1
|
Maddala R, Allen A, Skiba NP, Rao PV. Ankyrin-B is required for the establishment and maintenance of lens cytoarchitecture, mechanics and clarity. J Cell Sci 2024; 137:jcs262349. [PMID: 39558792 DOI: 10.1242/jcs.262349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
The transparent ocular lens is essential for vision because it focuses light onto the retina. Despite recognition of the importance of its unique cellular architecture and mechanical properties, the molecular mechanisms governing these attributes remain elusive. This study aims to elucidate the role of ankyrin-B (AnkB, encoded by ANK2), a membrane scaffolding protein, in lens cytoarchitecture, growth and function using a conditional knockout (cKO) mouse model. The AnkB cKO mouse has no defects in lens morphogenesis but exhibited changes that supported a global role for AnkB in maintenance of lens clarity, size, cytoarchitecture, membrane organization and stiffness. Notably, absence of AnkB led to nuclear cataract formation, which was evident from postnatal day 16. AnkB cKO lens fibers exhibit progressive disruption in membrane organization of the spectrin-actin cytoskeleton, cell adhesion proteins and channel proteins; loss and degradation of several membrane proteins [such as NrCAM. N-cadherin (CDH2) and aquaporin-0 (also known as MIP)]; along with a disorganized plasma membrane and impaired membrane interdigitations. Furthermore, absence of AnkB led to decreased lens stiffness. Collectively, these results illustrate the essential role for AnkB in lens architecture, growth and function through its involvement in membrane skeletal and protein organization and stability.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ariana Allen
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Czajkowska A, Czajkowski M, Szczerbinski L, Jurczuk K, Reska D, Kwedlo W, Kretowski M, Zabielski P, Kretowski A. Exploring protein relative relations in skeletal muscle proteomic analysis for insights into insulin resistance and type 2 diabetes. Sci Rep 2024; 14:17631. [PMID: 39085321 PMCID: PMC11292014 DOI: 10.1038/s41598-024-68568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The escalating prevalence of insulin resistance (IR) and type 2 diabetes mellitus (T2D) underscores the urgent need for improved early detection techniques and effective treatment strategies. In this context, our study presents a proteomic analysis of post-exercise skeletal muscle biopsies from individuals across a spectrum of glucose metabolism states: normal, prediabetes, and T2D. This enabled the identification of significant protein relationships indicative of each specific glycemic condition. Our investigation primarily leveraged the machine learning approach, employing the white-box algorithm relative evolutionary hierarchical analysis (REHA), to explore the impact of regulated, mixed mode exercise on skeletal muscle proteome in subjects with diverse glycemic status. This method aimed to advance the diagnosis of IR and T2D and elucidate the molecular pathways involved in its development and the response to exercise. Additionally, we used proteomics-specific statistical analysis to provide a comparative perspective, highlighting the nuanced differences identified by REHA. Validation of the REHA model with a comparable external dataset further demonstrated its efficacy in distinguishing between diverse proteomic profiles. Key metrics such as accuracy and the area under the ROC curve confirmed REHA's capability to uncover novel molecular pathways and significant protein interactions, offering fresh insights into the effects of exercise on IR and T2D pathophysiology of skeletal muscle. The visualizations not only underscored significant proteins and their interactions but also showcased decision trees that effectively differentiate between various glycemic states, thereby enhancing our understanding of the biomolecular landscape of T2D.
Collapse
Affiliation(s)
- Anna Czajkowska
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland.
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland.
| | - Marcin Czajkowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Krzysztof Jurczuk
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Daniel Reska
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Wojciech Kwedlo
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Marek Kretowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
3
|
Maddala R, Allen A, Skiba NP, Rao PV. Ankyrin-B is required for the establishment and maintenance of lens cytoarchitecture, mechanics, and clarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598702. [PMID: 38952798 PMCID: PMC11216410 DOI: 10.1101/2024.06.12.598702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
This study illustrates a vital role for ankyrin-B in lens architecture, growth and function through its involvement in membrane protein and spectrin-actin cytoskeletal organization and stability The transparent ocular lens is essential for vision by focusing light onto the retina. Despite recognizing the importance of its unique cellular architecture and mechanical properties, the molecular mechanisms governing these attributes remain elusive. This study aims to elucidate the role of ankyrin-B (AnkB), a membrane scaffolding protein, in lens cytoarchitecture, growth and function using a conditional knockout (cKO) mouse model. AnkB cKO mouse has no defects in lens morphogenesis, but exhibited changes that supported a global role for AnkB in maintenance of lens clarity, size, cytoarchitecture, and stiffness. Notably, absence of AnkB led to nuclear cataract formation, evident from P16. AnkB cKO lens fibers exhibit progressive disruption in membrane organization of the spectrin-actin cytoskeleton, channel proteins, cell-cell adhesion, shape change, loss and degradation of several membrane proteins (e.g., NrCAM. N-cadherin and aquaporin-0) along with a disorganized plasma membrane and impaired ball-and-socket membrane interdigitations. Furthermore, absence of AnkB led to decreased lens stiffness. Collectively, these results illustrate the essential role for AnkB in lens architecture, growth and function through its involvement in membrane protein and cytoskeletal organization.
Collapse
|
4
|
Passols M, Llobet-Cabau F, Sebastià C, Castelló A, Valdés-Hernández J, Criado-Mesas L, Sánchez A, Folch JM. Identification of genomic regions, genetic variants and gene networks regulating candidate genes for lipid metabolism in pig muscle. Animal 2023; 17:101033. [PMID: 38064855 DOI: 10.1016/j.animal.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
The intramuscular fat content and fatty acid composition of porcine meat have a significant impact on its quality and nutritional value. This research aimed to investigate the expression of 45 genes involved in lipid metabolism in the longissimus dorsi muscle of three experimental pig backcrosses, with a 25% of Iberian background. To achieve this objective, we conducted an expression Genome-Wide Association Study (eGWAS) using gene expression levels in muscle measured by high-throughput real-time qPCR for 45 target genes and genotypes from the PorcineSNP60 BeadChip or Axiom Porcine Genotyping Array and 65 single nucleotide polymorphisms (SNPs) located in 20 genes genotyped by a custom-designed Taqman OpenArray in a cohort of 354 animals. The eGWAS analysis identified 301 eSNPs associated with 18 candidate genes (ANK2, APOE, ARNT, CIITA, CPT1A, EGF, ELOVL6, ELOVL7, FADS3, FASN, GPAT3, NR1D2, NR1H2, PLIN1, PPAP2A, RORA, RXRA and UCP3). Three cis-eQTL (expression quantitative trait loci) were identified for GPAT3, RXRA, and UCP3 genes, which indicates that a genetic polymorphism proximal to the same gene is affecting its expression. Furthermore, 24 trans-eQTLs were detected, and eight candidate regulatory genes were located in these genomic regions. Additionally, two trans-regulatory hotspots in Sus scrofa chromosomes 13 and 15 were identified. Moreover, a co-expression analysis performed on 89 candidate genes and the fatty acid composition revealed the regulatory role of four genes (FABP5, PPARG, SCD, and SREBF1). These genes modulate the levels of α-linolenic, arachidonic, and oleic acids, as well as regulating the expression of other candidate genes associated with lipid metabolism. The findings of this study offer novel insights into the functional regulatory mechanism of genes involved in lipid metabolism, thereby enhancing our understanding of this complex biological process.
Collapse
Affiliation(s)
- M Passols
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España.
| | - F Llobet-Cabau
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - C Sebastià
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - A Castelló
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - J Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - L Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España
| | - A Sánchez
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| |
Collapse
|
5
|
Venkataraghavan S, Pankow JS, Boerwinkle E, Fornage M, Selvin E, Ray D. Epigenome-wide association study of incident type 2 diabetes in Black and White participants from the Atherosclerosis Risk in Communities Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.09.23293896. [PMID: 37609313 PMCID: PMC10441493 DOI: 10.1101/2023.08.09.23293896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
DNA methylation studies of incident type 2 diabetes in US populations are limited, and to our knowledge none included individuals of African descent living in the US. We performed an epigenome-wide association analysis of blood-based methylation levels at CpG sites with incident type 2 diabetes using Cox regression in 2,091 Black and 1,029 White individuals from the Atherosclerosis Risk in Communities study. At an epigenome-wide significance threshold of 10-7, we detected 7 novel diabetes-associated CpG sites in C1orf151 (cg05380846: HR= 0.89, p = 8.4 × 10-12), ZNF2 (cg01585592: HR= 0.88, p = 1.6 × 10-9), JPH3 (cg16696007: HR= 0.87, p = 7.8 × 10-9), GPX6 (cg02793507: HR= 0.85, p = 2.7 × 10-8 and cg00647063: HR= 1.20, p = 2.5 × 10-8), chr17q25 (cg16865890: HR= 0.8, p = 6.9 × 10-8), and chr11p15 (cg13738793: HR= 1.11, p = 7.7 × 10-8). The CpG sites at C1orf151, ZNF2, JPH3 and GPX6, were identified in Black adults, chr17q25 was identified in White adults, and chr11p15 was identified upon meta-analyzing the two groups. The CpG sites at JPH3 and GPX6 were likely associated with incident type 2 diabetes independent of BMI. All the CpG sites, except at JPH3, were likely consequences of elevated glucose at baseline. We additionally replicated known type 2 diabetes-associated CpG sites including cg19693031 at TXNIP, cg00574958 at CPT1A, cg16567056 at PLBC2, cg11024682 at SREBF1, cg08857797 at VPS25, and cg06500161 at ABCG1, 3 of which were replicated in Black adults at the epigenome-wide threshold. We observed modest increase in type 2 diabetes variance explained upon addition of the significantly associated CpG sites to a Cox model that included traditional type 2 diabetes risk factors and fasting glucose (increase from 26.2% to 30.5% in Black adults; increase from 36.9% to 39.4% in White adults). We examined if groups of proximal CpG sites were associated with incident type 2 diabetes using a gene-region specific and a gene-region agnostic differentially methylated region (DMR) analysis. Our DMR analyses revealed several clusters of significant CpG sites, including a DMR consisting of a previously discovered CpG site at ADCY7 and promoter regions of TP63 which were differentially methylated across all race groups. This study illustrates improved discovery of CpG sites/regions by leveraging both individual CpG site and DMR analyses in an unexplored population. Our findings include genes linked to diabetes in experimental studies (e.g., GPX6, JPH3, and TP63), and future gene-specific methylation studies could elucidate the link between genes, environment, and methylation in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sowmya Venkataraghavan
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of American
| | - Eric Boerwinkle
- The UTHealth School of Public Health, Houston, Texas, United States of America
| | - Myriam Fornage
- Brown Foundation Institute for Molecular Medicine, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Elizabeth Selvin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology, & Clinical Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Aguillard AM, Tzeng J, Ferrer I, Tam BT, Lorenzo DN. A cell-autonomous mechanism regulates BCAA catabolism in white adipocytes and systemic metabolic balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551146. [PMID: 37577547 PMCID: PMC10418053 DOI: 10.1101/2023.07.31.551146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Elevated plasma branched-chain amino acids (BCAAs) are strongly associated with obesity, insulin resistance (IR), and diabetes in humans and rodent models. However, the mechanisms of BCAA dysregulation and its systemic, organ, and cell-specific implications in the development of obesity and IR are not well understood. To gain mechanistic insight into the causes and effects of plasma BCAA elevations, we leveraged mouse models with high circulating BCAA levels prior to the onset of obesity and IR. Young mice lacking ankyrin-B in white adipose tissue (WAT) or bearing an ankyrin-B variant that causes age-driven metabolic syndrome exhibit downregulation of BCAA catabolism selectively in WAT and excess plasma BCAAs. Using cellular assays, we demonstrated that ankyrin-B promotes the surface localization of the amino acid transporter Asct2 in white adipocytes, and its deficit impairs BCAA uptake. Excess BCAA supplementation worsened glucose tolerance and insulin sensitivity across genotypes. In contrast, BCAA overconsumption only increased adiposity in control mice, implicating WAT utilization of BCAAs in their obesogenic effects. These results shed light into the mechanistic underpinnings of metabolic syndrome caused by ankyrin-B deficits and provide new evidence of the relevance of WAT in the regulation of systemic BCAA levels, adiposity, and glucose homeostasis.
Collapse
Affiliation(s)
- Ashley M Aguillard
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joyce Tzeng
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ismael Ferrer
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
| | - Bjorn T Tam
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
8
|
Creighton BA, Afriyie S, Ajit D, Casingal CR, Voos KM, Reger J, Burch AM, Dyne E, Bay J, Huang JK, Anton ES, Fu MM, Lorenzo DN. Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. eLife 2021; 10:69815. [PMID: 34812142 PMCID: PMC8610419 DOI: 10.7554/elife.69815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Variants in the high confident autism spectrum disorder (ASD) gene ANK2 target both ubiquitously expressed 220 kDa ankyrin-B and neurospecific 440 kDa ankyrin-B (AnkB440) isoforms. Previous work showed that knock-in mice expressing an ASD-linked Ank2 variant yielding a truncated AnkB440 product exhibit ectopic brain connectivity and behavioral abnormalities. Expression of this variant or loss of AnkB440 caused axonal hyperbranching in vitro, which implicated AnkB440 microtubule bundling activity in suppressing collateral branch formation. Leveraging multiple mouse models, cellular assays, and live microscopy, we show that AnkB440 also modulates axon collateral branching stochastically by reducing the number of F-actin-rich branch initiation points. Additionally, we show that AnkB440 enables growth cone (GC) collapse in response to chemorepellent factor semaphorin 3 A (Sema 3 A) by stabilizing its receptor complex L1 cell adhesion molecule/neuropilin-1. ASD-linked ANK2 variants failed to rescue Sema 3A-induced GC collapse. We propose that impaired response to repellent cues due to AnkB440 deficits leads to axonal targeting and branch pruning defects and may contribute to the pathogenicity of ANK2 variants.
Collapse
Affiliation(s)
- Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cristine R Casingal
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kayleigh M Voos
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joan Reger
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - April M Burch
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric Dyne
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Julia Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - E S Anton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, Chapel Hill, United States
| |
Collapse
|
9
|
The rs45454496 (E1813K) variant in the adiposity gene ANK2 doesn't associate with obesity in Southern European subjects. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Louis JM, Agarwal A, Aduri R, Talukdar I. Global analysis of RNA-protein interactions in TNF-α induced alternative splicing in metabolic disorders. FEBS Lett 2021; 595:476-490. [PMID: 33417721 DOI: 10.1002/1873-3468.14029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022]
Abstract
In this report, using the database of RNA-binding protein specificities (RBPDB) and our previously published RNA-seq data, we analyzed the interactions between RNA and RNA-binding proteins to decipher the role of alternative splicing in metabolic disorders induced by TNF-α. We identified 13 395 unique RNA-RBP interactions, including 385 unique RNA motifs and 35 RBPs, some of which (including MBNL-1 and 3, ZFP36, ZRANB2, and SNRPA) are transcriptionally regulated by TNF-α. In addition to some previously reported RBPs, such as RBMX and HuR/ELAVL1, we found a few novel RBPs, such as ZRANB2 and SNRPA, to be involved in the regulation of metabolic syndrome-associated genes that contain an enrichment of tetrameric RNA sequences (AUUU). Taken together, this study paves the way for novel RNA-protein interaction-based therapeutics for treating metabolic syndromes.
Collapse
Affiliation(s)
- Jiss Maria Louis
- Department of Biological Sciences, BITS Pilani, Zuarinagar, India
| | - Arjun Agarwal
- Department of Computer Science, BITS Pilani, Zuarinagar, India
| | - Raviprasad Aduri
- Department of Biological Sciences, BITS Pilani, Zuarinagar, India
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani, Zuarinagar, India
| |
Collapse
|
11
|
Choi CSW, Souza IA, Sanchez-Arias JC, Zamponi GW, Arbour LT, Swayne LA. Ankyrin B and Ankyrin B variants differentially modulate intracellular and surface Cav2.1 levels. Mol Brain 2019; 12:75. [PMID: 31477143 PMCID: PMC6720858 DOI: 10.1186/s13041-019-0494-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ankyrin B (AnkB) is an adaptor and scaffold for motor proteins and various ion channels that is ubiquitously expressed, including in the brain. AnkB has been associated with neurological disorders such as epilepsy and autism spectrum disorder, but understanding of the underlying mechanisms is limited. Cav2.1, the pore-forming subunit of P/Q type voltage gated calcium channels, is a known interactor of AnkB and plays a crucial role in neuronal function. Here we report that wildtype AnkB increased overall Cav2.1 levels without impacting surface Cav2.1 levels in HEK293T cells. An AnkB variant, p.S646F, which we recently discovered to be associated with seizures, further increased overall Cav2.1 levels, again with no impact on surface Cav2.1 levels. AnkB p.Q879R, on the other hand, increased surface Cav2.1 levels in the presence of accessory subunits α2δ1 and β4. Additionally, AnkB p.E1458G decreased surface Cav2.1 irrespective of the presence of accessory subunits. In addition, we found that partial deletion of AnkB in cortex resulted in a decrease in overall Cav2.1 levels, with no change to the levels of Cav2.1 detected in synaptosome fractions. Our work suggests that depending on the particular variant, AnkB regulates intracellular and surface Cav2.1. Notably, expression of the AnkB variant associated with seizure (AnkB p.S646F) caused further increase in intracellular Cav2.1 levels above that of even wildtype AnkB. These novel findings have important implications for understanding the role of AnkB and Cav2.1 in the regulation of neuronal function in health and disease.
Collapse
Affiliation(s)
- Catherine S. W. Choi
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
| | - Ivana A. Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Juan C. Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
| |
Collapse
|
12
|
ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proc Natl Acad Sci U S A 2019; 116:15262-15271. [PMID: 31285321 PMCID: PMC6660793 DOI: 10.1073/pnas.1904348116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Giant ankyrin-B (ankB) is a neurospecific alternatively spliced variant of ANK2, a high-confidence autism spectrum disorder (ASD) gene. We report that a mouse model for human ASD mutation of giant ankB exhibits increased axonal branching in cultured neurons with ectopic CNS axon connectivity, as well as with a transient increase in excitatory synapses during postnatal development. We elucidate a mechanism normally limiting axon branching, whereby giant ankB localizes to periodic axonal plasma membrane domains through L1 cell-adhesion molecule protein, where it couples microtubules to the plasma membrane and prevents microtubule entry into nascent axon branches. Giant ankB mutation or deficiency results in a dominantly inherited impairment in selected communicative and social behaviors combined with superior executive function. Thus, gain of axon branching due to giant ankB-deficiency/mutation is a candidate cellular mechanism to explain aberrant structural connectivity and penetrant behavioral consequences in mice as well as humans bearing ASD-related ANK2 mutations.
Collapse
|
13
|
Yan H, Meng J, Zhang S, Zhuang H, Song Y, Xiao X, Wang DW, Jiang J. Pretreatment of rAAV-Mediated Expression of Myostatin Propeptide Lowers Type 2 Diabetes Incidence inC57BL/6Mice on a High-Fat Diet. Hum Gene Ther 2019; 30:661-671. [DOI: 10.1089/hum.2018.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hui Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Jiejie Meng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Shasha Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Hang Zhuang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - YuE Song
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Jiangang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| |
Collapse
|
14
|
Calpain inhibition ameliorates scald burn-induced acute lung injury in rats. BURNS & TRAUMA 2018; 6:28. [PMID: 30338266 PMCID: PMC6174571 DOI: 10.1186/s41038-018-0130-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022]
Abstract
Background The molecular pattern of severe burn-induced acute lung injury, characterized by cell structure damage and leukocyte infiltration, remains unknown. This study aimed to determine whether calpain, a protease involved in both processes, mediates severe burn-induced acute lung injury. Methods Rats received full-thickness scald burns covering 30% of the total body surface area, followed by instant fluid resuscitation. MDL28170 (Tocris Bioscience), an inhibitor of calpain, was given intravenously 1 h before or after the scald burn. The histological score, wet/dry weight ratio, and caspase-3 activity were examined to evaluate the degree of lung damage. Calpain activity and its source were detected by an assay kit and immunofluorescence staining. The proteolysis of membrane skeleton proteins α-fodrin and ankyrin-B, which are substrates of calpain, was measured by Western blot. Results Time-course studies showed that tissue damage reached a peak between 1 and 6 h post-scald burn and gradually diminished at 24 h. More importantly, calpain activity reached peak levels at 1 h and was maintained until 24 h, paralleled by lung damage to some extent. Western blot showed that the levels of the proteolyzed forms of α-fodrin and ankyrin-B correlated well with the degree of damage. MDL28170 at a dose of 3 mg/kg b. w. given 1 h before burn injury not only antagonized the increase in calpain activity but also ameliorated scald burn-induced lung injury, including the degradation of α-fodrin and ankyrin-B. Immunofluorescence images revealed calpain 1 and CD45 double-positive cells in the lung tissue of rats exposed to scald burn injury, suggesting that leukocytes were a dominant source of calpain. Furthermore, this change was blocked by MDL28170. Finally, MDL28170 given at 1 h post-scald burn injury significantly ameliorated the wet/dry weight ratio compared with burn injury alone. Conclusions Calpain, a product of infiltrating leukocytes, is a mediator of scald burn-induced acute lung injury that involves enhancement of inflammation and proteolysis of membrane skeleton proteins. Its late effects warrant further study.
Collapse
|
15
|
Revilla M, Puig-Oliveras A, Crespo-Piazuelo D, Criado-Mesas L, Castelló A, Fernández AI, Ballester M, Folch JM. Expression analysis of candidate genes for fatty acid composition in adipose tissue and identification of regulatory regions. Sci Rep 2018; 8:2045. [PMID: 29391556 PMCID: PMC5794915 DOI: 10.1038/s41598-018-20473-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this work was to study the genetic basis of the backfat expression of lipid-related genes associated with meat quality traits in pigs. We performed a genome-wide association study with the backfat gene expression measured in 44 genes by qPCR and the PorcineSNP60 BeadChip genotypes in 115 Iberian x Landrace backcross animals. A total of 193 expression-associated SNPs located in 19 chromosomal regions were associated with expression levels of ACSM5, ELOVL6, FABP4, FADS2, and SLC27A4 genes. Three expression quantitative trail loci (eQTLs) corresponding to ACSM5, FABP4, and FADS2 were classified as cis-acting eQTLs, whereas the remaining 16 eQTLs have trans-regulatory effects. Remarkably, a SNP in the ACSM5 promoter region and a SNP in the 3′UTR region of FABP4 were the most associated polymorphisms with the ACSM5 and FABP4 expression levels, respectively. Moreover, relevant lipid-related genes mapped in the trans-eQTLs regions associated with the ACSM5, FABP4, FADS2, and SLC27A4 genes. Interestingly, a trans-eQTL hotspot on SSC13 regulating the gene expression of ELOVL6, ELOLV5, and SCD, three important genes implicated in the elongation and desaturation of fatty acids, was identified. These findings provide new data to further understand the functional regulatory mechanisms implicated in the variation of fatty acid composition in pigs.
Collapse
Affiliation(s)
- Manuel Revilla
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Anna Puig-Oliveras
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Lourdes Criado-Mesas
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Anna Castelló
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Ana I Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Josep M Folch
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| |
Collapse
|
16
|
Lorenzo DN, Bennett V. Cell-autonomous adiposity through increased cell surface GLUT4 due to ankyrin-B deficiency. Proc Natl Acad Sci U S A 2017; 114:12743-12748. [PMID: 29133412 PMCID: PMC5715754 DOI: 10.1073/pnas.1708865114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Obesity typically is linked to caloric imbalance as a result of overnutrition. Here we propose a cell-autonomous mechanism for adiposity as a result of persistent cell surface glucose transporter type 4 (GLUT4) in adipocytes resulting from impaired function of ankyrin-B (AnkB) in coupling GLUT4 to clathrin-mediated endocytosis. Adipose tissue-specific AnkB-KO mice develop obesity and progressive pancreatic islet dysfunction with age or high-fat diet (HFD). AnkB-deficient adipocytes exhibit increased lipid accumulation associated with increased glucose uptake and impaired endocytosis of GLUT4. AnkB binds directly to GLUT4 and clathrin and promotes their association in adipocytes. AnkB variants that fail to restore normal lipid accumulation and GLUT4 localization in adipocytes are present in 1.3% of European Americans and 8.4% of African Americans, and are candidates to contribute to obesity susceptibility in humans.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710;
- Department of Biochemistry, Duke University, Durham, NC 27710
| | - Vann Bennett
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710;
- Department of Biochemistry, Duke University, Durham, NC 27710
| |
Collapse
|
17
|
Lin X, Lim IY, Wu Y, Teh AL, Chen L, Aris IM, Soh SE, Tint MT, MacIsaac JL, Morin AM, Yap F, Tan KH, Saw SM, Kobor MS, Meaney MJ, Godfrey KM, Chong YS, Holbrook JD, Lee YS, Gluckman PD, Karnani N. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med 2017; 15:50. [PMID: 28264723 PMCID: PMC5340003 DOI: 10.1186/s12916-017-0800-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/21/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Obesity is an escalating health problem worldwide, and hence the causes underlying its development are of primary importance to public health. There is growing evidence that suboptimal intrauterine environment can perturb the metabolic programing of the growing fetus, thereby increasing the risk of developing obesity in later life. However, the link between early exposures in the womb, genetic susceptibility, and perturbed epigenome on metabolic health is not well understood. In this study, we shed more light on this aspect by performing a comprehensive analysis on the effects of variation in prenatal environment, neonatal methylome, and genotype on birth weight and adiposity in early childhood. METHODS In a prospective mother-offspring cohort (N = 987), we interrogated the effects of 30 variables that influence the prenatal environment, umbilical cord DNA methylation, and genotype on offspring weight and adiposity, over the period from birth to 48 months. This is an interim analysis on an ongoing cohort study. RESULTS Eleven of 30 prenatal environments, including maternal adiposity, smoking, blood glucose and plasma unsaturated fatty acid levels, were associated with birth weight. Polygenic risk scores derived from genetic association studies on adult adiposity were also associated with birth weight and child adiposity, indicating an overlap between the genetic pathways influencing metabolic health in early and later life. Neonatal methylation markers from seven gene loci (ANK3, CDKN2B, CACNA1G, IGDCC4, P4HA3, ZNF423 and MIRLET7BHG) were significantly associated with birth weight, with a subset of these in genes previously implicated in metabolic pathways in humans and in animal models. Methylation levels at three of seven birth weight-linked loci showed significant association with prenatal environment, but none were affected by polygenic risk score. Six of these birth weight-linked loci continued to show a longitudinal association with offspring size and/or adiposity in early childhood. CONCLUSIONS This study provides further evidence that developmental pathways to adiposity begin before birth and are influenced by environmental, genetic and epigenetic factors. These pathways can have a lasting effect on offspring size, adiposity and future metabolic outcomes, and offer new opportunities for risk stratification and prevention of obesity. CLINICAL TRIAL REGISTRATION This birth cohort is a prospective observational study, designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .
Collapse
Affiliation(s)
- Xinyi Lin
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Ives Yubin Lim
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Yonghui Wu
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Izzuddin M Aris
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Shu E Soh
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mya Thway Tint
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Alexander M Morin
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Fabian Yap
- KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute, Singapore, 169856, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas University Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Joanna D Holbrook
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, 119228, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | | |
Collapse
|
18
|
Duff H, Sheldon RS. Ankyrin-B Defects: Serendipity and Inquisitiveness are the Mothers of Invention. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:CIRCGENETICS.117.001698. [PMID: 28196903 DOI: 10.1161/circgenetics.117.001698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Henry Duff
- From the Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Robert S Sheldon
- From the Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Huq AJ, Pertile MD, Davis AM, Landon H, James PA, Kline CF, Vohra J, Mohler PJ, Delatycki MB. A Novel Mechanism for Human Cardiac Ankyrin-B Syndrome due to Reciprocal Chromosomal Translocation. Heart Lung Circ 2016; 26:612-618. [PMID: 27916589 DOI: 10.1016/j.hlc.2016.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiac rhythm abnormalities are a leading cause of morbidity and mortality in developed countries. Loss-of-function variants in the ANK2 gene can cause a variety of cardiac rhythm abnormalities including sinus node dysfunction, atrial fibrillation and ventricular arrhythmias (called the "ankyrin-B syndrome"). ANK2 encodes ankyrin-B, a molecule critical for the membrane targeting of key cardiac ion channels, transporters, and signalling proteins. METHODS AND RESULTS Here, we describe a family with a reciprocal chromosomal translocation between chromosomes 4q25 and 9q26 that transects the ANK2 gene on chromosome 4 resulting in loss-of-function of ankyrin-B. Select family members with ankyrin-B haploinsufficiency due to the translocation displayed clinical features of ankyrin-B syndrome. Furthermore, evaluation of primary lymphoblasts from a carrier of the translocation showed altered levels of ankyrin-B as well as a reduced expression of downstream ankyrin-binding partners. CONCLUSIONS Thus, our data conclude that, similar to previously described ANK2 loss-of-function "point mutations", large chromosomal translocations resulting in ANK2 haploinsufficiency are sufficient to cause the human cardiac ankyrin-B syndrome. The unexpected ascertainment of ANK2 dysfunction via the discovery of a chromosomal translocation in this family, the determination of the familial phenotype, as well as the complexities in formulating screening and treatment strategies are discussed.
Collapse
Affiliation(s)
- A J Huq
- Department of Clinical Genetics, Austin Hospital, Melbourne, Vic, Australia; Department of Genetic Medicine, Royal Melbourne Hospital, Melbourne, Vic, Australia.
| | - M D Pertile
- Victorian Clinical Genetics Services, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - A M Davis
- Department of Cardiology, Royal Children's Hospital, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia; Murdoch Childrens Research Institute, Melbourne, Vic, Australia
| | - H Landon
- Dorothy M. Davis Heart and Lung Research Institute; Departments of Physiology & Cell Biology and Internal Medicine; Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - P A James
- Department of Genetic Medicine, Royal Melbourne Hospital, Melbourne, Vic, Australia; Department of Pathology, University of Melbourne, Melbourne, Vic, Australia
| | - C F Kline
- Dorothy M. Davis Heart and Lung Research Institute; Departments of Physiology & Cell Biology and Internal Medicine; Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - J Vohra
- Department of Genetic Medicine, Royal Melbourne Hospital, Melbourne, Vic, Australia; Department of Cardiology, Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - P J Mohler
- Dorothy M. Davis Heart and Lung Research Institute; Departments of Physiology & Cell Biology and Internal Medicine; Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - M B Delatycki
- Department of Clinical Genetics, Austin Hospital, Melbourne, Vic, Australia; Victorian Clinical Genetics Services, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Melbourne, Vic, Australia
| |
Collapse
|
20
|
Musa H, Murphy NP, Curran J, Higgins JD, Webb TR, Makara MA, Wright P, Lancione PJ, Lubbers ER, Healy JA, Smith SA, Bennett V, Hund TJ, Kline CF, Mohler PJ. Common human ANK2 variant confers in vivo arrhythmia phenotypes. Heart Rhythm 2016; 13:1932-40. [PMID: 27298202 DOI: 10.1016/j.hrthm.2016.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human ANK2 (ankyrin-B) loss-of-function variants are directly linked with arrhythmia phenotypes. However, in atypical non-ion channel arrhythmia genes such as ANK2 that lack the same degree of robust structure/function and clinical data, it may be more difficult to assign variant disease risk based simply on variant location, minor allele frequency, and/or predictive structural algorithms. The human ankyrin-B p.L1622I variant found in arrhythmia probands displays significant diversity in minor allele frequency across populations. OBJECTIVE The objective of this study was to directly test the in vivo impact of ankyrin-B p.L1622I on cardiac electrical phenotypes and arrhythmia risk using a new animal model. METHODS We tested arrhythmia phenotypes in a new "knock-in" animal model harboring the human ankyrin-B p.L1622I variant. RESULTS Ankyrin-B p.L1622I displays reduced posttranslational expression in vivo, resulting in reduced cardiac ankyrin-B expression and reduced association with binding-partner Na/Ca exchanger. Ankyrin-B(L1622I/L1622I) mice display changes in heart rate, atrioventricular and intraventricular conduction, and alterations in repolarization. Furthermore, ankyrin-B(L1622I/L1622I) mice display catecholamine-dependent arrhythmias. At the cellular level, ankyrin-B(L1622I/L1622I) myocytes display increased action potential duration and severe arrhythmogenic afterdepolarizations that provide a mechanistic rationale for the arrhythmias. CONCLUSION Our findings support in vivo arrhythmogenic phenotypes of an ANK2 variant with unusual frequency in select populations. On the basis of our findings and current clinical data, we support classification of p.L1622I as a "mild" loss-of-function variant that may confer arrhythmia susceptibility in the context of secondary risk factors including environment, medication, and/or additional genetic variation.
Collapse
Affiliation(s)
- Hassan Musa
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Nathaniel P Murphy
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Jerry Curran
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - John D Higgins
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Tyler R Webb
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Michael A Makara
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Patrick Wright
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Peter J Lancione
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Ellen R Lubbers
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Jane A Healy
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC
| | - Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Internal Medicine, Division of Cardiovascular Medicine
| | - Vann Bennett
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Internal Medicine, Division of Cardiovascular Medicine,; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Crystal F Kline
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH; Department of Internal Medicine, Division of Cardiovascular Medicine,.
| |
Collapse
|