. Here, we used cardiomyocyte-specific ChIP-seq of the activate enhancer marker P300 to identify 54,920 cardiomyocyte enhancers at seven stages of murine heart development. These data were matched to cardiomyocyte gene expression profiles at the same stages and to Hi-C and H3K27ac HiChIP chromatin conformation data at fetal, neonatal, and adult stages. Regions with dynamic P300 occupancy exhibited developmentally regulated enhancer activity, as measured by massively parallel reporter assays in cardiomyocytes in vivo, and identified key transcription factor-binding motifs. These dynamic enhancers interacted with temporal changes of the 3D genome architecture to specify developmentally regulated cardiomyocyte gene expressions. Our work provides a 3D genome-mediated enhancer activity landscape of murine cardiomyocyte development.
Collapse
Affiliation(s)
- Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Nathan J VanDusen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchun Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yangpo Cao
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Isha Sethi
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shuo Zhang
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Guangyu Wang
- Cardiovascular Department, Houston Methodist, Weill Cornell Medical College, Houston, TX, USA
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Neil Mazumdar
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jian Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yuxuan Guo
- Peking University Health Science Center, Beijing, China
| | - Bin Li
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Julianna Y Lee
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Weiliang Gu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M, Tampakakis E. The role of noncoding genetic variants in cardiomyopathy. Front Cardiovasc Med 2023; 10:1116925. [PMID: 37283586 PMCID: PMC10239966 DOI: 10.3389/fcvm.2023.1116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Bersell KR, Yang T, Mosley JD, Glazer AM, Hale AT, Kryshtal DO, Kim K, Steimle JD, Brown JD, Salem JE, Campbell CC, Hong CC, Wells QS, Johnson AN, Short L, Blair MA, Behr ER, Petropoulou E, Jamshidi Y, Benson MD, Keyes MJ, Ngo D, Vasan RS, Yang Q, Gerszten RE, Shaffer C, Parikh S, Sheng Q, Kannankeril PJ, Moskowitz IP, York JD, Wang TJ, Knollmann BC, Roden DM. Transcriptional Dysregulation Underlies Both Monogenic Arrhythmia Syndrome and Common Modifiers of Cardiac Repolarization. Circulation 2023; 147:824-840. [PMID: 36524479 PMCID: PMC9992308 DOI: 10.1161/circulationaha.122.062193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.
Collapse
Affiliation(s)
- Kevin R Bersell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Tao Yang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jonathan D Mosley
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew T Hale
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Dmytro O Kryshtal
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Kyungsoo Kim
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - Jonathan D Brown
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Joe-Elie Salem
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, CIC-1901, Sorbonne University, Paris, France (J-E.S.)
- Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France (J-E.S.)
| | - Courtney C Campbell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore (C.C.H.)
| | - Quinn S Wells
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| | - Amanda N Johnson
- Molecular Physiology and Biophysics (A.N.J.), Vanderbilt University, Nashville, TN
| | - Laura Short
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Marcia A Blair
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | - Evmorfia Petropoulou
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Yalda Jamshidi
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Mark D Benson
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.D.B.)
| | - Michelle J Keyes
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Debby Ngo
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | | | - Qiong Yang
- Boston University School of Medicine, MA (R.S.V., Q.Y.)
| | - Robert E Gerszten
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Christian Shaffer
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Shan Parikh
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | | | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - John D York
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Thomas J Wang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| |
Collapse
|
13
|
Casini S, Marchal GA, Kawasaki M, Fabrizi B, Wesselink R, Nariswari FA, Neefs J, van den Berg NWE, Driessen AHG, de Groot JR, Verkerk AO, Remme CA. Differential Sodium Current Remodelling Identifies Distinct Cellular Proarrhythmic Mechanisms in Paroxysmal vs Persistent Atrial Fibrillation. Can J Cardiol 2023; 39:277-288. [PMID: 36586483 DOI: 10.1016/j.cjca.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cellular mechanisms underlying progression from paroxysmal to persistent atrial fibrillation (AF) are not fully understood, but alterations in (late) sodium current (INa) have been proposed. Human studies investigating electrophysiological changes at the paroxysmal stage of AF are sparse, with the majority employing right atrial appendage cardiomyocytes (CMs). We here investigated action potential (AP) characteristics and (late) INa remodelling in left atrial appendage CMs (LAA-CMs) from patients with paroxysmal and persistent AF and patients in sinus rhythm (SR), as well as the potential contribution of the "neuronal" sodium channel SCN10A/NaV1.8. METHODS Peak INa, late INa and AP properties were investigated through patch-clamp analysis on single LAA-CMs, whereas quantitative polymerase chain reaction was used to assess SCN5A/SCN10A expression levels in LAA tissue. RESULTS In paroxysmal and persistent AF LAA-CMs, AP duration was shorter than in SR LAA-CMs. Compared with SR, peak INa and SCN5A expression were significantly decreased in paroxysmal AF, whereas they were restored to SR levels in persistent AF. Conversely, although late INa was unchanged in paroxysmal AF compared with SR, it was significantly increased in persistent AF. Peak or late Nav1.8-based INa was not detected in persistent AF LAA-CMs. Similarly, expression of SCN10A was not observed in LAAs at any stage. CONCLUSIONS Our findings demonstrate differences in (late) INa remodeling in LAA-CMs from patients with paroxysmal vs persistent AF, indicating distinct cellular proarrhythmic mechanisms in different AF forms. These observations are of particular relevance when considering potential pharmacologic approaches targeting (late) INa in AF.
Collapse
Affiliation(s)
- Simona Casini
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| | - Gerard A Marchal
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Makiri Kawasaki
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Fransisca A Nariswari
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands; Amsterdam UMC, location University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Popa IP, Șerban DN, Mărănducă MA, Șerban IL, Tamba BI, Tudorancea I. Brugada Syndrome: From Molecular Mechanisms and Genetics to Risk Stratification. Int J Mol Sci 2023; 24:ijms24043328. [PMID: 36834739 PMCID: PMC9967917 DOI: 10.3390/ijms24043328] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Brugada syndrome (BrS) is a rare hereditary arrhythmia disorder, with a distinctive ECG pattern, correlated with an increased risk of ventricular arrhythmias and sudden cardiac death (SCD) in young adults. BrS is a complex entity in terms of mechanisms, genetics, diagnosis, arrhythmia risk stratification, and management. The main electrophysiological mechanism of BrS requires further research, with prevailing theories centered on aberrant repolarization, depolarization, and current-load match. Computational modelling, pre-clinical, and clinical research show that BrS molecular anomalies result in excitation wavelength (k) modifications, which eventually increase the risk of arrhythmia. Although a mutation in the SCN5A (Sodium Voltage-Gated Channel Alpha Subunit 5) gene was first reported almost two decades ago, BrS is still currently regarded as a Mendelian condition inherited in an autosomal dominant manner with incomplete penetrance, despite the recent developments in the field of genetics and the latest hypothesis of additional inheritance pathways proposing a more complex mode of inheritance. In spite of the extensive use of the next-generation sequencing (NGS) technique with high coverage, genetics remains unexplained in a number of clinically confirmed cases. Except for the SCN5A which encodes the cardiac sodium channel NaV1.5, susceptibility genes remain mostly unidentified. The predominance of cardiac transcription factor loci suggests that transcriptional regulation is essential to the Brugada syndrome's pathogenesis. It appears that BrS is a multifactorial disease, which is influenced by several loci, each of which is affected by the environment. The primary challenge in individuals with a BrS type 1 ECG is to identify those who are at risk for sudden death, researchers propose the use of a multiparametric clinical and instrumental strategy for risk stratification. The aim of this review is to summarize the latest findings addressing the genetic architecture of BrS and to provide novel perspectives into its molecular underpinnings and novel models of risk stratification.
Collapse
Affiliation(s)
- Irene Paula Popa
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Dragomir N. Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minela Aida Mărănducă
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionela Lăcrămioara Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence:
| | - Ionuț Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
15
|
Bhattacharyya S, Kollipara RK, Orquera-Tornakian G, Goetsch S, Zhang M, Perry C, Li B, Shelton JM, Bhakta M, Duan J, Xie Y, Xiao G, Evers BM, Hon GC, Kittler R, Munshi NV. Global chromatin landscapes identify candidate noncoding modifiers of cardiac rhythm. J Clin Invest 2023; 133:e153635. [PMID: 36454649 PMCID: PMC9888383 DOI: 10.1172/jci153635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive cis-regulatory landscapes are essential for accurate enhancer prediction and disease variant mapping. Although cis-regulatory element (CRE) resources exist for most tissues and organs, many rare - yet functionally important - cell types remain overlooked. Despite representing only a small fraction of the heart's cellular biomass, the cardiac conduction system (CCS) unfailingly coordinates every life-sustaining heartbeat. To globally profile the mouse CCS cis-regulatory landscape, we genetically tagged CCS component-specific nuclei for comprehensive assay for transposase-accessible chromatin-sequencing (ATAC-Seq) analysis. Thus, we established a global CCS-enriched CRE database, referred to as CCS-ATAC, as a key resource for studying CCS-wide and component-specific regulatory functions. Using transcription factor (TF) motifs to construct CCS component-specific gene regulatory networks (GRNs), we identified and independently confirmed several specific TF sub-networks. Highlighting the functional importance of CCS-ATAC, we also validated numerous CCS-enriched enhancer elements and suggested gene targets based on CCS single-cell RNA-Seq data. Furthermore, we leveraged CCS-ATAC to improve annotation of existing human variants related to cardiac rhythm and nominated a potential enhancer-target pair that was dysregulated by a specific SNP. Collectively, our results established a CCS-regulatory compendium, identified novel CCS enhancer elements, and illuminated potential functional associations between human genomic variants and CCS component-specific CREs.
Collapse
Affiliation(s)
| | | | | | - Sean Goetsch
- Department of Internal Medicine, Division of Cardiology
| | - Minzhe Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Cameron Perry
- Department of Internal Medicine, Division of Cardiology
| | - Boxun Li
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | | | - Minoti Bhakta
- Department of Internal Medicine, Division of Cardiology
| | - Jialei Duan
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Bret M. Evers
- Department of Internal Medicine, Division of Cardiology
| | - Gary C. Hon
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
- Department of Bioinformatics
- Hamon Center for Regenerative Science and Medicine, and
| | - Ralf Kittler
- McDermott Center for Human Growth and Development
| | - Nikhil V. Munshi
- Department of Internal Medicine, Division of Cardiology
- McDermott Center for Human Growth and Development
- Hamon Center for Regenerative Science and Medicine, and
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
17
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|
18
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
19
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
20
|
Yoneda ZT, Anderson KC, Quintana JA, O’Neill MJ, Sims RA, Glazer AM, Shaffer CM, Crawford DM, Stricker T, Ye F, Wells Q, Stevenson LW, Michaud GF, Darbar D, Lubitz SA, Ellinor PT, Roden DM, Shoemaker MB. Early-Onset Atrial Fibrillation and the Prevalence of Rare Variants in Cardiomyopathy and Arrhythmia Genes. JAMA Cardiol 2021; 6:1371-1379. [PMID: 34495297 PMCID: PMC8427496 DOI: 10.1001/jamacardio.2021.3370] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022]
Abstract
Importance Early-onset atrial fibrillation (AF) can be the initial manifestation of a more serious underlying inherited cardiomyopathy or arrhythmia syndrome. Objective To examine the results of genetic testing for early-onset AF. Design, Setting, and Participants This prospective, observational cohort study enrolled participants from an academic medical center who had AF diagnosed before 66 years of age and underwent whole genome sequencing through the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine program. Participants were enrolled from November 23, 1999, to June 2, 2015. Data analysis was performed from October 24, 2020, to March 11, 2021. Exposures Rare variants identified in a panel of 145 genes that are included on cardiomyopathy and arrhythmia panels used by commercial clinical genetic testing laboratories. Main Outcomes and Measures Sequencing data were analyzed using an automated process followed by manual review by a panel of independent, blinded reviewers. The primary outcome was classification of rare variants using American College of Medical Genetics and Genomics criteria: benign, likely benign, variant of undetermined significance, likely pathogenic, or pathogenic. Disease-associated variants were defined as pathogenic/likely pathogenic variants in genes associated with autosomal dominant or X-linked dominant disorders. Results Among 1293 participants (934 [72.2%] male; median [interquartile range] age at enrollment, 56 [48-61] years; median [interquartile range] age at AF diagnosis, 50 [41-56] years), genetic testing identified 131 participants (10.1%) with a disease-associated variant, 812 (62.8%) with a variant of undetermined significance, 92 (7.1%) as heterozygous carriers for an autosomal recessive disorder, and 258 (20.0%) with no suspicious variant. The likelihood of a disease-associated variant was highest in participants with AF diagnosed before the age of 30 years (20 of 119 [16.8%; 95% CI, 10.0%-23.6%]) and lowest after the age of 60 years (8 of 112 [7.1%; 95% CI, 2.4%-11.9%]). Disease-associated variants were more often associated with inherited cardiomyopathy syndromes compared with inherited arrhythmias. The most common genes were TTN (n = 38), MYH7 (n = 18), MYH6 (n = 10), LMNA (n = 9), and KCNQ1 (n = 8). Conclusions and Relevance In this cohort study, genetic testing identified a disease-associated variant in 10% of patients with early-onset AF (the percentage was higher if diagnosed before the age of 30 years and lower if diagnosed after the age of 60 years). Most pathogenic/likely pathogenic variants are in genes associated with cardiomyopathy. These results support the use of genetic testing in early-onset AF.
Collapse
Affiliation(s)
- Zachary T. Yoneda
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katherine C. Anderson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph A. Quintana
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Richard A. Sims
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew M. Glazer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christian M. Shaffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Diane M. Crawford
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas Stricker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Quinn Wells
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne W. Stevenson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory F. Michaud
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Steven A. Lubitz
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Dan M. Roden
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M. Benjamin Shoemaker
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Huang Y, Chen XM, Barajas-Martinez H, Jiang H, Antzelevitch C, Hu D. Common variants in SCN10A gene associated with Brugada syndrome. Hum Mol Genet 2021; 31:157-165. [PMID: 34312669 DOI: 10.1093/hmg/ddab217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Genome-wide association studies indicate that SCN10A plays an important role in cardiac electrophysiology. Common and rare SCN10A variants are suggested to contribute to Brugada Syndrome (BrS), an inherited channelopathy resulting from genetic-determined loss-of-function in cardiac sodium channel. This study sought to characterize the role of SCN10A common variants in BrS. METHODS AND RESULTS Clinical and genetic analyses were performed in 197 patients diagnosed with BrS. Baseline ECG parameters were evaluated in patients carrying each of four common variants associated with BrS. Cellular electrophysiological study was performed in SCN5A-SCN10A co-transfected TSA201 cells to investigate the possible electrophysiological characteristics of the allele of rs6795970, which displayed the most significant association with BrS. Four SCN10A common variants (rs7630989, rs57326399, rs6795970, rs12632942) displayed significant association with BrS susceptibility. There were no evident associations between baseline ECG parameters in BrS patients and the different genotypes of the four variants. Rs6795970 (V1073) was strongly associated with a risk for BrS, which suggests the different electrophysiological characters between these two alleles. Functional study showed a positive shift in steady-state activation (V1/2: -62.2 ± 2.6 vs. -53.5 ± 1.6 for A1073 and V1073 group, respectively; P < 0.05) and slower recovery from inactivation in mutant SCN5A-SCN10A co-transfected cells with, which contribute to the slow conduction in BrS patients with rs6795970. CONCLUSIONS SCN10A common variants are associated with increased susceptibility to BrS. An allele rs6795970 (V1073) increases the risk for BrS. The electrophysiological changes in a positive shift in steady-state activation and slower recovery from inactivation by SCN10A-V1073 contribute to this variant associated BrS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, China
| | - Xiao-Meng Chen
- Department of Cardiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania and Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Hong Jiang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania and Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, China
| |
Collapse
|
22
|
Rathjens FS, Blenkle A, Iyer LM, Renger A, Syeda F, Noack C, Jungmann A, Dewenter M, Toischer K, El-Armouche A, Müller OJ, Fabritz L, Zimmermann WH, Zelarayan LC, Zafeiriou MP. Preclinical evidence for the therapeutic value of TBX5 normalization in arrhythmia control. Cardiovasc Res 2021; 117:1908-1922. [PMID: 32777030 PMCID: PMC8262635 DOI: 10.1093/cvr/cvaa239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS Arrhythmias and sudden cardiac death (SCD) occur commonly in patients with heart failure. We found T-box 5 (TBX5) dysregulated in ventricular myocardium from heart failure patients and thus we hypothesized that TBX5 reduction contributes to arrhythmia development in these patients. To understand the underlying mechanisms, we aimed to reveal the ventricular TBX5-dependent transcriptional network and further test the therapeutic potential of TBX5 level normalization in mice with documented arrhythmias. METHODS AND RESULTS We used a mouse model of TBX5 conditional deletion in ventricular cardiomyocytes. Ventricular (v) TBX5 loss in mice resulted in mild cardiac dysfunction and arrhythmias and was associated with a high mortality rate (60%) due to SCD. Upon angiotensin stimulation, vTbx5KO mice showed exacerbated cardiac remodelling and dysfunction suggesting a cardioprotective role of TBX5. RNA-sequencing of a ventricular-specific TBX5KO mouse and TBX5 chromatin immunoprecipitation was used to dissect TBX5 transcriptional network in cardiac ventricular tissue. Overall, we identified 47 transcripts expressed under the control of TBX5, which may have contributed to the fatal arrhythmias in vTbx5KO mice. These included transcripts encoding for proteins implicated in cardiac conduction and contraction (Gja1, Kcnj5, Kcng2, Cacna1g, Chrm2), in cytoskeleton organization (Fstl4, Pdlim4, Emilin2, Cmya5), and cardiac protection upon stress (Fhl2, Gpr22, Fgf16). Interestingly, after TBX5 loss and arrhythmia development in vTbx5KO mice, TBX5 protein-level normalization by systemic adeno-associated-virus (AAV) 9 application, re-established TBX5-dependent transcriptome. Consequently, cardiac dysfunction was ameliorated and the propensity of arrhythmia occurrence was reduced. CONCLUSIONS This study uncovers a novel cardioprotective role of TBX5 in the adult heart and provides preclinical evidence for the therapeutic value of TBX5 protein normalization in the control of arrhythmia.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Chromatin Immunoprecipitation Sequencing
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Disease Models, Animal
- Gene Expression Profiling
- Genetic Therapy
- Heart Rate
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/therapy
- Isolated Heart Preparation
- Mice, Inbred C57BL
- Mice, Knockout
- RNA-Seq
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Transcription, Genetic
- Transcriptome
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Franziska S Rathjens
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Alica Blenkle
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Anke Renger
- Institut für Erziehungswissenschaften, Humboldt University, Berlin, Germany
| | - Fahima Syeda
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Claudia Noack
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Andreas Jungmann
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Disease), partner site Heidelberg/Mannheim, Germany
| | - Matthias Dewenter
- DZHK (German Center for Cardiovascular Disease), partner site Heidelberg/Mannheim, Germany
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center, Goettingen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Technology-Dresden, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
- Division of Rhythmology, Department of Cardiovascular Medicine, Hospital of the University of Münster, Münster, Germany
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
| | - Laura C Zelarayan
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Maria-Patapia Zafeiriou
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
| |
Collapse
|
23
|
Man JCK, Bosada FM, Scholman KT, Offerhaus JA, Walsh R, van Duijvenboden K, van Eif VWW, Bezzina CR, Verkerk AO, Boukens BJ, Barnett P, Christoffels VM. Variant Intronic Enhancer Controls SCN10A-short Expression and Heart Conduction. Circulation 2021; 144:229-242. [PMID: 33910361 DOI: 10.1161/circulationaha.121.054083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent W W van Eif
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Phil Barnett
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
24
|
Gacita AM, Fullenkamp DE, Ohiri J, Pottinger T, Puckelwartz MJ, Nobrega MA, McNally EM. Genetic Variation in Enhancers Modifies Cardiomyopathy Gene Expression and Progression. Circulation 2021; 143:1302-1316. [PMID: 33478249 PMCID: PMC8009836 DOI: 10.1161/circulationaha.120.050432] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inherited cardiomyopathy associates with a range of phenotypes, mediated by genetic and nongenetic factors. Noninherited cardiomyopathy also displays varying progression and outcomes. Expression of cardiomyopathy genes is under the regulatory control of promoters and enhancers, and human genetic variation in promoters and enhancers may contribute to this variability. METHODS We superimposed epigenomic profiling from hearts and cardiomyocytes, including promoter-capture chromatin conformation information, to identify enhancers for 2 cardiomyopathy genes, MYH7 and LMNA. Enhancer function was validated in human cardiomyocytes derived from induced pluripotent stem cells. We also conducted a genome-wide search to ascertain genomic variation in enhancers positioned to alter cardiac expression and correlated one of these variants to cardiomyopathy progression using biobank data. RESULTS Multiple enhancers were identified and validated for LMNA and MYH7, including a key enhancer that regulates the switch from MYH6 expression to MYH7 expression. Deletion of this enhancer resulted in a dose-dependent increase in MYH6 and faster contractile rate in engineered heart tissues. We searched for genomic variation in enhancer sequences across the genome, with a focus on nucleotide changes that create or interrupt transcription factor binding sites. The sequence variant, rs875908, disrupts a T-Box Transcription Factor 5 binding motif and maps to an enhancer region 2 kilobases from the transcriptional start site of MYH7. Gene editing to remove the enhancer that harbors this variant markedly reduced MYH7 expression in human cardiomyocytes. Using biobank-derived data, rs875908 associated with longitudinal echocardiographic features of cardiomyopathy. CONCLUSIONS Enhancers regulate cardiomyopathy gene expression, and genomic variation within these enhancer regions associates with cardiomyopathic progression over time. This integrated approach identified noncoding modifiers of cardiomyopathy and is applicable to other cardiac genes.
Collapse
Affiliation(s)
- Anthony M. Gacita
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Dominic E. Fullenkamp
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Joyce Ohiri
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Tess Pottinger
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | | | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
25
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Carreras D, Martinez-Moreno R, Pinsach-Abuin M, Santafe MM, Gomà P, Brugada R, Scornik FS, Pérez GJ, Pagans S. Epigenetic Changes Governing Scn5a Expression in Denervated Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22052755. [PMID: 33803193 PMCID: PMC7963191 DOI: 10.3390/ijms22052755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The SCN5A gene encodes the α-subunit of the voltage-gated cardiac sodium channel (NaV1.5), a key player in cardiac action potential depolarization. Genetic variants in protein-coding regions of the human SCN5A have been largely associated with inherited cardiac arrhythmias. Increasing evidence also suggests that aberrant expression of the SCN5A gene could increase susceptibility to arrhythmogenic diseases, but the mechanisms governing SCN5A expression are not yet well understood. To gain insights into the molecular basis of SCN5A gene regulation, we used rat gastrocnemius muscle four days following denervation, a process well known to stimulate Scn5a expression. Our results show that denervation of rat skeletal muscle induces the expression of the adult cardiac Scn5a isoform. RNA-seq experiments reveal that denervation leads to significant changes in the transcriptome, with Scn5a amongst the fifty top upregulated genes. Consistent with this increase in expression, ChIP-qPCR assays show enrichment of H3K27ac and H3K4me3 and binding of the transcription factor Gata4 near the Scn5a promoter region. Also, Gata4 mRNA levels are significantly induced upon denervation. Genome-wide analysis of H3K27ac by ChIP-seq suggest that a super enhancer recently described to regulate Scn5a in cardiac tissue is activated in response to denervation. Altogether, our experiments reveal that similar mechanisms regulate the expression of Scn5a in denervated muscle and cardiac tissue, suggesting a conserved pathway for SCN5A expression among striated muscles.
Collapse
Affiliation(s)
- David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Mel·lina Pinsach-Abuin
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Manel M. Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, 43003 Reus, Spain;
| | - Pol Gomà
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Hospital Josep Trueta, 17007 Girona, Spain
| | - Fabiana S. Scornik
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Guillermo J. Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Sara Pagans
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| |
Collapse
|
27
|
Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, Cámara-Checa A, Rubio-Alarcón M, Dago M, Alfayate S, Filgueiras D, Peinado R, López-Sendón JL, Jalife J, Tamargo J, Bernal JA, Caballero R, Delpón E. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovasc Res 2021; 118:1046-1060. [PMID: 33576403 DOI: 10.1093/cvr/cvab045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS The transcription factor Tbx5 controls cardiogenesis and drives Scn5a expression in mice. We have identified two variants in TBX5 encoding p.D111Y and p.F206L Tbx5, respectively, in two unrelated patients with structurally normal hearts diagnosed with Long QT (LQTS) and Brugada (BrS) Syndrome. Here we characterized the consequences of each variant to unravel the underlying disease mechanisms. METHODS AND RESULTS We combined clinical analysis with in vivo and in vitro electrophysiological and molecular techniques in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), HL-1 cells, and cardiomyocytes from mice trans-expressing human wildtype (WT) or mutant proteins. Tbx5 increased transcription of SCN5A encoding cardiac Nav1.5 channels, while repressing CAMK2D and SPTBN4 genes encoding Ca-calmodulin kinase IIδ (CaMKIIδ) and βIV-spectrin, respectively. These effects significantly increased Na current (INa) in hiPSC-CMs and in cardiomyocytes from mice trans-expressing Tbx5. Consequently, action potential (AP) amplitudes increased and QRS interval narrowed in the mouse electrocardiogram. p.F206L Tbx5 bound to the SCN5A promoter failed to transactivate it, thus precluding the pro-transcriptional effect of WT Tbx5. Therefore, p.F206L markedly decreased INa in hiPSC-CM, HL-1 cells, and mouse cardiomyocytes. The INa decrease in p.F206L trans-expressing mice translated into QRS widening and increased flecainide sensitivity. p.D111Y Tbx5 increased SCN5A expression but failed to repress CAMK2D and SPTBN4. The increased CaMKIIδ and βIV-spectrin significantly augmented the late component of INa (INaL) which, in turn, significantly prolonged AP duration in both hiPSC-CMs and mouse cardiomyocytes. Ranolazine, a selective INaL inhibitor, eliminated the QT and QTc intervals prolongation seen in p.D111Y trans-expressing mice. CONCLUSIONS In addition to peak INa, Tbx5 critically regulates INaL and the duration of repolarization in human cardiomyocytes. Our original results suggest that TBX5 variants associate with and modulate the intensity of the electrical phenotype in LQTS and BrS patients.
Collapse
Affiliation(s)
- Paloma Nieto-Marín
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Tinaquero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | | - Teresa Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Silvia Alfayate
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Filgueiras
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Rafael Peinado
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Luis López-Sendón
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Jalife
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain.,Departments of Internal Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Juan Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Juan Antonio Bernal
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | |
Collapse
|
28
|
Sieliwonczyk E, Matchkov VV, Vandendriessche B, Alaerts M, Bakkers J, Loeys B, Schepers D. Inherited Ventricular Arrhythmia in Zebrafish: Genetic Models and Phenotyping Tools. Rev Physiol Biochem Pharmacol 2021; 184:33-68. [PMID: 34533615 DOI: 10.1007/112_2021_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the last years, the field of inheritable ventricular arrhythmia disease modelling has changed significantly with a push towards the use of novel cellular cardiomyocyte based models. However, there is a growing need for new in vivo models to study the disease pathology at the tissue and organ level. Zebrafish provide an excellent opportunity for in vivo modelling of inheritable ventricular arrhythmia syndromes due to the remarkable similarity between their cardiac electrophysiology and that of humans. Additionally, many state-of-the-art methods in gene editing and electrophysiological phenotyping are available for zebrafish research. In this review, we give a comprehensive overview of the published zebrafish genetic models for primary electrical disorders and arrhythmogenic cardiomyopathy. We summarise and discuss the strengths and weaknesses of the different technical approaches for the generation of genetically modified zebrafish disease models, as well as the electrophysiological approaches in zebrafish phenotyping. By providing this detailed overview, we aim to draw attention to the potential of the zebrafish model for studying arrhythmia syndromes at the organ level and as a platform for personalised medicine and drug testing.
Collapse
Affiliation(s)
- Ewa Sieliwonczyk
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| | - Vladimir V Matchkov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Bert Vandendriessche
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Jeroen Bakkers
- Hubrecht Institute for Developmental and Stem Cell Biology, Utrecht, The Netherlands
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Dorien Schepers
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Markunas AM, Manivannan PKR, Ezekian JE, Agarwal A, Eisner W, Alsina K, Allen HD, Wray GA, Kim JJ, Wehrens XHT, Landstrom AP. TBX5-encoded T-box transcription factor 5 variant T223M is associated with long QT syndrome and pediatric sudden cardiac death. Am J Med Genet A 2020; 185:923-929. [PMID: 33369127 DOI: 10.1002/ajmg.a.62037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Long QT syndrome (LQTS) is a genetic disease resulting in a prolonged QT interval on a resting electrocardiogram, predisposing affected individuals to polymorphic ventricular tachycardia and sudden death. Although a number of genes have been implicated in this disease, nearly one in four individuals exhibiting the LQTS phenotype are genotype-negative. Whole-exome sequencing identified a missense T223M variant in TBX5 that cosegregates with prolonged QT interval in a family with otherwise genotype-negative LQTS and sudden death. The TBX5-T223M variant was absent among large ostensibly healthy populations (gnomAD) and predicted to be pathogenic by in silico modeling based on Panther, PolyPhen-2, Provean, SIFT, SNAP2, and PredictSNP prediction tools. The variant was located in a highly conserved region of TBX5 predicted to be part of the DNA-binding interface. A luciferase assay identified a 57.5% reduction in the ability of TBX5-T223M to drive expression at the atrial natriuretic factor promotor compared to wildtype TBX5 in vitro. We conclude that the variant is pathogenic in this family, and we put TBX5 forward as a disease susceptibility allele for genotype-negative LQTS. The identification of this familial variant may serve as a basis for the identification of previously unknown mechanisms of LQTS with broader implications for cardiac electrophysiology.
Collapse
Affiliation(s)
- Alexandra M Markunas
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Perathu K R Manivannan
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jordan E Ezekian
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Agnim Agarwal
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - William Eisner
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherina Alsina
- Departments of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, Texas, USA
| | - Hugh D Allen
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xander H T Wehrens
- Departments of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, Texas, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
30
|
Common and rare susceptibility genetic variants predisposing to Brugada syndrome in Thailand. Heart Rhythm 2020; 17:2145-2153. [DOI: 10.1016/j.hrthm.2020.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
|
31
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
32
|
Maternal obesity persistently alters cardiac progenitor gene expression and programs adult-onset heart disease susceptibility. Mol Metab 2020; 43:101116. [PMID: 33212270 PMCID: PMC7720025 DOI: 10.1016/j.molmet.2020.101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Heart disease risk can be programmed by intrauterine exposure to obesity. Dysregulating key transcription factors in cardiac progenitors can cause subsequent adult-onset heart disease. In this study, we investigated the transcriptional pathways that are altered in the embryonic heart and linked to heart disease risk in offspring exposed to obesity during pregnancy. Methods Female mice were fed an obesogenic diet and mated with males fed a control diet. Heart function and genome-wide gene expression were analyzed in adult offspring born to obese and lean mice at baseline and in response to stress. Cross-referencing with genes dysregulated genome-wide in cardiac progenitors from embryos of obese mice and human fetal hearts revealed the transcriptional events associated with adult-onset heart disease susceptibility. Results We found that adult mice born to obese mothers develop mild heart dysfunction consistent with early stages of disease. Accordingly, hearts of these mice dysregulated genes controlling extracellular matrix remodeling, metabolism, and TGF-β signaling, known to control heart disease progression. These pathways were already dysregulated in cardiac progenitors in embryos of obese mice. Moreover, in response to cardiovascular stress, the heart of adults born to obese dams developed exacerbated myocardial remodeling and excessively activated regulators of cell-extracellular matrix interactions but failed to activate metabolic regulators. Expression of developmentally regulated genes was altered in cardiac progenitors of embryos of obese mice and human hearts of fetuses of obese donors. Accordingly, the levels of Nkx2-5, a key regulator of heart development, inversely correlated with maternal body weight in mice. Furthermore, Nkx2-5 target genes were dysregulated in cardiac progenitors and persistently in adult hearts born to obese mice and human hearts from pregnancies affected by obesity. Conclusions Obesity during pregnancy alters Nkx2-5-controlled transcription in differentiating cardiac progenitors and persistently in the adult heart, making the adult heart vulnerable to dysregulated stress responses. Maternal obesity programs progressive heart dysfunction in adult offspring. Offspring of obese dams are prone to dysregulated stress responses in the heart. Nkx2-5-controlled transcription is dysregulated in hearts exposed to obesity in utero. Obesity during pregnancy broadly affects gene expression in the embryonic heart.
Collapse
|
33
|
Pérez-Agustín A, Pinsach-Abuin M, Pagans S. Role of Non-Coding Variants in Brugada Syndrome. Int J Mol Sci 2020; 21:E8556. [PMID: 33202810 PMCID: PMC7698069 DOI: 10.3390/ijms21228556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited electrical heart disease associated with a high risk of sudden cardiac death (SCD). The genetic characterization of BrS has always been challenging. Although several cardiac ion channel genes have been associated with BrS, SCN5A is the only gene that presents definitive evidence for causality to be used for clinical diagnosis of BrS. However, more than 65% of diagnosed cases cannot be explained by variants in SCN5A or other genes. Therefore, in an important number of BrS cases, the underlying mechanisms are still elusive. Common variants, mostly located in non-coding regions, have emerged as potential modulators of the disease by affecting different regulatory mechanisms, including transcription factors (TFs), three-dimensional organization of the genome, or non-coding RNAs (ncRNAs). These common variants have been hypothesized to modulate the interindividual susceptibility of the disease, which could explain incomplete penetrance of BrS observed within families. Altogether, the study of both common and rare variants in parallel is becoming increasingly important to better understand the genetic basis underlying BrS. In this review, we aim to describe the challenges of studying non-coding variants associated with disease, re-examine the studies that have linked non-coding variants with BrS, and provide further evidence for the relevance of regulatory elements in understanding this cardiac disorder.
Collapse
Affiliation(s)
- Adrian Pérez-Agustín
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| | | | - Sara Pagans
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| |
Collapse
|
34
|
Abstract
Cardiac arrhythmias are defined as electrical disorders of the pumping heart, including therein a wide range of physiopathological entities [...]
Collapse
|
35
|
Monasky MM, Micaglio E, Vicedomini G, Locati ET, Ciconte G, Giannelli L, Giordano F, Crisà S, Vecchi M, Borrelli V, Ghiroldi A, D'Imperio S, Di Resta C, Benedetti S, Ferrari M, Santinelli V, Anastasia L, Pappone C. Comparable clinical characteristics in Brugada syndrome patients harboring SCN5A or novel SCN10A variants. Europace 2020; 21:1550-1558. [PMID: 31292628 DOI: 10.1093/europace/euz186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS The Brugada syndrome (BrS) is an inherited disease associated with an increased risk of sudden cardiac death. Often, the genetic cause remains undetected. Perhaps due at least in part because the NaV1.8 protein is expressed more in both the central and peripheral nervous systems than in the heart, the SCN10A gene is not included in diagnostic arrhythmia/sudden death panels in the vast majority of cardiogenetics centres. METHODS AND RESULTS Clinical characteristics were assessed in patients harboring either SCN5A or novel SCN10A variants. Genetic testing was performed using Next Generation Sequencing on genomic DNA. Clinical characteristics, including the arrhythmogenic substrate, in BrS patients harboring novel SCN10A variants and SCN5A variants are comparable. Clinical characteristics, including gender, age, personal history of cardiac arrest/syncope, spontaneous BrS electrocardiogram pattern, family history of sudden death, and arrhythmic substrate are not significantly different between probands harboring SCN10A or SCN5A variants. CONCLUSION Future studies are warranted to further characterize the role of these specific SCN10A variants.
Collapse
Affiliation(s)
- Michelle M Monasky
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Emanuele Micaglio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Gabriele Vicedomini
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Emanuela T Locati
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Giuseppe Ciconte
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Luigi Giannelli
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Federica Giordano
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Simonetta Crisà
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Mattia Vecchi
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Valeria Borrelli
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Sara D'Imperio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy.,Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurizio Ferrari
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Vincenzo Santinelli
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Piazza E. Malan 1, San Donato Milanese, Milano, Italy
| |
Collapse
|
36
|
Correction to: Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:e143-e146. [DOI: 10.1161/res.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Stefanovic S, Laforest B, Desvignes JP, Lescroart F, Argiro L, Maurel-Zaffran C, Salgado D, Plaindoux E, De Bono C, Pazur K, Théveniau-Ruissy M, Béroud C, Puceat M, Gavalas A, Kelly RG, Zaffran S. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. eLife 2020; 9:55124. [PMID: 32804075 PMCID: PMC7462617 DOI: 10.7554/elife.55124] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Brigitte Laforest
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Fabienne Lescroart
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Laurent Argiro
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - David Salgado
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Elise Plaindoux
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Kristijan Pazur
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Magali Théveniau-Ruissy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Christophe Béroud
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Michel Puceat
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Robert G Kelly
- Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Stephane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| |
Collapse
|
38
|
Mohan RA, Bosada FM, van Weerd JH, van Duijvenboden K, Wang J, Mommersteeg MTM, Hooijkaas IB, Wakker V, de Gier-de Vries C, Coronel R, Boink GJJ, Bakkers J, Barnett P, Boukens BJ, Christoffels VM. T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proc Natl Acad Sci U S A 2020; 117:18617-18626. [PMID: 32675240 PMCID: PMC7414162 DOI: 10.1073/pnas.1919379117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/-) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/- mutants. Notably, Tbx3+/- atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.
Collapse
Affiliation(s)
- Rajiv A Mohan
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan H van Weerd
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jianan Wang
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ingeborg B Hooijkaas
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
39
|
Richter F, Morton SU, Kim SW, Kitaygorodsky A, Wasson LK, Chen KM, Zhou J, Qi H, Patel N, DePalma SR, Parfenov M, Homsy J, Gorham JM, Manheimer KB, Velinder M, Farrell A, Marth G, Schadt EE, Kaltman JR, Newburger JW, Giardini A, Goldmuntz E, Brueckner M, Kim R, Porter GA, Bernstein D, Chung WK, Srivastava D, Tristani-Firouzi M, Troyanskaya OG, Dickel DE, Shen Y, Seidman JG, Seidman CE, Gelb BD. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat Genet 2020; 52:769-777. [PMID: 32601476 PMCID: PMC7415662 DOI: 10.1038/s41588-020-0652-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10-4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 expected, P = 1 × 10-5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 95% confidence interval (CI) 1.1-5.0, P = 5.4 × 10-3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1-1.2, P = 8.8 × 10-5). Our findings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as that observed for damaging coding DNVs.
Collapse
Affiliation(s)
- Felix Richter
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Seong Won Kim
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander Kitaygorodsky
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Jian Zhou
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongjian Qi
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Nihir Patel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for External Innovation, Takeda Pharmaceuticals USA, Cambridge, MA, USA
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kathryn B Manheimer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Matthew Velinder
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew Farrell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabor Marth
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan R Kaltman
- Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD, USA
| | | | | | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martina Brueckner
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Kim
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and University of California San Francisco, San Francisco, CA, USA
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Olga G Troyanskaya
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
40
|
Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, Petrenko NB, Ikegami K, Nadadur RD, Qiao Y, Arnolds DE, Yang XH, Patel VV, Nobrega MA, Efimov IR, Moskowitz IP. Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circ Res 2020; 127:e94-e106. [PMID: 32290757 PMCID: PMC8328577 DOI: 10.1161/circresaha.118.314460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE The heartbeat is organized by the cardiac conduction system (CCS), a specialized network of cardiomyocytes. Patterning of the CCS into atrial node versus ventricular conduction system (VCS) components with distinct physiology is essential for the normal heartbeat. Distinct node versus VCS physiology has been recognized for more than a century, but the molecular basis of this regional patterning is not well understood. OBJECTIVE To study the genetic and genomic mechanisms underlying node versus VCS distinction and investigate rhythm consequences of failed VCS patterning. METHODS AND RESULTS Using mouse genetics, we found that the balance between T-box transcriptional activator, Tbx5, and T-box transcriptional repressor, Tbx3, determined the molecular and functional output of VCS myocytes. Adult VCS-specific removal of Tbx5 or overexpression of Tbx3 re-patterned the fast VCS into slow, nodal-like cells based on molecular and functional criteria. In these cases, gene expression profiling showed diminished expression of genes required for VCS-specific fast conduction but maintenance of expression of genes required for nodal slow conduction physiology. Action potentials of Tbx5-deficient VCS myocytes adopted nodal-specific characteristics, including increased action potential duration and cellular automaticity. Removal of Tbx5 in vivo precipitated inappropriate depolarizations in the atrioventricular (His)-bundle associated with lethal ventricular arrhythmias. TBX5 bound and directly activated cis-regulatory elements at fast conduction channel genes required for fast physiological characteristics of the VCS action potential, defining the identity of the adult VCS. CONCLUSIONS The CCS is patterned entirely as a slow, nodal ground state, with a T-box dependent, physiologically dominant, fast conduction network driven specifically in the VCS. Disruption of the fast VCS gene regulatory network allowed nodal physiology to emerge, providing a plausible molecular mechanism for some lethal ventricular arrhythmias.
Collapse
Affiliation(s)
- Ozanna Burnicka-Turek
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Michael T. Broman
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey D. Steimle
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Bastiaan J. Boukens
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nataliya B. Petrenko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Kohta Ikegami
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D. Nadadur
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Yun Qiao
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - David E. Arnolds
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Xinan H. Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vickas V. Patel
- Discovery Medicine, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Marcelo A. Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Ivan P. Moskowitz
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Villar D, Frost S, Deloukas P, Tinker A. The contribution of non-coding regulatory elements to cardiovascular disease. Open Biol 2020; 10:200088. [PMID: 32603637 PMCID: PMC7574544 DOI: 10.1098/rsob.200088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease collectively accounts for a quarter of deaths worldwide. Genome-wide association studies across a range of cardiovascular traits and pathologies have highlighted the prevalence of common non-coding genetic variants within candidate loci. Here, we review genetic, epigenomic and molecular approaches to investigate the contribution of non-coding regulatory elements in cardiovascular biology. We then discuss recent insights on the emerging role of non-coding variation in predisposition to cardiovascular disease, with a focus on novel mechanistic examples from functional genomics studies. Lastly, we consider the clinical significance of these findings at present, and some of the current challenges facing the field.
Collapse
Affiliation(s)
- Diego Villar
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stephanie Frost
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Panos Deloukas
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Tinker
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
42
|
Dong K, Zhang S. Joint reconstruction of cis-regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data. Brief Bioinform 2020; 22:5860691. [PMID: 32578841 PMCID: PMC8138825 DOI: 10.1093/bib/bbaa120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid accumulation of single-cell chromatin accessibility data offers a unique opportunity to investigate common and specific regulatory mechanisms across different cell types. However, existing methods for cis-regulatory network reconstruction using single-cell chromatin accessibility data were only designed for cells belonging to one cell type, and resulting networks may be incomparable directly due to diverse cell numbers of different cell types. Here, we adopt a computational method to jointly reconstruct cis-regulatory interaction maps (JRIM) of multiple cell populations based on patterns of co-accessibility in single-cell data. We applied JRIM to explore common and specific regulatory interactions across multiple tissues from single-cell ATAC-seq dataset containing ~80 000 cells across 13 mouse tissues. Reconstructed common interactions among 13 tissues indeed relate to basic biological functions, and individual cis-regulatory networks show strong tissue specificity and functional relevance. More importantly, tissue-specific regulatory interactions are mediated by coordination of histone modifications and tissue-related TFs, and many of them may reveal novel regulatory mechanisms.
Collapse
Affiliation(s)
- Kangning Dong
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences
| | - Shihua Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences
| |
Collapse
|
43
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
44
|
Lu A, Kamkar M, Chu C, Wang J, Gaudet K, Chen Y, Lin L, Liu W, Marbán E, Liang W. Direct and Indirect Suppression of Scn5a Gene Expression Mediates Cardiac Na + Channel Inhibition by Wnt Signalling. Can J Cardiol 2020; 36:564-576. [PMID: 32046907 DOI: 10.1016/j.cjca.2019.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Myocardial infarction and heart failure are associated with reduced voltage-gated Na+ current (INa) that promotes arrhythmias and sudden deaths. We have previously shown that the Wnt/β-catenin signalling (Wnt signalling), which is active in heart disease, reduces cardiac INa, suggesting that Wnt signalling may be a potential therapeutic target. However, because Wnt signalling is required for the homeostasis of many noncardiac tissues, administration of Wnt inhibitors to heart patients would cause significant side effects. The present study aims to elucidate the molecular mechanisms of cardiac INa inhibition by Wnt, which would identify cardiac-specific therapeutic targets. METHODS Wnt signalling was activated in neonatal rat ventricular myocytes by Wnt3a protein. Adenovirus expressing Wnt3a was injected into the adult rat ventricle. CRISPR/Cas9 and chromatin immunoprecipitation were used for mechanistic studies. RESULTS Wnt signalling activation in neonatal rat ventricular myocytes reduced Nav1.5 protein and Scn5a mRNA, but increased Tbx3, a known suppressor of Scn5a. Chromatin immunoprecipitation showed that Wnt signalling inhibits Scn5a expression through downstream mediator (TCF4) binding to both Tbx3 and Scn5a promoters. Overexpression or knockdown of Tbx3 directly modified Nav1.5 and INa, whereas CRISPR/Cas9-induced mutations at TCF4 binding sites within the Scn5a promoter attenuated Wnt inhibition of Scn5a and Nav1.5. In adult rat hearts, adenovirus expressing Wnt3a reduced Nav1.5, increased QRS duration in electrocardiogram, and increased the susceptibility to ventricular tachycardia. CONCLUSIONS Wnt signalling inhibits the Na+ channel by direct and indirect (via Tbx3) suppression of Scn5a transcription. Strategies to block TCF4 binding to the Tbx3 and Scn5a promoters would represent novel strategies for cardiac-specific inhibition of the Wnt pathway to rescue INa and prevent sudden cardiac deaths.
Collapse
Affiliation(s)
- Aizhu Lu
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maryam Kamkar
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Cencen Chu
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jerry Wang
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kaya Gaudet
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yawen Chen
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Lin
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wenbin Liang
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
45
|
Abstract
Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGFβ)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.
Collapse
Affiliation(s)
- Mika J. Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| | - Heikki J. Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| |
Collapse
|
46
|
Man JCK, Mohan RA, Boogaard MVD, Hilvering CRE, Jenkins C, Wakker V, Bianchi V, Laat WD, Barnett P, Boukens BJ, Christoffels VM. An enhancer cluster controls gene activity and topology of the SCN5A-SCN10A locus in vivo. Nat Commun 2019; 10:4943. [PMID: 31666509 PMCID: PMC6821807 DOI: 10.1038/s41467-019-12856-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Mutations and variations in and around SCN5A, encoding the major cardiac sodium channel, influence impulse conduction and are associated with a broad spectrum of arrhythmia disorders. Here, we identify an evolutionary conserved regulatory cluster with super enhancer characteristics downstream of SCN5A, which drives localized cardiac expression and contains conduction velocity-associated variants. We use genome editing to create a series of deletions in the mouse genome and show that the enhancer cluster controls the conformation of a >0.5 Mb genomic region harboring multiple interacting gene promoters and enhancers. We find that this cluster and its individual components are selectively required for cardiac Scn5a expression, normal cardiac conduction and normal embryonic development. Our studies reveal physiological roles of an enhancer cluster in the SCN5A-SCN10A locus, show that it controls the chromatin architecture of the locus and Scn5a expression, and suggest that genetic variants affecting its activity may influence cardiac function.
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Rajiv A Mohan
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Malou van den Boogaard
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Catharina R E Hilvering
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Catherine Jenkins
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Hill MC, Montefiori LE, Scholman KT, Liu J, de Vries AAF, Boukens BJ, Ellinor PT, Goumans MJTH, Efimov IR, Nobrega MA, Barnett P, Martin JF, Christoffels VM. Identification of atrial fibrillation associated genes and functional non-coding variants. Nat Commun 2019; 10:4755. [PMID: 31628324 PMCID: PMC6802215 DOI: 10.1038/s41467-019-12721-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Jia Liu
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Cell Biology and Genetics, Center for Anti-ageing and Regenerative Medicine, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Nanhai Ave, 3688, Shenzhen, China
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovasular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Marie José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, The University of Chicago, Chicago, USA
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Heart Institute, Houston, TX, 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Delisle BP, Yu Y, Puvvula P, Hall AR, Huff C, Moon AM. Tbx3-Mediated Regulation of Cardiac Conduction System Development and Function: Potential Contributions of Alternative RNA Processing. Pediatr Cardiol 2019; 40:1388-1400. [PMID: 31372681 DOI: 10.1007/s00246-019-02166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
In this article, we provide a brief summary of work by us and others to discover the molecular underpinnings of early conduction system development and function. We focus on how the multifunctional protein Tbx3 contributes to acquisition and homeostasis of the tissue-specific properties of the sinoatrial and atrioventricular nodes. We also provide unpublished, preliminary findings supporting the role of Tbx3-regulated alternative RNA processing in the developing conduction system.
Collapse
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavan Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA
| | - Allison R Hall
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA. .,Departments of Pediatrics and Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
49
|
Benaglio P, D'Antonio-Chronowska A, Ma W, Yang F, Young Greenwald WW, Donovan MKR, DeBoever C, Li H, Drees F, Singhal S, Matsui H, van Setten J, Sotoodehnia N, Gaulton KJ, Smith EN, D'Antonio M, Rosenfeld MG, Frazer KA. Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits. Nat Genet 2019; 51:1506-1517. [PMID: 31570892 PMCID: PMC6858543 DOI: 10.1038/s41588-019-0499-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/15/2019] [Indexed: 12/15/2022]
Abstract
The cardiac transcription factor (TF) gene NKX2-5 has been associated with electrocardiographic (EKG) traits through genome-wide association studies (GWASs), but the extent to which differential binding of NKX2-5 at common regulatory variants contributes to these traits has not yet been studied. We analyzed transcriptomic and epigenomic data from induced pluripotent stem cell-derived cardiomyocytes from seven related individuals, and identified ~2,000 single-nucleotide variants associated with allele-specific effects (ASE-SNVs) on NKX2-5 binding. NKX2-5 ASE-SNVs were enriched for altered TF motifs, for heart-specific expression quantitative trait loci and for EKG GWAS signals. Using fine-mapping combined with epigenomic data from induced pluripotent stem cell-derived cardiomyocytes, we prioritized candidate causal variants for EKG traits, many of which were NKX2-5 ASE-SNVs. Experimentally characterizing two NKX2-5 ASE-SNVs (rs3807989 and rs590041) showed that they modulate the expression of target genes via differential protein binding in cardiac cells, indicating that they are functional variants underlying EKG GWAS signals. Our results show that differential NKX2-5 binding at numerous regulatory variants across the genome contributes to EKG phenotypes.
Collapse
Affiliation(s)
- Paola Benaglio
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Wubin Ma
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Margaret K R Donovan
- Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA.,Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
| | - Christopher DeBoever
- Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA
| | - He Li
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frauke Drees
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sanghamitra Singhal
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Nona Sotoodehnia
- Department of Medicine, Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA.,Department of Epidemiology, Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Erin N Smith
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Kelly A Frazer
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA. .,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|