1
|
Long D, Ding Y, Wang P, Wei L, Ma K. Multi-Omics Analysis Reveals Immune Infiltration and Clinical Significance of Phosphorylation Modification Enzymes in Lung Adenocarcinoma. Int J Mol Sci 2025; 26:1066. [PMID: 39940833 PMCID: PMC11817228 DOI: 10.3390/ijms26031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Protein phosphorylation is a dynamic and reversible modification involved in almost all cellular processes. Numerous investigations have shown that protein phosphorylation modification enzymes (PPMEs) that regulate protein phosphorylation play an important role in the occurrence and treatment of tumors. However, there is still a lack of effective insights into the value of PPMEs in the classification and treatment of patients with lung adenocarcinoma (LUAD). Here, four topological algorithms identified 15 hub PPMEs from a protein-protein interaction (PPI) network. This PPI network was constructed using 124 PPMEs significantly correlated with 35 cancer hallmark-related pathways. Our study illustrates that these hub PPMEs can affect the survival of patients with LUAD in the form of somatic mutation or expression perturbation. Consistency clustering based on hub PPMEs recognized two phosphorylation modification subtypes (namely cluster1 and cluster2) from LUAD. Compared with patients in cluster1, the survival prognosis of patients in cluster2 is worse. This disparity is probably attributed to the higher tumor mutation burden, the higher male proportion, and the more significant expression disturbance in patients in cluster2. Moreover, phosphorylation modification subtypes also have different characteristics in terms of immune activity, immune infiltration level, immunotherapy response, and drug sensitivity. We constructed a PSig scoring system by using a principal component analysis algorithm to estimate the level of phosphorylation modification in individual LUAD patients. Patients in the high and low PSig score groups demonstrated different characteristics in terms of survival rate, tumor mutation burden, somatic gene mutation rate, immune cell abundance, and sensitivity to immunotherapy and drug treatment. This work reveals that phosphorylation plays a non-negligible role in the tumor microenvironment and immunotherapy of LUAD. Evaluating the phosphorylation status of individual LUAD patients by the PSig score can contribute to enhancing our cognition of the tumor microenvironment and guiding the formulation of more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Deyu Long
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lili Wei
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| |
Collapse
|
2
|
Chen S, Wu K, Zong Y, Hou Z, Deng Z, Xia Z. USP44 regulates HEXIM1 stability to inhibit tumorigenesis and metastasis of oral squamous cell carcinoma. Biol Direct 2024; 19:143. [PMID: 39722007 DOI: 10.1186/s13062-024-00573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequent type of oral malignancy with high metastasis and poor prognosis. The deubiquitinating enzyme Ubiquitin Specific Peptidase 44 (USP44) regulates the mitotic checkpoint, and its deficiency leads to aneuploidy and increases tumor incidence. However, the role of USP44 in OSCC is not well understood. Herein, we analyzed mRNA sequencing data of OSCC samples downloaded from the TCGA and GEO databases and found that USP44 was decreased in human OSCC tissues and was positively correlated to the survival of OSCC patients. To investigate the biological impact of USP44, we used recombinant lentiviruses to overexpress or knockdown USP44 expression in OSCC cell lines, which were also injected subcutaneously or into the lateral tail vein of Male BALB/c nude mice to model tumorigenesis or lung metastasis in vivo, respectively. The results showed that overexpression of USP44 inhibited malignant cell phenotypes in vitro and suppressed tumor growth and lung metastasis in vivo, while its downregulation had the opposite effects. Comprehensive proteomic analyses through Co-IP mass spectrometry and label-free quantitative LC-MS/MS methods identified 112 differentially expressed proteins positively regulated by USP44, among which 13 were involved in cancer-related pathways including apoptotic signaling and cell cycle regulation. PPI analysis identified Hexamethylene Bis-Acetamide-Inducible Protein 1 (HEXIM1) as the hub protein. Upregulation of USP44 enhanced HEXIM1 protein stability, leading to its higher expression in OSCC cells. Silencing of HEXIM1 further enhanced the malignant phenotype of OSCC cells. At the same time, HEXIM1 knockdown reversed the antitumor effects of USP44. These findings demonstrated that USP44 acted as a critical tumor suppressor in OSCC by inhibiting cell proliferation and metastasis through the stabilization of HEXIM1 protein, suggesting that USP44-HEXIM1 axis is a promising target for OSCC therapy.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Kefan Wu
- Department of Oral Prevention, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450052, China
| | - Yingrui Zong
- Department of Oral Prevention, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450052, China
| | - Zhenzhen Hou
- Department of Oral Prevention, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450052, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, 1 Longhu Zhonghuan Road, Jinshui District, Zhengzhou, Henan, 450001, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, 1 Longhu Zhonghuan Road, Jinshui District, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
Ali A, Hussain S, Bedekovics T, Jeon RH, May DG, Roux KJ, Galardy PJ. Proximity Proteomics Reveals USP44 Forms a Complex with BRCA2 in Neuroblastoma Cells and Is Required to Prevent Chromosome Breakage. Biomedicines 2024; 12:2901. [PMID: 39767807 PMCID: PMC11727000 DOI: 10.3390/biomedicines12122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44. METHODS We expressed a fusion protein that linked USP44 and mutant Escherichia coli biotin ligase BioID in SH-SY5Y neuroblastoma cells. Control experiments were performed using BioID alone. In duplicate experiments, cells were pulsed with biotin and biotinylated proteins were isolated under denaturing conditions and the proteins were identified by mass spectrometry. The resulting list of proteins were analyzed using Enrichr and cross-referenced with the COSMIC Cancer Gene Census. We validated the association with BRCA2 using immunoprecipitation. The role of USP44 in the Fanconi anemia DNA repair pathway was investigated using chromosome analysis of wild-type or Usp44-knockout cells after exposure to mitomycin C. RESULTS We identified 146 proteins that were selectively retrieved by the USP44 construct and compared with cells expressing the BioID ligase alone, including 15 gene products encoded by genes on tier 1 of the COSMIC Cancer Gene Census, including BRCA2. The association between USP44 and BRCA2 was validated through immunoprecipitation. We tested the functional role of USP44 in the Fanconi anemia DNA repair pathway through chromosome breakage analysis and found that cells lacking USP44 had a significant increase in chromosome breaks and radial chromosomes. We found that high BRCA2 transcript was correlated with poor survival in neuroblastoma, likely due to its tight association with proliferation in these tumors. CONCLUSIONS Our results identified novel potential binding partners and potential substrates for USP44, including several with direct roles in cancer pathogenesis. Our results identified a novel association between BRCA2 and USP44, and a previously unknown role for USP44 in the Fanconi anemia DNA repair pathway that may contribute to its role in cancer.
Collapse
Affiliation(s)
- Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (S.H.); (T.B.); (R.H.J.)
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (S.H.); (T.B.); (R.H.J.)
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (S.H.); (T.B.); (R.H.J.)
| | - Raymond H. Jeon
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (S.H.); (T.B.); (R.H.J.)
| | - Danielle G. May
- Enabling Technology Group, Sanford Research, Sioux Falls, SD 57104, USA; (D.G.M.); (K.J.R.)
| | - Kyle J. Roux
- Enabling Technology Group, Sanford Research, Sioux Falls, SD 57104, USA; (D.G.M.); (K.J.R.)
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (S.H.); (T.B.); (R.H.J.)
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Devillers R, Dos Santos A, Destombes Q, Laplante M, Elowe S. Recent insights into the causes and consequences of chromosome mis-segregation. Oncogene 2024; 43:3139-3150. [PMID: 39278989 DOI: 10.1038/s41388-024-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Mitotic cells face the challenging task of ensuring accurate and equal segregation of their duplicated, condensed chromosomes between the nascent daughter cells. Errors in the process result in chromosome missegregation, a significant consequence of which is the emergence of aneuploidy-characterized by an imbalance in chromosome number-and the associated phenomenon of chromosome instability (CIN). Aneuploidy and CIN are common features of cancer, which leverages them to promote genome heterogeneity and plasticity, thereby facilitating rapid tumor evolution. Recent research has provided insights into how mitotic errors shape cancer genomes by inducing both numerical and structural chromosomal changes that drive tumor initiation and progression. In this review, we survey recent findings regarding the mitotic causes and consequences of aneuploidy. We discuss new findings into the types of chromosome segregation errors that lead to aneuploidy and novel pathways that protect genome integrity during mitosis. Finally, we describe new developments in our understanding of the immediate consequences of chromosome mis-segregation on the genome stability of daughter cells.
Collapse
Affiliation(s)
- Romain Devillers
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Quentin Destombes
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada.
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada.
- Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
5
|
Liu Y, Yuan M, Xu X, Yang H, Yao Y, Hou P, Yu W, Ji M. USP44 inactivation accelerates the progression of thyroid cancer by inducing ubiquitylation and degradation of p21. Int J Biol Sci 2024; 20:5223-5238. [PMID: 39430240 PMCID: PMC11489182 DOI: 10.7150/ijbs.99817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Ubiquitin-specific peptidase 44 (USP44) belongs to the ubiquitin-specific protease family and is pivotal in the development and progression of tumors across various human cancers. However, its biological function and the underlying mechanisms in thyroid cancer remain poorly understood. In this study, we observed that USP44 was frequently downregulated by promoter hypermethylation in thyroid cancers and found that its decreased expression was closely associated with poor patient survival. Subsequent in vitro and in vivo functional studies revealed that USP44 substantially suppressed the proliferation of thyroid cancer cells by impeding the G1/S transition in cell cycle. Mechanistically, USP44 directly interacted with p21 and eliminated its K-48-linked polyubiquitination chain, thereby stabilizing p21 proteins in a cell cycle-independent manner. In addition, the rescue of p21 partially alleviated cell cycle advancement and cell proliferation induced by the depletion of USP44. Our findings, taken together, indicate that USP44 is frequently repressed in thyroid cancer due to promoter hypermethylation and functions as a tumor suppressor by stabilizing p21 via deubiquitination.
Collapse
Affiliation(s)
- Yan Liu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Mengmeng Yuan
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xinxin Xu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Huini Yang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yao Yao
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Wei Yu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
6
|
Ekstrom TL, Hussain S, Bedekovics T, Ali A, Paolini L, Mahmood H, Rosok RM, Koster J, Johnsen SA, Galardy PJ. USP44 Overexpression Drives a MYC-Like Gene Expression Program in Neuroblastoma through Epigenetic Reprogramming. Mol Cancer Res 2024; 22:812-825. [PMID: 38775808 PMCID: PMC11372370 DOI: 10.1158/1541-7786.mcr-23-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024]
Abstract
Neuroblastoma is an embryonic cancer that contributes disproportionately to death in young children. Sequencing data have uncovered few recurrently mutated genes in this cancer, although epigenetic pathways have been implicated in disease pathogenesis. We used an expression-based computational screen that examined the impact of deubiquitinating enzymes on patient survival to identify potential new targets. We identified the histone H2B deubiquitinating enzyme USP44 as the enzyme with the greatest impact on survival in patients with neuroblastoma. High levels of USP44 significantly correlate with metastatic disease, unfavorable histology, advanced patient age, and MYCN amplification. The subset of patients with tumors expressing high levels of USP44 had significantly worse survival, including those with tumors lacking MYCN amplification. We showed experimentally that USP44 regulates neuroblastoma cell proliferation, migration, invasion, and neuronal development. Depletion of the histone H2B ubiquitin ligase subunit RNF20 resulted in similar findings, strongly implicating this histone mark as the target of USP44 activity in this disease. Integration of transcriptome and epigenome in analyses demonstrates a distinct set of genes that are regulated by USP44, including those in Hallmark MYC target genes in both murine embryonic fibroblasts and the SH-SY5Y neuroblastoma cell line. We conclude that USP44 is a novel epigenetic regulator that promotes aggressive features and may be a novel target in neuroblastoma. Implications: This study identifies a new genetic marker of aggressive neuroblastoma and identifies the mechanisms by which its overactivity contributes to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Thomas L. Ekstrom
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota.
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Family Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Lucia Paolini
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | - Hina Mahmood
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Raya M. Rosok
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Jan Koster
- Department of CEMM, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Liu WS, Li RM, Le YH, Zhu ZL. Construction of a mitophagy-related prognostic signature for predicting prognosis and tumor microenvironment in lung adenocarcinoma. Heliyon 2024; 10:e35305. [PMID: 39170577 PMCID: PMC11336613 DOI: 10.1016/j.heliyon.2024.e35305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mitophagy is the selective degradation of mitochondria by autophagy. It becomes increasingly clear that mitophagy pathways are important for cancer cells to adapt to their high-energy needs. However, which genes associated with mitophagy could be used to prognosis cancer is unknown. Methods We created a clinical prognostic model using mitophagy-related genes (MRGs) in lung adenocarcinoma (LUAD) patients for the first time, and we employed bioinformatics methods to search for biomarkers that affect the progression and prognosis of LUAD. Transcriptome data for LUAD were obtained from The Cancer Genome Atlas (TCGA) database, and additional expression data from LUAD patients were sourced from the Gene Expression Omnibus (GEO) database. Furthermore, 25 complete MRGs were identified based on annotations from the MSigDB database. Results A comparison of the mitophagy scores between the groups with high and low scores was done using receiver operating characteristic (ROC) curves, which also revealed the differential gene expression patterns between the two groups. Using Kaplan-Meier analysis, two prognostic MRGs from the groups with high and low mitophagy scores were identified: TOMM40 and VDAC1. Using univariate and multivariate Cox regression, the relationship between the expression levels of these two genes and prognostic clinical features of LUAD was examined further.The prognosis of LUAD patients was shown to be significantly correlated (P < 0.05) with the expression levels of these two genes. Conclusions Our prognostic model would improve the prognosis of LUAD and guide clinical treatments.
Collapse
Affiliation(s)
- Wu-Sheng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Ru-Mei Li
- Department of Endocrinology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Yong-Hong Le
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Zan-Lei Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| |
Collapse
|
8
|
Zheng Z, Li J, Liu T, Fan Y, Zhai QC, Xiong M, Wang QR, Sun X, Zheng QW, Che S, Jiang B, Zheng Q, Wang C, Liu L, Ping J, Wang S, Gao DD, Ye J, Yang K, Zuo Y, Ma S, Yang YG, Qu J, Zhang F, Jia P, Liu GH, Zhang W. DNA methylation clocks for estimating biological age in Chinese cohorts. Protein Cell 2024; 15:575-593. [PMID: 38482631 PMCID: PMC11259550 DOI: 10.1093/procel/pwae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 07/21/2024] Open
Abstract
Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation (DNAm) at specific CpG sites. However, a systematic comparison between DNA methylation data and other omics datasets has not yet been performed. Moreover, available DNAm age predictors are based on datasets with limited ethnic representation. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing the basis for evaluating aging intervention strategies.
Collapse
Affiliation(s)
- Zikai Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiao-Cheng Zhai
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao-Ran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Wen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shanshan Che
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beier Jiang
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Quan Zheng
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Ping
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Dan-Dan Gao
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
He J, Li F, Jing Z, Ren X, Jia D, Zeng Y, Yu Y. GNPNAT1 Serves as a Prognostic Biomarker Correlated with Immune Infiltration and Promotes Cancer Cell Metastasis through Stabilization of Snai2 in Lung Adenocarcinoma. Biomedicines 2024; 12:1477. [PMID: 39062049 PMCID: PMC11274686 DOI: 10.3390/biomedicines12071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Lung cancer is a common malignant tumor with high morbidity and mortality rate. Glucosamine 6-phosphate N-acetyltransferase (GNPNAT1), which serves as a critical enzyme in hexosamine biosynthetic pathway (HBP), has been identified as a metastasis-associated gene and is upregulated in lung adenocarcinoma (LUAD). However, the exact role and related mechanism of GNPNAT1 in LUAD metastasis remain unknown. METHODS We analyzed the expression of GNPNAT1 in the public databases and confirmed the results by immunohistochemistry (IHC). The biological functions of GNPNAT1 in LUAD were investigated based on The Cancer Genome Atlas (TCGA). Correlations between GNPNAT1 and cancer immune characteristics were analyzed via the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) and Cell-type Identification by Estimating Relative Subsets of RNA Transcript (CIBERSORT) R package. The underlying mechanisms of altered GNPNAT1 expression on LUAD cell tumorigenesis, proliferation, migration, invasion, and metastasis were explored in vitro and in vivo. RESULTS We demonstrated that GNPNAT1 expression was significantly increased in LUAD and negatively associated with the overall survival (OS) of patients. hsa-miR-1-3p and hsa-miR-26a-5p were identified as upstream miRNA targets of GNPNAT1. GNPNAT1 was associated with the infiltration levels of CD8 T cells, memory-activated CD4 T cells, NK cells resting, macrophages M0, macrophages M1, neutrophils, gamma delta T cells, and eosinophils, while it was negatively correlated with memory-resting CD4 T cells, regulatory T cells (Tregs), resting NK cells, monocytes, resting dendritic cells, and resting mast cells. GNPNAT1 knockdown significantly inhibited proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) process, and metastasis of LUAD cells, while overexpression of GNPNAT1 revealed the opposite effects. Rescue assay showed that Snai2 knockdown reversed GNPNAT1-induced LUAD cells migration, invasion, and EMT. Mechanistically, GNPNAT1 promoted cancer cell metastasis via repressing ubiquitination degradation of Snai2 in LUAD. CONCLUSIONS Taken together, these data indicate that GNPNAT1 serves as a prognostic biomarker for LUAD patient. Additionally, GNPNAT1 is critical for promoting tumorigenesis and metastasis of LUAD cells and may be a potential therapeutic target for preventing LUAD metastasis.
Collapse
Affiliation(s)
- Jinqi He
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Faxiang Li
- Department of Medical Oncology, The Central Hospital of Shaoyang, Shaoyang 422000, China;
| | - Zihan Jing
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Xingmei Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Yuan Zeng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| |
Collapse
|
10
|
Lin X, Yang M, Huang Y, Huang X, Shi H, Chen B, Kang J, Ke S. Gene signatures of endoplasmic reticulum stress and mitophagy for prognostic risk prediction in lung adenocarcinoma. IET Syst Biol 2024; 18:103-117. [PMID: 38813617 PMCID: PMC11179159 DOI: 10.1049/syb2.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Genes associated with endoplasmic reticulum stress (ERS) and mitophagy can be conducive to predicting solid tumour prognosis. The authors aimed to develop a prognosis prediction model for these genes in lung adenocarcinoma (LUAD). Relevant gene expression and clinical information were collected from public databases including Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A total of 265 differentially expressed genes was finally selected (71 up-regulated and 194 downregulated) in the LUAD dataset. Among these, 15 candidate ERS and mitophagy genes (ATG12, CSNK2A1, MAP1LC3A, MAP1LC3B, MFN2, PGAM5, PINK1, RPS27A, SQSTM1, SRC, UBA52, UBB, UBC, ULK1, and VDAC1) might be critical to LUAD based on the expression analysis after crossing with the ERS and mitochondrial autophagy genes. The prediction model demonstrated the ability to effectively predict the 5-, 3-, and 1-year prognoses of LUAD patients in both GEO and TCGA databases. Moreover, high VDAC1 expression was associated with poor overall survival in LUAD (p < 0.001), suggesting it might be a critical gene for LUAD prognosis prediction. Overall, the prognosis model based on ERS and mitophagy genes in LUAD can be useful for evaluating the prognosis of patients with LUAD, and VDAC1 may serve as a promising biomarker for LUAD prognosis.
Collapse
Affiliation(s)
- Xiong Lin
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Miaoling Yang
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanling Huang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xiaoli Huang
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huibo Shi
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Jianle Kang
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Song X, Xia B, Gao X, Liu X, Lv H, Wang S, Xiao Q, Luo H. Related cellular signaling and consequent pathophysiological outcomes of ubiquitin specific protease 24. Life Sci 2024; 342:122512. [PMID: 38395384 DOI: 10.1016/j.lfs.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Boyu Xia
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinrong Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinying Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hongyuan Lv
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Shiwei Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Qinpei Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hao Luo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
12
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
13
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Wang C, Jiang X, Zhao Q, Xie Z, Cai H. The diagnostic or prognostic values of FADD in cancers based on pan‑cancer analysis. Biomed Rep 2023; 19:77. [PMID: 37829257 PMCID: PMC10565789 DOI: 10.3892/br.2023.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023] Open
Abstract
Previous studies have determined that aberrant expression of the fas-associated death domain (FADD) contributes to the development of cancer. However, no pan-cancer analysis has been reported to explore the relationship between FADD and various cancers. Multiple databases were screened to identify cancer datasets for the present study and to validate the expression of FADD in various tumors. The association of FADD alteration with cancer prognosis, clinical features and tumor immunity was also evaluated. Reverse transcription-quantitative PCR (RT-qPCR) was utilized to confirm the expression of FADD in breast, colon, liver and gastric cancer cells. Analysis of Gene Expression Omnibus database and The Cancer Genome Atlas database indicated that FADD was highly expressed in breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD) and prostate adenocarcinoma, whereas RT-qPCR results revealed that FADD was highly expressed in breast cancer and colon cancer. Further analyses demonstrated that FADD expression was significantly altered in ESCA, head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma and BRCA. FADD expression was observed to be a risk factor of the overall survival in patients with HNSC, LIHC and LUAD as demonstrated by Kaplan-Meier and Cox regression analyses. The results of the present study demonstrated that FADD is highly expressed in numerous malignancies and can be utilized as a biomarker for the diagnosis of BRCA, COAD, LIHC and stomach adenocarcinoma. Moreover, FADD expression is a predictive risk factor for the development of HNSC, LIHC and LUAD and can potentially be used as a prognostic marker for these cancers.
Collapse
Affiliation(s)
- Chenyu Wang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xianglai Jiang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Department of General Surgery, General Surgery Clinical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qiqi Zhao
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Department of General Surgery, General Surgery Clinical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiyuan Xie
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hui Cai
- Department of General Surgery, General Surgery Clinical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
15
|
Jiang W, Yang X, Shi K, Zhang Y, Shi X, Wang J, Wang Y, Chenyan A, Shan J, Wang Y, Chang J, Chen R, Zhou T, Zhu Y, Yu Y, Li C, Li X. MAD2 activates IGF1R/PI3K/AKT pathway and promotes cholangiocarcinoma progression by interfering USP44/LIMA1 complex. Oncogene 2023; 42:3344-3357. [PMID: 37752233 DOI: 10.1038/s41388-023-02849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Spindle assembly checkpoint (SAC) plays an essential part in facilitating normal cell division. However, the clinicopathological and biological significance of mitotic arrest deficient 2 like 1 (MAD2/MAD2L1), a highly conserved member of SAC in cholangiocarcinoma (CCA) remain unclear. We aim to determine the role and mechanism of MAD2 in CCA progression. In the study, we found up-regulated MAD2 facilitated CCA progression and induced lymphatic metastasis dependent on USP44/LIMA1/PI3K/AKT pathway. MAD2 interfered the binding of USP44 to LIMA1 by sequestrating more USP44 in nuclei, causing impaired formation of USP44/LIMA1 complex and enhanced LIMA1 K48 (Lys48)-linked ubiquitination. In therapeutic perspective, the data combined eleven cases of CCA PDTX model showed that high-MAD2 inhibits tumor necrosis and diminishes the inhibition of cell viability after treated with gemcitabine-based regimens. Immunohistochemistry (IHC) analysis of tissue microarray (TMA) for CCA patients revealed that high-MAD2, low-USP44 or low-LIMA1 level are correlated with worse survival for patients. Together, MAD2 activates PI3K/AKT pathway, promotes cancer progression and induces gemcitabine chemo-resistance in CCA. These findings suggest that MAD2 might be an excellent indicator in prognosis analysis and chemotherapy guidance for CCA patients.
Collapse
Affiliation(s)
- Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Xiao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuangheng Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Anlan Chenyan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanping Zhu
- Personaloncology Biological Technology Co., Ltd, Nanjing, Jiangsu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China.
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
You L, Xin Z, Zhou X, Na F, Zhou J, Ying B. Diverse regulated cell death modes predict the immune microenvironment and drug sensitivity in lung adenocarcinoma. J Cell Physiol 2023; 238:2570-2585. [PMID: 37842875 DOI: 10.1002/jcp.31109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023]
Abstract
Integrated action modes of regulated cell death (RCD) in lung adenocarcinoma (LUAD) have not been comprehensively dissected. Here, we adopted 15 RCD modes, including 1350 related genes, and established RCD signature scores. We found that LUAD patients with high RCD scores had a significantly worse prognosis in all four different cohorts (TCGA, KM-plotter, GSE31210, and GSE30219). Our nomogram established based on the RCD score and clinical characteristics performed well in both the discovery and validation sets. There was a close correlation between the RCD scores and LUAD molecular subtypes identified by unsupervised consensus clustering. Furthermore, we profiled the tumor microenvironment via deconvolution and found significant differences in immune activity, transcription factor activity and molecular pathway enrichment between the RCD-high and RCD-low groups. More importantly, we revealed that the regulation of antigen presentation is the crucial mechanism underlying RCD. In addition, higher RCD scores predict poorer sensitivity to multiple therapeutic drugs, which indicates that RCD scores may serve as a promising predictor of chemotherapy and immunotherapy outcomes. In summary, this work is the first to reveal the internal links between RCD modes, LUAD, and cancer immunity and highlights the necessity of RCD scores in personalizing treatment plans.
Collapse
Affiliation(s)
- Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Deng X, Chen X, Luo Y, Que J, Chen L. Intratumor microbiome derived glycolysis-lactate signatures depicts immune heterogeneity in lung adenocarcinoma by integration of microbiomic, transcriptomic, proteomic and single-cell data. Front Microbiol 2023; 14:1202454. [PMID: 37664112 PMCID: PMC10469687 DOI: 10.3389/fmicb.2023.1202454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Microbiome plays roles in lung adenocarcinoma (LUAD) development and anti-tumor treatment efficacy. Aberrant glycolysis in tumor might promote lactate production that alter tumor microenvironment, affecting microbiome, cancer cells and immune cells. We aimed to construct intratumor microbiome score to predict prognosis of LUAD patients and thoroughly investigate glycolysis and lactate signature's association with LUAD immune cell infiltration. Methods The Cancer Genome Atlas-LUAD (TCGA-LUAD) microbiome data was downloaded from cBioPortal and analyzed to examine its association with overall survival to create a prognostic scoring model. Gene Set Enrichment Analysis (GSEA) was used to find each group's major mechanisms involved. Our study then investigated the glycolysis and lactate pattern in LUAD patients based on 19 genes, which were correlated with the tumor microenvironment (TME) phenotypes and immunotherapy outcomes. We developed a glycolysis-lactate risk score and signature to accurately predict TME phenotypes, prognosis, and response to immunotherapy. Results Using the univariate Cox regression analysis, the abundance of 38 genera were identified with prognostic values and a lung-resident microbial score (LMS) was then developed from the TCGA-LUAD-microbiome dataset. Glycolysis hallmark pathway was significantly enriched in high-LMS group and three distinct glycolysis-lactate patterns were generated. Patients in Cluster1 exhibited unfavorable outcomes and might be insensitive to immunotherapy. Glycolysis-lactate score was constructed for predicting prognosis with high accuracy and validated in external cohorts. Gene signature was developed and this signature was elevated in epithelial cells especially in tumor mass on single-cell level. Finally, we found that the glycolysis-lactate signature levels were consistent with the malignancy of histological subtypes. Discussion Our study demonstrated that an 18-microbe prognostic score and a 19-gene glycolysis-lactate signature for predicting prognosis of LUAD patients. Our LMS, glycolysis-lactate score and glycolysis-lactate signature have potential roles in precision therapy of LUAD patients.
Collapse
Affiliation(s)
| | | | | | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Bai Y, Xu J, Li D, Zhang X, Chen D, Xie F, Huang L, Yu X, Zhao H, Zhang Y. HepaClear, a blood-based panel combining novel methylated CpG sites and protein markers, for the detection of early-stage hepatocellular carcinoma. Clin Epigenetics 2023; 15:99. [PMID: 37308980 DOI: 10.1186/s13148-023-01508-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Early screening and detection of hepatocellular carcinoma (HCC) can efficiently improve patient prognosis. We aimed to identify a series of hypermethylated DNA markers and develop a blood-based HCC diagnosis panel containing DNA methylation sites and protein markers with improved sensitivity for early-stage HCC detection. RESULTS Overall, 850K methylation arrays were performed using paired tissue DNA samples from 60 HCC patients. Ten candidate hypermethylated CpG sites were selected for further evaluation by quantitative methylation-specific PCR with 60 pairs of tissue samples. Six methylated CpG sites, along with α-fetoprotein (AFP) and des-gamma-carboxyprothrombin (DCP), were assayed in 150 plasma samples. Finally, an HCC diagnosis panel, named HepaClear, was developed in a cohort consisting of 296 plasma samples and validated in an independent cohort consisting of 198 plasma samples. The HepaClear panel, containing 3 hypermethylated CpG sites (cg14263942, cg12701184, and cg14570307) and 2 protein markers (AFP and DCP), yielded a sensitivity of 82.6% and a specificity of 96.2% in the training set and a sensitivity of 84.7% and a specificity of 92.0% in the validation set. The HepaClear panel had higher sensitivity (72.0%) for early-stage HCC than AFP (≥ 20 ng/mL, 48.0%) and DCP (≥ 40 mAU/mL, 62.0%) and detected 67.5% of AFP-negative HCC patients (AFP ≤ 20 ng/mL). CONCLUSIONS We developed a multimarker HCC detection panel (HepaClear) that shows high sensitivity for early-stage HCC. The HepaClear panel exhibits high potential for HCC screening and diagnosis from an at-risk population.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Juan Xu
- Department of Infectious Diseases, Central Hospital of Shengli Oilfield, Dongying, China
| | - Deqiang Li
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Xiaoyu Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Fucun Xie
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Longmei Huang
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Xiaotian Yu
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
19
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
20
|
Song C, Zhang Y, Li Y, Bie J, Wang Z, Yang X, Li H, Zhu L, Zhang T, Chang Q, Luo J. The phosphorylation of PHF5A by TrkA-ERK1/2-ABL1 cascade regulates centrosome separation. Cell Death Dis 2023; 14:98. [PMID: 36759599 PMCID: PMC9911754 DOI: 10.1038/s41419-023-05561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
During interphase, the newly duplicated pairs of centrosomes are held together by a centrosome linker, and the centrosome separation needs the disruption of this linker to induce the duplicated centrosomes separating into two distinct microtubule organization centers. The mechanism of regulating centrosome separation is however poorly understood. Here, we demonstrated that the phosphorylation of PHF5A at Y36 by the TrkA-ERK1/2-ABL1 cascade plays a critical role in regulating centrosome separation. PHF5A, a well-characterized spliceosome component, is enriched in the centrosome. The pY36-PHF5A promotes the interaction between CEP250 and Nek2A in a spliceosomal-independent manner, which leads to premature centrosome separation. Furthermore, the unmatured centrosome remodels the microtubule and subsequently regulates cell proliferation and migration. Importantly, we found that the phosphorylation cascade of TrkA-ERK1/2-ABL1-PHF5A is hyper-regulated in medulloblastoma. The inhibition of this cascade can induce senescence and restrict the proliferation of medulloblastoma. Our findings on this phosphorylation cascade in regulating centrosome separation could provide a series of potential targets for restricting the progress of medulloblastoma.
Collapse
Affiliation(s)
- Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Haishuang Li
- Department of Pathology, Peking University School of Basic Medical Science; Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Liangyi Zhu
- Department of Pathology, Peking University School of Basic Medical Science; Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Qing Chang
- Department of Pathology, Peking University School of Basic Medical Science; Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
21
|
Campos-Iglesias D, Fraile JM, Bretones G, Montero AA, Bonzon-Kulichenko E, Vázquez J, López-Otín C, Freije JMP. USP49 deubiquitinase regulates the mitotic spindle checkpoint and prevents aneuploidy. Cell Death Dis 2023; 14:60. [PMID: 36702832 PMCID: PMC9879932 DOI: 10.1038/s41419-023-05600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The spindle assembly checkpoint (SAC) is an essential mechanism that ensures the accurate chromosome segregation during mitosis, thus preventing genomic instability. Deubiquitinases have emerged as key regulators of the SAC, mainly by determining the fate of proteins during cell cycle progression. Here, we identify USP49 deubiquitinase as a novel regulator of the spindle checkpoint. We show that loss of USP49 in different cancer cell lines impairs proliferation and increases aneuploidy. In addition, USP49-depleted cells overcome the arrest induced by the SAC in the presence of nocodazole. Finally, we report new binding partners of USP49, including ribophorin 1, USP44, and different centrins.
Collapse
Affiliation(s)
- Diana Campos-Iglesias
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Julia M Fraile
- Elasmogen Ltd, Liberty Building, Foresterhill Road, Aberdeen, AB25 2ZP, UK
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Alejandro A Montero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Elena Bonzon-Kulichenko
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - José M P Freije
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
22
|
Yang X, Zhou Y, Ge H, Tian Z, Li P, Zhao X. Identification of a transcription factor‑cyclin family genes network in lung adenocarcinoma through bioinformatics analysis and validation through RT‑qPCR. Exp Ther Med 2022; 25:63. [PMID: 36605530 PMCID: PMC9798156 DOI: 10.3892/etm.2022.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the predominant pathological subtype of lung cancer, which is the most prevalent and lethal malignancy worldwide. Cyclins have been reported to regulate the physiology of various types of tumors by controlling cell cycle progression. However, the key roles and regulatory networks associated with the majority of the cyclin family members in LUAD remain unclear. In total, 556 differentially expressed genes were screened from the GSE33532, GSE40791 and GSE19188 mRNA microarray datasets by R software. Subsequently, protein-protein interaction network containing 499 nodes and 4,311 edges, in addition to a significant module containing 76 nodes and 2,631 edges, were extracted through the MCODE plug-in of Cytoscape. A total of four cyclin family genes [cyclin (CCNA2, CCNB1, CCNB2 and CCNE2] were then found in this module. Further co-expression analysis and associated gene prediction revealed forkhead box M1 (FOXM1), the common transcription factor of CCNB2, CCNB1 and CCNA2. In addition, using GEPIA database, it was found that the high expression of these four genes were simultaneously associated with poorer prognosis in patients with LUAD. Experimentally, it was proved that these four hub genes were highly expressed in LUAD cell lines (Beas-2B and H1299) and LUAD tissues through qPCR, western blot analysis and immunohistochemical studies. The diagnostic value of these 4 hub genes in LUAD was analyzed by logistic regression, CCNA2 was deleted, following which a nomogram diagnostic model was constructed accordingly. The area under the curve values of CCNB1, CCNB2 and FOXM1 diagnostic models were calculated to be 0.92, 0.91 and 0.96 in the training set (Combined dataset of GSE33532, GSE40791 and GSE19188) and two validation sets (GSE10072 and GSE75037), respectively. To conclude, data from the present study suggested that the FOXM1/cyclin (CCNA2, CCNB1 and/or CCNB2) axis may serve a regulatory role in the development and prognosis of LUAD. Specifically, CCNB1, CCNB2 and FOXM1 have potential as diagnostic markers and/or therapeutic targets for LUAD treatment.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yongjia Zhou
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Haibo Ge
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Zhongxian Tian
- Key Laboratory of Chest Cancer, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peiwei Li
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China,Correspondence to: Dr Peiwei Li, Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China,Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China,Correspondence to: Dr Peiwei Li, Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
23
|
Jaitly P, Legrand M, Das A, Patel T, Chauvel M, Maufrais C, d’Enfert C, Sanyal K. A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans. Nat Commun 2022; 13:4256. [PMID: 35869076 PMCID: PMC9307598 DOI: 10.1038/s41467-022-31980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, we identify potential mechanisms underlying such instability by conducting an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovers six chromosomal stability (CSA) genes, five of which are related to cell division genes of other organisms. The sixth gene, CSA6, appears to be present only in species belonging to the CUG-Ser clade, which includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Thus, Csa6 is an essential cell cycle progression factor that is restricted to the CUG-Ser fungal clade, and could therefore be explored as a potential antifungal target. Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, Jaitly et al. identify several genes involved in chromosomal stability in Candida albicans, including a phylogenetically restricted gene encoding an essential cell-cycle progression factor.
Collapse
|
24
|
Wang M, Chen X, Fu G, Ge M. Glutathione peroxidase 2 overexpression promotes malignant progression and cisplatin resistance of KRAS‑mutated lung cancer cells. Oncol Rep 2022; 48:207. [PMID: 36222298 PMCID: PMC9579749 DOI: 10.3892/or.2022.8422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) aberrations frequently occur in patients with lung cancer. Oncogenic KRAS is characterized by excessive reactive oxygen species (ROS) accumulation, thus, ROS detoxification may contribute to KRAS‑driven lung tumorigenesis. In the present study, the influence of glutathione peroxidase 2 (GPX2) on malignant progression and cisplatin resistance of KRAS‑driven lung cancer was explored. The RNA sequencing data from TCGA lung cancer samples and GEO database were downloaded and analyzed. The effects of GPX2 on KRAS‑driven lung tumorigenesis were evaluated by western blotting, cell viability assay, soft agar assay, Transwell assay, tumor xenograft model, flow cytometry, BrdU incorporation assay, transcriptome RNA sequencing, luciferase reporter assay and RNA immunoprecipitation. In the present study, GPX2 was upregulated in patients with non‑small cell lung carcinoma (NSCLC), and positively correlated with poor overall survival. Ectopic GPX2 expression facilitated malignant progression of KRASG12C‑transformed BEAS‑2B cells. Moreover, GPX2 overexpression promoted growth, migration, invasion, tumor xenograft growth and cisplatin resistance of KRAS‑mutated NSCLC cells, while GPX2 knockdown exhibited the opposite effects. GPX2 overexpression reduced ROS accumulation and increased matrix metalloproteinase‑1 (MMP1) expression in KRAS‑mutated NSCLC cells. In addition, GPX2 was directly targeted by miR‑325‑3p, while MMP1 knockdown or miR‑325‑3p overexpression partially abrogated the effects of GPX2 in NSCLC cells. In conclusion, the results indicated that GPX2 facilitated malignant progression and cisplatin resistance of KRAS‑driven lung cancer, and inhibition of GPX2 may be a feasible strategy for lung cancer treatment, particularly in patients with active KRAS mutations.
Collapse
Affiliation(s)
- Mei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mingjian Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
25
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
26
|
Lou Y, Ye M, Xu C, Tao F. Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncol Lett 2022; 24:455. [PMID: 36380875 PMCID: PMC9650596 DOI: 10.3892/ol.2022.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin-specific peptidase 44 (USP44) is a member of the ubiquitin-specific proteases (USPs) family and its functions in various biological processes have been gradually elucidated in recent years. USP44 targets multiple downstream factors and regulates multiple mechanisms through its deubiquitination activity. Ubiquitination is, in essence, a process in which a single ubiquitin molecule or a multiubiquitin chain binds to a substrate protein to form an isopeptide bond. Deubiquitination is the catalyzing of the isopeptide bonds between ubiquitin and substrate proteins through deubiquitylating enzymes. These two processes serve an important role in the regulation of the expression, conformation, localization and function of substrate proteins by regulating their binding to ubiquitin. Based on existing research, this paper summarized the current state of knowledge about USP44. The physiological roles of USP44 in various cellular events and its pathophysiological roles in different cancer types are evaluated and the therapeutic potential of USP44 for cancer treatment is evaluated.
Collapse
Affiliation(s)
- Yuming Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Minfeng Ye
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Correspondence to: Dr Chaoyang Xu, Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Road, Jinhua, Zhejiang 321000, P.R. China, E-mail:
| | - Feng Tao
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Professor Feng Tao, Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing, Zhejiang 312000, P.R. China, E-mail:
| |
Collapse
|
27
|
Wang Z, Liu Y, Zhan X, Wang X, Zhang C, Qin L, Liu L, Qin S. A novel prognostic signature of metastasis-associated genes and personalized therapeutic strategy for lung adenocarcinoma patients. Aging (Albany NY) 2022; 14:5571-5589. [PMID: 35830566 PMCID: PMC9320549 DOI: 10.18632/aging.204169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/18/2022] [Indexed: 01/01/2023]
Abstract
Lung adenocarcinoma (LUAD) is a highly invasive and metastatic malignant tumor with high morbidity and mortality. This study aimed to construct a prognostic signature for LUAD patients based on metastasis-associated genes (MAGs). RNA expression profiles were downloaded from the Cancer Genome Atlas (TCGA) database. RRA method was applied to identify differentially expressed MAGs. A total of 192 significantly robust MAGs were determined among seven GEO datasets. MAGs were initially selected through the Lasso Cox regression analysis and 6 MAGs were included to construct a prognostic signature model. Transcriptome profile, patient prognosis, correlation between the risk score and clinicopathological features, immune cell infiltration characteristics, immunotherapy sensitivity and chemotherapy sensitivity differed between low- and high-risk groups after grouping according to median risk score. The reliability and applicability of the signature were further validated in the GSE31210, GSE50081 and GSE68465 cohort. CMap predicted 62 small molecule drugs on the base of the prognostic MAGs. Targeted drug staurosporine had hydrogen bonding with Gln-172 of SLC2A1, which is one of MAGs. Staurosporine could inhibit cell migration in A549 and H1299. We further verified mRNA and protein expression of 6 MAGs in A549 and H1299. The signature can serve as a promising prognostic tool and may provide a novel personalized therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Zhihao Wang
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Yusi Liu
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Xiaoqian Zhan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
28
|
Fan H, Zhang J, Zou B, He Z. The Role of CEP55 Expression in Tumor Immune Response and Prognosis of Patients with Non-small Cell lung Cancer. ARCHIVES OF IRANIAN MEDICINE 2022; 25:432-442. [DOI: 10.34172/aim.2022.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
Background: With the continuous advancement of diagnostic methods, more and more early-stage Non-small cell lung cancer (NSCLC) patients are diagnosed. Although many scholars have devoted substantial efforts to investigate the pathogenesis and prognosis of NSCLC, its molecular mechanism is still not well explained. Methods: We retrieved three gene datasets GSE10072, GSE19188 and GSE40791 from the Gene Expression Omnibus (GEO) database and screened and identified differentially expressed genes (DEGs). Then, we performed KEGG and GO functional enrichment analysis, survival analysis, risk analysis and prognosis analysis on the selected hub genes. We constructed a protein-protein interaction (PPI) network, and used the STRING database and Cytoscape software. Results: The biological process analysis showed that these genes were mainly enriched in cell division and nuclear division. Survival analysis showed that the genes of CEP55 (centrosomal protein 55), NMU (neuromedin U), CAV1 (Caveolin 1), TBX3 (T-box transcription factor 3), FBLN1 (fibulin 1) and SYNM (synemin) may be involved in the development, invasion or metastasis of NSCLC (P<0.05, logFC>1). Prognostic analysis and independent prognostic analysis showed that the expression of these hub gene-related mRNAs was related to the prognostic risk of NSCLC. Risk analysis showed that the selected hub genes were closely related to the overall survival time of patients with NSCLC. Conclusion: The DEGs and hub genes screened and identified in this study will help us to understand the molecular mechanisms of NSCLC, and CEP55 expression affects the survival and prognosis of patients with NSCLC, and participates in tumor immune response.
Collapse
Affiliation(s)
- Haiyin Fan
- Thoracic Department, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Jin Zhang
- Ultrasound Department, Jiangxi Chest Hospital, Nanchang, Jiangxi, China
| | - Bin Zou
- Thoracic Department, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Zhisheng He
- Thoracic Department, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
29
|
Identification of an inflammatory response signature associated with prognostic stratification and drug sensitivity in lung adenocarcinoma. Sci Rep 2022; 12:10110. [PMID: 35710585 PMCID: PMC9203558 DOI: 10.1038/s41598-022-14323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has confirmed the close connection between inflammatory response and tumorigenesis. However, the relationship between inflammatory response genes (IRGs) and the prognosis of lung adenocarcinoma (LUAD) as well as the response to drug therapy remains poorly investigated. Here, we comprehensively analyzed IRGs RNA expression profiling and clinical features of over 2000 LUAD patients from 12 public datasets. The Cox regression method and LASSO analysis were combined to develop a novel IRG signature for risk stratification and drug efficacy prediction in LUAD patients. Enriched pathways, tumor microenvironment (TME), genomic and somatic mutation landscape in different subgroups were evaluated and compared with each other. This established IRG signature including 11 IRGs (ADM, GPC3, IL7R, NMI, NMURI, PSEN1, PTPRE, PVR, SEMA4D, SERPINE1, SPHK1), could well categorize patients into significantly different prognostic subgroups, and have better predictive in independently assessing survival as compared to a single clinical factor. High IRG scores (IRGS) patients might benefit more from immunotherapy and chemotherapy. Comprehensive analysis uncovered significant differences in enriched pathways, TME, genomic and somatic mutation landscape between the two subgroups. Additionally, integrating the IRGS and TNM stage, a reliable prognostic nomogram was developed to optimize survival prediction, and validated in an independent external dataset for clinical application. Take together, the proposed IRG signature in this study is a promising biomarker for risk stratification and drug efficacy prediction in LUAD patients. This study may be meaningful for explaining the responses of clinical therapeutic drugs and providing new strategies for administrating sufferer of LUAD.
Collapse
|
30
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
31
|
Cornean A, Gierten J, Welz B, Mateo JL, Thumberger T, Wittbrodt J. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. eLife 2022; 11:e72124. [PMID: 35373735 PMCID: PMC9033269 DOI: 10.7554/elife.72124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide variants (SNVs) are prevalent genetic factors shaping individual trait profiles and disease susceptibility. The recent development and optimizations of base editors, rubber and pencil genome editing tools now promise to enable direct functional assessment of SNVs in model organisms. However, the lack of bioinformatic tools aiding target prediction limits the application of base editing in vivo. Here, we provide a framework for adenine and cytosine base editing in medaka (Oryzias latipes) and zebrafish (Danio rerio), ideal for scalable validation studies. We developed an online base editing tool ACEofBASEs (a careful evaluation of base-edits), to facilitate decision-making by streamlining sgRNA design and performing off-target evaluation. We used state-of-the-art adenine (ABE) and cytosine base editors (CBE) in medaka and zebrafish to edit eye pigmentation genes and transgenic GFP function with high efficiencies. Base editing in the genes encoding troponin T and the potassium channel ERG faithfully recreated known cardiac phenotypes. Deep-sequencing of alleles revealed the abundance of intended edits in comparison to low levels of insertion or deletion (indel) events for ABE8e and evoBE4max. We finally validated missense mutations in novel candidate genes of congenital heart disease (CHD) dapk3, ube2b, usp44, and ptpn11 in F0 and F1 for a subset of these target genes with genotype-phenotype correlation. This base editing framework applies to a wide range of SNV-susceptible traits accessible in fish, facilitating straight-forward candidate validation and prioritization for detailed mechanistic downstream studies.
Collapse
Affiliation(s)
- Alex Cornean
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Department of Pediatric Cardiology, University Hospital HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Juan Luis Mateo
- Deparment of Computer Science, University of OviedoOviedoSpain
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| |
Collapse
|
32
|
Liu G, Li F, Chen M, Luo Y, Dai Y, Hou P. SNRPD1/E/F/G Serve as Potential Prognostic Biomarkers in Lung Adenocarcinoma. Front Genet 2022; 13:813285. [PMID: 35356432 PMCID: PMC8959887 DOI: 10.3389/fgene.2022.813285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives: Sm proteins (SNRPB/D1/D2/D3/E/F/G), involved in pre-mRNA splicing, were previously reported in the tumorigenesis of several cancers. However, their specific role in lung adenocarcinoma (LUAD) remains obscure. Our study aims to feature abnormal expressions and mutations of genes for Sm proteins and assess their potential as therapeutic targets via integrated bioinformatics analysis. Methods: In this research, we explored the expression pattern and prognostic worth of genes for Sm proteins in LUAD across TCGA, GEO, UALCAN, Oncomine, Metascape, David 6.8, and Kaplan-Meier Plotter, and confirmed its independent prognostic value via univariate and multivariate cox regression analysis. Meanwhile, their expression patterns were validated by RT-qPCR. Gene mutations and co-expression of genes for Sm proteins were analyzed by the cBioPortal database. The PPI network for Sm proteins in LUAD was visualized by the STRING and Cytoscape. The correlations between genes for Sm proteins and immune infiltration were analyzed by using the “GSVA” R package. Results: Sm proteins genes were found upregulated expression in both LUAD tissues and LUAD cell lines. Moreover, highly expressed mRNA levels for Sm proteins were strongly associated with short survival time in LUAD. Genes for Sm proteins were positively connected with the infiltration of Th2 cells, but negatively connected with the infiltration of mast cells, Th1 cells, and NK cells. Importantly, Cox regression analysis showed that high SNRPD1/E/F/G expression were independent risk factors for the overall survival of LUAD. Conclusion: Our study showed that SNRPD1/E/F/G could independently predict the prognostic outcome of LUAD and was correlated with immune infiltration. Also, this report laid the foundation for additional exploration on the potential treatment target’s role of SNRPD1/E/F/G in LUAD.
Collapse
Affiliation(s)
- Gaohua Liu
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fuping Li
- Department of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meichun Chen
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yang Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinhai Dai
- Department of Surgical Oncology Medicine, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Yinhai Dai, ; Peifeng Hou,
| | - Peifeng Hou
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Stem Cell Research Institute, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, China
- *Correspondence: Yinhai Dai, ; Peifeng Hou,
| |
Collapse
|
33
|
Che Y, Jiang D, Xu L, Sun Y, Wu Y, Liu Y, Chang N, Fan J, Xi H, Qiu D, Ju Q, Pan J, Zhang Y, Yang K, Zhang J. The Clinical Prediction Value of the Ubiquitination Model Reflecting the Immune Traits in LUAD. Front Immunol 2022; 13:846402. [PMID: 35281055 PMCID: PMC8913715 DOI: 10.3389/fimmu.2022.846402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
Background Increasing evidence shows that the ubiquitin–proteasome system has a crucial impact on lung adenocarcinoma. However, reliable prognostic signatures based on ubiquitination and immune traits have not yet been established. Methods Bioinformatics was performed to analyze the characteristic of ubiquitination in lung adenocarcinoma. Principal component analysis was employed to identify the difference between lung adenocarcinoma and adjacent tissue. The ubiquitin prognostic risk model was constructed by multivariate Cox regression and least absolute shrinkage and selection operator regression based on the public database The Cancer Genome Atlas, with evaluation of the time-dependent receiver operating characteristic curve. A variety of algorithms was used to analyze the immune traits of model stratification. Meanwhile, the drug response sensitivity for subgroups was predicted by the “pRRophetic” package based on the database of the Cancer Genome Project. Results The expression of ubiquitin genes was different in the tumor and in the adjacent tissue. The ubiquitin model was superior to the clinical indexes, and four validation datasets verified the prognostic effect. Additionally, the stratification of the model reflected distinct immune landscapes and mutation traits. The low-risk group was infiltrating plenty of immune cells and highly expressed major histocompatibility complex and immune genes, which illustrated that these patients could benefit from immune treatment. The high-risk group showed higher mutation and tumor mutation burden. Integrating the tumor mutation burden and the immune score revealed the patient’s discrepancy between survival and drug response. Finally, we discovered that the drug targeting ubiquitin and proteasome would be a beneficial prospective treatment for lung adenocarcinoma. Conclusion The ubiquitin trait could reflect the prognosis of lung adenocarcinoma, and it might shed light on the development of novel ubiquitin biomarkers and targeted therapy for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yinggang Che
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
- Department of Immunology, Basic Medicine School, Air-Force Medical University, Xi’an, China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University, Xi’an, China
| | - Yingtong Wu
- Department of First Sanatorium, First Sanatorium of Air Force Healthcare Center for Special Services, Hangzhou, China
| | - Yang Liu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, China
| | - Ning Chang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
| | - Jiangjiang Fan
- Department for AIDS Prevention and Control, Department of Thoracic Surgery, Tangdu Hospital, Air-Force Medical University, Xi’an, China
| | - Hangtian Xi
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
| | - Dan Qiu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
| | - Qing Ju
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Kun Yang, ; Yong Zhang,
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Kun Yang, ; Yong Zhang,
| | - Jian Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air-Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Kun Yang, ; Yong Zhang,
| |
Collapse
|
34
|
Chen Y, Zhao Y, Yang X, Ren X, Huang S, Gong S, Tan X, Li J, He S, Li Y, Hong X, Li Q, Ding C, Fang X, Ma J, Liu N. USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat Commun 2022; 13:501. [PMID: 35079021 PMCID: PMC8789930 DOI: 10.1038/s41467-022-28158-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is the primary treatment for patients with nasopharyngeal carcinoma (NPC), and approximately 20% of patients experience treatment failure due to tumour radioresistance. However, the exact regulatory mechanism remains poorly understood. Here, we show that the deubiquitinase USP44 is hypermethylated in NPC, which results in its downregulation. USP44 enhances the sensitivity of NPC cells to radiotherapy in vitro and in vivo. USP44 recruits and stabilizes the E3 ubiquitin ligase TRIM25 by removing its K48-linked polyubiquitin chains at Lys439, which further facilitates the degradation of Ku80 and inhibits its recruitment to DNA double-strand breaks (DSBs), thus enhancing DNA damage and inhibiting DNA repair via non-homologous end joining (NHEJ). Knockout of TRIM25 reverses the radiotherapy sensitization effect of USP44. Clinically, low expression of USP44 indicates a poor prognosis and facilitates tumour relapse in NPC patients. This study suggests the USP44-TRIM25-Ku80 axis provides potential therapeutic targets for NPC patients. Radiotherapy is the mainstay treatment for nasopharyngeal carcinoma (NPC). Here the authors show that the deubiquitinase, USP44, increases radiosensitivity of NPC cells by promoting the degradation of Ku80, and thus enhancing the levels of DNA damage.
Collapse
|
35
|
SOX9-mediated UGT8 expression promotes glycolysis and maintains the malignancy of non-small cell lung cancer. Biochem Biophys Res Commun 2022; 587:139-145. [PMID: 34872002 DOI: 10.1016/j.bbrc.2021.11.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/09/2022]
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to small lipophilic chemicals and are associated with a wide range of diseases including cancer. The human genome contains 22 UGT genes which could be classified into four families: UGT1, UGT2, UGT3, and UGT8. The UGT8 family contains only one member which utilizes UDP galactose to galactosidate ceramide. Although higher UGT8 mRNA was observed in some types of cancer, its pathological significances remain elusive. Here, by integrating the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the Genotype-Tissue Expression (GTEx) databases, we showed that UGT8 was selectively highly expressed in non-small cell lung cancer (NSCLC) and associated with worse prognosis. The transcription factor SOX9 promoted UGT8 expression in NSCLC by recognizing two putative response elements localized on the promoter region of UGT8. Silencing UGT8 impaired glycolysis and reduced the malignancy of NSCLC cells both in vitro and in vivo. On the contrary, inhibition of glycolysis by 2-deoxy-d-glucose (2-DG) significantly impaired the pro-proliferation function of UGT8 in NSCLC cells. In conclusion, our results suggest that UGT8 maintains the malignancy of NSCLC mainly via enhanced glycolysis and provides a promising therapeutic target for NSCLC.
Collapse
|
36
|
Prokopidis K, Giannos P, Witard OC, Peckham D, Ispoglou T. Aberrant mitochondrial homeostasis at the crossroad of musculoskeletal ageing and non-small cell lung cancer. PLoS One 2022; 17:e0273766. [PMID: 36067173 PMCID: PMC9447904 DOI: 10.1371/journal.pone.0273766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cachexia is accompanied by muscle atrophy, sharing multiple common catabolic pathways with sarcopenia, including mitochondrial dysfunction. This study investigated gene expression from skeletal muscle tissues of older healthy adults, who are at risk of age-related sarcopenia, to identify potential gene biomarkers whose dysregulated expression and protein interference were involved in non-small cell lung cancer (NSCLC). Screening of the literature resulted in 14 microarray datasets (GSE25941, GSE28392, GSE28422, GSE47881, GSE47969, GSE59880 in musculoskeletal ageing; GSE118370, GSE33532, GSE19804, GSE18842, GSE27262, GSE19188, GSE31210, GSE40791 in NSCLC). Differentially expressed genes (DEGs) were used to construct protein-protein interaction networks and retrieve clustering gene modules. Overlapping module DEGs were ranked based on 11 topological algorithms and were correlated with prognosis, tissue expression, and tumour purity in NSCLC. The analysis revealed that the dysregulated expression of the mammalian mitochondrial ribosomal proteins, Mitochondrial Ribosomal Protein S26 (MRPS26), Mitochondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Protein L18 (MRPL18) and Mitochondrial Ribosomal Protein L51 (MRPL51) were linked to reduced survival and tumour purity in NSCLC while tissue expression of the same genes followed an opposite direction in healthy older adults. These results support a potential link between the mitochondrial ribosomal microenvironment in ageing muscle and NSCLC. Further studies comparing changes in sarcopenia and NSCLC associated cachexia are warranted.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
37
|
Chi Z, Zhang B, Sun R, Wang Y, Zhang L, Xu G. USP44 accelerates the growth of T-cell acute lymphoblastic leukemia through interacting with WDR5 and repressing its ubiquitination. Int J Med Sci 2022; 19:2022-2032. [PMID: 36483601 PMCID: PMC9724245 DOI: 10.7150/ijms.74535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a common hematologic malignancy. Based on the data from GSE66638 and GSE141140, T-ALL patients depicted a higher USP44 level. However, its role in T-ALL is still unclear. In the present study, we investigated the role of USP44 in T-ALL growth. USP44 overexpression elevated the proliferation of CCRF-CEM cells, while USP44 knockdown suppressed the proliferation of Jurkat and MOLT-4 cells. In addition, USP44 accelerated the cell cycle progression, with boosted cyclinD and PCNA levels. However, USP44 knockdown induced apoptosis in Jurkat and MOLT-4 cells, with an upheaval among cleaved caspase-3 and PARP levels. Mechanistically, USP44 co-localized and interacted with WDR5, leading to the repression of its ubiquitination and degradation. Interestingly, WDR5 overexpression abolished the apoptosis induced by USP44 knockdown. Consistently, the in vivo study revealed that USP44 knockdown restricted the leukemic engraftments in the bone marrow and spleens and reduced the infiltration of T-ALL cells in the livers and lungs. In conclusion, this study indicated that USP44 enhanced the growth of T-ALL through interacting with WDR5 and repressing its ubiquitination. This study highlights the potential use of USP44 as a therapeutic target of T-ALL.
Collapse
Affiliation(s)
- Zuofei Chi
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Bin Zhang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ruowen Sun
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ye Wang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Linlin Zhang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Gang Xu
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
38
|
Meng W, Xiao H, Zhao R, Li D, Li K, Meng Y, Chen J, Wang Y, Liao Y. The Prognostic Value of Bone Morphogenetic Proteins and Their Receptors in Lung Adenocarcinoma. Front Oncol 2021; 11:608239. [PMID: 34745928 PMCID: PMC8569625 DOI: 10.3389/fonc.2021.608239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) regulate tumor progression via binding to their receptors (BMPRs). However, the expression and clinical significance of BMPs/BMPRs in lung adenocarcinoma remain unclear due to a lack of systematic studies. Methods This study screened differentially expressed BMPs/BMPRs (deBMPs/BMPRs) in a training dataset combining TCGA-LUAD and GTEx-LUNG and verified them in four GEO datasets. Their prognostic value was evaluated via univariate and multivariate Cox regression analyses. LASSO was performed to construct an initial risk model. Subsequently, after weighted gene co-expression network analysis (WGCNA), differential expression analysis, and univariate Cox regression analysis, hub genes co-expressed with differentially expressed BMPs/BMPRs were filtered out to improve the risk model and explore potential mechanisms. The improved risk model was re-established via LASSO combining hub genes with differentially expressed BMPs/BMPRs as the core. In the testing cohort including 93 lung adenocarcinoma patients, immunohistochemistry (IHC) was performed to verify BMP5 protein expression and its association with prognosis. Results BMP2, BMP5, BMP6, GDF10, and ACVRL1 were verified as downregulated in lung adenocarcinoma. Survival analysis identified BMP5 as an independent protective prognostic factor. We also found that BMP5 was significantly correlated with EGFR expression and mutations, suggesting that BMP5 may play a role in targeted therapy. The initial risk model containing only BMP5 showed a significant correlation (HR: 1.71, 95% CI: 1.28−2.28, p: 3e-04) but low prognostic accuracy (AUC of 1-year survival: 0.6, 3-year survival: 0.6, 5-year survival: 0.63). Seventy-nine hub genes co-expressed with BMP5 were identified, and their functions were enriched in cell migration and tumor metastasis. The re-established risk model showed greater prognostic correlation (HR: 2.58, 95% CI: 1.92–3.46, p: 0) and value (AUC of 1-year survival: 0.72, 3-year survival: 0.69, and 5-year survival: 0.68). IHC results revealed that BMP5 protein was also downregulated in lung adenocarcinoma and higher expression was markedly associated with better prognosis (HR: 0.44, 95% CI: 0.23–0.85, p: 0.0145). Conclusion BMP5 is a potential crucial target for lung adenocarcinoma treatment based on significant differential expression and superior prognostic value.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Li
- Department of Dermatology and Sexology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuo Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Londra D, Mastoraki S, Bournakis E, Zavridou M, Thanos A, Rampias T, Lianidou ES. USP44 Promoter Methylation in Plasma Cell-Free DNA in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13184607. [PMID: 34572834 PMCID: PMC8467003 DOI: 10.3390/cancers13184607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). USP44 is a member of family proteins deubiquitinases, and plays an important role in cell growth; however, its accurate role in other cellular networks is under research. In this study, we examined for the first time USP44 promoter methylation in plasma cell-free DNA (cfDNA) of patients with prostate cancer (early stage n = 32, metastatic n = 39) and 10 healthy donors (HD). USP44 promoter methylation was detected in plasma cell-free DNA by a newly developed highly specific and sensitive real-time MSP method. We report for the first time that detection of USP44 promoter methylation in plasma cell free DNA provides significant prognostic information in metastatic prostate cancer. Abstract Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). USP44 is a critical gene which plays an important role in cell proliferation; however, its accurate role in other cellular networks is under research. USP44 promoter methylation has been so far reported in colorectal neoplasia and metastatic breast cancer. In this study, we examined for the first time USP44 promoter methylation in plasma cell-free DNA (cfDNA) of patients with prostate cancer (early stage n = 32, metastatic n = 39) and 10 healthy donors (HD). USP44 promoter methylation was detected in plasma cell-free DNA by a newly developed highly specific and sensitive real-time MSP method. Our findings indicate that USP44 promoter is methylated in plasma cell-free DNA of metastatic prostate cancer patients and that detection of USP44 promoter methylation is significantly associated with overall survival (OS) (p = 0.008). We report for the first time that detection of USP44 promoter methylation in plasma cell free DNA provides significant prognostic information in metastatic prostate cancer.
Collapse
Affiliation(s)
- Dora Londra
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
| | - Sophia Mastoraki
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
| | - Evangelos Bournakis
- Oncology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Martha Zavridou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
| | - Anastasios Thanos
- Mutual Health Fund of National Bank of Greece Personnel, 11473 Athens, Greece;
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Evi S. Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
- Correspondence: ; Tel.: +30-210-7274-311
| |
Collapse
|
40
|
Lin X, Zhou M, Xu Z, Chen Y, Lin F. Bioinformatics study on genes related to a high-risk postoperative recurrence of lung adenocarcinoma. Sci Prog 2021; 104:368504211018053. [PMID: 34304612 PMCID: PMC10450722 DOI: 10.1177/00368504211018053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we aimed to screen out genes associated with a high risk of postoperative recurrence of lung adenocarcinoma and investigate the possible mechanisms of the involvement of these genes in the recurrence of lung adenocarcinoma. We identify Hub genes and verify the expression levels and prognostic roles of these genes. Datasets of GSE40791, GSE31210, and GSE30219 were obtained from the Gene Expression Omnibus database. Enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for the screened candidate genes using the DAVID database. Then, we performed protein-protein interaction (PPI) network analysis through the database STRING. Hub genes were screened out using Cytoscape software, and their expression levels were determined by the GEPIA database. Finally, we assessed the relationships of Hub genes expression levels and the time of survival. Forty-five candidate genes related to a high-risk of lung adenocarcinoma recurrence were screened out. Gene ontology analysis showed that these genes were enriched in the mitotic spindle assembly checkpoint, mitotic sister chromosome segregation, G2/M-phase transition of the mitotic cell cycle, and ATP binding, etc. KEGG analysis showed that these genes were involved predominantly in the cell cycle, p53 signaling pathway, and oocyte meiosis. We screened out the top ten Hub genes related to high expression of lung adenocarcinoma from the PPI network. The high expression levels of eight genes (TOP2A, HMMR, MELK, MAD2L1, BUB1B, BUB1, RRM2, and CCNA2) were related to short recurrence-free survival and they can be used as biomarkers for high risk of lung adenocarcinoma recurrence. This study screened out eight genes associated with a high risk of lung adenocarcinoma recurrence, which might provide novel insights into researching the recurrence mechanisms of lung adenocarcinoma as well as into the selection of targets in the treatment of the disease.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Meng Zhou
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Zehong Xu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yusheng Chen
- Department of Pulmonary and Critical Care Unit, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Fan Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
41
|
Kim SH, Baek KH. Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. Int J Mol Sci 2021; 22:ijms22126173. [PMID: 34201062 PMCID: PMC8226939 DOI: 10.3390/ijms22126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin-proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.
Collapse
|
42
|
Zhong X, Zhong G. Prognostic biomarker identification and tumor classification in breast cancer patients by methylation and transcriptome analysis. FEBS Open Bio 2021. [PMID: 34056873 PMCID: PMC8329782 DOI: 10.1002/2211-5463.13211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common and heterogeneous malignancies. Although the prognosis of breast cancer has improved with the development of early screening, the mechanisms underlying tumorigenesis and progression remain incompletely understood. DNA methylation has been implicated in tumorigenesis and tumor development and, in the present study. we screened methylation-driven genes and explored their prognostic values in breast cancer. RNA-sequencing (RNA-Seq) transcriptome data and DNA methylation data of the TCGA-BRCA dataset were obtained from The Cancer Genome Atlas. Differentially expressed genes and differentially methylated genes were identified separately. The intersected 783 samples with both RNA-Seq data and DNA methylation data were selected for further analysis. Fifty-six methylation-driven genes were identified using the MethylMix r package and 10 prognosis methylation-driven genes (CDO1, CELF2, ITPAIPL1, KCNH8, PTK6, RAB25, RIC3, USP44, ZSCAN1 and ZSCAN23) were further screened by combined methylation and gene expression analysis. Based on the methylation data of the screened 10 methylation-driven genes, six subgroups were identified with the ConsensusClusterPlus r package. The protein levels of the 10 prognostic methylation-driven genes were detected by immunohistochemical experiments. Moreover, based on the RNA-Seq data, a signature calculating the risk score of each patient was developed with stepwise regression. The risk score and other clinical features (age and stage) were confirmed to be independent prognostic factors by univariate and multivariate Cox regression analyses. Finally, a prognostic nomogram incorporating all the significant factors was integrated to predict the 3-, 5- and 7-year overall survival. Taken together, the methylation-driven genes identified here may be potential biomarkers of breast cancer.
Collapse
Affiliation(s)
- Xiongdong Zhong
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), China
| | - Guoying Zhong
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), China
| |
Collapse
|
43
|
Zhang Y, Mandemaker IK, Matsumoto S, Foreman O, Holland CP, Lloyd WR, Sugasawa K, Vermeulen W, Marteijn JA, Galardy PJ. USP44 Stabilizes DDB2 to Facilitate Nucleotide Excision Repair and Prevent Tumors. Front Cell Dev Biol 2021; 9:663411. [PMID: 33937266 PMCID: PMC8085418 DOI: 10.3389/fcell.2021.663411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Nucleotide excision repair (NER) is a pathway involved in the repair of a variety of potentially mutagenic lesions that distort the DNA double helix. The ubiquitin E3-ligase complex UV-DDB is required for the recognition and repair of UV-induced cyclobutane pyrimidine dimers (CPDs) lesions through NER. DDB2 directly binds CPDs and subsequently undergoes ubiquitination and proteasomal degradation. DDB2 must remain on damaged chromatin, however, for sufficient time to recruit and hand-off lesions to XPC, a factor essential in the assembly of downstream repair components. Here we show that the tumor suppressor USP44 directly deubiquitinates DDB2 to prevent its premature degradation and is selectively required for CPD repair. Cells lacking USP44 have impaired DDB2 accumulation on DNA lesions with subsequent defects in XPC retention. The physiological importance of this mechanism is evident in that mice lacking Usp44 are prone to tumors induced by NER lesions introduced by DMBA or UV light. These data reveal the requirement for highly regulated ubiquitin addition and removal in the recognition and repair of helix-distorting DNA damage and identify another mechanism by which USP44 protects genomic integrity and prevents tumors.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Imke K Mandemaker
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, Netherlands
| | | | - Oded Foreman
- Department of Pathology, Genentech, South San Francisco, CA, United States
| | - Christopher P Holland
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Whitney R Lloyd
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Hyogo, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, Netherlands
| | - Paul J Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States.,Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
44
|
Wang S, Tong X, Li C, Jin E, Su Z, Sun Z, Zhang W, Lei Z, Zhang HT. Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep 2021; 22:e52079. [PMID: 33769671 PMCID: PMC8183405 DOI: 10.15252/embr.202052079] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Quaking (QKI) proteins belong to the signal transduction and activation of RNA (STAR) family of RNA-binding proteins that have multiple functions in RNA biology. Here, we show that QKI-5 is dramatically decreased in metastatic lung adenocarcinoma (LUAD). QKI-5 overexpression inhibits TGF-β-induced epithelial-mesenchymal transition (EMT) and invasion, whereas QKI-5 knockdown has the opposite effect. QKI-5 overexpression and silencing suppresses and promotes TGF-β-stimulated metastasis in vivo, respectively. QKI-5 inhibits TGF-β-induced EMT and invasion in a TGFβR1-dependent manner. KLF6 knockdown increases TGFβR1 expression and promotes TGF-β-induced EMT, which is partly abrogated by QKI-5 overexpression. Mechanistically, QKI-5 directly interacts with the TGFβR1 3' UTR and causes post-transcriptional degradation of TGFβR1 mRNA, thereby inhibiting TGF-β-induced SMAD3 phosphorylation and TGF-β/SMAD signaling. QKI-5 is positively regulated by KLF6 at the transcriptional level. In LUAD tissues, KLF6 is lowly expressed and positively correlated with QKI-5 expression, while TGFβR1 expression is up-regulated and inversely correlated with QKI-5 expression. We reveal a novel mechanism by which KLF6 transcriptionally regulates QKI-5 and suggest that targeting the KLF6/QKI-5/TGFβR1 axis is a promising targeting strategy for metastatic LUAD.
Collapse
Affiliation(s)
- Shengjie Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.,Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xin Tong
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Ersuo Jin
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Zhiyue Su
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Zelong Sun
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Weiwei Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu, China
| |
Collapse
|
45
|
Reglero C, Ortiz del Castillo B, Rivas V, Mayor F, Penela P. Mdm2-Mediated Downmodulation of GRK2 Restricts Centrosome Separation for Proper Chromosome Congression. Cells 2021; 10:729. [PMID: 33806062 PMCID: PMC8064503 DOI: 10.3390/cells10040729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
The timing of centrosome separation and the distance moved apart influence the formation of the bipolar spindle, affecting chromosome stability. Epidermal growth factor receptor (EGFR) signaling induces early centrosome separation through downstream G protein-coupled receptor kinase GRK2, which phosphorylates the Hippo pathway component MST2 (Mammalian STE20-like protein kinase 2), in turn allowing NIMA kinase Nek2A activation for centrosomal linker disassembly. However, the mechanisms that counterbalance centrosome disjunction and separation remain poorly understood. We unveil that timely degradation of GRK2 by the E3 ligase Mdm2 limits centrosome separation in the G2. Both knockout expression and catalytic inhibition of Mdm2 result in GRK2 accumulation and enhanced centrosome separation before mitosis onset. Phosphorylation of GRK2 on residue S670 enables a complex pattern of non-K48-linked polyubiquitin chains assembled by Mdm2, which correlate with kinase protein degradation. Remarkably, GRK2-S670A protein fails to phosphorylate MST2 despite overcoming Mdm2-dependent degradation, which results in defective centrosome separation, shorter spindles, and abnormal chromosome congression. Conversely, extra levels of wild-type kinase in the G2 cause increased inter-centrosome distances with longer spindles, also converging in congression issues. Our findings show that the signals enabling activity of the GRK2/MST2/Nek2A axis for separation also switches on Mdm2 degradation of GRK2 to ensure accurate centrosome dynamics and proper mitotic spindle functionality.
Collapse
Affiliation(s)
- Clara Reglero
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
| | - Belén Ortiz del Castillo
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Verónica Rivas
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
46
|
Bedekovics T, Hussain S, Zhang Y, Ali A, Jeon YJ, Galardy PJ. USP24 Is a Cancer-Associated Ubiquitin Hydrolase, Novel Tumor Suppressor, and Chromosome Instability Gene Deleted in Neuroblastoma. Cancer Res 2021; 81:1321-1331. [PMID: 33355202 DOI: 10.1158/0008-5472.can-20-1777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Deubiquitinating enzymes are increasingly recognized to play important roles in cancer, with many acting as oncogenes or tumor suppressors. In this study, we employed a bioinformatics approach to screen for enzymes from this family involved in cancer and found USP24 as a potent predictor of poor outcomes in neuroblastoma, an aggressive childhood cancer. USP24 resides in a region commonly deleted in neuroblastoma, yet was independently associated with poor outcomes in this disease. Deletion of Usp24 in a murine model resulted in degradation of collapsin response mediator protein 2 (CRMP2), a regulator of axon growth, guidance, and neuronal polarity. Cells lacking USP24 had significant increases in spindle defects, chromosome missegregation, and aneuploidy, phenotypes that were rescued by the restoration of CRMP2. USP24 prevented aneuploidy by maintaining spindle-associated CRMP2, which is required for mitotic accuracy. Our findings further indicate that USP24 is a tumor suppressor that may play an important role in the pathogenesis of neuroblastoma. SIGNIFICANCE: This study identifies the chromosome instability gene USP24 as frequently deleted in neuroblastoma and provides important insight into the pathogenesis of this aggressive childhood cancer.
Collapse
Affiliation(s)
- Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ying Zhang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Young J Jeon
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Pharmacology, Chosun University College of Medicine, Gwangju, South Korea
| | - Paul J Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
47
|
Dong Y, Pan F. Ubiquitin-Dependent Regulation of Treg Function and Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:63-80. [PMID: 33523443 DOI: 10.1007/978-981-15-6407-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
As an indispensable part of peripheral tolerance, regulatory T (Treg) cells play an important role in immune homeostasis by suppressing other immune cells. Behind this function is a complex network of transcription factors and signaling cascades that regulates the function and plasticity of regulatory T cells. Among these, Forkhead box P3 (Foxp3) is considered as the master transcription factor, and its stability will influence the function and viability of Treg cells. Because of this, understanding the mechanisms that regulate Foxp3 and its co-regulators will provide more understanding to Treg cells and uncover more targets to manipulate Treg cells in treating autoimmune diseases, organ transplantation, and tumor. Interestingly, several recent studies show that ubiquitin-dependent pathways are important regulators of Foxp3, which suggest both great scientific and therapeutic values. In this chapter, we cover emerging evidence of ubiquitin-dependent, posttranslational regulation of Treg function and plasticity.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fan Pan
- Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
48
|
Uddin MN, Akter R, Li M, Abdelrahman Z. Expression of SARS-COV-2 cell receptor gene ACE2 is associated with immunosuppression and metabolic reprogramming in lung adenocarcinoma based on bioinformatics analyses of gene expression profiles. Chem Biol Interact 2021; 335:109370. [PMID: 33422520 PMCID: PMC7833036 DOI: 10.1016/j.cbi.2021.109370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
The aberrant expression level of SARS-CoV-2 cell receptor gene ACE2 was reported in lung adenocarcinoma (LUAD) comorbidity of COVID-19. However, the association of ACE2 expression levels with immunosuppression and metabolic reprogramming in LUAD remains lacking. We investigated the expression level of ACE2, an association of ACE2 expression level with various types of immune signatures, immune ratios, and pathways. We employed a weighted gene co-expression network analysis (WGCNA) R package to identify the gene modules and investigated prognostic roles of hub genes in LUAD. Overexpression of ACE2 level was found in LUAD and ACE2 expression was negatively associated with various types of immune signatures including CD8+ T cells, CD4+ regulatory T cells, NK cells, and T cell activation. Besides, ACE2 upregulation was not only associated with CD8+ T cell/CD4+ regulatory T cell ratios but also linked with downregulation of immune-markers including CD8A, KLRC1, GZMA, GZMB, NKG7, CCL4, and IFNG. Moreover, the ACE2 expression level was found to be associated with the enrichment level of various metabolic pathways and it was also found that the metabolic pathways are directly positively correlated with the increased expression levels of ACE2, indicating that the overexpression of ACE2 is associated with metabolic reprogramming in LUAD. Furthermore, WGCNA based analysis revealed the gene modules in the high-ACE2-expression-level group of LUAD and identified GCLC and SLC7A11 hub genes which are not only highly expressed in lung adenocarcinoma but also correlated with the poor survival prognosis. Our analysis of ACE2 in LUAD tissues suggests that ACE2 is not only a receptor but is also associated with immunosuppression and metabolic reprogramming. This study underlines the clue for understanding the clinical significance of ACE2 in COVID-19 patients with LUAD comorbidity. The expression level of ACE2 is negatively associated with the immune signatures. ACE2 upregulation also linked with the downregulation of immune-markers. The ACE2 expression level is positively associated with the metabolic pathways. WGCNA based analysis revealed the gene modules in a high-ACE2-expression-level group. Highly expressed GCLC and SLC7A11 hub genes are correlated with the poor prognosis.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Rehana Akter
- Bioinformatics Research Lab, Center for Research Innovation and Development (CRID), Dhaka, Bangladesh
| | - Mengyuan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zeinab Abdelrahman
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
49
|
Bonacci T, Emanuele MJ. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin Cancer Biol 2020; 67:145-158. [PMID: 32201366 PMCID: PMC7502435 DOI: 10.1016/j.semcancer.2020.03.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Since its discovery forty years ago, protein ubiquitination has been an ever-expanding field. Virtually all biological processes are controlled by the post-translational conjugation of ubiquitin onto target proteins. In addition, since ubiquitin controls substrate degradation through the action of hundreds of enzymes, many of which represent attractive therapeutic candidates, harnessing the ubiquitin system to reshape proteomes holds great promise for improving disease outcomes. Among the numerous physiological functions controlled by ubiquitin, the cell cycle is among the most critical. Indeed, the discovery that the key drivers of cell cycle progression are regulated by the ubiquitin-proteasome system (UPS) epitomizes the connection between ubiquitin signaling and proliferation. Since cancer is a disease of uncontrolled cell cycle progression and proliferation, targeting the UPS to stop cancer cells from cycling and proliferating holds enormous therapeutic potential. Ubiquitination is reversible, and ubiquitin is removed from substrates by catalytic proteases termed deubiquitinases or DUBs. While ubiquitination is tightly linked to proliferation and cancer, the role of DUBs represents a layer of complexity in this landscape that remains poorly captured. Due to their ability to remodel the proteome by altering protein degradation dynamics, DUBs play an important and underappreciated role in the cell cycle and proliferation of both normal and cancer cells. Moreover, due to their enzymatic protease activity and an open ubiquitin binding pocket, DUBs are likely to be important in the future of cancer treatment, since they are among the most druggable enzymes in the UPS. In this review we summarize new and important findings linking DUBs to cell cycle and proliferation, as well as to the etiology and treatment of cancer. We also highlight new advances in developing pharmacological approaches to attack DUBs for therapeutic benefit.
Collapse
Affiliation(s)
- Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
50
|
Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, Nie J, Gao Y, Tao J, Lu Y, Xie C, Hou X, Ren J, Wu X, Meng J, Zhang Y, Fu J, Kou W, Gao Y, Chen Z, Liang R, Tsun A, Li D, Guo W, Zhang S, Zheng S, Niu J, Galardy P, Tong X, Shi G, Li H, Pan F, Li B. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep 2020; 21:e50308. [PMID: 32644293 PMCID: PMC7507386 DOI: 10.15252/embr.202050308] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
The transcription factor forkhead box P3 (FOXP3) is essential for the development of regulatory T cells (Tregs) and their function in immune homeostasis. Previous studies have shown that in natural Tregs (nTregs), FOXP3 can be regulated by polyubiquitination and deubiquitination. However, the molecular players active in this pathway, especially those modulating FOXP3 by deubiquitination in the distinct induced Treg (iTreg) lineage, remain unclear. Here, we identify the ubiquitin-specific peptidase 44 (USP44) as a novel deubiquitinase for FOXP3. USP44 interacts with and stabilizes FOXP3 by removing K48-linked ubiquitin modifications. Notably, TGF-β induces USP44 expression during iTreg differentiation. USP44 co-operates with USP7 to stabilize and deubiquitinate FOXP3. Tregs genetically lacking USP44 are less effective than their wild-type counterparts, both in vitro and in multiple in vivo models of inflammatory disease and cancer. These findings suggest that USP44 plays an important role in the post-translational regulation of Treg function and is thus a potential therapeutic target for tolerance-breaking anti-cancer immunotherapy.
Collapse
|