1
|
Iluz A, Maoz M, Lavi N, Charbit H, Or O, Olshinka N, Demma JA, Adileh M, Wygoda M, Blumenfeld P, Gliner-Ron M, Azraq Y, Moss J, Peretz T, Eden A, Zick A, Lavon I. Rapid Classification of Sarcomas Using Methylation Fingerprint: A Pilot Study. Cancers (Basel) 2023; 15:4168. [PMID: 37627196 PMCID: PMC10453223 DOI: 10.3390/cancers15164168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcoma classification is challenging and can lead to treatment delays. Previous studies used DNA aberrations and machine-learning classifiers based on methylation profiles for diagnosis. We aimed to classify sarcomas by analyzing methylation signatures obtained from low-coverage whole-genome sequencing, which also identifies copy-number alterations. DNA was extracted from 23 suspected sarcoma samples and sequenced on an Oxford Nanopore sequencer. The methylation-based classifier, applied in the nanoDx pipeline, was customized using a reference set based on processed Illumina-based methylation data. Classification analysis utilized the Random Forest algorithm and t-distributed stochastic neighbor embedding, while copy-number alterations were detected using a designated R package. Out of the 23 samples encompassing a restricted range of sarcoma types, 20 were successfully sequenced, but two did not contain tumor tissue, according to the pathologist. Among the 18 tumor samples, 14 were classified as reported in the pathology results. Four classifications were discordant with the pathological report, with one compatible and three showing discrepancies. Improving tissue handling, DNA extraction methods, and detecting point mutations and translocations could enhance accuracy. We envision that rapid, accurate, point-of-care sarcoma classification using nanopore sequencing could be achieved through additional validation in a diverse tumor cohort and the integration of methylation-based classification and other DNA aberrations.
Collapse
Affiliation(s)
- Aviel Iluz
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Myriam Maoz
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Nir Lavi
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Hanna Charbit
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Omer Or
- Orthopedic Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Noam Olshinka
- Orthopedic Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Jonathan Abraham Demma
- Surgical Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Mohammad Adileh
- Surgical Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Marc Wygoda
- Radiotherapy Institute, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Philip Blumenfeld
- Radiotherapy Institute, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Masha Gliner-Ron
- Radiology Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yusef Azraq
- Radiology Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Joshua Moss
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Tamar Peretz
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Amir Eden
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Aviad Zick
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Iris Lavon
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
2
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
3
|
Romani A, Zauli E, Zauli G, AlMesfer S, Al-Swailem S, Voltan R. MDM2 inhibitors-mediated disruption of mitochondrial metabolism: A novel therapeutic strategy for retinoblastoma. Front Oncol 2022; 12:1000677. [PMID: 36338723 PMCID: PMC9632280 DOI: 10.3389/fonc.2022.1000677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
MDM2 is the principal inhibitor of p53, and MDM2 inhibitors can disrupt the physical interaction between MDM2 and p53. The half-life of p53 is very short in normal cells and tissues, and an uncontrolled increase in p53 levels has potential harmful effects. It has been shown that p53 is frequently mutated in most cancers; however, p53 mutations are rare in retinoblastoma. Therefore, therapeutic strategies aimed at increasing the expression levels of wild-type p53 are attractive. In this minireview, we discuss the potential use of nutlin-3, the prototype small molecule inhibitor that disrupts the MDM2-p53 interaction, for the treatment of retinoblastoma. Although p53 has pleiotropic biological effects, the functions of p53 depend on its sub-cellular localization. In the nucleus, p53 induces the transcription of a vast array of genes, while in mitochondria, p53 regulates mitochondrial metabolism. This review also discusses the relative contribution of p53-mediated gene transcription and mitochondrial perturbation for retinoblastoma treatment.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
- *Correspondence: Rebecca Voltan,
| |
Collapse
|
4
|
The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022; 217:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (MDM2), an E3 ubiquitin ligase and the primary negative regulator of the tumor suppressor p53, cooperates with its structural homolog MDM4/MDMX to control intracellular p53 level. In turn, overexpression of p53 upregulates and forms an autoregulatory feedback loop with MDM2. The MDM2-p53 axis plays a pivotal role in modulating cell cycle control and apoptosis. MDM2 itself is regulated by the PI3K-AKT and RB-E2F-ARF pathways. While amplification of the MDM2 gene or overexpression of MDM2 (due to MDM2 SNP T309G, for instance) is associated with various malignancies, numerous studies have shown that MDM2/p53 alterations may also play a part in the pathogenetic process of certain ocular disorders (Fig. 1). These include cancers (retinoblastoma, uveal melanoma), fibrocellular proliferative diseases (proliferative vitreoretinopathy, pterygium), neovascular diseases, degenerative diseases (cataract, primary open-angle glaucoma, age-related macular degeneration) and infectious/inflammatory diseases (trachoma, uveitis). In addition, MDM2 is implicated in retinogenesis and regeneration after optic nerve injury. Anti-MDM2 therapy has shown potential as a novel approach to treating these diseases. Despite major safety concerns, there are high expectations for the clinical value of reformative MDM2 inhibitors. This review summarizes important findings about the role of MDM2 in ocular pathologies and provides an overview of recent advances in treating these diseases with anti-MDM2 therapies.
Collapse
|
5
|
Şen Ö, Marino A, Pucci C, Ciofani G. Modulation of anti-angiogenic activity using ultrasound-activated nutlin-loaded piezoelectric nanovectors. Mater Today Bio 2022; 13:100196. [PMID: 35005600 PMCID: PMC8717239 DOI: 10.1016/j.mtbio.2021.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis plays a fundamental role in tumor development, as it is crucial for tumor progression, metastasis development, and invasion. In this view, anti-angiogenic therapy has received considerable attention in several cancer types in order to inhibit tumor vascularization, and the progress of nanotechnology offers opportunities to target and release anti-angiogenic agents in specific diseased areas. In this work, we showed that the angiogenic behavior of human cerebral microvascular endothelial cells can be inhibited by using nutlin-3a-loaded ApoE-functionalized polymeric piezoelectric nanoparticles, which can remotely respond to ultrasound stimulation. The anti-angiogenic effect, derived from the use of chemotherapy and chronic piezoelectric stimulation, leads to disruption of tubular vessel formation, decreased cell migration and invasion, and inhibition of angiogenic growth factors in the presence of migratory cues released by the tumor cells. Overall, the proposed use of remotely activated piezoelectric nanoparticles could provide a promising approach to hinder tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| |
Collapse
|
6
|
Hennigs JK, Matuszcak C, Trepel M, Körbelin J. Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells 2021; 10:2712. [PMID: 34685692 PMCID: PMC8534745 DOI: 10.3390/cells10102712] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Forming the inner layer of the vascular system, endothelial cells (ECs) facilitate a multitude of crucial physiological processes throughout the body. Vascular ECs enable the vessel wall passage of nutrients and diffusion of oxygen from the blood into adjacent cellular structures. ECs regulate vascular tone and blood coagulation as well as adhesion and transmigration of circulating cells. The multitude of EC functions is reflected by tremendous cellular diversity. Vascular ECs can form extremely tight barriers, thereby restricting the passage of xenobiotics or immune cell invasion, whereas, in other organ systems, the endothelial layer is fenestrated (e.g., glomeruli in the kidney), or discontinuous (e.g., liver sinusoids) and less dense to allow for rapid molecular exchange. ECs not only differ between organs or vascular systems, they also change along the vascular tree and specialized subpopulations of ECs can be found within the capillaries of a single organ. Molecular tools that enable selective vascular targeting are helpful to experimentally dissect the role of distinct EC populations, to improve molecular imaging and pave the way for novel treatment options for vascular diseases. This review provides an overview of endothelial diversity and highlights the most successful methods for selective targeting of distinct EC subpopulations.
Collapse
Affiliation(s)
- Jan K. Hennigs
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Christiane Matuszcak
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany;
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
7
|
Chae JB, Jang H, Son C, Park CW, Choi H, Jin S, Lee HY, Lee H, Ryu JH, Kim N, Kim C, Chung H. Targeting senescent retinal pigment epithelial cells facilitates retinal regeneration in mouse models of age-related macular degeneration. GeroScience 2021; 43:2809-2833. [PMID: 34601706 DOI: 10.1007/s11357-021-00457-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/11/2021] [Indexed: 01/27/2023] Open
Abstract
Although age-related macular degeneration (AMD) is a multifactorial disorder with angiogenic, immune, and inflammatory components, the most common clinical treatment strategies are antiangiogenic therapies. However, these strategies are only applicable to neovascular AMD, which accounts for less than 20% of all AMD cases, and there are no FDA-approved drugs for the treatment of dry AMD, which accounts for ~ 80% of AMD cases. Here, we report that the elimination of senescent cells is a potential novel therapeutic approach for the treatment of all types of AMD. We identified senescent retinal pigment epithelium (RPE) cells in animal models of AMD and determined their contributions to retinal degeneration. We further confirmed that the clearance of senescent RPE cells with the MDM2-p53 inhibitor Nutlin-3a ameliorated retinal degeneration. These findings provide new insights into the use of senescent cells as a therapeutic target for the treatment of AMD.
Collapse
Affiliation(s)
- Jae-Byoung Chae
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Hyoik Jang
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Chanok Son
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Chul-Woo Park
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Huyeon Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Hyungwoo Lee
- Department of Ophthalmology, Konkuk University Medical Center, Seoul, South Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Chaekyu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Hyewon Chung
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea. .,Department of Ophthalmology, Konkuk University Medical Center, Seoul, South Korea.
| |
Collapse
|
8
|
Hennigs JK, Cao A, Li CG, Shi M, Mienert J, Miyagawa K, Körbelin J, Marciano DP, Chen PI, Roughley M, Elliott MV, Harper RL, Bill M, Chappell J, Moonen JR, Diebold I, Wang L, Snyder MP, Rabinovitch M. PPARγ-p53-Mediated Vasculoregenerative Program to Reverse Pulmonary Hypertension. Circ Res 2021; 128:401-418. [PMID: 33322916 PMCID: PMC7908816 DOI: 10.1161/circresaha.119.316339] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
RATIONALE In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of BMPR2 (bone morphogenetic protein type 2 receptor) via two downstream transcription factors, PPARγ (peroxisome proliferator-activated receptor gamma), and p53. OBJECTIVE We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ-p53 transcription factor complex in the pulmonary endothelium. METHODS AND RESULTS In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial and lung MV (microvascular) endothelial cells in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation sequencing and RNA-sequencing established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung endothelial cell survival, angiogenesis and DNA repair including, EPHA2 (ephrin type-A receptor 2), FHL2 (four and a half LIM domains protein 2), JAG1 (jagged 1), SULF2 (extracellular sulfatase Sulf-2), and TIGAR (TP53-inducible glycolysis and apoptosis regulator). Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in pulmonary artery endothelial cells (PAECs) subjected to oxidative stress. In endothelial cell-specific Bmpr2-knockout mice unable to stabilize p53 in endothelial cells under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN (apelin) and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAECs from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. CONCLUSIONS We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAECs downstream of dysfunctional BMPR2 to rehabilitate PAH PAECs, regenerate pulmonary microvessels, and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.
Collapse
Affiliation(s)
- Jan K. Hennigs
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pneumology & Center for Pulmonary Arterial Hypertension Hamburg
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aiqin Cao
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minyi Shi
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia Mienert
- Department of Pneumology & Center for Pulmonary Arterial Hypertension Hamburg
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kazuya Miyagawa
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob Körbelin
- Department of Pneumology & Center for Pulmonary Arterial Hypertension Hamburg
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David P. Marciano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pin-I Chen
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Roughley
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew V. Elliott
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca L. Harper
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bill
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James Chappell
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan-Renier Moonen
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Isabel Diebold
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Ilimaquinone inhibits neovascular age-related macular degeneration through modulation of Wnt/β-catenin and p53 pathways. Pharmacol Res 2020; 161:105146. [PMID: 32814173 DOI: 10.1016/j.phrs.2020.105146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Neovascular age-related macular degeneration (nAMD) is a common cause of irreversible vision loss in the elderly. Anti-vascular endothelial growth factor has been effective in treating pathological ocular neovascularization, but it has limitations including the need for repeated intraocular injections for the maintenance of therapeutic effects in most patients and poor or non-response to this agent in some patients. in vitro cellular studies were conducted using retinal pigment epithelial cell lines (ARPE-19 and hTERT-RPE1), human umbilical vein endothelial cells (HUVECs), and human umbilical vein smooth muscle cells (HUVSMCs). in vivo efficacy of ilimaquinone (IQ) was tested in laser-induced choroidal neovascularization mouse and rabbit models. Tissue distribution study was performed in male C57BL6/J mice. IQ, 4,9-friedodrimane-type sesquiterpenoid isolated from the marine sponge, repressed the expression of angiogenic/inflammatory factors and restored the expression of E-cadherin in retinal pigment epithelial cells by inhibiting the Wnt/β-catenin pathway. In addition, it selectively inhibited proliferation and tube formation of HUVECs by activating the p53 pathway. Topical and intraperitoneal administration of IQ significantly reduced choroidal neovascularization in rabbits and mice with laser-induced choroidal neovascularization. Notably, IQ by the oral route of exposure was highly permeable to the eyes and suppressed abnormal vascular leakage by downregulation of β-catenin and stabilization of p53 in vivo. Our findings demonstrate that IQ functions through regulation of p53 and Wnt/β-catenin pathways with conceivable advantages over existing cytokine-targeted anti-angiogenic therapies.
Collapse
|
10
|
Shen H, Zhang J, Wang C, Jain PP, Xiong M, Shi X, Lei Y, Chen S, Yin Q, Thistlethwaite PA, Wang J, Gong K, Yuan ZY, Yuan JXJ, Shyy JYJ. MDM2-Mediated Ubiquitination of Angiotensin-Converting Enzyme 2 Contributes to the Development of Pulmonary Arterial Hypertension. Circulation 2020; 142:1190-1204. [PMID: 32755395 PMCID: PMC7497891 DOI: 10.1161/circulationaha.120.048191] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II, a potent vasoconstrictor, to angiotensin-(1–7) and is also a membrane protein that enables coronavirus disease 2019 (COVID-19) infectivity. AMP-activated protein kinase (AMPK) phosphorylation of ACE2 enhances ACE2 stability. This mode of posttranslational modification of ACE2 in vascular endothelial cells is causative of a pulmonary hypertension (PH)–protective phenotype. The oncoprotein MDM2 (murine double minute 2) is an E3 ligase that ubiquitinates its substrates to cause their degradation. In this study, we investigated whether MDM2 is involved in the posttranslational modification of ACE2 through its ubiquitination of ACE2, and whether an AMPK and MDM2 crosstalk regulates the pathogenesis of PH. Methods: Bioinformatic analyses were used to explore E3 ligase that ubiquitinates ACE2. Cultured endothelial cells, mouse models, and specimens from patients with idiopathic pulmonary arterial hypertension were used to investigate the crosstalk between AMPK and MDM2 in regulating ACE2 phosphorylation and ubiquitination in the context of PH. Results: Levels of MDM2 were increased and those of ACE2 decreased in lung tissues or pulmonary arterial endothelial cells from patients with idiopathic pulmonary arterial hypertension and rodent models of experimental PH. MDM2 inhibition by JNJ-165 reversed the SU5416/hypoxia-induced PH in C57BL/6 mice. ACE2-S680L mice (dephosphorylation at S680) showed PH susceptibility, and ectopic expression of ACE2-S680L/K788R (deubiquitination at K788) reduced experimental PH. Moreover, ACE2-K788R overexpression in mice with endothelial cell–specific AMPKα2 knockout mitigated PH. Conclusions: Maladapted posttranslational modification (phosphorylation and ubiquitination) of ACE2 at Ser-680 and Lys-788 is involved in the pathogenesis of pulmonary arterial hypertension and experimental PH. Thus, a combined intervention of AMPK and MDM2 in the pulmonary endothelium might be therapeutically effective in PH treatment.
Collapse
Affiliation(s)
- Hui Shen
- Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou University, China (H.S., K.G.)
| | - Jiao Zhang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.).,Division of Cardiology, Department of Medicine (J.Z., J.Y.-J.S.), University of California, San Diego, La Jolla.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Chen Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.).,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Pritesh P Jain
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla
| | - Mingmei Xiong
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla.,Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China (M.X.)
| | | | - Yuyang Lei
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.).,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Qian Yin
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery (P.A.T.), University of California, San Diego, La Jolla
| | - Jian Wang
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China (J.W.)
| | - Kaizheng Gong
- Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou University, China (H.S., K.G.)
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.)
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine (J.Z., J.Y.-J.S.), University of California, San Diego, La Jolla
| |
Collapse
|
11
|
Rusiecki R, Witkowski J, Jaszczewska-Adamczak J. MDM2-p53 Interaction Inhibitors: The Current State-of-Art and Updated Patent Review (2010-Present). Recent Pat Anticancer Drug Discov 2020; 14:324-369. [DOI: 10.2174/1574892814666191022163540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Background:
Mouse Double Minute 2 protein (MDM2) is a cellular regulator of p53 tumor
suppressor (p53). Inhibition of the interaction between MDM2 and p53 proteins is a promising anticancer
therapy.
Objective:
This updated patent review is an attempt to compile the research and achievements of the
various researchers working on small molecule MDM2 inhibitors from 2010 to date. We provide an
outlook into the future for therapy based on MDM2 inhibition by presenting an overview of the most
relevant patents which have recently appeared in the literature.
Methods:
Literature and recent patents focusing on the anticancer potential of MDM2-p53 interaction
inhibitors and its applications have been analyzed. We put the main emphasis on the most perspective
compounds which are or were examined in clinical trials.
Results:
Literature data indicated that MDM2 inhibitors are therapeutically effective in specific types
of cancer or non-cancer diseases. A great number of patents and research work around new MDM2-
p53 interaction inhibitors, possible combinations, new indications, clinical regimens in previous years
prove that this targeted therapy is in the scope of interest for many business and academic research
groups.
Conclusion:
Novel MDM2 inhibitors thanks to higher potency and better ADME properties have
shown effectiveness in preclinical and clinical development however the final improvement of therapeutic
potential for MDM2 inhibitors might depend on the useful combination therapy and exploring
new cancer and non-cancer indications.
Collapse
Affiliation(s)
- Rafał Rusiecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Jakub Witkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | | |
Collapse
|
12
|
Zhou TE, Zhu T, Rivera JC, Omri S, Tahiri H, Lahaie I, Rouget R, Wirth M, Nattel S, Lodygensky G, Ferbeyre G, Nezhady M, Desjarlais M, Hamel P, Chemtob S. The Inability of the Choroid to Revascularize in Oxygen-Induced Retinopathy Results from Increased p53/miR-Let-7b Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2340-2356. [PMID: 31430465 DOI: 10.1016/j.ajpath.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Retinopathy of prematurity (ROP) is characterized by an initial retinal avascularization, followed by pathologic neovascularization. Recently, choroidal thinning has also been detected in children formerly diagnosed with ROP; a similar sustained choroidal thinning is observed in ROP models. But the mechanism underlying the lack of choroidal revascularization remains unclear and was investigated in an oxygen-induced retinopathy (OIR) model. In OIR, evidence of senescence was detected, preceded by oxidative stress in the choroid and the retinal pigment epithelium. This was associated with a global reduction of proangiogenic factors, including insulin-like growth factor 1 receptor (Igf1R). Coincidentally, tumor suppressor p53 was highly expressed in the OIR retinae. Curtailing p53 activity resulted in reversal of senescence, normalization of Igf1r expression, and preservation of choroidal integrity. OIR-induced down-regulation of Igf1r was mediated at least partly by miR-let-7b as i) let-7b expression was augmented throughout and beyond the period of oxygen exposure, ii) let-7b directly targeted Igf1r mRNA, and iii) p53 knock-down blunted let-7b expression, restored Igf1r expression, and elicited choroidal revascularization. Finally, restoration of Igf1r expression rescued choroid thickness. Altogether, this study uncovers a significant mechanism for defective choroidal revascularization in OIR, revealing a new role for p53/let-7b/IGF-1R axis in the retina. Future investigations on this (and connected) pathway could further our understanding of other degenerative choroidopathies, such as geographic atrophy.
Collapse
Affiliation(s)
- Tianwei E Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada.
| | - Tang Zhu
- Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - José C Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Houda Tahiri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Rouget
- Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Gregory Lodygensky
- Department of Pediatrics, Sainte-Justine University Hospital Centre, Université de Montréal, Montréal, Québec, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Mohammad Nezhady
- Department of Pathology and Cell Biology, University of Montréal, Montréal, Québec, Canada
| | - Michel Desjarlais
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Hamel
- Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Pediatrics, Sainte-Justine University Hospital Centre, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Pfaff MJ, Mukhopadhyay S, Hoofnagle M, Chabasse C, Sarkar R. Tumor suppressor protein p53 negatively regulates ischemia-induced angiogenesis and arteriogenesis. J Vasc Surg 2018; 68:222S-233S.e1. [PMID: 30126780 PMCID: PMC10981785 DOI: 10.1016/j.jvs.2018.02.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/26/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The tumor suppressor protein p53 regulates angiogenesis and is a key regulatory mediator of cellular apoptosis, proliferation, and growth. p53 expression is induced in response to ischemia; however, its role in regulating ischemia-induced angiogenesis and arteriogenesis remains undefined. The objective of this study was to define the role of p53 in regulating ischemia-induced angiogenesis and arteriogenesis and to identify mechanisms by which this regulation occurs in vivo. METHODS Surgically induced hindlimb ischemia or mesenteric artery ligation was performed in wild-type (p53+/+) and p53 knockout (p53-/-) mice. Limb perfusion and revascularization were assessed by laser Doppler perfusion imaging, capillary density, and collateral artery development. Mesenteric collateral artery flow and development were determined by arterial flow measurement and by histologic analysis, respectively. An in vitro aortic ring assay was performed on p53+/+ and p53-/- aortic tissue to evaluate endothelial function. The p53 inhibitor and activator pifithrin-α and quinacrine, respectively, were used to modulate p53 activity in vivo after ischemia. RESULTS Absence of p53 in mice resulted in increased limb perfusion (P < .05), capillary density (P < .05), and collateral artery development (P < .05) after induction of hindlimb ischemia. In the nonischemic mesenteric artery ligation model of arteriogenesis, p53 expression was induced in collateral arteries and increased arterial blood flow in mice lacking p53 (P < .05). Lack of p53 decreased apoptosis in ischemic hindlimb tissue (P < .05) and increased proangiogenic factors hypoxia-inducible factor 1α and vascular endothelial growth factor (VEGF). Endothelial cell outgrowth in vitro increased in the absence of p53 (P < .05). Pharmacologic augmentation of p53 expression after ischemia impaired perfusion and collateral artery formation and decreased VEGF levels (P < .05). Conversely, inhibition of p53 with pifithrin-α augmented limb perfusion (P < .05) and collateral artery formation (P < .05) and increased protein levels of hypoxia-inducible factor 1α and VEGF. Pharmacologic augmentation and inhibition of p53 had no significant effect in mice lacking p53. CONCLUSIONS p53 negatively regulates ischemia-induced angiogenesis and arteriogenesis. Inhibition of p53 increases ischemia-induced arteriogenesis and limb perfusion and thus represents a potential therapeutic strategy for arterial occlusive disease.
Collapse
Affiliation(s)
- Miles J Pfaff
- Department of Surgery, University of California, Los Angeles, Calif.
| | - Subhradip Mukhopadhyay
- Center for Vascular and Inflammatory Diseases and the Department of Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Mark Hoofnagle
- Center for Vascular and Inflammatory Diseases and the Department of Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Christine Chabasse
- Center for Vascular and Inflammatory Diseases and the Department of Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Rajabrata Sarkar
- Center for Vascular and Inflammatory Diseases and the Department of Surgery, University of Maryland School of Medicine, Baltimore, Md
| |
Collapse
|
14
|
Inhibition of Noncanonical Murine Double Minute 2 Homolog Abrogates Ocular Inflammation through NF-κB Suppression. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2087-2096. [PMID: 30126549 DOI: 10.1016/j.ajpath.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022]
Abstract
Uveitis is estimated to account for 10% of all cases of blindness in the United States, including 30,000 new cases of legal blindness each year. Intraocular and oral corticosteroids are the effective mainstay treatment, but they carry the risk of serious long-term ocular and systemic morbidity. New noncorticosteroid therapies with a favorable side effect profile are necessary for the treatment of chronic uveitis, given the paucity of existing treatment choices. We have previously demonstrated that Nutlin-3, a small-molecule inhibitor of murine double minute 2 (MDM2) homolog, suppresses pathologic retinal angiogenesis through a p53-dependent mechanism, but the noncanonical p53-independent functions have not been adequately elucidated. Herein, we demonstrate an unanticipated function of MDM2 inhibition, where Nutlin-3 potently abrogates lipopolysaccharide-induced ocular inflammation. Furthermore, we identified a mechanism by which transcription and translation of NF-κB is mediated by MDM2, independent of p53, in ocular inflammation. Small-molecule MDM2 inhibition is a novel noncorticosteroid strategy for inhibiting ocular inflammation, which may potentially benefit patients with chronic uveitis.
Collapse
|
15
|
Du W, Li X, Wilson AF, Pang Q. A small molecule p53 activator attenuates Fanconi anemia leukemic stem cell proliferation. Stem Cell Res Ther 2018; 9:145. [PMID: 29784053 PMCID: PMC5963145 DOI: 10.1186/s13287-018-0882-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/12/2022] Open
Abstract
Although p53 mutations are common in solid tumors, such mutations are found at a lower frequency in hematologic malignancies. In the genetic disorder Fanconi anemia (FA), p53 has been proposed as an important pathophysiological factor for two important hematologic hallmarks of the disease: bone marrow failure and leukemogenesis. Here we show that low levels of the p53 protein enhance the capacity of leukemic stem cells from FA patients to repopulate immunodeficient mice. Furthermore, boosting p53 protein levels with the use of the small molecule Nutlin-3 reduced leukemia burden in recipient mice. These results demonstrate that the level of p53 protein plays a crucial role in FA leukemogenesis.
Collapse
Affiliation(s)
- Wei Du
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA.
| | - Xiaoli Li
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Andrew F Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
16
|
da Mota MF, de Carvalho FS, de Ávila RI, de Ávila PHM, Cortez AP, Menegatti R, Sabino JR, Dos Santos TRM, Gomes SA, da Cunha LC, Valadares MC. LQFM030 reduced Ehrlich ascites tumor cell proliferation and VEGF levels. Life Sci 2017; 201:1-8. [PMID: 29278686 DOI: 10.1016/j.lfs.2017.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023]
Abstract
AIMS This study reports the biological properties of LQFM030 in vivo, a molecular simplification of the compound nutlin-1. MAIN METHODS Ehrlich ascites tumor (EAT)-bearing mice were treated intraperitoneally with LQFM030 (50, 75 or 150mg/kg) for 10days to determine changes in ascites tumor volume, body weight, cytotoxicity and angiogenesis. Moreover, flow cytometric expression of p53 and p21 proteins and caspase-3/7, -8 and -9 activation were investigated in EAT cells from mice treated. Acute oral systemic toxicity potential of LQFM030 in mice was also investigated using an alternative method. KEY FINDINGS Treatment of EAT-bearing mice with LQFM030 resulted in a marked decline in tumor cell proliferation and the vascular endothelial growth factor (VEGF) levels along with enhanced survival of the mice. Apoptotic tumor cell death was detected through p53 and p21 modulation and increase of caspase-3/7, -8 and -9 activity. LQFM030 also showed orally well tolerated, being classified in the UN GHS category 5 (LD50>2000-5000mg/Kg). SIGNIFICANCE LQFM030 seems to be a promising antitumor candidate for combinatory therapy with typical cytotoxic compounds, reducing the toxicity burden while allowing a superior anticancer activity. Moreover, these data also open new perspectives for LQFM030 as an antiangiogenic agent for treatment of diseases involving VEGF overexpression.
Collapse
Affiliation(s)
- Mariana Flavia da Mota
- Laboratório de Farmacologia e Toxicologia Celular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Flávio Silva de Carvalho
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Alane Pereira Cortez
- Laboratório de Farmacologia e Toxicologia Celular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - José Ricardo Sabino
- Laboratório de Cristalografia, Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Thais Rosa Marques Dos Santos
- Laboratório de Farmacologia e Toxicologia Celular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Sandro Antônio Gomes
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas (NEPET), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz Carlos da Cunha
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas (NEPET), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
17
|
Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:214-224. [PMID: 27863212 DOI: 10.1016/j.ajpath.2016.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) localized on the surface of endothelial cells (ECs) is a key determinant of the magnitude and duration of angiogenesis induced by vascular endothelial growth factor (VEGF). The kinesin family plus-end motor KIF13B transports VEGFR2 to the EC surface, and as such, specific inhibition of polarized VEGFR2 trafficking prevents angiogenesis. We designed a series of bioactive peptides based on deep analysis of VEGFR2-binding domain of KIF13B that compete specifically with VEGFR2 binding of KIF13B and thereby potently inhibit angiogenesis. Expression of these peptides by lentivirus prevents VEGF-induced capillary network formation in Matrigel plugs and neovascularization in vivo. A synthetic soluble, cell-permeable, 23-amino acid peptide termed kinesin-derived angiogenesis inhibitor (KAI) not only prevents interaction of VEGFR2 with KIF13B but also trafficking of VEGFR2 in the plus-end direction to the EC plasmalemma. Kinesin-derived angiogenesis inhibitor also inhibits VEGF-induced EC migration and tumor growth in human lung carcinoma xenografted in immunodeficient mice. Thus, we describe a novel class of peptides derived from the site of interaction of KIF13B with VEGFR2 that inhibit VEGFR2 trafficking and thereby starve cancer of blood supply.
Collapse
|
18
|
Riascos-Bernal DF, Chinnasamy P, Cao LL, Dunaway CM, Valenta T, Basler K, Sibinga NES. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun 2016; 7:12389. [PMID: 27499244 PMCID: PMC4979065 DOI: 10.1038/ncomms12389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. How p53 is restrained in arterial maturation during embryonic development is unclear. Here, the authors show that β-catenin C-terminal interactions inhibit CREB binding protein-mediated acetylation and activation of p53 in smooth muscle cells, and that this function is essential for artery formation.
Collapse
Affiliation(s)
- Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Prameladevi Chinnasamy
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Longyue Lily Cao
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Charlene M Dunaway
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
19
|
Kon Graversen V, Chavala SH. MDM2 inhibitors in the search for an optimized neovascular age-related macular degeneration treatment. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.952225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Tosi GM, Marigliani D, Romeo N, Toti P. Disease pathways in proliferative vitreoretinopathy: an ongoing challenge. J Cell Physiol 2014; 229:1577-83. [PMID: 24604697 DOI: 10.1002/jcp.24606] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/16/2014] [Indexed: 11/08/2022]
Abstract
Despite remarkable advances in vitreoretinal surgery, proliferative vitreoretinopathy (PVR) remains a common cause of severe visual loss or blindness. One of the critical reasons for PVR-induced blindness is tractional retinal detachment due to the formation of contractile preretinal fibrous membranes. This membrane formation is characterized by the proliferation and migration of cells and the excessive synthesis and deposition of extracellular matrix proteins. Herein we present the disease pathways of PVR, reviewing the role of both systemic and intraocular cells as well as molecular mediators. A chronological sequence of events leading to PVR is also hypothesized. Better understanding of the pathogenesis of PVR is needed in order to improve disease management. Efforts should be oriented towards greater cooperation between basic researchers and clinicians, aimed at matching the different clinical scenarios with the biological markers of the disease.
Collapse
Affiliation(s)
- Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
21
|
How chemistry supports cell biology: the chemical toolbox at your service. Trends Cell Biol 2014; 24:751-60. [PMID: 25108565 DOI: 10.1016/j.tcb.2014.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.
Collapse
|
22
|
Hemming S, Cakouros D, Gronthos S. Detachment of mesenchymal stem cells with trypsin/EDTA has no effect on apoptosis detection. Stem Cells 2014; 32:1991-2. [PMID: 24677681 DOI: 10.1002/stem.1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/17/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Sarah Hemming
- Mesechymal Stem Cell Laboratory, School of Health Sciences, Faculty of Health Sciences; Centre for Stem Cell Research, University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
23
|
Does DcR1 (TNF-related apoptosis-inducing-ligand Receptor 3) have any role in human AMD pathogenesis? Sci Rep 2014; 4:4114. [PMID: 24534820 PMCID: PMC3927205 DOI: 10.1038/srep04114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/22/2014] [Indexed: 11/23/2022] Open
Abstract
It has been postulated that there is a link between age related degenerative diseases and cancer. The TNF-related apoptosis-inducing ligand (TRAIL) has been shown to selectively kill tumor cells by binding to pro-apoptotic and anti-apoptotic receptors. Our aim was to study the levels of anti-apoptotic receptor (DcR1) in age related macular degeneration (AMD) and controls. AMD patients (115) were classified into two groups: Dry and Wet AMD. Wet AMDs were further classified into occult, predominant classic and minimal classic. 61 healthy individuals were recruited as normal controls. After normalization with total protein, DcR1 levels were analyzed by ELISA. Mann Whitney U-statistic was used for analysis of DcR1 ELISA results. We have observed DcR1 levels in serum sample which were significantly lower in AMD patients as compared to controls (p = 0.001). On the other hand, we did not find difference in DcR1 levels between wet and dry AMD. The present study defines the plausible role of DcR1 in AMD pathology signifying a new therapeutic target for AMD.
Collapse
|