1
|
Cui Z, Li C, Liu W, Sun M, Deng S, Cao J, Yang H, Chen P. Scutellarin activates IDH1 to exert antitumor effects in hepatocellular carcinoma progression. Cell Death Dis 2024; 15:267. [PMID: 38622131 PMCID: PMC11018852 DOI: 10.1038/s41419-024-06625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.
Collapse
Affiliation(s)
- Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing, China.
| |
Collapse
|
2
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
3
|
Sabri A, Omran MM, Azim SA, Abdelfattah R, Allam RM, Shouman SA. A Study to Explore the Role of IDH1 (R132) Mutation on Imatinib Toxicity and Effect of ABCG2/OCT1 Expression on N-Desmethyl Imatinib Plasma Level in Egyptian Chronic Myeloid Leukemia Patients. Drug Res (Stuttg) 2023; 73:146-155. [PMID: 36630991 DOI: 10.1055/a-1924-7746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Imatinib mesylate (IM) is the gold standard for treatment of Chronic Myeloid Leukemia (CML). This study aimed to gain more knowledge of the altered PK, pharmacogenetic factors, and gene expression leading to variable IM levels. Fifty patients with chronic phase-CML were enrolled in this study and divided as 25 responders and 25 non-responders (patients are directly recruited after response assessment). HPLC/MS/MS was used to determine trough and peak concentration of imatinib and N-desmethyl imatinib in the blood. PCR-RFLP technique was used to detect IDH1 gene mutation (R132). The median value of IM trough level was significantly higher, the P/T ratio was significantly lower and the α-1-acid glycoprotein (AGP) was significantly higher among responders compared to non-responders (P=0.007, 0.009 and 0.048, respectively). Higher N-desmethyl imatinib peak plasma concentration was observed with low mRNA expression of ABCG2 and OCT1 (P=0.01 and 0.037, respectively). IDH1 R132 gene mutation was associated with a significant increase in toxicities (P=0.028). In conclusion, IM trough level, P/T ratio and AGP was significantly higher in responders. In addition, ABCG2 and OCT1 gene expression may affect the interindividual PK variation. Although a prospective study with a larger patient population is necessary to validate these findings. IDH1 mutation is a predictor of increased toxicity with IM treatment.
Collapse
Affiliation(s)
- Alaa Sabri
- Egyptian Pharmaceutical Vigilance Center, Egyptian Drug Authority
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - S Abdel Azim
- Biochemistry Department, Faculty of Pharmacy, Cairo University
| | - Raafat Abdelfattah
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Afsari F, McIntyre TM. D-2-Hydroxyglutarate Inhibits Calcineurin Phosphatase Activity to Abolish NF-AT Activation and IL-2 Induction in Stimulated Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:504-514. [PMID: 36602551 PMCID: PMC11071645 DOI: 10.4049/jimmunol.2200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Gliomas expressing mutant isocitrate dehydrogenases excessively synthesize d-2-hydroxyglutarate (D2HG), suppressing immune surveillance. A portion of this D2HG is released from these tumor cells, but the way environmental D2HG inhibits lymphocyte function is undefined. We incubated human PBLs or Jurkat T cells with D2HG at concentrations present within and surrounding gliomas or its obverse l-2-hydroxyglutarate (L2HG) stereoisomer. We quantified each 2HG stereoisomer within washed cells by N-(p-toluenesulfonyl)-l-phenylalanyl chloride derivatization with stable isotope-labeled D2HG and L2HG internal standards, HPLC separation, and mass spectrometry. D2HG was present in quiescent cells and was twice as abundant as L2HG. Extracellular 2HG rapidly increased intracellular levels of the provided stereoisomer by a stereoselective, concentration-dependent process. IL-2 expression, even when elicited by A23187 and PMA, was abolished by D2HG in a concentration-dependent manner, with significant reduction at just twice its basal level. In contrast, L2HG was only moderately inhibitory. IL-2 expression is regulated by increased intracellular Ca2+ that stimulates calcineurin to dephosphorylate cytoplasmic phospho-NF-AT, enabling its nuclear translocation. D2HG abolished stimulated expression of a stably integrated NF-AT-driven luciferase reporter that precisely paralleled its concentration-dependent inhibition of IL-2. D2HG did not affect intracellular Ca2+. Rather, surface plasmon resonance showed D2HG, but not L2HG, bound calcineurin, and D2HG, but not L2HG, inhibited Ca2+-dependent calcineurin phosphatase activity in stimulated Jurkat extracts. Thus, D2HG is a stereoselective calcineurin phosphatase inhibitor that prevents NF-AT dephosphorylation and so abolishes IL-2 transcription in stimulated lymphocytes. This occurs at D2HG concentrations found within and adjacent to gliomas independent of its metabolic or epigenetic transcriptional regulation.
Collapse
Affiliation(s)
- Faezeh Afsari
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Thomas M. McIntyre
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
5
|
Tayari MM, Fang C, Ntziachristos P. Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:139-165. [PMID: 37751139 DOI: 10.1007/978-3-031-38176-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.
Collapse
Affiliation(s)
- Mina Masoumeh Tayari
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celestia Fang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Center for Medical Genetics, Ghent University, Medical Research Building 2 (MRB2), Entrance 38, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
6
|
Niederwieser C, Kröger N. Transplantation in CML in the TKI era: who, when, and how? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:114-122. [PMID: 36485123 PMCID: PMC9820642 DOI: 10.1182/hematology.2022000329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular therapy with tyrosine kinase inhibitors (TKIs) has significantly reduced the indication for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia (CML). Treatment-free remission can be obtained in about 50% of patients with an optimal response. However, cure rates up to 90% are restricted to patients receiving HSCT. Timing is essential since HSCT in the early stages of the disease has the best outcome. Patients in a more advanced phase (AdP) than chronic-phase (chP) CML undergo HSCT with suboptimal outcomes, and the gap between chP and AdP disease is widening. First-line therapy should start with first- or second-generation (G) TKIs. Patients failing treatment (BCR-ABL1 transcripts of greater than 10% at 3 and 6 months and greater than 1% at 12 months) should be switched to second-line TKIs, and HSCT should be considered. Patients not responding to 2G-TKI therapy as well as patients in an accelerated phase (AP) or blast crisis (BC) are candidates for HSCT. Therapy resistant BCR-ABL1 mutations, high-risk additional cytogenetic abnormalities, and molecular signs of leukemia progression should trigger the indication for HSCT. Patients who, despite dose adjustments, do not tolerate or develop severe adverse events, including vascular events, to multiple TKIs are also candidates for HSCT. In AdP CML, TKIs do not show long-lasting results, and the outcome of HSCT is less optimal without pretransplant therapy. In these patients the induction of chP2 with TKIs, either alone (AP) or in combination with intensive chemotherapy (BC), followed by HSCT should be pursued.
Collapse
Affiliation(s)
- Christian Niederwieser
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
7
|
Haddock S, Alban TJ, Turcan Ş, Husic H, Rosiek E, Ma X, Wang Y, Bale T, Desrichard A, Makarov V, Monette S, Wu W, Gardner R, Manova K, Boire A, Chan TA. Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia 2022; 28:100790. [PMID: 35398668 PMCID: PMC9014446 DOI: 10.1016/j.neo.2022.100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Mutations in IDH1 and IDH2 drive the development of gliomas. These genetic alterations promote tumor cell renewal, disrupt differentiation states, and induce stem-like properties. Understanding how this phenotypic reprogramming occurs remains an area of high interest in glioma research. Previously, we showed that IDH mutation results in the development of a CD24-positive cell population in gliomas. Here, we demonstrate that this CD24-positive population possesses striking stem-like properties at the molecular and phenotypic levels. We found that CD24 expression is associated with stem-like features in IDH-mutant tumors, a patient-derived gliomasphere model, and a neural stem cell model of IDH1-mutant glioma. In orthotopic models, CD24-positive cells display enhanced tumor initiating potency compared to CD24-negative cells. Furthermore, CD24 knockdown results in changes in cell viability, proliferation rate, and gene expression that closely resemble a CD24-negative phenotype. Our data demonstrate that induction of a CD24-positive population is one mechanism by which IDH-mutant tumors acquire stem-like properties. These findings have significant implications for our understanding of the molecular underpinnings of IDH-mutant gliomas.
Collapse
|
8
|
Patel A, Perl A. Redox Control of Integrin-Mediated Hepatic Inflammation in Systemic Autoimmunity. Antioxid Redox Signal 2022; 36:367-388. [PMID: 34036799 PMCID: PMC8982133 DOI: 10.1089/ars.2021.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Significance: Systemic autoimmunity affects 3%-5% of the population worldwide. Systemic lupus erythematosus (SLE) is a prototypical form of such condition, which affects 20-150 of 100,000 people globally. Liver dysfunction, defined by increased immune cell infiltration into the hepatic parenchyma, is an understudied manifestation that affects up to 20% of SLE patients. Autoimmunity in SLE involves proinflammatory lineage specification in the immune system that occurs with oxidative stress and profound changes in cellular metabolism. As the primary metabolic organ of the body, the liver is uniquely capable to encounter oxidative stress through first-pass derivatization and filtering of waste products. Recent Advances: The traffic of immune cells from their development through recirculation in the liver is guided by cell adhesion molecules (CAMs) and integrins, cell surface proteins that tightly anchor cells together. The surface expression of CAMs and integrins is regulated via endocytic traffic that is sensitive to oxidative stress. Reactive oxygen species (ROS) that elicit oxidative stress in the liver may originate from the mitochondria, the cytosol, or the cell membrane. Critical Issues: While hepatic ROS production is a source of vulnerability, it also modulates the development and function of the immune system. In turn, the liver employs antioxidant defense mechanisms to protect itself from damage that can be harnessed to serve as therapeutic mechanisms against autoimmunity, inflammation, and development of hepatocellular carcinoma. Future Directions: This review is aimed at delineating redox control of integrin signaling in the liver and checkpoints of regulatory impact that can be targeted for treatment of inflammation in systemic autoimmunity. Antioxid. Redox Signal. 36, 367-388.
Collapse
Affiliation(s)
- Akshay Patel
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
9
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
10
|
Cai H, Men H, Cao P, Zheng Y. Mechanism and prevention strategy of a bidirectional relationship between heart failure and cancer (Review). Exp Ther Med 2021; 22:1463. [PMID: 34737803 PMCID: PMC8561773 DOI: 10.3892/etm.2021.10898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and heart failure has been extensively studied in the last decade. These studies have focused on describing heart injury caused by certain cancer treatments, including radiotherapy, chemotherapy and targeted therapy. Previous studies have demonstrated a higher incidence of cancer in patients with heart failure. Heart failure enhances an over-activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, and subsequently promotes cancer development. Other studies have found that heart failure and cancer both have a common pathological origin, flanked by chronic inflammation in certain organs. The present review aims to summarize and describe the recent discoveries, suggested mechanisms and relationships between heart failure and cancer. The current review provides more ideas on clinical prevention strategies according to the pathological mechanism involved.
Collapse
Affiliation(s)
- He Cai
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongbo Men
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengyu Cao
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
11
|
Chen D, Xia S, Zhang R, Li Y, Famulare CA, Fan H, Wu R, Wang M, Zhu AC, Elf SE, Su R, Dong L, Arellano M, Blum WG, Mao H, Lonial S, Stock W, Odenike O, Le Beau M, Boggon TJ, He C, Chen J, Gao X, Levine RL, Chen J. Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Mol Cell 2021; 81:3833-3847.e11. [PMID: 34289383 DOI: 10.1016/j.molcel.2021.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/05/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.
Collapse
Affiliation(s)
- Dong Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rukang Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Hao Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Wu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mei Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allen C Zhu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Shannon E Elf
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Martha Arellano
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William G Blum
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wendy Stock
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Olatoyosi Odenike
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Michelle Le Beau
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xue Gao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Incidence and Prognosis of Clonal Hematopoiesis in patients with Chronic Idiopathic Neutropenia. Blood 2021; 138:1249-1257. [PMID: 34166485 DOI: 10.1182/blood.2021010815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/05/2021] [Indexed: 11/20/2022] Open
Abstract
The incidence and prognosis of clonal hematopoiesis in patients with isolated neutropenia among patients with idiopathic cytopenia of undetermined significance (ICUS), known as ICUS-N or chronic idiopathic neutropenia (CIN) patients, is poorly defined. In the present study we sought to investigate the frequency and clinical significance of mutations of genes implicated in myeloid malignancies using next generation sequencing, in CIN patients (n=185) with a long follow-up. We found that 21/185 patients (11.35%) carried totally 25 somatic mutations in 6 genes with median variant allele frequency (VAF) 12.75%. The most frequently mutated genes were DNMT3A and TET2 involving more than 80% of patients followed by IDH1/2, SRSF2 and ZRSR2. The frequency of transformation to a myeloid malignancy was low in the total group of patients (5/185 patients; 2.70%). However, from the transformed patients four belonged to the clonal (4/21; 19.05%) and one to the non-clonal (1/164; 0.61%) group, indicating that the presence of mutation(s) confers a relative risk for transformation 31.24 (P = 0.0017). The VAF of the mutant clones in the transformed patients was higher than 10% in all cases and the genes most frequently associated with malignant transformation were the SRSF2 and IDH1. No significant differences were identified between clonal and non-clonal groups in the severity of neutropenia. Patients with clonal disease were older compared to non-clonal patients. These data contribute to the better understanding of the heterogeneous entities underlying ICUS and highlight the importance of the mutation analysis for the diagnosis and prognosis of patients with unexplained neutropenias.
Collapse
|
13
|
Zhang Q, Yang Y, Lu Y, Cao Z. iTRAQ-based quantitative proteomic analyses the cycle chronic heat stress affecting liver proteome in yellow-feather chickens. Poult Sci 2021; 100:101111. [PMID: 33965807 PMCID: PMC8120948 DOI: 10.1016/j.psj.2021.101111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Heat stress (HS) is one of the main environmental factors affecting the efficiency of poultry production. The yellow-feather chickens (YFC) as an indigenous strain of chicken is a popular poultry breed in China. Our previous study used the RNA-seq to analyze the gene expression profiles of male YFC under HS and showed that the lipid and energy metabolism pathways are activated in livers of YFC exposed to acute HS (38°C, 4 h and 25°C recovery 2 h). In this study, we used quantitative proteome analysis based on iTRAQ to study the liver response of YFC to cycle chronic HS (38 ± 1°C, 8 h/d, 7 d, CyCHS). The male YFCs treatment used the CyCHS from 22 to 28 days of age. The liver tissue samples were collected at 28 d old. A total of 39,327 unique peptides matches were detected using iTRAQ analysis and 4,571 proteins exhibited a false discovery rate of 1% or less. Forty-six significant differentially expressed proteins (DEPs) were detected in the CyCHS group compared with the control group for the liver samples, including up- and down-regulated DEPs were 18 and 28, respectively. We found that the enriched biological process terms of the DEPs expressed in the liver were related to DNA metabolic process, oxidation-reduction process, oxidative stress and gluconeogenesis. In KEGG pathway analysis. Most of the hepatic DEPs were annotated to glutathione metabolism and TCA cycle in response to CyCHS. The up-regulation of 5 DEPs (GPX1, GSTT1, GSTT1L, RRM2, and LOC100859645) in the glutathione metabolism pathway likely reflects an attempt to deal with oxidative damage by CyCHS. The down-regulation of 3 DEPs (Isocitrate dehydrogenase [IDH3A], IDH3B, and phosphoenolpyruvate carboxykinase 1) in the TCA cycle pathway contributes to the regulation mechanism of energy metabolism and probably to cope with the balance of heat production and dissipation during CyCHS in order to adapt to high temperature environments. Our results provide insights into the potential molecular mechanism in heat-induced oxidative stress and energy in YFCs and future studies will investigate the functional genes associated with the response to HS.
Collapse
Affiliation(s)
- Quan Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
| | - YuZe Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - YongQiang Lu
- Beijing General Station of Animal Husbandry, Beijing, China
| | - ZiWen Cao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
14
|
(2 R,3 S)-Dihydroxybutanoic Acid Synthesis as a Novel Metabolic Function of Mutant Isocitrate Dehydrogenase 1 and 2 in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102842. [PMID: 33019704 PMCID: PMC7600928 DOI: 10.3390/cancers12102842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is one of several cancers where cancer proliferation occurs under the influence of an aberrant metabolite known as an oncometabolite produced by a mutated enzyme in the cancer cell. In AML, mutant isocitrate dehydrogenases produce the oncometabolite 2-hydroxyglutarate. We screened AML patients with and without mutant isocitrate dehydrogenases by using a technique known as metabolomics, which measures many different metabolites in patient plasma. It was observed that another metabolite, 2,3-dihydroxybutyrate, was produced in larger amounts in patients with mutated isocitrate dehydrogenase and correlated strongly with 2-hydroxyglutarate levels. Moreover, 2,3-dihydroxybutyrate was a better indicator of the presence of mutated isocitrate dehydrogenase in the cancer than the known oncometabolite 2-hydroxyglutarate. These findings may lead to the characterization of 2,3-dihydroxybutyrate as a novel oncometabolite in AML, which would bring a fuller understanding of the etiology of this disease and offer opportunities for the development of novel therapeutic agents. Abstract Acute myeloid leukemia (AML) frequently harbors mutations in isocitrate 1 (IDH1) and 2 (IDH2) genes, leading to the formation of the oncometabolite (2R)-hydroxyglutaric acid (2R-HG) with epigenetic consequences for AML proliferation and differentiation. To investigate if broad metabolic aberrations may result from IDH1 and IDH2 mutations in AML, plasma metabolomics was conducted by gas chromatography–mass spectrometry (GC–MS) on 51 AML patients, 29 IDH1/2 wild-type (WT), 9 with IDH1R132, 12 with IDH2R140 and one with IDH2R172 mutations. Distinct metabolic differences were observed between IDH1/2 WT, IDH1R132 and IDH2R140 patients that comprised 22 plasma metabolites that were mainly amino acids. Only two plasma metabolites were statistically significantly different (p < 0.0001) between both IDH1R132 and WT IDH1/2 and IDH2R140 and WT IDH1/2, specifically (2R)-hydroxyglutaric acid (2R-HG) and the threonine metabolite (2R,3S)-dihydroxybutanoic acid (2,3-DHBA). Moreover, 2R-HG correlated strongly (p < 0.0001) with 2,3-DHBA in plasma. One WT patient was discovered to have a D-2-hydroxyglutarate dehydrogenase (D2HGDH) A426T inactivating mutation but this had little influence on 2R-HG and 2,3-DHBA plasma concentrations. Expression of transporter genes SLC16A1 and SLC16A3 displayed a weak correlation with 2R-HG but not 2,3-DHBA plasma concentrations. Receiver operating characteristic (ROC) analysis demonstrated that 2,3-DHBA was a better biomarker for IDH mutation than 2R-HG (Area under the curve (AUC) 0.861; p < 0.0001; 80% specificity; 87.3% sensitivity). It was concluded that 2,3-DHBA and 2R-HG are both formed by mutant IDH1R132, IDH2R140 and IDH2R172, suggesting a potential role of 2,3-DHBA in AML pathogenesis.
Collapse
|
15
|
Ma B, Meng H, Tian Y, Wang Y, Song T, Zhang T, Wu Q, Cui Y, Li H, Zhang W, Li Q. Distinct clinical and prognostic implication of IDH1/2 mutation and other most frequent mutations in large duct and small duct subtypes of intrahepatic cholangiocarcinoma. BMC Cancer 2020; 20:318. [PMID: 32293336 PMCID: PMC7161164 DOI: 10.1186/s12885-020-06804-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Isocitrate dehydrogenase 1/2 (IDH1/2), BAP1, ARID1A and PBRM1 have been reported as the most frequent mutant genes in intrahepatic cholangiocarcinoma (ICC), and their relationships with clinicopathological features and prognosis were researched in this study. Methods We collected clinical data of 130 ICC patients from January 2012 to December 2017. The IDH1/2 mutation and loss of BAP1, ARID1A and PBRM1 expressions were detected by DNA sequencing or immunohistochemical methods, and histological subtype of ICCs was determined by hematoxylin-eosin, Alcian blue and S100P staining. Results IDH1/2 mutation was related to decreased preoperative serum total bilirubin (P = 0.039), ferritin (P = 0.000) and higher histological differentiation (P = 0.024), and was associated with prolonged disease-free survival (P = 0.009) and a trend toward increased overall survival (P = 0.126) in small duct type of ICCs. Immunohistochemical staining results of MsMab-1 were generally consistent with DNA sequencing for IDH1/2 mutant in ICCs (κ = 0.691). Only BAP1 expression loss was correlated to prolonged disease-free survival (P = 0.031) and overall survival (P = 0.041) in large duct type of ICCs. Conclusions IDH1/2 mutation is a favorable predictor and may be related to iron metabolism in small duct type of ICCs. Furthermore, we suggest that the detection of IDH1/2 mutation is indispensable to determine targeted therapy in small duct type ICCs, while it is not necessary in large duct of ICCs. MsMab-1 is a relatively effective multi-specific antibody against IDH1/2 mutant in ICCs. BAP1 expression loss was correlated with improved prognosis only in large duct type ICCs.
Collapse
Affiliation(s)
- Bingqi Ma
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Huijuan Meng
- Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ye Tian
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yingying Wang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Tianqiang Song
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ti Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qiang Wu
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Huikai Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Qiang Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospita; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
16
|
Cao LL, Liu H, Yue Z, Pei L, Wang H, Jia M. The clinical values of dysregulated DNA methylation and demethylation intermediates in acute lymphoblastic leukemia. Hematology 2019; 24:567-576. [PMID: 31315520 DOI: 10.1080/16078454.2019.1642563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lin-Lin Cao
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Hangqi Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Chen D, Xia S, Wang M, Lin R, Li Y, Mao H, Aguiar M, Famulare CA, Shih AH, Brennan CW, Gao X, Pan Y, Liu S, Fan J, Jin L, Song L, Zhou A, Mukherjee J, Pieper RO, Mishra A, Peng J, Arellano M, Blum WG, Lonial S, Boggon TJ, Levine RL, Chen J. Mutant and Wild-Type Isocitrate Dehydrogenase 1 Share Enhancing Mechanisms Involving Distinct Tyrosine Kinase Cascades in Cancer. Cancer Discov 2019; 9:756-777. [PMID: 30862724 DOI: 10.1158/2159-8290.cd-18-1040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/10/2019] [Accepted: 03/07/2019] [Indexed: 01/03/2023]
Abstract
Isocitrate dehydrogenase 1 (IDH1) is important for reductive carboxylation in cancer cells, and the IDH1 R132H mutation plays a pathogenic role in cancers including acute myeloid leukemia (AML). However, the regulatory mechanisms modulating mutant and/or wild-type (WT) IDH1 function remain unknown. Here, we show that two groups of tyrosine kinases (TK) enhance the activation of mutant and WT IDH1 through preferential Y42 or Y391 phosphorylation. Mechanistically, Y42 phosphorylation occurs in IDH1 monomers, which promotes dimer formation with enhanced substrate (isocitrate or α-ketoglutarate) binding, whereas Y42-phosphorylated dimers show attenuated disruption to monomers. Y391 phosphorylation occurs in both monomeric and dimeric IDH1, which enhances cofactor (NADP+ or NADPH) binding. Diverse oncogenic TKs phosphorylate IDH1 WT at Y42 and activate Src to phosphorylate IDH1 at Y391, which contributes to reductive carboxylation and tumor growth, whereas FLT3 or the FLT3-ITD mutation activates JAK2 to enhance mutant IDH1 activity through phosphorylation of Y391 and Y42, respectively, in AML cells. SIGNIFICANCE: We demonstrated an intrinsic connection between oncogenic TKs and activation of WT and mutant IDH1, which involves distinct TK cascades in related cancers. In particular, these results provide an additional rationale supporting the combination of FLT3 and mutant IDH1 inhibitors as a promising clinical treatment of mutant IDH1-positive AML.See related commentary by Horton and Huntly, p. 699.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Dong Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Mei Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Yuancheng Li
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Department of Radiology and Imaging Sciences, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Hui Mao
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Department of Radiology and Imaging Sciences, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Mike Aguiar
- Cell Signaling Technology, Inc., Danvers, Massachusetts
| | | | - Alan H Shih
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Xue Gao
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Yaozhu Pan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Shuangping Liu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Medical College, Dalian University, Dalian, China
| | - Jun Fan
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Lingtao Jin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Lina Song
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | - An Zhou
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ashutosh Mishra
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junmin Peng
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martha Arellano
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - William G Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jing Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia. .,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
18
|
Synthesis and biological evaluation of 3-aryl-4-indolyl-maleimides as potent mutant isocitrate dehydrogenase-1 inhibitors. Bioorg Med Chem 2018; 27:589-603. [PMID: 30600148 DOI: 10.1016/j.bmc.2018.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
A series of 3-aryl-4-indolylmaleimide IDH1/R132H inhibitors with a novel structure was obtained by high-throughput screening and structure-based optimization. Most compounds such as 7a, 7d, 7h, 7i, 7k and 7o showed high inhibitory effects on IDH1/R132H and were highly selective against IDH1/WT, IDH2/WT, GDH, GK, and FBP. Evaluation of the biological activities and function at cellular level showed that compounds 7h, 7i and 7k could effectively suppress the production of 2-hydroxyglutaric acid in U87MG cells expressing IDH1/R132H. Additionally, 7h could reversed the differentiation block of the myeloid leukemic cell line, TF-1, caused by the overexpression of IDH1/R132H. We also explore the structure-activity relationship based on the experimental data, with an attempt to pave the way for future studies.
Collapse
|
19
|
Fitzsimmons CM, Batista PJ. It's complicated… m 6A-dependent regulation of gene expression in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:382-393. [PMID: 30296493 DOI: 10.1016/j.bbagrm.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022]
Abstract
Cellular function relies on multiple pathways that are coordinated to ensure the proper execution of gene expression networks. Failure to coordinate the multiple programs active in the cell can have catastrophic consequences and lead to diseases such as cancer. At the post-transcriptional level, RNA modifications play important roles in the regulation of gene expression. N6-methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification and has gained increasing interest in the last few years as a dynamic regulator of RNA metabolism. Modifications regulate all stages of the RNA life cycle, from transcription to decay. Recent studies have pointed to the role of RNA methylation in cancer initiation and progression, and aberrant modification has served as a biomarker of early-stage diagnosis in several cancers. Here, we review the regulation of m6A, disruptions to methylation-dependent pathways that influence carcinogenesis, and potential avenues for m6A-related therapeutic strategies.
Collapse
Affiliation(s)
- Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Abstract
INTRODUCTION In August 2017, the United States Federal Drug Administration (FDA) approved enasidenib (Idhifa, Celgene/Agios) for adults with relapsed and refractory acute myelogenous leukemia (AML) with an IDH2 mutation. Enasidenib targets cells with mutant copies of isocitrate dehydrogenase-2 (IDH2), inhibiting the oncometabolite 2-hydroxyglutarte (2-HG) formed by the mutant IDH2. Areas covered: We review the studies leading to enasidenib's approval, as well as common side effects and safety issues experienced during the clinical trials. There is a focus on the diagnosis and treatment of these side effects including differentiation syndrome. Expert commentary: We are experiencing a revolution in the understanding of the mechanism of AML. A majority of the effort has been concentrated on targeting gene mutations or pathway activations with precision therapeutics. Enasidenib is beneficial in a patient population that previously had limited treatment options. However, given the fact that enasidenib is a highly specific inhibitor of an early stable mutation, it is questionable whether a strategy of targeting a single mutation or pathway in relapsed AML will allow for better than the 20% complete remission (CR) rate observed with this therapy. The proper role for single mutation targeting in AML needs to be carefully considered.
Collapse
Affiliation(s)
- James Dugan
- a Division of Hematology , University of Colorado School of Medicine , Aurora , CO , USA
| | - Daniel Pollyea
- a Division of Hematology , University of Colorado School of Medicine , Aurora , CO , USA
| |
Collapse
|
21
|
Wang J, Zhang ZG, Ding ZY, Dong W, Liang HF, Chu L, Zhang BX, Chen XP. IDH1 mutation correlates with a beneficial prognosis and suppresses tumor growth in IHCC. J Surg Res 2018; 231:116-125. [PMID: 30278918 DOI: 10.1016/j.jss.2018.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase 1/2 (IDH1/2) mutations have been reported in intrahepatic cholangiocarcinoma (IHCC). However, the prognosis of a single IDH1 mutation and impact of mutant IDH1 on IHCC tumor growth remain unclear. METHODS A total of 85 IHCC tumor samples were sequenced. Prognosis and clinicopathological correlation were analyzed. The role of mutant IDH1 in IHCC tumor growth was measured by cell proliferation assay, colony formation assay in soft agar, and xenograft tumor models. Akt, ERK, p38 MAPK, and JNK signaling, which commonly affect tumor growth, were examined by Western blotting to explore the potential mechanism. RESULTS IDH1 mutations correlated with a beneficial prognosis and smaller tumor size. Mutant IDH1 exhibited a growth-inhibitory effect on IHCC cell lines in vitro and in vivo. Akt signaling was suppressed in IHCC cell lines expressing a mutant IDH1. The reactivation of Akt signaling by SC79 restored the inhibited growth of cell lines expressing a mutant IDH1 in IHCC. CONCLUSIONS Collectively, we demonstrated that mutant IDH1 correlates with a beneficial prognosis and inhibits tumor growth by suppressing Akt signaling in IHCC. We suggest that patients with IDH1 mutations could be considered for both less-aggressive therapy and therapy tailored to the presence of their mutant enzyme in the future.
Collapse
Affiliation(s)
- Jian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Zhan-Guo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China.
| |
Collapse
|
22
|
Geevarghese A, Mascarenhas J. Evolving Understanding of Chronic Myelomonocytic Leukemia: Implications for Future Treatment Paradigms. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:519-527. [PMID: 29891120 DOI: 10.1016/j.clml.2018.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a relatively uncommon hematologic malignancy that manifests as peripheral monocytosis, has varying degrees of bone marrow dysplasia, and is associated with poor outcomes. Despite a growing appreciation of the pathobiologic mechanisms driving CMML, current therapies have not clearly demonstrated any survival benefit. The complex pathobiology of CMML highlights the intricate aberrantly activated cellular pathways that influence disease phenotype and limit current treatment options. Understanding of these oncogenic pathways may provide novel mechanism-based treatment strategies that may ultimately offer better outcomes for patients. We reviewed the current diagnostic, prognostic, and molecular understandings, and we assessed the current and future treatment options for CMML.
Collapse
Affiliation(s)
- Anita Geevarghese
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Mascarenhas
- Myeloproliferative Disorders Clinical Research Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
23
|
Yamamoto M, Inohara H, Nakagawa T. Targeting metabolic pathways for head and neck cancers therapeutics. Cancer Metastasis Rev 2018; 36:503-514. [PMID: 28819926 DOI: 10.1007/s10555-017-9691-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells have distinctive energy metabolism pathways that support their rapid cell division. The preference for anaerobic glycolysis under the normal oxygen condition is known as the Warburg effect and has been observed in head and neck cancers. These metabolic changes are controlled by cancer-related transcription factors, such as tumor suppressor gene and hypoxia inducible factor 1α. In addition, various metabolic enzymes also actively regulate cancer-specific metabolism including the switch between aerobic and anaerobic glycolysis. For a long time, these metabolic changes in cancer cells have been considered a consequence of transformation required to maintain the high rate of tumor cell replication. However, recent studies indicate that alteration of metabolism is sufficient to initiate tumor transformation. Indeed, oncogenic mutations in the metabolic enzymes, isocitrate dehydrogenase and succinate dehydrogenase, have been increasingly found in various cancers, including head and neck cancers. In the present review, we introduce recent findings regarding the cancer metabolism, including the molecular mechanisms of how they affect cancer pathogenesis and maintenance. We also discuss the current and future perspectives on therapeutics that target metabolic pathways, with an emphasis on head and neck cancer.
Collapse
Affiliation(s)
- Masashi Yamamoto
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan. .,Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
24
|
DeStefano CB, Hourigan CS. Personalizing initial therapy in acute myeloid leukemia: incorporating novel agents into clinical practice. Ther Adv Hematol 2018; 9:109-121. [PMID: 29713444 DOI: 10.1177/2040620718761778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
While the past decade has seen a revolution in understanding of the genetic and molecular etiology of the disease, in clinical practice, initial therapy for acute myeloid leukemia (AML) patients has been a relatively straightforward choice between intensive combination cytotoxic induction therapy as used for decades or less-intensive hypomethylating therapy. The year 2017, however, witnessed US Food and Drug Administration approvals of midostaurin, enasidenib, gemtuzumab ozogamicin and CPX-351 for AML patients, with many other promising agents currently in clinical trials. This review discusses these options, highlights unanswered questions regarding optimal combinations and proposes some suggested approaches for the personalization of initial therapy for AML patients.
Collapse
Affiliation(s)
- Christin B DeStefano
- Laboratory of Myeloid Malignancies, National Institutes of Health, Bethesda, MD, USA Department of Hematology, MedStar Washington Cancer Institute, Washington, DC, USA
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10-CRC, Room 5-5130, 10 Center Drive, Bethesda, MD 20814-1476, USA
| |
Collapse
|
25
|
Prognostic and diagnostic potential of isocitrate dehydrogenase 1 in esophageal squamous cell carcinoma. Oncotarget 2018; 7:86148-86160. [PMID: 27863386 PMCID: PMC5349903 DOI: 10.18632/oncotarget.13351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
We aimed to investigate the pattern of expression and clinical significance of isocitrate dehydrogenase 1(IDH1) in esophageal squamous cell carcinoma (ESCC). The IDH1 expression was determined by quantitative real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis using 38 pairs of frozen tissues. Enzyme-linked immunosorbent assay was employed to measure 67 pairs of serum samples from patients and their controls to evaluate its diagnostic value. Immunohistochemistry analysis of 111 formalin-fixed paraffin embedded tissue samples was conducted for explaining its prognostic value. After shRNA transfection, CCK8 and clonal efficiency assays were carried on for verifying the function of IDH1 in vitro. Increased expression at mRNA (P < 0.001) and protein levels (immunohistochemistry: P < 0.001, Western blot analysis: P < 0.001) were observed. Similarly, the IDH1 expression in serum from patients with ESCC was significantly upregulated relative to that from healthy controls (P < 0.001). Kaplan–Meier curve indicated that IDH1 upregulation predicted worse overall survival (OS) and progression-free survival (PFS). Univariate and multivariate analyses identified IDH1 expression as an independent prognostic factor for OS and PFS. Furthermore, OD450 values and colony numbers were decreased in sh-IDH1 groups (all P < 0.05). In conclusion, IDH1 is upregulated in patients with ESCC and can be used as a good potential biomarker for diagnosis and prognosis.
Collapse
|
26
|
Ye D, Guan KL, Xiong Y. Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends Cancer 2018; 4:151-165. [PMID: 29458964 PMCID: PMC5884165 DOI: 10.1016/j.trecan.2017.12.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022]
Abstract
Isocitrate dehydrogenases (IDH1/2) are frequently mutated in multiple types of human cancer, resulting in neomorphic enzymes that convert α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). The current view on the mechanism of IDH mutation holds that 2-HG acts as an antagonist of α-KG to competitively inhibit the activity of α-KG-dependent dioxygenases, including those involved in histone and DNA demethylation. Recent studies have implicated 2-HG in activities beyond epigenetic modification. Multiple enzymes have been discovered that lack mutations but that can nevertheless produce 2-HG promiscuously under hypoxic or acidic conditions. Therapies are being developed to treat IDH-mutant cancers by targeting either the mutant IDH enzymes directly or the pathways sensitized by 2-HG.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Ullmark T, Montano G, Gullberg U. DNA and RNA binding by the Wilms' tumour gene 1 (WT1) protein +KTS and −KTS isoforms-From initial observations to recent global genomic analyses. Eur J Haematol 2018; 100:229-240. [DOI: 10.1111/ejh.13010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tove Ullmark
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| | - Giorgia Montano
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| | - Urban Gullberg
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| |
Collapse
|
28
|
The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia. Ann Hematol 2017; 96:1983-1991. [PMID: 29090344 DOI: 10.1007/s00277-017-3161-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/22/2017] [Indexed: 12/19/2022]
Abstract
For decades, researchers have looked into the pathophysiology of acute myeloid leukemia (AML). With the advances in molecular techniques, the two-hit hypothesis was replaced by a multi-hit model, which also emphasizes the importance of aberrant epigenetic regulation in the pathogenesis of AML. IDH1 and IDH2 are two isoforms of isocitrate dehydrogenase that perform crucial roles in cellular metabolism. Somatic mutations in either of these two genes impart a neomorphic enzymatic activity upon the encoded enzymes resulting in the ability to convert α-ketoglutarate (αKG) into the oncometabolite R2-hydroxyglutarate (R2-HG), which can competitively inhibit multiple αKG-dependent dioxygenases. Inhibition of various classes of αKG-dependent dioxygenases results in dramatic epigenetic changes in hematopoietic cells, which has been found to directly impair differentiation. In addition to a global dysregulation of gene expression, other mechanisms have been described through which R2-HG promotes leukemic transformation including the induction of B cell lymphoma 2 dependency and stimulation of the EglN family of prolyl 4-hydroxylases (EglN). Due to the fact that mutations in IDH1 and IDH2 are acquired early during AML clonal evolution as well as because these mutations tend to remain stable during AML progression, the pharmaceutical industry has prompted the development of specific mutant IDH enzyme inhibitors. More recently, the FDA approved the first mutant IDH2 inhibitor, enasidenib (AG-221), for patients with relapsed or refractory IDH2-mutated AML (RR-AML). This has brought a lot of excitement to researchers, clinicians, and patients, especially because the treatment of AML remains challenging and is still associated with a high mortality.
Collapse
|
29
|
Al-Khallaf H. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci 2017; 7:37. [PMID: 28785398 PMCID: PMC5543436 DOI: 10.1186/s13578-017-0165-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 01/31/2023] Open
Abstract
Isocitrate dehydrogenases play important roles in cellular metabolism and cancer. This review will discuss how the roles of isoforms 1 and 2 in normal cell and cancer metabolism are distinct from those of isoform 3. It will also explain why, unlike 1 and 2, mutations in isoform 3 in tumor are not likely to be driver ones. A model explaining two important features of isocitrate dehydrogenases 1 and 2 mutations, their dominant negative effect and their mutual exclusivity, will be provided. The importance of targeting these mutations and the possibility of augmenting such therapy by targeting other cancer-related pathways will also be discussed.
Collapse
Affiliation(s)
- Hamoud Al-Khallaf
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, 6830 Ammar Bin Thabit St, Al Muraikabat, Dammam, 32253 Saudi Arabia
| |
Collapse
|
30
|
Nguyen TB, Sakata-Yanagimoto M, Asabe Y, Matsubara D, Kano J, Yoshida K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Izutsu K, Nakamura N, Takeuchi K, Miyoshi H, Ohshima K, Minowa T, Ogawa S, Noguchi M, Chiba S. Identification of cell-type-specific mutations in nodal T-cell lymphomas. Blood Cancer J 2017; 7:e516. [PMID: 28157189 PMCID: PMC5301031 DOI: 10.1038/bcj.2016.122] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Recent genetic analysis has identified frequent mutations in ten-eleven translocation 2 (TET2), DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 2 (IDH2) and ras homolog family member A (RHOA) in nodal T-cell lymphomas, including angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified. We examined the distribution of mutations in these subtypes of mature T-/natural killer cell neoplasms to determine their clonal architecture. Targeted sequencing was performed for 71 genes in tumor-derived DNA of 87 cases. The mutations were then analyzed in a programmed death-1 (PD1)-positive population enriched with tumor cells and CD20-positive B cells purified by laser microdissection from 19 cases. TET2 and DNMT3A mutations were identified in both the PD1+ cells and the CD20+ cells in 15/16 and 4/7 cases, respectively. All the RHOA and IDH2 mutations were confined to the PD1+ cells, indicating that some, including RHOA and IDH2 mutations, being specific events in tumor cells. Notably, we found that all NOTCH1 mutations were detected only in the CD20+ cells. In conclusion, we identified both B- as well as T-cell-specific mutations, and mutations common to both T and B cells. These findings indicate the expansion of a clone after multistep and multilineal acquisition of gene mutations.
Collapse
Affiliation(s)
- T B Nguyen
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam.,Stem Cell Transplantation Zone, Blood Transfusion Hematology Hospital, Ho Chi Minh City, Vietnam
| | - M Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Y Asabe
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - D Matsubara
- Department of Integrative Pathology, Jichii Medical University, Shimotsuke, Tochigi, Japan
| | - J Kano
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - K Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Shiraishi
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - K Chiba
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - H Tanaka
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - S Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - K Izutsu
- Department of Hematology, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - N Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - K Takeuchi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - H Miyoshi
- Department of Pathology, Kurume University, Kurume, Fukuoka, Japan
| | - K Ohshima
- Department of Pathology, Kurume University, Kurume, Fukuoka, Japan
| | - T Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - S Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - S Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| |
Collapse
|
31
|
Sensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletion. Cell Death Dis 2016; 7:e2516. [PMID: 27929539 PMCID: PMC5261010 DOI: 10.1038/cddis.2016.411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
It is established that hematopoietic stem cells (HSC) in the hypoxic bone marrow have adapted their metabolism to oxygen-limiting conditions. This adaptation includes suppression of mitochondrial activity, induction of anerobic glycolysis, and activation of hypoxia-inducible transcription factor 1α (Hif1α)-dependent gene expression. During progression of hematopoiesis, a metabolic switch towards mitochondrial oxidative phosphorylation is observed, making this organelle essential for determining cell fate choice in bone marrow. However, given that HSC metabolism is essentially oxygen-independent, it is still unclear whether functional mitochondria are absolutely required for their survival. To assess the actual dependency of these undifferentiated cells on mitochondrial function, we have performed an analysis of the hematopoiesis in a mouse mutant, named SDHD-ESR, with inducible deletion of the mitochondrial protein-encoding SdhD gene. This gene encodes one of the subunits of the mitochondrial complex II (MCII). In this study, we demonstrate that, in contrast to what has been previously established, survival of HSC, and also myeloid and B-lymphoid progenitors, depends on proper mitochondrial activity. In addition, gene expression analysis of these hematopoietic lineages in SDHD-ESR mutants calls into question the proposed activation of Hif1α in response to MCII dysfunction.
Collapse
|
32
|
Yoshimi N, Futamura T, Bergen SE, Iwayama Y, Ishima T, Sellgren C, Ekman CJ, Jakobsson J, Pålsson E, Kakumoto K, Ohgi Y, Yoshikawa T, Landén M, Hashimoto K. Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Mol Psychiatry 2016; 21:1504-1510. [PMID: 26782057 PMCID: PMC5078854 DOI: 10.1038/mp.2015.217] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Although evidence for mitochondrial dysfunction in the pathogenesis of bipolar disorder (BD) has been reported, the precise biological basis remains unknown, hampering the search for novel biomarkers. In this study, we performed metabolomics of cerebrospinal fluid (CSF) from male BD patients (n=54) and age-matched male healthy controls (n=40). Subsequently, post-mortem brain analyses, genetic analyses, metabolomics of CSF samples from rats treated with lithium or valproic acid were also performed. After multivariate logistic regression, isocitric acid (isocitrate) levels were significantly higher in the CSF from BD patients than healthy controls. Furthermore, gene expression of two subtypes (IDH3A and IDH3B) of isocitrate dehydrogenase (IDH) in the dorsolateral prefrontal cortex from BD patients was significantly lower than that of controls, although the expression of other genes including, aconitase (ACO1, ACO2), IDH1, IDH2 and IDH3G, were not altered. Moreover, protein expression of IDH3A in the cerebellum from BD patients was higher than that of controls. Genetic analyses showed that IDH genes (IDH1, IDH2, IDH3A, IDH3B) and ACO genes (ACO1, ACO2) were not associated with BD. Chronic (4 weeks) treatment with lithium or valproic acid in rats did not alter CSF levels of isocitrate, and mRNA levels of Idh3a, Idh3b, Aco1 and Aco2 genes in the rat brain. These findings suggest that abnormality in the metabolism of isocitrate by IDH3A in the mitochondria plays a key role in the pathogenesis of BD, supporting the mitochondrial dysfunction hypothesis of BD. Therefore, IDH3 in the citric acid cycle could potentially be a novel therapeutic target for BD.
Collapse
Affiliation(s)
- N Yoshimi
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan,Qs' Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - T Futamura
- Qs' Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - S E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Y Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - T Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - C Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - C J Ekman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Jakobsson
- Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - E Pålsson
- Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - K Kakumoto
- Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - Y Ohgi
- Qs' Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - T Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - M Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - K Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan,Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan. E-mail:
| |
Collapse
|
33
|
Carrabba MG, Tavel L, Oliveira G, Forcina A, Quilici G, Nardelli F, Tresoldi C, Ambrosi A, Ciceri F, Bernardi M, Vago L, Musco G. Integrating a prospective pilot trial and patient-derived xenografts to trace metabolic changes associated with acute myeloid leukemia. J Hematol Oncol 2016; 9:115. [PMID: 27793157 PMCID: PMC5086061 DOI: 10.1186/s13045-016-0346-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/18/2016] [Indexed: 11/30/2022] Open
Abstract
Despite the considerable progress in understanding the molecular bases of acute myeloid leukemia (AML), new tools to link disease biology to the unpredictable patient clinical course are still needed. Herein, high-throughput metabolomics, combined with the other “-omics” disciplines, holds promise in identifying disease-specific and clinically relevant features. In this study, we took advantage of nuclear magnetic resonance (NMR) to trace AML-associated metabolic trajectory employing two complementary strategies. On the one hand, we performed a prospective observational clinical trial to identify metabolic changes associated with blast clearance during the first two cycles of intensive chemotherapy in nine adult patients. On the other hand, to reduce the intrinsic variability associated with human samples and AML genetic heterogeneity, we analyzed the metabolic changes in the plasma of immunocompromised mice upon engraftment of primary human AML blasts. Combining the two longitudinal approaches, we narrowed our screen to seven common metabolites, for which we observed a mirror-like trajectory in mice and humans, tracing AML progression and remission, respectively. We interpreted this set of metabolites as a dynamic fingerprint of AML evolution. Overall, these NMR-based metabolomic data, to be consolidated in larger cohorts and integrated in more comprehensive system biology approaches, hold promise for providing valuable and non-redundant information on the systemic effects of leukemia.
Collapse
Affiliation(s)
- Matteo G Carrabba
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Laurette Tavel
- Biomolecular Nuclear Magnetic Resonance Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Oliveira
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Forcina
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giacomo Quilici
- Biomolecular Nuclear Magnetic Resonance Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Nardelli
- Biomolecular Nuclear Magnetic Resonance Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Ambrosi
- Center for Statistics in Biomedical Sciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| | - Massimo Bernardi
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Luca Vago
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
34
|
Jain A, Javle M. Molecular profiling of biliary tract cancer: a target rich disease. J Gastrointest Oncol 2016; 7:797-803. [PMID: 27747093 DOI: 10.21037/jgo.2016.09.01] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biliary tract cancers (BTCs) are relatively uncommon orphan tumors that have an aggressive disease course and a poor clinical outcome. Surgery is the only curative treatment, but most patients present with advanced disease and therefore have a limited survival. Gemcitabine and cisplatin based chemotherapy has been the only widely accepted standard systemic therapy regimen in these patients but these tumors can be chemoresistant, further complicating their management. In recent times, there has been considerable research in the genetics of BTC and with the advent of new, advanced technologies like next-generation sequencing (NGS) we are achieving a greater understanding of its disease biology. With the help of NGS, we have now been able to identify actionable mutations such as in the isocitrate dehydrogenase 1 (IDH1), FGFR2, BRAF and HER2/neu genes for targeted therapeutics and correlate the genetic variations with distinct clinical prognoses. This recent genetic information has the potential to make precision medicine a part of routine clinical practice for the management of BTC patients.
Collapse
Affiliation(s)
- Apurva Jain
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse. Front Med 2016; 9:412-20. [PMID: 26482067 DOI: 10.1007/s11684-015-0423-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
Genetic mutations are considered to drive the development of acute myeloid leukemia (AML). With therapid progress in sequencing technologies, many newly reported genes that are recurrently mutated in AML have been found to govern the initiation and relapse of AML. These findings suggest the need to distinguish the driver mutations, especially the most primitive single mutation, from the subsequent passenger mutations. Recent research on DNA methyltransferase 3A (DNMT3A) mutations provides the first proof-of-principle investigation on the identification of preleukemic stem cells (pre-LSCs) in AML patients. Although DNMT3A mutations alone may only transform hematopoietic stem cells into pre-LSCs without causing the full-blown leukemia, the function of this driver mutation appear to persist from AML initiation up to relapse. Therefore, identifying and targeting preleukemic mutations, such as DNMT3A mutations, in AML is a promising strategy for treatment and reduction of relapse risk.
Collapse
|
36
|
Ball B, Zeidan A, Gore SD, Prebet T. Hypomethylating agent combination strategies in myelodysplastic syndromes: hopes and shortcomings. Leuk Lymphoma 2016; 58:1022-1036. [PMID: 27654579 DOI: 10.1080/10428194.2016.1228927] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The hypomethylating agents (HMA) azacitidine and decitabine are both approved by the FDA for the treatment of myelodysplastic syndromes (MDS). Although heralded as a significant advancement, HMA lead to responses in less than half of patients and for those that respond most will relapse. As such, there is a crucial need to improve frontline therapy approaches. One promising strategy involves combining azacitidine or decitabine with investigational or existing therapies with the goal of achieving synergistic activity and better patient outcomes. The purpose of this paper is to critically review the efficacy and safety of reported HMA-based combination regimens in patients with higher-risk MDS.
Collapse
Affiliation(s)
- Brian Ball
- a Department of Medicine (Hematology) , Yale School of Medicine , New Haven , CT , USA
| | - Amer Zeidan
- a Department of Medicine (Hematology) , Yale School of Medicine , New Haven , CT , USA
| | - Steven D Gore
- a Department of Medicine (Hematology) , Yale School of Medicine , New Haven , CT , USA
| | - Thomas Prebet
- a Department of Medicine (Hematology) , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
37
|
Li S, Mason CE, Melnick A. Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet Dev 2016; 36:100-6. [PMID: 27162099 DOI: 10.1016/j.gde.2016.03.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
Abstract
Genetic and epigenetic heterogeneity is emerging as a fundamental property of human cancers. Reflecting the genesis of tumors as an evolutionary process driven by clonal selection. The complexity of clonal architecture has been known for many years in the setting of acute myeloid leukemia (AML), based on karyotyping studies. However the true complexity of AMLs is only now being understood thanks to in depth genome sequencing studies in humans, which reveal that heterogeneity is a multilayered and involves not only the genome but also the epigenome. Here, we review recent advances in genetic and epigenetic heterogeneity and clonal dynamics in AML and their relevance to biology, clinical outcomes and therapeutic implications. Special attention is focused on somatic mutations affecting regulators of cytosine methylation, since these tend to occur early in disease evolution, reprogram the epigenome of hematopoietic stem cells, and are linked to unfavorable outcome.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA; The Feil Family Brain and Mind Research Institute (BMRI), New York, NY, USA.
| | - Ari Melnick
- Department of Medicine and Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
38
|
Poinsignon V, Mercier L, Nakabayashi K, David MD, Lalli A, Penard-Lacronique V, Quivoron C, Saada V, De Botton S, Broutin S, Paci A. Quantitation of isocitrate dehydrogenase (IDH)-induced D and L enantiomers of 2-hydroxyglutaric acid in biological fluids by a fully validated liquid tandem mass spectrometry method, suitable for clinical applications. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:290-297. [PMID: 27131892 DOI: 10.1016/j.jchromb.2016.04.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/04/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
A recent update of the hallmarks of cancer includes metabolism with deregulating cellular energetics. Activating mutations in isocitrate dehydrogenase (IDH) metabolic enzymes leading to the abnormal accumulation of 2-hydroxyglutaric acid (2-HGA) have been described in hematologic malignancies and solid tumours. The diagnostic value of 2-HGA levels in blood to identify IDH mutations and its prognostic significance have been reported. We developed a liquid chromatography tandem mass spectrometry method allowing a rapid, accurate and precise simultaneous quantification of both L and D enantiomers of 2-HGA in blood samples from acute myeloid leukaemia (AML) patients, suitable for clinical applications. The method was also develop for preclinical applications from cellular and tissues samples. Deuterated (R,S)-2-hydroxyglutaric acid, disodium salt was used as internal standard and added to samples before a solid phase extraction on Phenomenex STRATA™-XL-A (200mg-3mL) 33μm cartridges. A derivatization step with (+)- o,o'-diacetyl-l-tartaric anhydride permitted to separate the two resulting diastereoisomers without chiral stationary phase, on a C18 column combined to a Xevo TQ-MS Waters mass spectrometer with an electrospray ionization (ESI) source. This method allows standard curves to be linear over the range 0.34-135.04μM with r(2) values>0.999 and low matrix effects (<11.7%). This method, which was validated according to current EMA guidelines, is accurate between-run (<3.1%) and within-run (<7.9%) and precise between-run (<5.3CV%) and within-run (<6.2CV%), and is suitable for clinical and preclinical applications.
Collapse
Affiliation(s)
- Vianney Poinsignon
- Gustave Roussy Cancer Campus Grand Paris, Service de Pharmacologie, Département de Biologie et Pathologie Médicales, Villejuif 94805, France
| | - Lionel Mercier
- Gustave Roussy Cancer Campus Grand Paris, Service de Pharmacologie, Département de Biologie et Pathologie Médicales, Villejuif 94805, France
| | | | - Muriel D David
- INSERM U 1170, Institut Gustave Roussy, Villejuif 94805, France
| | - Alexandre Lalli
- Gustave Roussy Cancer Campus Grand Paris, Service de Pharmacologie, Département de Biologie et Pathologie Médicales, Villejuif 94805, France
| | | | - Cyril Quivoron
- INSERM U 1170, Institut Gustave Roussy, Villejuif 94805, France
| | - Véronique Saada
- INSERM U 1170, Institut Gustave Roussy, Villejuif 94805, France
| | | | - Sophie Broutin
- Gustave Roussy Cancer Campus Grand Paris, Service de Pharmacologie, Département de Biologie et Pathologie Médicales, Villejuif 94805, France
| | - Angelo Paci
- Gustave Roussy Cancer Campus Grand Paris, Service de Pharmacologie, Département de Biologie et Pathologie Médicales, Villejuif 94805, France; Université Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Centre National de la Recherche Scientifique (CNRS), Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy Cancer Campus Grand Paris, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France.
| |
Collapse
|
39
|
Admoni-Elisha L, Nakdimon I, Shteinfer A, Prezma T, Arif T, Arbel N, Melkov A, Zelichov O, Levi I, Shoshan-Barmatz V. Novel Biomarker Proteins in Chronic Lymphocytic Leukemia: Impact on Diagnosis, Prognosis and Treatment. PLoS One 2016; 11:e0148500. [PMID: 27078856 PMCID: PMC4831809 DOI: 10.1371/journal.pone.0148500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL) that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS) analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1), regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in CLL patients, as revealed from LC-HR-MS/MS, we could distinguish between patients in a stable disease state and those who would be later transferred to anti-cancer treatments. The over-expressed proteins can thus serve as potential biomarkers for early diagnosis, prognosis, new targets for CLL therapy, and treatment guidance of CLL, forming the basis for personalized therapy.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Chromatography, Liquid
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukocytes, Mononuclear/metabolism
- Male
- Prognosis
- Proteome/analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tandem Mass Spectrometry/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee Admoni-Elisha
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itay Nakdimon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Prezma
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Melkov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ori Zelichov
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itai Levi
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
40
|
Richarson AD, Scott DA, Zagnitko O, Aza-Blanc P, Chang CC, Russler-Germain DA. Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation. eLife 2016; 5:e10860. [PMID: 26971564 PMCID: PMC4805546 DOI: 10.7554/elife.10860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from “IDH mutation impairs histone demethylation and results in a block to cell differentiation” by Lu and colleagues, published in Nature in 2012 (Lu et al., 2012). The experiments that will be replicated are those reported in Figures 1B, 2A, 2B, 2D and 4D. Lu and colleagues demonstrated that expression of mutant forms of IDH1 or IDH2 caused global increases in histone methylation and increased levels of 2 hydroxyglutarate (Figure 1B). This was correlated with a block in differentiation (Figures 2A, B and D). This effect appeared to be mediated by the histone demethylase KDM4C (Figure 4D). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Scienceand Science Exchange, and the results of the replications will be published by eLife. DOI:http://dx.doi.org/10.7554/eLife.10860.001
Collapse
Affiliation(s)
- Adam D Richarson
- Cancer Metabolism Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - David A Scott
- Cancer Metabolism Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Olga Zagnitko
- Cancer Metabolism Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Pedro Aza-Blanc
- Functional Genomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Chih-Cheng Chang
- Functional Genomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | | | | |
Collapse
|
41
|
Smith LK, Rao AD, McArthur GA. Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma. Pharmacol Res 2016; 107:42-47. [PMID: 26924126 DOI: 10.1016/j.phrs.2016.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming is a recognized hallmark of cancer. In order to support continued proliferation and growth, tumor cells must metabolically adapt to balance their bioenergetic and biosynthetic needs. To achieve this, cancer cells switch from mitochondrial oxidative phosphorylation to predominantly rely on glycolysis, a process known as the "Warburg effect". The BRAF oncogene has recently emerged as a critical regulator of this process in melanoma, bringing to the fore the importance of metabolic reprogramming in the pathogenesis and treatment of metastatic melanoma. In this review, we summarize our current understanding of oncogenic reprogramming of metabolism in BRAF and NRAS mutant melanoma, and highlight emerging evidence supporting a metabolic basis for MAPK pathway inhibitor resistance and metabolic vulnerabilities that may be exploited to overcome this.
Collapse
Affiliation(s)
- Lorey K Smith
- Molecular Oncology Laboratory, Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Aparna D Rao
- Molecular Oncology Laboratory, Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Grant A McArthur
- Molecular Oncology Laboratory, Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia; Translational Research Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Australia; Department of Pathology, University of Melbourne, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Australia.
| |
Collapse
|
42
|
Caino MC, Altieri DC. Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin Cancer Res 2015; 22:540-5. [PMID: 26660517 DOI: 10.1158/1078-0432.ccr-15-0460] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/19/2015] [Indexed: 01/22/2023]
Abstract
Small-molecule inhibitors of the phosphoinositide 3-kinase (PI3K), Akt, and mTOR pathway currently in the clinic produce a paradoxical reactivation of the pathway they are intended to suppress. Furthermore, fresh experimental evidence with PI3K antagonists in melanoma, glioblastoma, and prostate cancer shows that mitochondrial metabolism drives an elaborate process of tumor adaptation culminating with drug resistance and metastatic competency. This is centered on reprogramming of mitochondrial functions to promote improved cell survival and to fuel the machinery of cell motility and invasion. Key players in these responses are molecular chaperones of the Hsp90 family compartmentalized in mitochondria, which suppress apoptosis via phosphorylation of the pore component, Cyclophilin D, and enable the subcellular repositioning of active mitochondria to membrane protrusions implicated in cell motility. An inhibitor of mitochondrial Hsp90s in preclinical development (gamitrinib) prevents adaptive mitochondrial reprogramming and shows potent antitumor activity in vitro and in vivo. Other therapeutic strategies to target mitochondria for cancer therapy include small-molecule inhibitors of mutant isocitrate dehydrogenase (IDH) IDH1 (AG-120) and IDH2 (AG-221), which opened new therapeutic prospects for patients with high-risk acute myelogenous leukemia (AML). A second approach of mitochondrial therapeutics focuses on agents that elevate toxic ROS levels from a leaky electron transport chain; nevertheless, the clinical experience with these compounds, including a quinone derivative, ARQ 501, and a copper chelator, elesclomol (STA-4783) is limited. In light of this evidence, we discuss how best to target a resurgence of mitochondrial bioenergetics for cancer therapy.
Collapse
Affiliation(s)
- M Cecilia Caino
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
43
|
Wang ML, Bailey NG. Acute Myeloid Leukemia Genetics: Risk Stratification and Implications for Therapy. Arch Pathol Lab Med 2015; 139:1215-23. [DOI: 10.5858/arpa.2015-0203-ra] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute myeloid leukemia is a category of diseases with a common aggressive clinical presentation but with a prognosis and management that is dependent upon the underlying genetic characteristics of the neoplasm. The purpose of this brief review is to update the practicing pathologist on the current standard of care in the genetic evaluation of acute myeloid leukemia and to highlight future directions in the classification, genetic assessment, and management of these devastating diseases.
Collapse
Affiliation(s)
- Michael L. Wang
- From the Department of Pathology, University of Michigan, Ann Arbor
| | | |
Collapse
|
44
|
Haladyna JN, Yamauchi T, Neff T, Bernt KM. Epigenetic modifiers in normal and malignant hematopoiesis. Epigenomics 2015; 7:301-20. [PMID: 25942537 DOI: 10.2217/epi.14.88] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genome scale sequencing in patients with cancer has revealed a lower frequency of genetic aberrations in hematologic disorders compared with most other malignancies, suggesting a prominent role for epigenetic mechanisms. In parallel, epigenetic modifiers that are altered in cancer play critical roles in normal hematopoietic development, influencing both self-renewal of hematopoietic stem cells and differentiation into the different lineages. In this review, we aim to compare the role of several key DNA or histone modifying enzymes and complexes in normal development and hematopoietic malignancies, including DNMT3A, TET2, IDH1, IDH2, MLL1, MLL4, DOT1L, PRC1/2 and WSHC1/NSD2/MMSET. Insights into their biological mechanisms led to the development of therapies designed to target mutant IDH1 and IDH2, DOT1L in MLL-rearranged leukemias and EZH2 in several cancer types including lymphomas. Inhibitors for these enzymes are currently in clinical trials.
Collapse
Affiliation(s)
- Jessica N Haladyna
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine & Children's Hospital Colorado, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
45
|
Evans B, Griner E. Registered report: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. eLife 2015; 4:e07420. [PMID: 26231040 PMCID: PMC4521140 DOI: 10.7554/elife.07420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/09/2015] [Indexed: 11/21/2022] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from 'Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases' by Xu and colleagues, published in Cancer Cell in 2011 (Xu et al., 2011). The key experiments being replicated include Supplemental Figure 3I, which demonstrates that transfection with mutant forms of IDH1 increases levels of 2-hydroxyglutarate (2-HG), Figures 3A and 8A, which demonstrate changes in histone methylation after treatment with 2-HG, and Figures 3D and 7B, which show that mutant IDH1 can effect the same changes as treatment with excess 2-HG. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.
Collapse
Affiliation(s)
- Brad Evans
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri, United States
| | - Erin Griner
- University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
46
|
Abstract
There is a pressing need to develop novel, mechanism-based therapeutic approaches that can be used to improve therapies for genetically defined tumor subtypes. Chan and colleagues have demonstrated recently that BCL-2 inhibitors can target IDH1/2 mutant cancers through a mutant-specific dependency in metabolic regulation.
Collapse
Affiliation(s)
- Elodie Pronier
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
| |
Collapse
|
47
|
Scourzic L, Mouly E, Bernard OA. TET proteins and the control of cytosine demethylation in cancer. Genome Med 2015; 7:9. [PMID: 25632305 PMCID: PMC4308928 DOI: 10.1186/s13073-015-0134-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The discovery that ten-eleven translocation (TET) proteins are α-ketoglutarate-dependent dioxygenases involved in the conversion of 5-methylcytosines (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine and 5-carboxycytosine has revealed new pathways in the cytosine methylation and demethylation process. The description of inactivating mutations in TET2 suggests that cellular transformation is in part caused by the deregulation of this 5-mC conversion. The direct and indirect deregulation of methylation control through mutations in DNA methyltransferase and isocitrate dehydrogenase (IDH) genes, respectively, along with the importance of cytosine methylation in the control of normal and malignant cellular differentiation have provided a conceptual framework for understanding the early steps in cancer development. Here, we review recent advances in our understanding of the cytosine methylation cycle and its implication in cellular transformation, with an emphasis on TET enzymes and 5-hmC. Ongoing clinical trials targeting the activity of mutated IDH enzymes provide a proof of principle that DNA methylation is targetable, and will trigger further therapeutic applications aimed at controlling both early and late stages of cancer development.
Collapse
Affiliation(s)
- Laurianne Scourzic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| | - Enguerran Mouly
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| | - Olivier A Bernard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| |
Collapse
|
48
|
Carneiro BA, Altman JK, Kaplan JB, Ossenkoppele G, Swords R, Platanias LC, Giles FJ. Targeted therapy of acute myeloid leukemia. Expert Rev Anticancer Ther 2015; 15:399-413. [PMID: 25623136 DOI: 10.1586/14737140.2015.1004316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of the genetic underpinnings of acute myeloid leukemia are rapidly being translated into novel treatment strategies. Genomic profiling has highlighted the importance of the epigenetic machinery for leukemogenesis by identifying recurrent somatic mutations involving chromatin-modifier proteins. These genetic alterations function as dynamic regulators of gene expression and involve DNA-methyltransferase 3A, methyltransferase DOT1L, enhancer of zeste homologue 2, isocitrate dehydrogenases 1 and 2 and bromodomain-containing proteins. New therapeutic targets are also emerging from further delineation of cell signaling networks in acute myeloid leukemia blasts mediated by PIM kinases, polo-like kinase 1, cell surface protein CD98 and nucleocytoplasmic shuttling receptors, among others. Early results of targeted therapies directed at these molecular mechanisms are discussed in this review and their potential to improve the outcomes of patients by allowing the use of more effective and less toxic treatments.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Northwestern Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, 645 N Michigan Ave. Suite 1006, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
DeLaBarre B, Hurov J, Cianchetta G, Murray S, Dang L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. CHEMISTRY & BIOLOGY 2014; 21:1143-61. [PMID: 25237859 DOI: 10.1016/j.chembiol.2014.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/03/2014] [Accepted: 08/12/2014] [Indexed: 01/14/2023]
Abstract
Cancer cells must carefully regulate their metabolism to maintain growth and division under varying nutrient and oxygen levels. Compelling data support the investigation of numerous enzymes as therapeutic targets to exploit metabolic vulnerabilities common to several cancer types. We discuss the rationale for developing such drugs and review three targets with central roles in metabolic pathways crucial for cancer cell growth: pyruvate kinase muscle isozyme splice variant 2 (PKM2) in glycolysis, glutaminase in glutaminolysis, and mutations in isocitrate dehydrogenase 1 and 2 isozymes (IDH1/2) in the tricarboxylic acid cycle. These targets exemplify the drugging approach to cancer metabolism, with allosteric modulation being the common theme. The first glutaminase and mutant IDH1/2 inhibitors have entered clinical testing, and early data are promising. Cancer metabolism provides a wealth of novel targets, and targeting allosteric sites promises to yield selective drugs with the potential to transform clinical outcomes across many cancer types.
Collapse
Affiliation(s)
- Byron DeLaBarre
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | - Jonathan Hurov
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | | | - Stuart Murray
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | - Lenny Dang
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Nakajima H, Kunimoto H. TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci 2014; 105:1093-9. [PMID: 25040794 PMCID: PMC4462392 DOI: 10.1111/cas.12484] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten-eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylation. TET genes hydroxylate 5-methylcytosine to 5-hydroxymethylcytosine, which is then converted to unmodified cytosine through multiple mechanisms. Somatic mutations of the TET2 gene were reported in a variety of human hematological malignancies such as leukemia, myelodysplastic syndrome, and malignant lymphoma, suggesting a critical role for TET2 in hematopoiesis. The importance of the TET-mediated cytosine demethylation pathway is also underscored by a recurrent mutation of isocitrate dehydrogenase 1 (IDH1) and IDH2 in hematological malignancies, whose mutation inhibits TET function through a novel oncometabolite, 2-hydroxyglutarate. Studies using mouse models revealed that TET2 is critical for the function of hematopoietic stem cells, and disruption of TET2 results in the expansion of multipotent as well as myeloid progenitors, leading to the accumulation of premalignant clones. In addition to cytosine demethylation, TET proteins are involved in chromatin modifications and other cellular processes through the interaction with O-linked β-N-acetylglucosamine transferase. In summary, TET2 is a critical regulator for hematopoietic stem cell homeostasis whose functional impairment leads to hematological malignancies. Future studies will uncover the whole picture of epigenetic and signaling networks wired with TET2, which will help to develop ways to intervene in cellular pathways dysregulated by TET2 mutations.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|