1
|
Wang SS, Yuan J, Tang XT, Yin X, Fang K, Chen LV, Ren Z, Zhou BO. Periductal fibroblasts participate in liver homeostasis, fibrosis, and tumorigenesis. J Exp Med 2025; 222:e20232123. [PMID: 39888328 PMCID: PMC11784584 DOI: 10.1084/jem.20232123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Hepatic fibroblasts comprise groups of stromal cells in the liver that are phenotypically distinct from hepatic stellate cells. However, their physiology is poorly understood. By single-cell RNA sequencing, we identified Cd34 and Dpt as hepatic fibroblast-specific genes. Cd34-CreER labeled periportal-venous and periductal fibroblasts, but few pericentral-venous fibroblasts. Cd34+ fibroblasts generated ∼25% of myofibroblasts in periportal fibrosis and ∼40% of cancer-associated fibroblasts (CAFs) in intrahepatic cholangiocarcinoma (ICC). Myofibroblast formation by Cd34+ fibroblasts required Tgfbr2. Depletion of Cd34+ fibroblasts increased the frequency of the ductal epithelial cells under homeostasis and accelerated the progression of ICC. Dpt-CreER labeled periportal- and pericentral-venous fibroblasts, but much less periductal fibroblasts. Dpt+ cells generated ∼15% of myofibroblasts in periportal fibrosis, but few myofibroblasts in pericentral fibrosis or CAFs in ICC. Thus, an orthogonal combination of Cd34-CreER and Dpt-CreER dissected the fates of periductal, periportal-venous, and pericentral-venous fibroblasts. Both periductal and periportal-venous fibroblasts contribute to liver fibrosis. Periductal fibroblasts also contribute to ductal homeostasis and ICC progression.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Yuan
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xinyu Thomas Tang
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiujuan Yin
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ke Fang
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lin Veronica Chen
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenggang Ren
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo O. Zhou
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Lindblad KE, Donne R, Liebling I, Barcena-Varela M, Lozano A, de Galarreta MR, Dhainaut M, Param NJ, Giotti B, Cappuyns S, Kodama T, Wang Y, Kamphorst AO, Tsankov AM, Lujambio A. NOTCH1 Drives Sexually Dimorphic Immune Responses in Hepatocellular Carcinoma. Cancer Discov 2025; 15:495-510. [PMID: 39560425 PMCID: PMC11875915 DOI: 10.1158/2159-8290.cd-24-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Hepatocellular carcinoma presents strong sexual dimorphism, being two to three times more frequent in males than in females; however, the role of sex in response to immunotherapies in HCC remains unknown. We demonstrate that NOTCH1, an understudied oncogene in HCC, elicits sexually dimorphic antitumor immunity and response to FDA-approved immunotherapies. Surprisingly, males harboring NOTCH1-driven tumors displayed enhanced antitumor immune responses, which, in mice, were mediated by dendritic and T cells. Conversely, females harboring NOTCH1-driven tumors presented immune evasion and resistance to immunotherapies through a defect in dendritic cell (DC)-mediated priming and activation of CD8+ T cells in mice, which was restored therapeutically with CD40 agonism. Mechanistically, the sexually dimorphic immunity was mediated by genes in the sex chromosomes but not by sex hormones. Together, our study unravels an unexpected association between NOTCH1 and sex in cancer immunity and highlights the potential of restoring the DC-CD8+ T-cell axis with CD40 agonism to improve outcomes. Significance: Although HCC presents strong sexual dimorphism, the role of sex in response to immunotherapies remains elusive. With a novel HCC mouse model and validation in patients with HCC, we demonstrate that NOTCH1 disrupts antitumor immunity specifically in females through a mechanism mediated by sex chromosome genes, which is reversed with CD40 agonism. See related commentary by Zhu and Koltsova, p. 452.
Collapse
Affiliation(s)
- Katherine E. Lindblad
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| | - Romain Donne
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ian Liebling
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marina Barcena-Varela
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anthony Lozano
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marina Ruiz de Galarreta
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Maxime Dhainaut
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Nesteene J. Param
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bruno Giotti
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Sarah Cappuyns
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yulei Wang
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Alice O. Kamphorst
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexander M. Tsankov
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Amaia Lujambio
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
3
|
Cheon I, Kim M, Kim KH, Ko S. Hepatic Nuclear Receptors in Cholestasis-to-Cholangiocarcinoma Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:409-421. [PMID: 39326734 DOI: 10.1016/j.ajpath.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Cholestasis, characterized by impaired bile flow, is associated with an increased risk of cholangiocarcinoma (CCA), a malignancy originating from the biliary epithelium and hepatocytes. Hepatic nuclear receptors (NRs) are pivotal in regulating bile acid and metabolic homeostasis, and their dysregulation is implicated in cholestatic liver diseases and the progression of liver cancer. This review elucidates the role of various hepatic NRs in the pathogenesis of cholestasis-to-CCA progression. It explores their impact on bile acid metabolism as well as their interactions with other signaling pathways implicated in CCA development. Additionally, it introduces available murine models of cholestasis/primary sclerosing cholangitis leading to CCA and discusses the clinical potential of targeting hepatic NRs as a promising approach for the prevention and treatment of cholestatic liver diseases and CCA. Understanding the complex interplay between hepatic NRs and cholestasis-to-CCA pathology holds promise for the development of novel preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Guest RV, Goeppert B, Nault JC, Sia D. Morphomolecular Pathology and Genomic Insights into the Cells of Origin of Cholangiocarcinoma and Combined Hepatocellular-Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:345-361. [PMID: 39341365 PMCID: PMC11841493 DOI: 10.1016/j.ajpath.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Cholangiocarcinomas are a highly heterogeneous group of malignancies that, despite recent progress in the understanding of their molecular pathogenesis and clinical management, continue to pose a major challenge to public health. The traditional view posits that cholangiocarcinomas derive from the neoplastic transformation of cholangiocytes lining the biliary tree. However, increasing genetic and experimental evidence has recently pointed to a more complex, and nuanced, scenario for the potential cell of origin of cholangiocarcinomas. Hepatocytes as well as hepatic stem/progenitor cells are being considered as additional potential sources, depending on microenvironmental contexts, including liver injury. The hypothesis of potentially diverse cells of origin for cholangiocarcinoma, albeit controversial, is certainly not surprising given the plasticity of the cells populating the liver as well as the existence of liver cancer subtypes with mixed histologic and molecular features. This review carefully examines the current pathologic, genomic, and experimental evidence supporting the existence of multiple cells of origin of liver and biliary tract cancers, with particular focus on cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma.
Collapse
Affiliation(s)
- Rachel V Guest
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Team "Functional Genomics of Solid Tumors", Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France; Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
5
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:191-205. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Mei Q, Zhang Y, Li H, Ma W, Huang W, Wu Z, Huang Y, Liang Y, Wei C, Wang J, Ruan Y, Yang L, Huang Y, Shen Y, Liu J, Feng L, Shen Y. Hepatic factor MANF drives hepatocytes reprogramming by detaining cytosolic CK19 in intrahepatic cholangiocarcinoma. Cell Death Differ 2025:10.1038/s41418-025-01460-4. [PMID: 39972058 DOI: 10.1038/s41418-025-01460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is characterized by poor prognosis and limited treatment. Hepatocytes have been considered as one of the origins of ICC, however, the underlying mechanisms remain unclear. Here, we found mesencephalic astrocyte-derived neurotrophic factor (MANF), a hepatoprotective factor, was exceptionally upregulated in human ICC tissues and experimental mouse ICC models induced by sleeping beauty transposon (SBT) or thioacetamide (TAA) challenge. We identified MANF as a biomarker for distinguishing the primary liver cancer and verified the oncogenic role of MANF in ICC using cell lines overexpressing/knocked down MANF and mice specifically knocked in/out MANF in hepatocytes. Lineage tracing revealed that MANF promoted mature hepatocyte transformation into ICC cells. Mechanistically, MANF interacted with CK19 at Ser35 to suppress CK19 membrane recruitment. Cytosolic CK19 bound to AR domain of Notch2 intracellular domain (NICD2) to stabilize NICD2 protein level and trigger Notch signaling, which contributed to hepatocyte transformation to ICC cells. We uncover a novel profile of MANF and the original mechanism, which shed light on ICC diagnosis and intervention.
Collapse
Affiliation(s)
- Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wei Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenkai Huang
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yongli Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinfeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuefeng Ruan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
7
|
Lim B, Kamal A, Gomez Ramos B, Adrian Segarra JM, Ibarra IL, Dignas L, Kindinger T, Volz K, Rahbari M, Rahbari N, Poisel E, Kafetzopoulou K, Böse L, Breinig M, Heide D, Gallage S, Barragan Avila JE, Wiethoff H, Berest I, Schnabellehner S, Schneider M, Becker J, Helm D, Grimm D, Mäkinen T, Tschaharganeh DF, Heikenwalder M, Zaugg JB, Mall M. Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumorigenesis. Nat Genet 2025:10.1038/s41588-025-02081-w. [PMID: 39948437 DOI: 10.1038/s41588-025-02081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Cell fate plasticity enables development, yet unlocked plasticity is a cancer hallmark. While transcription master regulators induce lineage-specific genes to restrict plasticity, it remains unclear whether plasticity is actively suppressed by lineage-specific repressors. Here we computationally predict so-called safeguard repressors for 18 cell types that block phenotypic plasticity lifelong. We validated hepatocyte-specific candidates using reprogramming, revealing that prospero homeobox protein 1 (PROX1) enhanced hepatocyte identity by direct repression of alternative fate master regulators. In mice, Prox1 was required for efficient hepatocyte regeneration after injury and was sufficient to prevent liver tumorigenesis. In line with patient data, Prox1 depletion caused hepatocyte fate loss in vivo and enabled the transition of hepatocellular carcinoma to cholangiocarcinoma. Conversely, overexpression promoted cholangiocarcinoma to hepatocellular carcinoma transdifferentiation. Our findings provide evidence for PROX1 as a hepatocyte-specific safeguard and support a model where cell-type-specific repressors actively suppress plasticity throughout life to safeguard lineage identity and thus prevent disease.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aryan Kamal
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Borja Gomez Ramos
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juan M Adrian Segarra
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ignacio L Ibarra
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Lennart Dignas
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tim Kindinger
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Volz
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of General and Visceral Surgery, University of Ulm, Ulm, Germany
| | - Eric Poisel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kanela Kafetzopoulou
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lio Böse
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Marco Breinig
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University Tuebingen, Tübingen, Germany
| | | | - Hendrik Wiethoff
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Ivan Berest
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Sarah Schnabellehner
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Jonas Becker
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, Heidelberg University, Center for Integrative Infectious Diseases Research (CIID), BioQuant, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, Heidelberg University, Center for Integrative Infectious Diseases Research (CIID), BioQuant, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Darjus F Tschaharganeh
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University Tuebingen, Tübingen, Germany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
8
|
Wu Y, Fan Y, Miao Y, Li Y, Du G, Chen Z, Diao J, Chen YA, Ye M, You R, Chen A, Chen Y, Li W, Guo W, Dong J, Zhang X, Wang Y, Gu J. uniLIVER: a human liver cell atlas for data-driven cellular state mapping. J Genet Genomics 2025:S1673-8527(25)00032-3. [PMID: 39892777 DOI: 10.1016/j.jgg.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
The liver performs several vital functions such as metabolism, toxin removal, and glucose storage through the coordination of various cell types. With the recent breakthrough of the single-cell/single-nucleus RNA-seq (sc/snRNA-seq) techniques, there is a great opportunity to establish a reference cell map of the liver at single-cell resolution with transcriptome-wise features. In this study, we build a unified liver cell atlas uniLIVER (http://lifeome.net/database/uniliver) by integrative analysis of a large-scale sc/snRNA-seq data collection of normal human liver with 331,125 cells and 79 samples from 6 datasets. Moreover, we introduce LiverCT, a novel machine learning based method for mapping any query dataset to the liver reference map by introducing the definition of "variant" cellular states analogy to the sequence variants in genomic analysis. Applying LiverCT on liver cancer datasets, we find that the "deviated" states of T cells are highly correlated with the stress pathway activities in hepatocellular carcinoma, and the enrichments of tumor cells with the hepatocyte-cholangiocyte "intermediate" states significantly indicate poor prognosis. Besides, we find the tumor cells of different patients have different zonation tendencies and this zonation tendency is also significantly associated with the prognosis. This reference atlas mapping framework can also be extended to any other tissues.
Collapse
Affiliation(s)
- Yanhong Wu
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Yuhan Fan
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Yuxin Miao
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Yuman Li
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Guifang Du
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zeyu Chen
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Jinmei Diao
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yu-Ann Chen
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Mingli Ye
- Fuzhou Institute of Data Technology, Fuzhou, China
| | - Renke You
- Fuzhou Institute of Data Technology, Fuzhou, China
| | - Amin Chen
- Fuzhou Institute of Data Technology, Fuzhou, China
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Wenrui Li
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Wenbo Guo
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| | - Jin Gu
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Colangelo M, Di Martino M, Polidoro MA, Forti L, Tober N, Gennari A, Pagano N, Donadon M. Management of intrahepatic cholangiocarcinoma: a review for clinicians. Gastroenterol Rep (Oxf) 2025; 13:goaf005. [PMID: 39867595 PMCID: PMC11769681 DOI: 10.1093/gastro/goaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive liver malignancy that arises from second-order biliary epithelial cells. Its incidence is gradually increasing worldwide. Well-known risk factors have been described, although in many cases, they are not identifiable. Treatment options are continuously expanding, but the prognosis of iCCA remains dismal. R0 liver resection remains the only curative treatment, but only a limited number of patients can benefit from it. Frequently, major hepatectomies are needed to completely remove the tumour. This could contraindicate surgery or increase postoperative morbidity in patients with chronic liver disease and small remnant liver volume. In cases of anticipated inadequate future liver remnant, regenerative techniques may be used to expand resectability. The role and extent of lymphadenectomy in iCCA are still matters of debate. Improvements in iCCA diagnosis and better understanding of genetic profiles might lead to optimized surgical approaches and drug therapies. The role of neoadjuvant and adjuvant therapies is broadening, gaining more and more acceptance in clinical practice. Combining surgery with locoregional therapies and novel drugs, such as checkpoint-inhibitors and molecular-targeted molecules, might improve treatment options and survival rates. Liver transplantation, after very poor initial results, is now receiving attention for the treatment of patients with unresectable very early iCCA (i.e. <2 cm) in cirrhotic livers, showing survival outcomes comparable to those of hepatocellular carcinoma. Ongoing prospective protocols are testing the efficacy of liver transplantation for patients with unresectable, advanced tumours confined to the liver, with sustained response to neoadjuvant treatment. In such a continuously changing landscape, the aim of our work is to review the state-of-the-art in the surgical and medical treatment of iCCA.
Collapse
Affiliation(s)
- Matteo Colangelo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Marcello Di Martino
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laura Forti
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
| | - Nastassja Tober
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
| | - Alessandra Gennari
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Nico Pagano
- Division of Gastroenterology, University Maggiore Hospital della Carità, Novara, Italy
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| |
Collapse
|
10
|
Bertinatti JPP, Marçal JMB, Cambruzzi E, Leão DE Alencar DE. CHOLANGIOCARCINOMA: EPIDEMIOLOGY, HISTOPATHOLOGY, AND POTENTIAL PROGNOSTIC AND THERAPEUTIC IMPLICATIONS IN A COHORT FROM A REFERENCE CENTER IN SOUTHERN BRAZIL. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2025; 37:e1851. [PMID: 39813555 PMCID: PMC11729982 DOI: 10.1590/0102-6720202400057e1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/27/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a rare neoplasm, with high mortality, originating in the bile ducts. Its incidence is higher in Eastern countries due to the endemic prevalence of liver parasites. Factors such as metabolic syndrome, smoking, and pro-inflammatory conditions are also linked to the disease. Clinical features include asthenia, abdominal pain, cholestasis, and increased serum levels of CEA and CA19-9. AIMS The aim of this study was to evaluate CCA prevalence, survival, and potential prognostic and therapeutic implications in a patient cohort and assess correlations with clinical laboratory data and possible associated risk factors. METHODS This is a retrospective study of the clinical and histological data of patients diagnosed with CCA at Santa Casa de Misericórdia in Porto Alegre, Brazil, between 2016 and 2021. RESULTS There was a 56% prevalence of CCA in women, with intrahepatic localization in 55.4% of cases and unifocality in 85.6% of patients. The mean age of the patients was 63 years (26-89 years), with a mean tumor size of 5.5 cm. The median survival time was 7 months (0 to >50). CA19-9 was altered in 81% of patients, whereas GOT/GPT was altered in 62.5% and gamma-glutamyl transferase/alkaline phosphatase/bilirubin in 69.1% of patients. Mortality was higher among patients with extrahepatic CCA. CONCLUSION Risk factors such as smoking, cholecystectomy, cirrhosis, intrahepatic lithiasis, and transplantation should be considered individually by the attending physician for radiological monitoring and incidental discovery of the neoplasm. Lack of timely identification by the attending physician can delay diagnosis, increasing mortality.
Collapse
Affiliation(s)
| | | | - Eduardo Cambruzzi
- Santa Casa de Misericórdia de Porto Alegre - Porto Alegre (RS), Brazil
| | | |
Collapse
|
11
|
Cao D, Wang YN, Sun CY, Li H, Ren G, Zhou YF, Zhang MY, Wang SC, Mai SJ, Wang HY. MAF1 inhibits hepatocarcinogenesis by fostering an immunostimulatory tumor microenvironment. J Immunother Cancer 2025; 13:e009656. [PMID: 39800372 PMCID: PMC11749189 DOI: 10.1136/jitc-2024-009656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The biological significance of MAF1, a tumor suppressor, in carcinogenesis and immune response of hepatocellular carcinoma (HCC) remains unreported. Understanding the underlying mechanisms by which MAF1 enhances anti-tumor immunity in HCC is crucial for developing novel immunotherapy strategies and enhancing clinical responses to treatment for patients with HCC. METHODS Mice were subjected to hydrodynamic tail vein injections of transposon vectors to overexpress AKT/NRas, or c-Myc, with or without wild-type (WT) or mutant-activated (-4A) MAF1, or short-hairpin MAF1 (shMAF1). Liver tissues and tumors were harvested and analyzed using histology, immunohistochemistry, immunoblotting, quantitative reverse-transcription PCR, and flow cytometry. MAF1 was overexpressed or knocked down in HCC cells via lentiviral transfection. Cell lines were analyzed using RNA sequencing, immunoblotting, dual luciferase reporter, and chromatin precipitation assays. RESULTS Both MAF1-WT and MAF1-4A proteins significantly inhibit hepatocarcinogenesis in mice, with the mutant form exhibiting a stronger suppressive effect. Although MAF1 knockdown alone does not induce abnormalities in the mouse liver, it accelerates c-Myc-induced carcinogenesis. Our results provide the first in vivo evidence that MAF1 plays a tumor suppressor role by activating PTEN to suppress the AKT-mammalian target of rapamycin signaling pathway during hepatocarcinogenesis in physiologically relevant tumor models. More importantly, we found that MAF1 not only enhances the intratumoral infiltration of CD8+ T cells by increasing CXCL10 secretion but also enhances their functional activity by inhibiting PDL1 transcription in mouse liver cancer, which were confirmed in human HCC or in vitro experiments. Furthermore, PDL1 overexpression accelerates mouse hepatocarcinogenesis by antagonizing the tumor-suppressive role of MAF1. CONCLUSIONS Our study uncovers a novel anti-tumor immunity of MAF1 in hepatocarcinogenesis and human HCC. These findings suggest that the stimulated MAF1 could potentially improve immunotherapy in combination with immune checkpoint inhibitors in HCC patients, especially in those with an absence of T cells in HCC tissues.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yue-Ning Wang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Haojiang Li
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ge Ren
- Department of Health Technology and Informatics, Hong Kong Polytechnic University University Learning Hub, Kowloon, Hong Kong
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuo-Cheng Wang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Huang P, Wei G, Kirkpatrick JD, Lin Y, Tan L, Matta H, Nasser I, Huang M, Chen L, Petitjean M, Skelton-Badlani D, Gao W, Vaid K, Zhao S, Lugovskoy A, Alenzi M, Chen X, Gores GJ, Popov YV. Transposon-based oncogene integration in Abcb4(Mdr2) -/- mice recapitulates high susceptibility to cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 2025; 82:84-96. [PMID: 39089631 PMCID: PMC11655257 DOI: 10.1016/j.jhep.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a dreaded complication of primary sclerosing cholangitis (PSC) that is difficult to diagnose and associated with high mortality. A lack of animal models of CCA recapitulating the hepatic microenvironment of sclerosing cholangitis has hindered the development of novel treatments. Herein, we sought to develop a mouse model of PSC-associated CCA. METHODS Ten-week-old Mdr2-/- mice with congenital PSC-like disease, and healthy wild-type littermates were subjected to either modified retrograde biliary instillation or hydrodynamic tail vein injection of a sleeping beauty transposon-transposase plasmid system with activated AKT (myr-AKT) and Yap (YapS127A) proto-oncogenes (SB AKT/YAP1). The role of TGFβ was interrogated via ALK5 inhibitor (SB-525334) administration. Tumor phenotype, burden and desmoplastic reaction were analyzed histologically and via RNA sequencing. RESULTS While SB AKT/YAP1 plasmids administered via retrograde biliary injection caused tumors in Mdr2-/-, only 26.67% (4/15) of these tumors were CCA. Alternatively, hydrodynamic tail vein injection of SB AKT/YAP1 resulted in robust tumorigenesis in all fibrotic Mdr2-/- mice with high CCA burden compared to healthy mice. Tumors phenotypically resembled human CCA, expressed multiple CCA (but not hepatocellular carcinoma) markers, and exhibited a profound desmoplastic reaction. RNA sequencing analysis revealed profound transcriptional changes in CCA evolving in a PSC-like context, with specific alterations in multiple immune pathways. Pharmacological TGFβ inhibition led to enhanced immune cell tumor infiltration, reduced tumor burden and suppressed desmoplastic collagen accumulation compared to placebo. CONCLUSION We established a new high-fidelity cholangiocarcinoma model in mice, termed SB CCA.Mdr2-/-, which recapitulates the increased susceptibility to CCA in the setting of biliary injury and fibrosis observed in PSC. Through transcriptomics and pharmacological studies, we show dysregulation of multiple immune pathways and TGFβ signaling as potential drivers of CCA in a PSC-like microenvironment. IMPACT AND IMPLICATIONS Animal models for primary sclerosing cholangitis (PSC)-related cholangiocarcinoma (PSC-CCA) are lacking. Thus, we have developed and characterized a new mouse model of PSC-CCA, termed SB CCA.Mdr2-/-, which features reliable tumor induction on a PSC-like background of biliary injury and fibrosis. Global gene expression alterations were identified and standardized tools, including automated whole slide image analysis methodology for tumor burden and feature analysis, were established to enable systematic research into PSC-CCA biology and formal preclinical drug testing.
Collapse
Affiliation(s)
- Pinzhu Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jesse D Kirkpatrick
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yi Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Gastroenterology and Hepatology, Fujian Provincial Hospital, Fuzhou, China
| | - Li Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Heansika Matta
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mingzhe Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Disha Skelton-Badlani
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wen Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kahini Vaid
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuangshuang Zhao
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alicia Lugovskoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maram Alenzi
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xin Chen
- University of Hawaii Cancer Center, Honolulu, HI USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Laface C, Fina E, Ricci AD, Guven DC, Ambrogio F, De Summa S, Vitale E, Massafra R, Brunetti O, Rizzo A. Immunobiology of biliary tract cancer and recent clinical findings in approved and upcoming immune checkpoint inhibitors. Expert Opin Biol Ther 2024; 24:1363-1374. [PMID: 39545466 DOI: 10.1080/14712598.2024.2431088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Recently, immunotherapy has offered new hope for treating biliary tract cancer (BTC). However, several issues are to be considered, including the lack of validated predictive biomarkers that could help to identify patient groups which are most likely to benefit from such therapeutic approaches. AREAS COVERED In the current article, we will provide an overview of recent results and ongoing and future research directions of immunotherapy in BTC, with a special focus on recently published, practice-changing data, and ongoing active and recruiting clinical trials. EXPERT OPINION At this moment, dozens of clinical trials in phases I to III are evaluating the role of cancer immunotherapy in this setting, with the hope of adding more therapeutic options for BTC patients. Future research must focus on the development of novel agents and combinations, but the validation of biomarkers remains an urgent need. As more research results emerge, novel combinatorial strategies are destined to further transform the treatment paradigm for this heterogeneous and aggressive tumor type.
Collapse
Affiliation(s)
- Carmelo Laface
- Azienda Sanitaria Provinciale, Reggio Calabria (RC), Italy
| | - Emanuela Fina
- Thoracic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Castellana Grotte, Italy
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Medical Oncology Clinic, Elazig City Hospital, Health Sciences University, Elazig, Turkey
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori, "Giovanni Paolo II", Bari, Italy
| | - Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
14
|
Smout MJ, Laha T, Chaiyadet S, Brindley PJ, Loukas A. Mechanistic insights into liver-fluke-induced bile-duct cancer. Trends Parasitol 2024; 40:1183-1196. [PMID: 39521672 DOI: 10.1016/j.pt.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Liver fluke infection is a major risk for cholangiocarcinoma (CCA). It has been established that the Asian liver flukes, Clonorchis sinensis and Opisthorchis viverrini secrete growth factors, digestive enzymes, and extracellular vesicles (EVs) which contribute to abnormal cell development in the bile ducts where the worms reside. These secretions - combined with aberrant inflammation and repeated cycles of chronic wounding at the site of parasite attachment and grazing on the epithelium - promote biliary hyperplasia and fibrosis and ultimately malignant transformation. Application of post-genomic and gene-editing tools to the study of liver fluke immunobiology and pathogenesis has accelerated the discovery of essential virulence factors to which targeted therapies and diagnostics can be directed.
Collapse
Affiliation(s)
- Michael J Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, George Washington University, Washington, DC, USA
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
15
|
Pan Y, Zhou Y, Shen Y, Xu L, Liu H, Zhang N, Huang T, Meng K, Liu Y, Wang L, Bai G, Chen Q, Zhu Y, Zou X, Wang S, Wang Z, Wang L. Hypoxia Stimulates PYGB Enzymatic Activity to Promote Glycogen Metabolism and Cholangiocarcinoma Progression. Cancer Res 2024; 84:3803-3817. [PMID: 39163511 DOI: 10.1158/0008-5472.can-24-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/13/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cholangiocarcinoma (CCA) displays enhanced glycolysis, pivotal for fulfilling the heightened energy demands intrinsic to its malignant progression. Recent research has indicated that endogenous glycogen rather than exogenous glucose acts as the major carbon source for glycolysis, highlighting the need to better understand the regulation of glycogen homeostasis in CCA. Here, through comprehensive integrative analysis, we identified that glycogen phosphorylase brain form (PYGB), the main enzyme involved in glycogen homeostasis, was markedly upregulated in CCA tissues, serving as an independent prognostic indicator for human patients with CCA. Moreover, elevated PYGB expression potentiated cholangiocarcinogenesis and augmented CCA cell proliferation in both organoid and xenograft models. Hypoxia stimulated PYGB activity in a phosphoglycerate kinase 1-dependent manner, leading to glycogenolysis and the subsequent release of glucose-6-phosphate (G6P) and thereby facilitating aerobic glycolysis. Notably, a virtual screening pinpointed the β-blocker carvedilol as a potent pharmacologic inhibitor of PYGB that could attenuate CCA progression. Collectively, these findings position PYGB as a promising prognostic biomarker and therapeutic target for CCA. Significance: Cholangiocarcinoma cells exhibit high glycogen phosphorylase activity under hypoxic conditions that mediates metabolic reprograming to promote glycolysis and support tumor development.
Collapse
Affiliation(s)
- Yani Pan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of China Pharmaceutical University, Nanjing, China
| | - Tianlu Huang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kui Meng
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yu Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Bai
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of China Pharmaceutical University, Nanjing, China
| | - Yun Zhu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Siliang Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhangding Wang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Amanda B, Faizah Z, Pakpahan C, Aziz MA, Hamidah B, Ashari FY, Oceandy D. Mammalian Ste-20-like Kinase 1/2 (MST1/2) Inhibitor XMU-MP-1: A Potential Compound to Improve Spermatogenesis in Mouse Model of Diabetes Mellitus. Biomedicines 2024; 12:2513. [PMID: 39595079 PMCID: PMC11591716 DOI: 10.3390/biomedicines12112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Spermatogenesis is a key process in male reproduction that, if it does not happen correctly, can lead to infertility, with diabetes being one of the most prevalent causes of spermatogenesis disruption. Currently, there is a lack of research examining the potential benefits of targeting cell proliferation to enhance spermatogenesis in this condition. XMU-MP1 has been identified as an inhibitor of MST1, a core component of the Hippo pathway, which is anticipated to promote proliferation and regeneration. This study aims to evaluate the effects of XMU-MP1 treatment on sperm and testicular characteristics in mice. Methods: We used the STZ-induced diabetic mouse model to investigate the impact of administering XMU-MP1 on testicular tissue and sperm parameters. This study compared the seminiferous tubules, specifically focusing on the diameter of the seminiferous tubule, the thickness of the seminiferous tubule epithelium, the ratio of the thickness of the seminiferous tubule epithelium to the diameter of the seminiferous tubules, and the lumen diameter of the seminiferous tubules. We also conducted a comparison of sperm parameters, including sperm concentration, progressive motility, total motility, total motility, and morphology. Results: XMU-MP1-treated mice had a larger spermatogenesis area and better sperm motility than control mice. Diabetic mice treated with XMU-MP1 also showed a trend toward improvements in the spermatogenesis area, sperm concentration, sperm motility, and sperm morphology, although these improvements were not statistically significant. Conclusions: XMU-MP1 serves as a potential compound to improve spermatogenesis in mice.
Collapse
Affiliation(s)
- Bella Amanda
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Zakiyatul Faizah
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Cennikon Pakpahan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - M. Aminudin Aziz
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Berliana Hamidah
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Faisal Yusuf Ashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| |
Collapse
|
17
|
Xu K, Kessler A, Nichetti F, Hoffmeister-Wittmann P, Scherr AL, Nader L, Kelmendi E, Schmitt N, Schwab M, García-Beccaria M, Sobol B, Nieto OA, Isele H, Gärtner U, Vaquero-Siguero N, Volk J, Korell F, Mock A, Heide D, Ramadori P, Lenoir B, Albrecht T, Hüllein J, Jäger D, Fröhling S, Springfeld C, Jackstadt R, Heikenwälder M, Dill MT, Roessler S, Goeppert B, Köhler BC. Lymphotoxin beta-activated LTBR/NIK/RELB axis drives proliferation in cholangiocarcinoma. Liver Int 2024; 44:2950-2963. [PMID: 39164890 DOI: 10.1111/liv.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the intrahepatic (iCCA) or extrahepatic (eCCA) bile ducts with poor prognosis and limited treatment options. Prior evidence highlighted a significant contribution of the non-canonical NF-κB signalling pathway in initiation and aggressiveness of different tumour types. Lymphotoxin-β (LTβ) stimulates the NF-κB-inducing kinase (NIK), resulting in the activation of the transcription factor RelB. However, the functional contribution of the non-canonical NF-κB signalling pathway via the LTβ/NIK/RelB axis in CCA carcinogenesis and progression has not been established. METHODS Human CCA-derived cell lines and organoids were examined to determine the expression of NF-κB pathway components upon activation or inhibition. Proliferation and cell death were analysed using real-time impedance measurement and flow cytometry. Immunoblot, qRT-PCR, RNA sequencing and in situ hybridization were employed to analyse gene and protein expression. Four in vivo models of iCCA were used to probe the activation and regulation of the non-canonical NF-κB pathway. RESULTS Exposure to LTα1/β2 activates the LTβ/NIK/RelB axis and promotes proliferation in CCA. Inhibition of NIK with the small molecule inhibitor B022 efficiently suppresses RelB expression in patient-derived CCA organoids and nuclear co-translocation of RelB and p52 stimulated by LTα1/β2 in CCA cell lines. In murine CCA, RelB expression is significantly increased and LTβ is the predominant ligand of the non-canonical NF-κB signalling pathway. CONCLUSIONS Our study confirms that the non-canonical NF-κB axis LTβ/NIK/RelB drives cholangiocarcinogenesis and represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Kaiyu Xu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Annika Kessler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster, Germany
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paula Hoffmeister-Wittmann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of RadioOncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Luisa Nader
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Eblina Kelmendi
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Schwab
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- Madrid Institute for Advanced Study (MIAS), Madrid, Spain
| | - Benjamin Sobol
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Osama Azzam Nieto
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Hanna Isele
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ulrike Gärtner
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Volk
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Mock
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Albrecht
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- The M3 Research Center, Medical Faculty, University Clinic Tübingen (UKT), Tübingen, Germany
| | - Michael T Dill
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Experimental Hepatology, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
18
|
Lindblad KE, Donne R, Liebling I, Bresnahan E, Barcena-Varela M, Lozano A, Park E, Giotti B, Burn O, Fiel MI, Bravo-Cordero JJ, Tsankov AM, Lujambio A. NOTCH1 drives tumor plasticity and metastasis in hepatocellular carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619856. [PMID: 39484457 PMCID: PMC11527037 DOI: 10.1101/2024.10.23.619856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Liver cancer, the third leading cause of cancer-related mortality worldwide, has two main subtypes: hepatocellular carcinoma (HCC), accounting most of the cases, and cholangiocarcinoma (CAA). NOTCH pathway regulates the intrahepatic development of bile ducts, which are lined with cholangiocytes, but it can also be upregulated in 1/3 of HCCs. To better understand the role of NOTCH in HCC, we developed a novel mouse model driven by activated NOTCH1 intracellular domain (NICD1) and MYC overexpression in hepatocytes. Using the hydrodynamic tail vein injection method for establishing primary liver tumors, we generated a novel murine model of liver cancer harboring MYC overexpression and NOTCH1 activation. We characterized this model histopathologically as well as transcriptomically, utilizing both bulk and single cell RNA-sequencing. MYC;NICD1 tumors displayed a combined HCC-CCA phenotype with temporal plasticity. At early time-points, histology was predominantly cholangiocellular, which then progressed to mainly hepatocellular. The hepatocellular component was enriched in mesenchymal genes and gave rise to lung metastasis. Metastatic cells were enriched in the TGFB and VEGF pathways and their inhibition significantly reduced the metastatic burden. Our novel mouse model uncovered NOTCH1 as a driver of temporal plasticity and metastasis in HCC, the latter of which is, in part, mediated by angiogenesis and TGFß pathways.
Collapse
|
19
|
Ricci AD, Rizzo A, Schirizzi A, D’Alessandro R, Frega G, Brandi G, Shahini E, Cozzolongo R, Lotesoriere C, Giannelli G. Tumor Immune Microenvironment in Intrahepatic Cholangiocarcinoma: Regulatory Mechanisms, Functions, and Therapeutic Implications. Cancers (Basel) 2024; 16:3542. [PMID: 39456636 PMCID: PMC11505966 DOI: 10.3390/cancers16203542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Treatment options for intrahepatic cholangiocarcinoma (iCCA), a highly malignant tumor with poor prognosis, are limited. Recent developments in immunotherapy and immune checkpoint inhibitors (ICIs) have offered new hope for treating iCCA. However, several issues remain, including the identification of reliable biomarkers of response to ICIs and immune-based combinations. Tumor immune microenvironment (TIME) of these hepatobiliary tumors has been evaluated and is under assessment in this setting in order to boost the efficacy of ICIs and to convert these immunologically "cold" tumors to "hot" tumors. Herein, the review TIME of ICCA and its critical function in immunotherapy. Moreover, this paper also discusses potential avenues for future research, including novel targets for immunotherapy and emerging treatment plans aimed to increase the effectiveness of immunotherapy and survival rates for iCCA patients.
Collapse
Affiliation(s)
- Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| |
Collapse
|
20
|
Ma W, Zhang J, Chen W, Liu N, Wu T. Notch-Driven Cholangiocarcinogenesis Involves the Hippo Pathway Effector TAZ via METTL3-m6A-YTHDF1. Cell Mol Gastroenterol Hepatol 2024; 19:101417. [PMID: 39369960 PMCID: PMC11612812 DOI: 10.1016/j.jcmgh.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND & AIMS Notch and TAZ are implicated in cholangiocarcinogenesis, but whether and how these oncogenic molecules interact remain unknown. METHODS The development of cholangiocarcinoma (CCA) was induced by hydrodynamic tail vein injection of oncogenes (Notch1 intracellular domain [NICD]/AKT) to the FVB/NJ mice. CCA xenograft was developed by inoculation of human CCA cells into the livers of SCID mice. Tissues and cells were analyzed using quantitative reverse transcription polymerase chain reaction, Western blotting analyses, immunohistochemistry, chromatin immunoprecipitation-quantitative polymerase chain reaction and WST-1 cell proliferation assay. RESULTS Our experimental findings show that TAZ is indispensable in NICD-driven cholangiocarcinogenesis. Notch activation induces the expression of methyltransferase like-3 (METTL3), which catalyzes N6-methyladenosine modification of TAZ mRNA and that this mechanism plays a central role in the crosstalk between Notch and TAZ in CCA cells. Mechanistically, Notch regulates the expression of METTL3 through the binding of NICD to its downstream transcription factor CSL in the promoter region of METTL3. METTL3 in turn mediates N6-methyladenosine modification of TAZ mRNA, which is recognized by the m6A reader YTHDF1 to enhance TAZ protein translation. We observed that inhibition of Notch signaling decreased the protein levels of both MELLT3 and TAZ. Depletion of METTL3 by short hairpin RNAs or by the next generation GapmeR antisense oligonucleotides decreased the level of TAZ protein and inhibited the growth of human CCA cells in vitro and in mice. CONCLUSIONS This study describes a novel Notch-METTL3-TAZ signaling cascade, which is important in CCA development and progression. Our experimental results provide new insight into how the Notch pathway cooperates with TAZ signaling in CCA, and the findings may have important therapeutic implications.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
21
|
Chiu V, Yee C, Main N, Stevanovski I, Watt M, Wilson T, Angus P, Roberts T, Shackel N, Herath C. Oncogenic plasmid DNA and liver injury agent dictates liver cancer development in a mouse model. Clin Sci (Lond) 2024; 138:1227-1248. [PMID: 39254423 PMCID: PMC11427747 DOI: 10.1042/cs20240560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Primary liver cancer is an increasing problem worldwide and is associated with significant mortality. A popular method of modeling liver cancer in mice is plasmid hydrodynamic tail vein injection (HTVI). However, plasmid-HTVI models rarely recapitulate the chronic liver injury which precedes the development of most human liver cancer. We sought to investigate how liver injury using thioacetamide contributes to the pathogenesis and progression of liver cancer in two oncogenic plasmid-HTVI-induced mouse liver cancer models. Fourteen-week-old male mice received double-oncogene plasmid-HTVI (SB/AKT/c-Met and SB/AKT/NRas) and then twice-weekly intraperitoneal injections of thioacetamide for 6 weeks. Liver tissue was examined for histopathological changes, including fibrosis and steatosis. Further characterization of fibrosis and inflammation was performed with immunostaining and real-time quantitative PCR. RNA sequencing with pathway analysis was used to explore novel pathways altered in the cancer models. Hepatocellular and cholangiocellular tumors were observed in mice injected with double-oncogene plasmid-HTVI models (SB/AKT/c-Met and SB/AKT/NRas). Thioacetamide induced mild fibrosis and increased alpha smooth muscle actin-expressing cells. However, the combination of plasmids and thioacetamide did not significantly increase tumor size, but increased multiplicity of small neoplastic lesions. Cancer and/or liver injury up-regulated profibrotic and proinflammatory genes while metabolic pathway genes were mostly down-regulated. We conclude that the liver injury microenvironment can interact with liver cancer and alter its presentation. However, the effects on cancer development vary depending on the genetic drivers with differing active oncogenic pathways. Therefore, the choice of plasmid-HTVI model and injury agent may influence the extent to which injury promotes liver cancer development.
Collapse
Affiliation(s)
- Vincent Chiu
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Christine Yee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Nathan Main
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Igor Stevanovski
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Matthew Watt
- School of Biomedical Sciences, University of Melbourne, Victoria, Australia
| | - Trevor Wilson
- Hudson Institute of Medical Research, Monash University, Victoria, Australia
| | - Peter Angus
- Department of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Tara Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Nicholas Shackel
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Chandana Herath
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
- Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Hsu BY, Driscoll J, Tateno C, Mattis AN, Kelley RK, Willenbring H. Human Hepatocytes Can Give Rise to Intrahepatic Cholangiocarcinomas. Gastroenterology 2024; 167:1029-1032.e7. [PMID: 38866344 PMCID: PMC11753062 DOI: 10.1053/j.gastro.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Affiliation(s)
- Bernadette Y Hsu
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California
| | - Julia Driscoll
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California
| | | | - Aras N Mattis
- Department of Pathology, University of California, San Francisco, San Francisco, California; Liver Center, University of California, San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Robin K Kelley
- Division of Hematology-Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Holger Willenbring
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California; Liver Center, University of California, San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
23
|
Ko S, Monga SP. The Dark Side of Human Hepatocyte Plasticity. Gastroenterology 2024; 167:849-850. [PMID: 38936779 DOI: 10.1053/j.gastro.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Affiliation(s)
- Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine and Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine and Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Keggenhoff FL, Castven D, Becker D, Stojkovic S, Castven J, Zimpel C, Straub BK, Gerber T, Langer H, Hähnel P, Kindler T, Fahrer J, O'Rourke CJ, Ehmer U, Saborowski A, Ma L, Wang XW, Gaiser T, Matter MS, Sina C, Derer S, Lee JS, Roessler S, Kaina B, Andersen JB, Galle PR, Marquardt JU. PARP-1 selectively impairs KRAS-driven phenotypic and molecular features in intrahepatic cholangiocarcinoma. Gut 2024; 73:1712-1724. [PMID: 38857989 PMCID: PMC11420749 DOI: 10.1136/gutjnl-2023-331237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.
Collapse
Affiliation(s)
- Friederike L Keggenhoff
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Darko Castven
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stojan Stojkovic
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Jovana Castven
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Carolin Zimpel
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Tissue Biobank of the University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tiemo Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Harald Langer
- Cardiology Angiology, University Medical Centre, Mannheim, Germany
| | - Patricia Hähnel
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Kindler
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jörg Fahrer
- Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, University of Copenhagen Biotech Research & Innovation Centre, Kobenhavn, Denmark
| | - Ursula Ehmer
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universitat, München, Germany
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Timo Gaiser
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jesper B Andersen
- Department of Health and Medical Sciences, University of Copenhagen Biotech Research & Innovation Centre, Kobenhavn, Denmark
| | - Peter R Galle
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2024:S0016-5085(24)05455-6. [PMID: 39251168 PMCID: PMC11885590 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- UCL Institute for Liver & Digestive Health, Royal Free Hospital, London, United Kingdom; University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
26
|
Cigliano A, Gigante I, Serra M, Vidili G, Simile MM, Steinmann S, Urigo F, Cossu E, Pes GM, Dore MP, Ribback S, Milia EP, Pizzuto E, Mancarella S, Che L, Pascale RM, Giannelli G, Evert M, Chen X, Calvisi DF. HSF1 is a prognostic determinant and therapeutic target in intrahepatic cholangiocarcinoma. J Exp Clin Cancer Res 2024; 43:253. [PMID: 39243039 PMCID: PMC11378393 DOI: 10.1186/s13046-024-03177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a lethal primary liver tumor characterized by clinical aggressiveness, poor prognosis, and scarce therapeutic possibilities. Therefore, new treatments are urgently needed to render this disease curable. Since cumulating evidence supports the oncogenic properties of the Heat Shock Factor 1 (HSF1) transcription factor in various cancer types, we investigated its pathogenetic and therapeutic relevance in iCCA. METHODS Levels of HSF1 were evaluated in a vast collection of iCCA specimens. The effects of HSF1 inactivation on iCCA development in vivo were investigated using three established oncogene-driven iCCA mouse models. In addition, the impact of HSF1 suppression on tumor cells and tumor stroma was assessed in iCCA cell lines, human iCCA cancer-associated fibroblasts (hCAFs), and patient-derived organoids. RESULTS Human preinvasive, invasive, and metastatic iCCAs displayed widespread HSF1 upregulation, which was associated with a dismal prognosis of the patients. In addition, hydrodynamic injection of a dominant-negative form of HSF1 (HSF1dn), which suppresses HSF1 activity, significantly delayed cholangiocarcinogenesis in AKT/NICD, AKT/YAP, and AKT/TAZ mice. In iCCA cell lines, iCCA hCAFs, and patient-derived organoids, administration of the HSF1 inhibitor KRIBB-11 significantly reduced proliferation and induced apoptosis. Cell death was profoundly augmented by concomitant administration of the Bcl-xL/Bcl2/Bcl-w inhibitor ABT-263. Furthermore, KRIBB-11 reduced mitochondrial bioenergetics and glycolysis of iCCA cells. CONCLUSIONS The present data underscore the critical pathogenetic, prognostic, and therapeutic role of HSF1 in cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Isabella Gigante
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Marina Serra
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Maria M Simile
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Sara Steinmann
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Francesco Urigo
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Eleonora Cossu
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Giovanni M Pes
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Maria P Dore
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Egle P Milia
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Rosa M Pascale
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- University of Hawaii Cancer Center, Honolulu, USA
| | - Diego F Calvisi
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy.
| |
Collapse
|
27
|
Duan Y, Deng M, Liu B, Meng X, Liao J, Qiu Y, Wu Z, Lin J, Dong Y, Duan Y, Sun Y. Mitochondria targeted drug delivery system overcoming drug resistance in intrahepatic cholangiocarcinoma by reprogramming lipid metabolism. Biomaterials 2024; 309:122609. [PMID: 38754290 DOI: 10.1016/j.biomaterials.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.
Collapse
Affiliation(s)
- Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Mengqiong Deng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xianwei Meng
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yijie Qiu
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Park Y, Hu S, Kim M, Oertel M, Singhi A, Monga SP, Liu S, Ko S. Context-Dependent Distinct Roles of SOX9 in Combined Hepatocellular Carcinoma-Cholangiocarcinoma. Cells 2024; 13:1451. [PMID: 39273023 PMCID: PMC11394107 DOI: 10.3390/cells13171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a challenging primary liver cancer subtype with limited treatment options and a devastating prognosis. Recent studies have underscored the context-dependent roles of SOX9 in liver cancer formation in a preventive manner. Here, we revealed that liver-specific developmental Sox9 elimination using Alb-Cre;Sox9(flox/flox) (LKO) and CRISPR/Cas9-based tumor-specific acute Sox9 elimination (CKO) in SB-HDTVI-based Akt-YAP1 (AY) and Akt-NRAS (AN) cHCC-CCA models showed contrasting responses. LKO abrogates the AY CCA region while stimulating poorly differentiated HCC proliferation, whereas CKO prevents AY and AN cHCC-CCA development irrespective of tumor cell fate. Additionally, AN, but not AY, tumor formation partially depends on the Sox9-Dnmt1 cascade. SOX9 is dispensable for AY-mediated, HC-derived, LPC-like immature CCA formation but is required for their maintenance and transformation into mature CCA. Therapeutic Sox9 elimination using the OPN-CreERT2 strain combined with inducible Sox9 iKO specifically reduces AY but not AN cHCC-CCA tumors. This necessitates the careful consideration of genetic liver cancer studies using developmental Cre and somatic mutants, particularly for genes involved in liver development. Our findings suggest that SOX9 elimination may hold promise as a therapeutic approach for a subset of cHCC-CCA and highlight the need for further investigation to translate these preclinical insights into personalized clinical applications.
Collapse
Affiliation(s)
- Yoojeong Park
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
| | - Shikai Hu
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Minwook Kim
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Division of Anatomic Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| |
Collapse
|
29
|
Chen C, Zhao F, Peng J, Zhao D, Xu L, Li H, Ma S, Peng X, Sheng X, Sun Y, Wang T, Dong H, Ding Y, Wu Z, Liang X, Gao L, Wang H, Ma C, Li C. Soluble Tim-3 serves as a tumor prognostic marker and therapeutic target for CD8 + T cell exhaustion and anti-PD-1 resistance. Cell Rep Med 2024; 5:101686. [PMID: 39168104 PMCID: PMC11384939 DOI: 10.1016/j.xcrm.2024.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Resistance to PD-1 blockade in onco-immunotherapy greatly limits its clinical application. T cell immunoglobulin and mucin domain containing-3 (Tim-3), a promising immune checkpoint target, is cleaved by ADAM10/17 to produce its soluble form (sTim-3) in humans, potentially becoming involved in anti-PD-1 resistance. Herein, serum sTim-3 upregulation was observed in non-small cell lung cancer (NSCLC) and various digestive tumors. Notably, serum sTim-3 is further upregulated in non-responding patients undergoing anti-PD-1 therapy for NSCLC and anti-PD-1-resistant cholangiocarcinoma patients. Furthermore, sTim-3 overexpression facilitates tumor progression and confers anti-PD-1 resistance in multiple tumor mouse models. Mechanistically, sTim-3 induces terminal T cell exhaustion and attenuates CD8+ T cell response to PD-1 blockade through carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1). Moreover, the ADAM10 inhibitor GI254023X, which blocks sTim-3 production, reduces tumor progression in Tim-3 humanized mice and reverses anti-PD-1 resistance in human tumor-infiltrating lymphocytes (TILs). Overall, human sTim-3 holds great predictive and therapeutic potential in onco-immunotherapy.
Collapse
Affiliation(s)
- Chaojia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Fangcheng Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiali Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Di Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liyun Xu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, Zhejiang 316004, China
| | - Huayu Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuaiya Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xueqi Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xue Sheng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haoqing Dong
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuming Ding
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
30
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
31
|
Sun BY, Zhang D, Gan W, Wu JF, Wang ZT, Sun GQ, Zhou J, Fan J, Yi Y, Hu B, Zhang BH, Qiu SJ. Targeting CD73 limits tumor progression and enhances anti-tumor activity of anti-PD-1 therapy in intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2024; 150:348. [PMID: 39002018 PMCID: PMC11246275 DOI: 10.1007/s00432-024-05869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND & AIMS Patients with intrahepatic cholangiocarcinoma (iCCA) respond poorly to immune checkpoint blockades (ICBs). In this study, we aimed to dissect the potential mechanisms underlying poor response to ICBs and explore a rational ICB-based combination therapy in iCCA. METHODS scRNA-seq dataset GSE151530 was analyzed to investigate the differentially expressed genes in malignant cells following ICBs therapy. RNA-seq analysis and western blot assays were performed to examine the upstream and downstream signaling pathways of CD73. Subcutaneous tumor xenograft models were utilized to investigate the impact of CD73 on iCCA growth. Plasmid AKT/NICD-induced spontaneous murine iCCAs were used to explore the therapeutic efficacy of CD73 enzymatic inhibitor AB680 combined with PD-1 blockade. Time-of-flight mass cytometry (CyTOF) was conducted to identify the tumor-infiltrating immune cell populations and their functional changes in murine iCCAs treated with AB680 in combination with PD-1 antibody. RESULTS scRNA-seq analysis identified elevated CD73 expression in malignant cells in response to ICBs therapy. Mechanistically, ICBs therapy upregulated CD73 expression in malignant cells via TNF-α/NF-κB signaling pathway. In vivo studies revealed that CD73 inhibition suppressed the growth of subcutaneous tumors, and achieved synergistic depression effects with gemcitabine and cisplatin (GC). Adenosine produced by CD73 activates AKT/GSK3β/β-catenin signaling axis in iCCA cells. CD73 inhibitor AB680 potentiates anti-tumor efficacy of PD-1 antibody in murine iCCAs. CyTOF analysis showed that AB680 combined with anti-PD-1 therapy promoted the infiltration of CD8+ T, CD4+ T cells, and NK cells in murine iCCAs, while simultaneously decreased the proportions of macrophages and neutrophils. Moreover, AB680 combined with anti-PD-1 significantly upregulated the expression of Granzyme B, Tbet and co-stimulatory molecule ICOS in infiltrating CD8+ T cells. CONCLUSIONS CD73 inhibitor AB680 limits tumor progression and potentiates therapeutic efficacy of GC chemotherapy or anti-PD-1 treatment in iCCA. AB680 combined with anti-PD-1 therapy effectively elicits anti-tumor immune response.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dai Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Gan
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Fang Wu
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guo-Qiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo-Heng Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China.
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Chen X, Zhao J, Yue S, Li Z, Duan X, Lin Y, Yang Y, He J, Gao L, Pan Z, Yang X, Su X, Huang M, Li X, Zhao Y, Zhang X, Li Z, Hu L, Tang J, Hao Y, Tian Q, Wang Y, Xu L, Huang Q, Cao Y, Chen Y, Zhu B, Li Y, Bai F, Zhang G, Ye L. An oncolytic virus delivering tumor-irrelevant bystander T cell epitopes induces anti-tumor immunity and potentiates cancer immunotherapy. NATURE CANCER 2024; 5:1063-1081. [PMID: 38609488 PMCID: PMC11286533 DOI: 10.1038/s43018-024-00760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.
Collapse
Affiliation(s)
- Xiangyu Chen
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China
- Changping Laboratory, Beijing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuai Yue
- Institute of Immunology, Third Military Medical University, Chongqing, China
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Third Military Medical University, Chongqing, China
| | - Ziyu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xiang Duan
- The State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, Chemistry and Biomedicine Innovation Center, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yao Lin
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junjian He
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Leiqiong Gao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhiwei Pan
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiaofan Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Min Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhirong Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Li Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yaxing Hao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yifei Wang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qizhao Huang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China
| | - Yingjiao Cao
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, Chemistry and Biomedicine Innovation Center, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Lilin Ye
- Changping Laboratory, Beijing, China.
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
33
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
34
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
35
|
Shihadih D, Wang X, Zushin PJH, Khodakivskyi P, Park HM, Tso E, Shiblak J, Misic A, Louie SM, Ward C, Hellerstein M, Nomura DK, Goun E, Urigo F, Calvisi DF, Chen X, Stahl A. FATP5 Is Indispensable for the Growth of Intrahepatic Cholangiocarcinoma. Mol Cancer Res 2024; 22:585-595. [PMID: 38358323 DOI: 10.1158/1541-7786.mcr-23-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Altered lipid metabolism is a common hallmark of various cancers, including intrahepatic cholangiocarcinoma (ICC), a highly lethal carcinoma that lacks effective treatment options. To elucidate the lipid metabolism changes in ICC, we coupled the expression of the firefly luciferase gene (FFL) to AKT1 (AKT-FFL) via an IRES linker, and then hydrodynamically injected mice with AKT-FFL and Notch1 intracellular cytoplasmic domain (NICD) to establish a luciferase-positive ICC model. This model not only enabled us to monitor and quantify tumor growth by injecting the mice with luciferin, but also allowed us to assess the fatty acid uptake rate by injecting the mice with free fatty acid luciferin (FFA-Luc). The ICC model exhibited robust uptake of exogenous fatty acids compared with the HCC model induced by AKT-FFL/ neuroblastoma Ras (Ras). Lipidomics analysis showed a dramatically higher level of fatty acid in ICC, further supporting the increased fatty acids uptake. Mechanistic studies identified FATP5 as the predominant mediator of fatty acid uptake required for ICC growth using Fatp5 knockout mice and AAV-based shRNA silencing of Fatp5. Our study discovered a novel therapeutic target for the treatment of ICC and shed light on the contributions of lipid metabolism to ICC development. IMPLICATIONS This study provides the first in vivo evidence that FATP5 is a potential therapeutic target for treating ICC.
Collapse
Affiliation(s)
- Diyala Shihadih
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | | | - Hyo Min Park
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Emily Tso
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Jena Shiblak
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Angela Misic
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Sharon M Louie
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Catherine Ward
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Elena Goun
- Chemistry Department, University of Missouri, Columbia, Missouri
- SwissLumix SARL, Lausanne, Switzerland
| | - Francesco Urigo
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| |
Collapse
|
36
|
Abstract
All cancers arise from normal cells whose progeny acquire the cancer-initiating mutations and epigenetic modifications leading to frank tumorigenesis. The identity of those "cells-of-origin" has historically been a source of controversy across tumor types, as it has not been possible to witness the dynamic events giving rise to human tumors. Genetically engineered mouse models (GEMMs) of cancer provide an invaluable substitute, enabling researchers to interrogate the competence of various naive cellular compartments to initiate tumors in vivo. Researchers using these models have relied on lineage-specific promoters, knowledge of preneoplastic disease states in humans, and technical advances allowing more precise manipulations of the mouse germline. These approaches have given rise to the emerging view that multiple lineages within a given organ may generate tumors with similar histopathology. Here, we review some of the key studies leading to this conclusion in solid tumors and highlight the biological and clinical ramifications.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Tomlinson JL, Li B, Yang J, Loeuillard E, Stumpf HE, Kuipers H, Watkins R, Carlson DM, Willhite J, O'Brien DR, Graham RP, Chen X, Smoot RL, Dong H, Gores GJ, Ilyas SI. Syngeneic murine models with distinct immune microenvironments represent subsets of human intrahepatic cholangiocarcinoma. J Hepatol 2024; 80:892-903. [PMID: 38458319 PMCID: PMC11141161 DOI: 10.1016/j.jhep.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a poorly immunogenic malignancy associated with limited survival. Syngeneic immunocompetent mouse models of CCA are an essential tool to elucidate the tumor immune microenvironment (TIME), understand mechanisms of tumor immune evasion, and test novel immunotherapeutic strategies. The scope of this study was to develop and characterize immunocompetent CCA models with distinct genetic drivers, and correlate tumor genomics, immunobiology, and therapeutic response. METHODS A multifaceted approach including scRNA-seq, CITE-seq, whole exome and bulk RNA sequencing was employed. FDA-approved PD-1/PD-L1 antibodies were tested in humanized PD-1/PD-L1 mice (HuPD-H1). RESULTS A genetic mouse model of intrahepatic CCA (iCCA) driven by intrabiliary transduction of Fbxw7ΔF/Akt that mimics human iCCA was generated. From the Fbxw7ΔF/Akt tumors, a murine cell line (FAC) and syngeneic model with genetic and phenotypic characteristics of human iCCA were developed. Established SB1 (YAPS127A/Akt) and KPPC (KrasG12Dp53L/L) models were compared to the FAC model. Although the models had transcriptomic similarities, they had substantial differences as well. Mutation patterns of FAC, SB1, and KPPC cells matched different mutational signatures in Western and Japanese CCA patient cohorts. KPPC tumors had a high tumor mutation burden. FAC tumors had a T cell-infiltrated TIME, while SB1 tumors had a preponderance of suppressive myeloid cells. FAC, SB1, and KPPC tumors matched different immune signatures in human iCCA cohorts. Moreover, FAC, SB1, and KPPC tumor-bearing HuPD-H1 mice displayed differential responses to nivolumab or durvalumab. CONCLUSIONS Syngeneic iCCA models display a correlation between tumor genotype and TIME phenotype, with differential responses to FDA-approved immunotherapies. This study underscores the importance of leveraging multiple preclinical models to understand responses to immunotherapy in different genetic subsets of human CCA. IMPACT AND IMPLICATIONS Understanding the relationship between tumor genotype and the phenotype of the immune microenvironment is an unmet need in cholangiocarcinoma (CCA). Herein, we use syngeneic murine models of intrahepatic CCA with different genetic drivers to demonstrate a correlation between tumor genotype and immune microenvironment phenotype in murine models, which is associated with differential responses to FDA-approved immunotherapies. This information will help guide other preclinical studies. Additionally, it emphasizes that immune checkpoint inhibition in patients with CCA is not a "one-size-fits-all" approach. Our observations suggest that, as for targeted therapies, patients should be stratified and selected for treatment according to their tumor genetics.
Collapse
Affiliation(s)
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Emilien Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Ryan Watkins
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jessica Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniel R O'Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Zhang J, Ji F, Tan Y, Zhao L, Zhao Y, Liu J, Shao L, Shi J, Ye M, He X, Jin J, Zhao B, Huang J, Roessler S, Zheng X, Ji J. Oncogenic Roles of Laminin Subunit Gamma-2 in Intrahepatic Cholangiocarcinoma via Promoting EGFR Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309010. [PMID: 38526177 PMCID: PMC11151066 DOI: 10.1002/advs.202309010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.
Collapse
Affiliation(s)
- Jianjuan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Fubo Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Yaqi Tan
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Zhao
- Shandong Cancer Hospital and InstituteShandong Cancer Hospital of Shandong First Medical UniversityJinanShandong Province250117China
| | - Yongzhi Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jiaxin Liu
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Liyuan Shao
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
| | - Jiong Shi
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008China
| | - Meihua Ye
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Xianglei He
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Stephanie Roessler
- Institute of PathologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Xin Zheng
- Taoharmony Biotech L.L.C.HangzhouZhejiang310018China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
39
|
Alexander WB, Wang W, Hill MA, O'Dell MR, Ruffolo LI, Guo B, Jackson KM, Ullman N, Friedland SC, McCall MN, Patel A, Figueroa-Guilliani N, Georger M, Belt BA, Whitney-Miller CL, Linehan DC, Murphy PJ, Hezel AF. Smad4 restricts injury-provoked biliary proliferation and carcinogenesis. Dis Model Mech 2024; 17:dmm050358. [PMID: 38415925 PMCID: PMC10924230 DOI: 10.1242/dmm.050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 02/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly and heterogeneous type of cancer characterized by a spectrum of epidemiologic associations as well as genetic and epigenetic alterations. We seek to understand how these features inter-relate in the earliest phase of cancer development and through the course of disease progression. For this, we studied murine models of liver injury integrating the most commonly occurring gene mutations of CCA - including Kras, Tp53, Arid1a and Smad4 - as well as murine hepatobiliary cancer models and derived primary cell lines based on these mutations. Among commonly mutated genes in CCA, we found that Smad4 functions uniquely to restrict reactive cholangiocyte expansion to liver injury through restraint of the proliferative response. Inactivation of Smad4 accelerates carcinogenesis, provoking pre-neoplastic biliary lesions and CCA development in an injury setting. Expression analyses of Smad4-perturbed reactive cholangiocytes and CCA lines demonstrated shared enriched pathways, including cell-cycle regulation, MYC signaling and oxidative phosphorylation, suggesting that Smad4 may act via these mechanisms to regulate cholangiocyte proliferation and progression to CCA. Overall, we showed that TGFβ/SMAD4 signaling serves as a critical barrier restraining cholangiocyte expansion and malignant transformation in states of biliary injury.
Collapse
Affiliation(s)
- William B. Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Margaret A. Hill
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R. O'Dell
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Bing Guo
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine M. Jackson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott C. Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew N. McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ankit Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L. Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick J. Murphy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F. Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
40
|
Park Y, Hu S, Kim M, Oertel M, Singhi A, Monga SP, Liu S, Ko S. Therapeutic potential of SOX9 dysruption in Combined Hepatocellular Carcinoma-Cholangiocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595319. [PMID: 38826352 PMCID: PMC11142171 DOI: 10.1101/2024.05.22.595319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) represents a challenging subtype of primary liver cancer with limited treatment options and a poor prognosis. Recently, we and others have highlighted the context-dependent roles of the biliary-specific transcription factor SOX9 in the pathogenesis of liver cancers using various Cre applications in Sox9 (flox/flox) strains, to achieve elimination for exon 2 and 3 of the Sox9 gene locus as a preventive manner. Here, we reveal the contrasting responses of developmental Sox9 elimination using Alb-Cre;Sox9 (flox/flox) ( Sox9 LKO) versus CRISPR/Cas9 -based tumor specific acute Sox9 CKO in SB-HDTVI-based Akt-YAP1 and Akt-NRAS cHCC-CCA formation. Sox9 LKO specifically abrogates the Akt-YAP1 CCA region while robustly stimulating the proliferation of remaining poorly differentiated HCC pertaining liver progenitor cell characteristics, whereas Sox9 CKO potently prevents Akt-YAP1 and Akt-NRAS cHCC-CCA development irrespective of fate of tumor cells compared to respective controls. Additionally, we find that Akt-NRAS , but not Akt-YAP1 , tumor formation is partially dependent on the Sox9-Dnmt1 cascade. Pathologically, SOX9 is indispensable for Akt-YAP1 -mediated HC-to-BEC/CCA reprogramming but required for the maintenance of CCA nodules. Lastly, therapeutic elimination of Sox9 using the OPN-CreERT2 strain combined with an inducible CRISPR/Cas9 -based Sox9 iKO significantly reduces Akt-YAP1 cHCC-CCA tumor burden, similar to Sox9 CKO. Thus, we contrast the outcomes of acute Sox9 deletion with developmental Sox9 knockout models, emphasizing the importance of considering adaptation mechanisms in therapeutic strategies. This necessitates the careful consideration of genetic liver cancer studies using developmental Cre and somatic mutant lines, particularly for genes involved in hepatic commitment during development. Our findings suggest that SOX9 elimination may hold promise as a therapeutic approach for cHCC-CCA and underscore the need for further investigation to translate these preclinical insights into clinical applications.
Collapse
|
41
|
Zhu X, Yang Y, Feng D, Wang O, Chen J, Wang J, Wang B, Liu Y, Edenfield BH, Haddock AN, Wang Y, Patel T, Bi Y, Ji B. Albumin promoter-driven FlpO expression induces efficient genetic recombination in mouse liver. Am J Physiol Gastrointest Liver Physiol 2024; 326:G495-G503. [PMID: 38469630 PMCID: PMC11376971 DOI: 10.1152/ajpgi.00263.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Yang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Dongfeng Feng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Oliver Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Bin Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ying Wang
- Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
42
|
Lewinska M, Zhuravleva E, Satriano L, Martinez MB, Bhatt DK, Oliveira DVNP, Antoku Y, Keggenhoff FL, Castven D, Marquardt JU, Matter MS, Erler JT, Oliveira RC, Aldana BI, Al-Abdulla R, Perugorria MJ, Calvisi DF, Perez LA, Rodrigues PM, Labiano I, Banales JM, Andersen JB. Fibroblast-Derived Lysyl Oxidase Increases Oxidative Phosphorylation and Stemness in Cholangiocarcinoma. Gastroenterology 2024; 166:886-901.e7. [PMID: 38096955 DOI: 10.1053/j.gastro.2023.11.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND & AIMS Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.
Collapse
Affiliation(s)
- Monika Lewinska
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Ekaterina Zhuravleva
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Letizia Satriano
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Marta B Martinez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Deepak K Bhatt
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Douglas V N P Oliveira
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Yasuko Antoku
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Friederike L Keggenhoff
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Darko Castven
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Jens U Marquardt
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Matthias S Matter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Janine T Erler
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Rui C Oliveira
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Diego F Calvisi
- University of Regensburg, Institute of Pathology, Regensburg, Germany
| | - Luis Arnes Perez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Choi JH, Thung SN. Recent Advances in Pathology of Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2024; 16:1537. [PMID: 38672619 PMCID: PMC11048541 DOI: 10.3390/cancers16081537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICCA) is a malignant epithelial neoplasm characterized by biliary differentiation within the liver. ICCA is molecularly heterogeneous and exhibits a broad spectrum of histopathological features. It is a highly aggressive carcinoma with high mortality and poor survival rates. ICCAs are classified into two main subtypes: the small-duct type and large-duct types. These two tumor types have different cell origins and clinicopathological features. ICCAs are characterized by numerous molecular alterations, including mutations in KRAS, TP53, IDH1/2, ARID1A, BAP1, BRAF, SAMD4, and EGFR, and FGFR2 fusion. Two main molecular subtypes-inflammation and proliferation-have been proposed. Recent advances in high-throughput assays using next-generation sequencing have improved our understanding of ICCA pathogenesis and molecular genetics. The diagnosis of ICCA poses a significant challenge for pathologists because of its varied morphologies and phenotypes. Accurate diagnosis of ICCA is essential for effective patient management and prognostic determination. This article provides an updated overview of ICCA pathology, focusing particularly on molecular features, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
44
|
Wang C, Chen C, Hu W, Tao L, Chen J. Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA. Apoptosis 2024; 29:460-481. [PMID: 38017206 DOI: 10.1007/s10495-023-01908-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Previous research has demonstrated that the conversion of hepatocellular carcinoma (HCC) to intrahepatic cholangiocarcinoma (iCCA) can be stimulated by manipulating the tumor microenvironment linked with necroptosis. However, the specific cells regulating the necroptosis microenvironment have not yet been identified. Additionally, further inquiry into the mechanism of how the tumor microenvironment regulates necroptosis and its impact on primary liver cancer(PLC) progression may be beneficial for precision therapy. We recruited a single-cell RNA sequencing dataset (scRNA-seq) with 34 samples from 4 HCC patients and 3 iCCA patients, and a Spatial Transcriptomic (ST) dataset including one each of HCC, iCCA, and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). Quality control, dimensionality reduction and clustering were based on Seurat software (v4.2.2) process and batch effects were removed by harmony (v0.1.1) software. The pseudotime analysis (also known as cell trajectory) in the single cell dataset was performed by monocle2 software (v2.24.0). Calculation of necroptosis fraction was performed by AUCell (v1.16.0) software. Switch gene analysis was performed by geneSwitches(v0.1.0) software. Dimensionality reduction, clustering, and spatial image in ST dataset were performed by Seurat (v4.0.2). Tumor cell identification, tumor subtype characterization, and cell type deconvolution in spot were performed by SpaCET (v1.0.0) software. Immunofluorescence and immunohistochemistry experiments were used to prove our conclusions. Analysis of intercellular communication was performed using CellChat software (v1.4.0). ScRNA-seq analysis of HCC and iCCA revealed that necroptosis predominantly occurred in the myeloid cell subset, particularly in FCGBP + SPP1 + tumor-associated macrophages (TAMs), which had the highest likelihood of undergoing necroptosis. The existence of macrophages undergoing necroptosis cell death was further confirmed by immunofluorescence. Regions of HCC with poor differentiation, cHCC-CCA with more cholangiocarcinoma features, and the tumor region of iCCA shared spatial colocalization with FCGBP + macrophages, as confirmed by spatial transcriptomics, immunohistochemistry and immunofluorescence. Pseudotime analysis showed that premalignant cells could progress into two directions, one towards HCC and the other towards iCCA and cHCC-CCA. Immunofluorescence and immunohistochemistry experiments demonstrated that the number of macrophages undergoing necroptosis in cHCC-CCA was higher than in iCCA and HCC, the number of macrophages undergoing necroptosis in cHCC-CCA with cholangiocarcinoma features was more than in cHCC-CCA with hepatocellular carcinoma features. Further investigation showed that myeloid cells with the highest necroptosis score were derived from the HCC_4 case, which had a severe inflammatory background on pathological histology and was likely to progress towards iCCA and cHCC-CCA. Switchgene analysis indicated that S100A6 may play a significant role in the progression of premalignant cells towards iCCA and cHCC-CCA. Immunohistochemistry confirmed the expression of S100A6 in PLC, the more severe inflammatory background of the tumor area, the more cholangiocellular carcinoma features of the tumor area, S100A6 expression was higher. The emergence of necroptosis microenvironment was found to be significantly associated with FCGBP + SPP1 + TAMs in PLC. In the presence of necroptosis microenvironment, premalignant cells appeared to transform into iCCA or cHCC-CCA. In contrast, without a necroptosis microenvironment, premalignant cells tended to develop into HCC, exhibiting amplified stemness-related genes (SRGs) and heightened malignancy.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Cuimin Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wenting Hu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Lili Tao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jiakang Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
45
|
Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024; 79:941-958. [PMID: 37018128 DOI: 10.1097/hep.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/25/2022] [Indexed: 04/06/2023]
Abstract
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Collapse
Affiliation(s)
| | - Aashreya Ravichandra
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany
| | - Aloña Agirre Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Silvia Affò
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
46
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
47
|
Cheo FY, Chan KS, Shelat VG. Outcomes of liver resection in hepatitis C virus-related intrahepatic cholangiocarcinoma: A systematic review and meta-analysis. World J Virol 2024; 13:88946. [PMID: 38616852 PMCID: PMC11008402 DOI: 10.5501/wjv.v13.i1.88946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 12/28/2023] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma is the second most common primary liver malignancy. Its incidence and mortality rates have been increasing in recent years. Hepatitis C virus (HCV) infection is a risk factor for development of cirrhosis and cholangiocarcinoma. Currently, surgical resection remains the only curative treatment option for cholangiocarcinoma. We aim to study the impact of HCV infection on outcomes of liver resection (LR) in intrahepatic cholangiocarcinoma (ICC). AIM To study the outcomes of curative resection of ICC in patients with HCV (i.e., HCV+) compared to patients without HCV (i.e., HCV-). METHODS We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) and observational studies to assess the outcomes of LR in ICC in HCV+ patients compared to HCV- patients in tertiary care hospitals. PubMed, EMBASE, The Cochrane Library and Scopus were systematically searched from inception till August 2023. Included studies were RCTs and non-RCTs on patients ≥ 18 years old with a diagnosis of ICC who underwent LR, and compared outcomes between patients with HCV+ vs HCV-. The primary outcomes were overall survival (OS) and recurrence-free survival. Secondary outcomes include perioperative mortality, operation duration, blood loss, intrahepatic and extrahepatic recurrence. RESULTS Seven articles, published between 2004 and 2021, fulfilled the selection criteria. All of the studies were retrospective studies. Age, incidence of male patients, albumin, bilirubin, platelets, tumor size, incidence of multiple tumors, vascular invasion, bile duct invasion, lymph node metastases, and stage 4 disease were comparable between HCV+ and HCV- group. Alanine transaminase [MD 22.20, 95%confidence interval (CI): 13.75, 30.65, P < 0.00001] and aspartate transaminase levels (MD 27.27, 95%CI: 20.20, 34.34, P < 0.00001) were significantly higher in HCV+ group compared to HCV- group. Incidence of cirrhosis was significantly higher in HCV+ group [odds ratio (OR) 5.78, 95%CI: 1.38, 24.14, P = 0.02] compared to HCV- group. Incidence of poorly differentiated disease was significantly higher in HCV+ group (OR 2.55, 95%CI: 1.34, 4.82, P = 0.004) compared to HCV- group. Incidence of simultaneous hepatocellular carcinoma lesions was significantly higher in HCV+ group (OR 8.31, 95%CI: 2.36, 29.26, P = 0.001) compared to HCV- group. OS was significantly worse in the HCV+ group (hazard ratio 2.05, 95%CI: 1.46, 2.88, P < 0.0001) compared to HCV- group. CONCLUSION This meta-analysis demonstrated significantly worse OS in HCV+ patients with ICC who underwent curative resection compared to HCV- patients.
Collapse
Affiliation(s)
- Feng Yi Cheo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kai Siang Chan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Vishal G Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| |
Collapse
|
48
|
Song X, Hou K, Zhou H, Yang J, Cao T, Zhang J. Liver organoids and their application in liver cancer research. Regen Ther 2024; 25:128-137. [PMID: 38226058 PMCID: PMC10788409 DOI: 10.1016/j.reth.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
Liver cancer, a common and intractable liver-related disease, is a malignant tumor with a high morbidity, which needs a high treatment cost but still lacks perfect clinical treatment methods. Looking for an effective platform for liver cancer study and drug screening is urgent and important. Traditional analytical methods for liver disease studies mainly rely on the 2D cell culture and animal experiments, which both cannot fully recapitulate physiological and pathological processes of human liver. For example, cell culture can only show basic functions of cells in vitro, while animal models always hold the problem of species divergence. The organoids, a 3D invitro culture system emerged in recent years, is a cell-bound body with different cell types and has partial tissue functions. The organoid technology can reveal the growth state, structure, function and characteristics of the tissue or organ, and plays an important role in reconstructing invitro experimental models that can truly simulate the human liver. In this paper, we will give a brief introduction of liver organoids and review their applications in liver cancer research, especially in liver cancer pathogenesis, drug screening, precision medicine, regenerative medicine, and other fields. We have also discussed advantages and disadvantages of organoids, as well as future directions and perspectives towards liver organoids.
Collapse
Affiliation(s)
- Xinyu Song
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Kaifei Hou
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Hongyan Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 250300 Jinan, Shandong, China
| | - Jingyi Yang
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Ting Cao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, Zhejiang, China
| | - Jiayu Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, 264003 Yantai, Shandong, China
| |
Collapse
|
49
|
Longerich T, Stenzinger A, Schirmacher P. Molecular diagnostics of hepatobiliary and pancreatic neoplasias. Virchows Arch 2024; 484:263-272. [PMID: 38429607 PMCID: PMC10948571 DOI: 10.1007/s00428-024-03744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Neoplasias of the hepatopancreatobiliary tract are growing in numbers, have the poorest prognosis of all major cancer entities, and thus represent a rising clinical problem. Their molecular diagnostic has dramatically improved, contributing to tumor subtyping, definition of malignancy, and uncovering cases with hereditary predisposition. Most of all, predictive molecular testing allows to identify cases amenable to treatment with the rising number of approved targeted drugs, immune-oncological treatment, and clinical trials. In this review, the current state of molecular testing and its contribution to clinical decision-making are outlined.
Collapse
Affiliation(s)
- T Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69118, Heidelberg, Germany
| | - A Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69118, Heidelberg, Germany
| | - P Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69118, Heidelberg, Germany.
| |
Collapse
|
50
|
Ye L, Schneider JS, Ben Khaled N, Schirmacher P, Seifert C, Frey L, He Y, Geier A, De Toni EN, Zhang C, Reiter FP. Combined Hepatocellular-Cholangiocarcinoma: Biology, Diagnosis, and Management. Liver Cancer 2024; 13:6-28. [PMID: 38344449 PMCID: PMC10857821 DOI: 10.1159/000530700] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/03/2023] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (cHCC-iCCA) is a rare type of primary liver cancer displaying characteristics of both hepatocytic and cholangiocytic differentiation. SUMMARY Because of its aggressive nature, patients with cHCC-iCCA exhibit a poorer prognosis than those with HCC. Surgical resection and liver transplantation may be considered curative treatment approaches; however, only a minority of patients are eligible at the time of diagnosis, and postoperative recurrence rates are high. For cases that are not eligible for surgery, locoregional and systemic therapy are often administered based on treatment protocols applied for HCC or iCCA. Owing to the rarity of this cancer, there are still no established standard treatment protocols; therefore, the choice of therapy is often personalized and guided by the suspected predominant component. Further, the genomic and molecular heterogeneity of cHCC-iCCA can severely compromise the efficacy of the available therapies. KEY MESSAGES In the present review, we summarize the latest advances in cHCC-iCCA and attempt to clarify its terminology and molecular biology. We provide an overview of the etiology of cHCC-iCCA and present new insights into the molecular pathology of this disease that could contribute to further studies aiming to improve the patient outcomes through new systemic therapies.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julia S. Schneider
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | | | - Carolin Seifert
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Lea Frey
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Florian P. Reiter
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|