1
|
Zhang F, Weng X, Zhu J, Tang Q, Lei M, Zhou W. Identification and validation of three potential biomarkers and immune microenvironment for in severe asthma in microarray and single-cell datasets. J Asthma 2024; 61:1252-1264. [PMID: 38647226 DOI: 10.1080/02770903.2024.2335562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Objective: The aim of this study was to identify genetic biomarkers and cellular communications associated with severe asthma in microarray data sets and single cell data sets. The potential gene expression levels were verified in a mouse model of asthma.Methods: We identified differentially expressed genes from the microarray datasets (GSE130499 and GSE63142) of severe asthma, and then constructed models to screen the most relevant biomarkers to severe asthma by machine learning algorithms (LASSO and SVM-RFE), with further validation of the results by GSE43696. Single-cell datasets (GSE193816 and GSE227744) were identified for potential biomarker-specific expression and intercellular communication. Finally, The expression levels of potential biomarkers were verified with a mouse model of asthma.Results: The 73 genes were differentially expressed between severe asthma and normal control. LASSO and SVM-RFE recognized three genes BCL3, DDIT4 and S100A14 as biomarkers of severe asthma and had good diagnostic effect. Among them, BCL3 transcript level was down-regulated in severe asthma, while S100A14 and DDIT4 transcript levels were up-regulated. The transcript levels of the three genes were confirmed in the mouse model. Infiltration of neutrophils and mast cells were found to be increased in severe asthma and may be associated with bronchial epithelial cells through BMP and NRG signalingConclusions: We identified three differentially expressed genes (BCL3, DDIT4 and S100A14) of diagnostic significance that may be involved in the development of severe asthma and these gene expressions could be serviced as biomarker of severe asthma and investigating the function roles could bring new insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Fuying Zhang
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, Hunan, China
| | - Xiang Weng
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiabao Zhu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qin Tang
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, Hunan, China
| | - Mingsheng Lei
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, Hunan, China
- Zhangjiajie College, Zhangjiajie, Hunan, China
| | - Weimin Zhou
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Zou S, Meng F, Xu G, Yu R, Yang C, Wei Q, Xue Y. Identification of candidate genes and molecular mechanisms related to asthma progression using bioinformatics. Sleep Breath 2024; 28:2237-2246. [PMID: 39088141 PMCID: PMC11450000 DOI: 10.1007/s11325-024-03122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Asthma is a heterogeneous disorder. This study aimed to identify changes in gene expression and molecular mechanisms associated with moderate to severe asthma. METHODS Differentially expressed genes (DEGs) were analyzed in GSE69683 dataset among moderate asthma and its controls as well as between severe asthma and moderate asthma. Key module genes were identified via co-expression analysis, and the molecular mechanism of the module genes was explored through enrichment analysis and gene set enrichment analysis (GSEA). GSE89809 was used to verify the characteristic genes related to moderate and severe asthma. RESULTS Accordingly, 2540 DEGs were present between moderate asthma and the control group, while 6781 DEGs existed between severe asthma and moderate asthma. These genes were identified into 14 co-expression modules. Module 7 had the highest positive correlation with severe asthma and was recognized to be a key module by STEM. Enrichment analysis demonstrated that the module genes were mainly involved in oxidative stress-related signaling pathways. The expression of HSPA1A, PIK3CG and PIK3R6 was associated with moderate asthma, while MAPK13 and MMP9 were associated with severe asthma. The AUC values were verified by GSE89809. Additionally, 322 drugs were predicted to target five genes. CONCLUSION These results identified characteristic genes related to moderate and severe asthma and their corresponding molecular mechanisms, providing a basis for future research.
Collapse
Affiliation(s)
- Songbing Zou
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Fangchan Meng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Guien Xu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Rongchang Yu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Chaomian Yang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China
| | - Qiu Wei
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China.
| | - Yanlong Xue
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Nanning, Guangxi, China.
| |
Collapse
|
3
|
Zhou M, Sun R, Jang J, Martin JG. T cell and airway smooth muscle interaction: a key driver of asthmatic airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 2024; 327:L382-L394. [PMID: 39010821 DOI: 10.1152/ajplung.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Cross talk between T cells and airway smooth muscle (ASM) may play a role in modulating asthmatic airway inflammation and remodeling. Infiltrating T cells have been observed within the ASM bundles of asthmatics, and a wide range of direct and indirect interactions between T cells and ASM has been demonstrated using various in vitro and in vivo model systems. Contact-dependent mechanisms such as ligation and activation of cellular adhesion and costimulatory molecules, as well as the formation of lymphocyte-derived membrane conduits, facilitate the adhesion, bidirectional communication, and transfer of materials between T and ASM cells. T cell-derived cytokines, particularly of the Th1, Th2, and Th17 subsets, modulate the secretome, proliferation, and contractility of ASM cells. This review summarizes the mechanisms governing T cell-ASM cross talk in the context of asthma. Understanding the underlying mechanistic basis is important for directing future research and developing therapeutic interventions targeted toward this complex interaction.
Collapse
Affiliation(s)
- Muyang Zhou
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Sun
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Joyce Jang
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - James G Martin
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Vaghasiya J, Jha A, Basu S, Bagan A, Jengsuksavat SK, Ravandi A, Pascoe CD, Halayko AJ. Neutralizing Oxidized Phosphatidylcholine Reduces Airway Inflammation and Hyperreactivity in a Murine Model of Allergic Asthma. BIOLOGY 2024; 13:627. [PMID: 39194564 DOI: 10.3390/biology13080627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Oxidative stress is associated with asthma pathobiology. We reported that oxidized phosphatidylcholines (OxPCs) are mediators of oxidative stress and accumulate in the lung in response to allergen challenge. The current study begins to unravel mechanisms for OxPC accumulation in the lung, providing the first insights about how OxPCs underpin allergic airway pathophysiology, and pre-clinical testing of selective neutralization of OxPCs in a murine model of allergic asthma. We hypothesized that intranasal delivery of E06, a natural IgM antibody that neutralizes the biological activity of OxPCs, can ameliorate allergen-induced airway inflammation and airway hyperresponsiveness. Adult BALB/c mice were intranasally (i.n.) challenged with house dust mite (HDM) (25 μg/mouse, 2 weeks). Some animals also received E06 monoclonal antibody (mAb) (10 µg) i.n. 1 hr before each HDM challenge. HDM challenge reduced mRNA for anti-oxidant genes (SOD1, SOD2, HO-1, and NFE2L2) in the lung by several orders of magnitude (p < 0.05). Concomitantly, total immune cell number in bronchoalveolar lavage fluid (BALF) increased significantly (p < 0.001). E06 mAb treatment prevented allergen-induced BALF immune cell number by 43% (p < 0.01). This included a significant blockade of eosinophils (by 48%, p < 0.001), neutrophils (by 80%, p < 0.001), macrophages (by 80%, p < 0.05), and CD4 (by 30%, p < 0.05) and CD8 (by 42%, p < 0.01) lymphocytes. E06 effects correlated with a significant reduction in TNF (by 64%, p < 0.001) and IL-1β (by 75%, p < 0.05) and a trend to diminish accumulation of other cytokines (e.g., IL-4, -10, and -33, and IFN-γ). E06 mAb treatment also inhibited HDM exposure-induced increases in total respiratory resistance and small airway resistance by 24% and 26%, respectively. In conclusion, prophylactic treatment with an OxPC-neutralizing antibody significantly limits allergen-induced airway inflammation and airway hyperresponsiveness, suggesting that OxPCs are important mediators of oxidative stress-associated allergic lung pathophysiology.
Collapse
Affiliation(s)
- Jignesh Vaghasiya
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Alaina Bagan
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Siwon K Jengsuksavat
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
5
|
Shen S, Zeng H, Wei H, Wu L. Association between rheumatoid arthritis and chronic respiratory diseases in a Japanese population: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39319. [PMID: 39151504 PMCID: PMC11332739 DOI: 10.1097/md.0000000000039319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Past observational studies have documented an association between rheumatoid arthritis (RA) and chronic respiratory diseases. Undertaking the approach of Mendelian randomization (MR) analysis, this research aims to delve deeper into the probability of a causal connection between RA and chronic respiratory diseases. Collated genome-wide association study data covering RA with 4199 cases against 208,254 controls, asthma comprising 8216 cases versus 201,592 controls, and chronic obstructive pulmonary disease (COPD) detailing 3315 cases in contrast to 201,592 controls were derived from the repository of the Japanese Biobank. A selection of 10 RA-related, 8 asthma-related, and 4 COPD-related single nucleotide polymorphisms notable for their statistical significance (P < 5 × 10-8) were identified as instrumental variables. The primary analytical technique was the inverse variance-weighted (IVW) method, alongside the MR-Egger protocol, weighted median, and weighted mode to reinforce the validity and solidity of the principal results. For scrutinizing possible implications of horizontal pleiotropy, we harnessed the MR-Egger intercept examination and the Mendelian Randomization Pleiotropy REsidual Sum and Outlier test. Employing the inverse variance-weighted technique, we established a positive correlation between genetic predispositions for RA and actual occurrences of asthma (odds ratios [OR] = 1.14; 95% confidence intervals [CI]: 1.04-1.24; P = .003). This correlation remained strong when testing the results utilizing various methods, including the MR-Egger method (OR = 1.32; 95% CI: 1.09-1.60; P = .023), the weighted median (OR = 1.16; 95% CI: 1.06-1.26; P < .001), and the weighted mode (OR = 1.21; 95% CI: 1.11-1.32; P = .002). Furthermore, our findings from the inverse variance-weighted method also demonstrated a positive association between genetically predicted RA and COPD (OR = 1.12; 95% CI: 1.02-1.29; P = .021). However, no such link was discerned in supplementary analyses. In a shifted perspective-the reverse MR analysis-no correlation was identified between genetically predicted instances of asthma (IVW, P = .717) or COPD (IVW, P = .177) and RA. The findings confirm a causal correlation between genetically predicted RA and an elevated risk of either asthma or COPD. In contrast, our results offer no support to the presumed causal relationship between genetic susceptibility to either asthma or COPD and the subsequent development of RA.
Collapse
Affiliation(s)
- Shaoning Shen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Gongshu District, Hangzhou, Zhejiang Province, China
| | - Hanbing Zeng
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Gongshu District, Hangzhou, Zhejiang Province, China
| | - Hao Wei
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Gongshu District, Hangzhou, Zhejiang Province, China
| | - Lianguo Wu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Gongshu District, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Reilly C, Raja A, Anilkumar P, Sullivan J, White L, Bahron A, Marsh J, Mansur AH. The clinical effectiveness of mepolizumab treatment in severe eosinophilic asthma; outcomes from four years cohort evaluation. J Asthma 2024; 61:561-573. [PMID: 38088937 DOI: 10.1080/02770903.2023.2294908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Clinical trials and real world studies demonstrated benefit of mepolizumab treatment in severe asthma but data on its effectiveness beyond 2 years remain limited. Herein, we provide mepolizumab treatment evaluation up to 4 years. METHODS we studied all patients initiated on mepolizumab in our center from June 2017 to August 2018. Clinical outcomes data were retrieved from the local dendrite systems registry. Comparison analyses and logistic regression were conducted to explore longevity and predictors of response to mepolizumab treatment. RESULTS a total of 66 patients initiated on mepolizumab with a median follow-up of 45.8 (42.4,48.1) months were included in the study [mean age 50.3 years (range 18-79), females 50 (73%) ]. At 20.7 months of treatment, 42 patients (63.6%) had positive response, 13 (19.7%) negative response, and 11 (16.7%) discontinued due to other factors. At 45.8 months, 35 (53%) patients were still on mepolizumab, 21 (31.8%) switched to a different biologic, and 10 (15.2%) discontinued biologics. Two deaths were recorded during the study period.The median blood eosinophil was reduced from 0.43x109/L (0.27, 0.75) to 0.04 (0.0, 0.1) (p < 0.00001)]. The median annual exacerbations were reduced from 6.0 (4,8) to 1.0 (0.0,3.0) (p < 0.00001), and mOCS use was reduced from59% to 29%, p = 0.001. The mean asthma control questionnaire-6 (ACQ6) improved from 3.1 ± 1.7 to 2.1 ± 1.3 (p < 0.00001). CONCLUSIONS mepolizumab clinical benefit was sustained over 4 years. However, approximately half of the cohort discontinued the treatment prompting the need for further research into the treatment response longevity.
Collapse
Affiliation(s)
- Christopher Reilly
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Anandavelu Raja
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Pillai Anilkumar
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Julie Sullivan
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Lisa White
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Ali Bahron
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Julie Marsh
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Adel H Mansur
- Birmingham Regional Severe Asthma Service, Birmingham Heartland Hospital, University Hospitals Birmingham, Birmingham, UK
- University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
8
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
9
|
Khomarloo N, Mohsenzadeh E, Gidik H, Bagherzadeh R, Latifi M. Overall perspective of electrospun semiconductor metal oxides as high-performance gas sensor materials for NO x detection. RSC Adv 2024; 14:7806-7824. [PMID: 38444964 PMCID: PMC10913163 DOI: 10.1039/d3ra08119b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Gas sensors based on nanostructured semiconductor metal oxide (SMO) materials have been extensively investigated as key components due to their advantages over other materials, namely, high sensitivity, stability, affordability, rapid response and simplicity. However, the difficulty of working at high temperatures, response in lower concentration and their selectivity are huge challenges of SMO materials for detecting gases. Therefore, researchers have not stopped their quest to develop new gas sensors based on SMOs with higher performance. This paper begins by highlighting the importance of nitrogen monoxide (NO) and nitrogen dioxide (NO2) detection for human health and addresses the challenges associated with existing methods in effectively detecting them. Subsequently, the mechanism of SMO gas sensors, analysis of their structure and fabrication techniques focusing on electrospinning technique, as well as their advantages, difficulties, and structural design challenges are discussed. Research on enhancing the sensing performance through tuning the fabrication parameters are summarized as well. Finally, the problems and potential of SMO based gas sensors to detect NOx are revealed, and the future possibilities are stated.
Collapse
Affiliation(s)
- Niloufar Khomarloo
- Advanced Fibrous Materials Lab (AFM-LAB), Institute for Advanced Textile Materials and Technology, Amirkabir University of Technology (Tehran Polytechnic) Iran
- Univ. Lille, ENSAIT, Laboratoire Génie et Matériaux Textile (GEMTEX) F-59000 Lille France
- Junia F-59000 Lille France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, Laboratoire Génie et Matériaux Textile (GEMTEX) F-59000 Lille France
- Junia F-59000 Lille France
| | - Hayriye Gidik
- Univ. Lille, ENSAIT, Laboratoire Génie et Matériaux Textile (GEMTEX) F-59000 Lille France
- Junia F-59000 Lille France
| | - Roohollah Bagherzadeh
- Advanced Fibrous Materials Lab (AFM-LAB), Institute for Advanced Textile Materials and Technology, Amirkabir University of Technology (Tehran Polytechnic) Iran
| | - Masoud Latifi
- Textile Engineering Department, Textile Research and Excellence Centers, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
10
|
Salvator H, Lamy E, Roquencourt C, Bardin E, Devillier P, Grassin-Delyle S. Therapeutic drug monitoring of corticosteroids/β 2-agonists in the hair of patients with asthma: an open-label feasibility study. Front Pharmacol 2024; 14:1339835. [PMID: 38269282 PMCID: PMC10807032 DOI: 10.3389/fphar.2023.1339835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Background: Although adherence to inhaled medication is critically important for treatment efficiency, around half of patients taking these drugs are non-adherent or make critical errors when using their delivery device. Segmental hair analysis might be a valuable tool for therapeutic monitoring because hair concentrations reflect exposure from month to month. The objective of the present proof-of-concept study was to establish the feasibility of segmental hair analysis of inhaled budesonide and formoterol in asthma patients. Methods: We conducted a prospective, open-label, interventional study of adult patients being treated with budesonide/formoterol for controlled, moderate-to-severe asthma (CorticHair, NCT03691961). Asthma control, lung function, and medication adherence were recorded. Hair samples were taken 4 months after enrolment and cut into four 1 cm segments. Results: Samples were available from 21 patients (20 women; median age: 53; median budesonide dose: 600 μg/d). Budesonide and formoterol were detected in samples from 18 to 13 patients, respectively. The median hair concentrations were 6.25 pg/mg for budesonide and 0.9 pg/mg for formoterol. The intrapatient coefficient of variation between hair segments was 21% for budesonide and 40% for formoterol. Pearson's coefficients for the correlations between the hair concentration and the self-reported drug dose and the prescribed drug dose were respectively 0.42 (p = 0.08) and 0.29 (p = 0.25) for budesonide and 0.24 (p = 0.44) and 0.17 (p = 0.57) for formoterol. Conclusion: Segmental hair analysis of inhaled medications was feasible, with low intrapatient variability. This innovative, non-invasive means of assessing monthly drug exposure might help physicians to personalize drug regimens for patients with difficult-to-treat asthma.
Collapse
Affiliation(s)
- Hélène Salvator
- Exhalomics, Hôpital Foch, Suresnes, France
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- Laboratoire de Recherche en Pharmacologie Respiratoire—VIM Suresnes, UMR 0892, Université Paris-Saclay, Suresnes, France
| | - Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de La Santé, Montigny-le-Bretonneux, France
| | | | - Emmanuelle Bardin
- Exhalomics, Hôpital Foch, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de La Santé, Montigny-le-Bretonneux, France
- Institut Necker Enfants Malades, U1151, Paris, France
| | - Philippe Devillier
- Exhalomics, Hôpital Foch, Suresnes, France
- Laboratoire de Recherche en Pharmacologie Respiratoire—VIM Suresnes, UMR 0892, Université Paris-Saclay, Suresnes, France
| | - Stanislas Grassin-Delyle
- Exhalomics, Hôpital Foch, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de La Santé, Montigny-le-Bretonneux, France
| |
Collapse
|
11
|
Vaghasiya J, Dalvand A, Sikarwar A, Mangat D, Ragheb M, Kowatsch K, Pandey D, Hosseini SM, Hackett TL, Karimi-Abdolrezaee S, Ravandi A, Pascoe CD, Halayko AJ. Oxidized Phosphatidylcholines Trigger TRPA1 and Ryanodine Receptor-dependent Airway Smooth Muscle Contraction. Am J Respir Cell Mol Biol 2023; 69:649-665. [PMID: 37552547 DOI: 10.1165/rcmb.2022-0457oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Asthma pathobiology includes oxidative stress that modifies cell membranes and extracellular phospholipids. Oxidized phosphatidylcholines (OxPCs) in lung lavage from allergen-challenged human participants correlate with airway hyperresponsiveness and induce bronchial narrowing in murine thin-cut lung slices. OxPCs activate many signaling pathways, but mechanisms for these responses are unclear. We hypothesize that OxPCs stimulate intracellular free Ca2+ flux to trigger airway smooth muscle contraction. Intracellular Ca2+ flux was assessed in Fura-2-loaded, cultured human airway smooth muscle cells. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) induced an approximately threefold increase in 20 kD myosin light chain phosphorylation. This correlated with a rapid peak in intracellular cytoplasmic Ca2+ concentration ([Ca2+]i) (143 nM) and a sustained plateau that included slow oscillations in [Ca2+]i. Sustained [Ca2+]i elevation was ablated in Ca2+-free buffer and by TRPA1 inhibition. Conversely, OxPAPC-induced peak [Ca2+]i was unaffected in Ca2+-free buffer, by TRPA1 inhibition, or by inositol 1,4,5-triphosphate receptor inhibition. Peak [Ca2+]i was ablated by pharmacologic inhibition of ryanodine receptor (RyR) Ca2+ release from the sarcoplasmic reticulum. Inhibiting the upstream RyR activator cyclic adenosine diphosphate ribose with 8-bromo-cyclic adenosine diphosphate ribose was sufficient to abolish OxPAPC-induced cytoplasmic Ca2+ flux. OxPAPC induced ∼15% bronchial narrowing in thin-cut lung slices that could be prevented by pharmacologic inhibition of either TRPA1 or RyR, which similarly inhibited OxPC-induced myosin light chain phosphorylation in cultured human airway smooth muscle cells. In summary, OxPC mediates airway narrowing by triggering TRPA1 and RyR-mediated mobilization of intracellular and extracellular Ca2+ in airway smooth muscle. These data suggest that OxPC in the airways of allergen-challenged subjects and subjects with asthma may contribute to airway hyperresponsiveness.
Collapse
Affiliation(s)
- Jignesh Vaghasiya
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Azadeh Dalvand
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Anurag Sikarwar
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Divleen Mangat
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Mirna Ragheb
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Katarina Kowatsch
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Dheerendra Pandey
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology
- Manitoba Multiple Sclerosis Research Center, and
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology & Therapeutics, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Amir Ravandi
- Department of Physiology and Pathophysiology
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Chang C, Chen G, Wu W, Chen D, Chen S, Gao J, Feng Y, Zhen G. Exogenous IL-25 ameliorates airway neutrophilia via suppressing macrophage M1 polarization and the expression of IL-12 and IL-23 in asthma. Respir Res 2023; 24:260. [PMID: 37898756 PMCID: PMC10613395 DOI: 10.1186/s12931-023-02557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Severe asthma is associated with substantial mortality and has unmet therapeutic need. A subset of severe asthma is characterized by neutrophilic airway inflammation. Classically activated (or M1) macrophages which express IL-12 and IL-23 are associated with airway neutrophilia in asthma. Exogenous IL-25 was reported to suppress intestinal inflammation in animal models of inflammatory bowel diseases via suppressing IL-12 and IL-23 production. We hypothesize that IL-25 ameliorates airway neutrophilia via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23 in asthma. METHODS In a mouse model of neutrophil-dominant allergic airway inflammation, the effect of mouse recombinant IL-25 on airway inflammation were assessed by H&E staining and bronchoalveolar lavage (BAL) cell counting. The percentage of M1 macrophages in lung tissue and BAL cells were analyzed by flow cytometry. Quantitative PCR and immunostaining were performed to measure the expression of Il12, Il23, and inflammatory cytokines. Mechanistic experiments were performed in primary culture of macrophages from mouse lungs. The expression of IL-12, IL-23 and IL-25 in sputum was analyzed in a cohort of severe asthma and subjects with eosinophilic or non-eosinophilic asthma. RESULTS Intranasal administration of IL-25 markedly decreased the number of neutrophils in BAL cells in a murine model of neutrophil-dominant allergic airway inflammation. Moreover, exogenous IL-25 decreased the number of M1 macrophages, and reduced the expression of IL-12, IL-23 in the lungs of the mouse model. Exogenous IL-25 also inhibited the expression of inflammatory cytokines IL-1β, IFN-γ, TNF-α and IL-17 A. In vitro, IL-25 suppressed IL-12 and IL-23 expression in lipopolysaccharide (LPS)-stimulated primary culture of mouse pulmonary macrophages. Mechanistically, IL-25 inhibited LPS-induced c-Rel translocation to nucleus via STAT3-dependent signaling. In a cohort of severe asthma, IL-25 protein levels in sputum were significantly lower than control subjects. The transcript levels of IL-12 and IL-23 were increased whereas IL-25 transcripts were decreased in sputum cells from subjects with non-eosinophilic asthma compared to eosinophilic asthma. CONCLUSIONS IL-25 expression is downregulated in subjects with severe or non-eosinophilic asthma. Exogenous IL-25 ameliorates airway neutrophilia, at least in part, via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23.
Collapse
Affiliation(s)
- Chenli Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Dian Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Shengchong Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Jiali Gao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
- Division of Pulmonary and Critical Care Medicine, Tongji Hospital, 1095 Jiefang Avenue, 430030, Wuhan, China.
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
- Division of Respiratory and Critical Care Medicine, Tongji Hospital, 430030, Wuhan, China.
| |
Collapse
|
13
|
Sethi GS, Gracias DT, Gupta RK, Carr D, Miki H, Da Silva Antunes R, Croft M. Anti-CD3 inhibits circulatory and tissue-resident memory CD4 T cells that drive asthma exacerbations in mice. Allergy 2023; 78:2168-2180. [PMID: 36951658 DOI: 10.1111/all.15722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Exacerbations of asthma are thought to be strongly dependent on reactivation of allergen-induced lung tissue-resident and circulatory memory CD4 T cells. Strategies that broadly inhibit multiple T cell populations might then be useful to limit asthma. Accordingly, we tested whether targeting CD3 during exposure to inhaled allergen could prevent the accumulation of lung-localized effector memory CD4 T cells and block exacerbations of asthmatic inflammation. METHODS House dust mite-sensitized and repetitively challenged BL/6 mice were transiently treated therapeutically with F(ab')2 anti-CD3ε and memory T cell responses and lung inflammation were assessed. PBMCs from HDM-allergic donors were examined for the effect of anti-CD3 on expansion of allergen-reactive T cells. RESULTS Allergen-sensitized mice undergoing exacerbations of asthma were protected from lung inflammation by transient therapeutic treatment with F(ab')2 anti-CD3. Regardless of whether sensitized mice underwent a secondary or tertiary recall response to inhaled allergen, anti-CD3 inhibited all phenotypes of effector memory CD4 T cells in the lung tissue and lung vasculature by 80%-90%, including those derived from tissue-resident and circulatory memory T cells. This did not depend on Treg cells suggesting it was primarily a blocking effect on memory T cell signaling. Correspondingly, anti-CD3 also strongly inhibited proliferation of human allergen-reactive memory CD4 T cells from allergic individuals. In contrast, the number of surviving tissue-resident memory CD4 T cells that were maintained in the lungs at later times was not robustly reduced by anti-CD3. CONCLUSION Anti-CD3 F(ab')2 administration at the time of allergen exposure represents a viable strategy for limiting the immediate activity of allergen-responding memory T cells and asthma exacerbations.
Collapse
Affiliation(s)
- Gurupreet S Sethi
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Donald T Gracias
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniel Carr
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Ricardo Da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Donoghue LJ, McFadden KM, Vargas D, Smith GJ, Immormino RM, Moran TP, Kelada SNP. Collaborative cross strain CC011/UncJ as a novel mouse model of T2-high, severe asthma. Respir Res 2023; 24:153. [PMID: 37296458 PMCID: PMC10251525 DOI: 10.1186/s12931-023-02453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Among asthmatics, there is significant heterogeneity in the clinical presentation and underlying pathophysiological mechanisms, leading to the recognition of multiple disease endotypes (e.g., T2-high vs. T2-low). This heterogeneity extends to severe asthmatics, who may struggle to control symptoms even with high-dose corticosteroid treatment and other therapies. However, there are limited mouse models available to model the spectrum of severe asthma endotypes. We sought to identify a new mouse model of severe asthma by first examining responses to chronic allergen exposure among strains from the Collaborative Cross (CC) mouse genetics reference population, which contains greater genetic diversity than other inbred strain panels previously used for models of asthma. Mice from five CC strains and the often-used classical inbred strain BALB/cJ were chronically exposed to house dust mite (HDM) allergen for five weeks followed by measurements of airway inflammation. CC strain CC011/UncJ (CC011) exhibited extreme responses to HDM including high levels of airway eosinophilia, elevated lung resistance, and extensive airway wall remodeling, and even fatalities among ~ 50% of mice prior to study completion. Compared to BALB/cJ mice, CC011 mice had stronger Th2-mediated airway responses demonstrated by significantly elevated total and HDM-specific IgE and increased Th2 cytokines during tests of antigen recall, but not enhanced ILC2 activation. Airway eosinophilia in CC011 mice was completely dependent upon CD4+ T-cells. Notably, we also found that airway eosinophilia in CC011 mice was resistant to dexamethasone steroid treatment. Thus, the CC011 strain provides a new mouse model of T2-high, severe asthma driven by natural genetic variation likely acting through CD4+ T-cells. Future studies aimed at determining the genetic basis of this phenotype will provide new insights into mechanisms underlying severe asthma.
Collapse
Affiliation(s)
- Lauren J Donoghue
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn M McFadden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Vargas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gregory J Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert M Immormino
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Moran
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Qin T, Rong X, Zhang X, Kong L, Kang Y, Liu X, Hu M, Liang H, Tie C. Lipid Mediators Metabolic Chaos of Asthmatic Mice Reversed by Rosmarinic Acid. Molecules 2023; 28:molecules28093827. [PMID: 37175237 PMCID: PMC10179739 DOI: 10.3390/molecules28093827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Asthma is a common chronic inflammatory disease of the airways with no known cure. Lipid mediators (LMs) are a kind of inflammatory signaling molecules which are believed to be involved in the development of asthma. Hyssopus cuspidatus Boriss. is a traditional Uyghur medicine, which is widely used in the treatment of asthma and other respiratory diseases. Extraction of Hyssopus cuspidatus Boriss. was reported to neutralize asthma symptoms. The purpose of the study was to investigate both the anti-inflammatory and immunoregulation properties of the Hyssopus cuspidatus Boriss. extract (SXCF) and its main active constituent, rosmarinic acid (RosA), in vivo. The effect of RosA, a major constituent of SXCF, was evaluated on an asthmatic model, with both anti-inflammatory and immunoregulation properties. MATERIALS AND METHODS Anti-inflammatory effect of SXCF and RosA was assessed using OVA-induced asthma model mice by UPLC-MS/MS method. RESULTS Overall, RosA played a critical role in anti-asthma treatment. In total, 90% of LMs species that were significantly regulated by SXCF were covered. On the most important LMs associated with asthma, RosA equivalent induced similar effects as SXCF did. It is believed that some constituents in SXCF could neutralize RosA excessive impacts on LMs.
Collapse
Affiliation(s)
- Tuo Qin
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Xiaojuan Rong
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lingfei Kong
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Yutong Kang
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xuanlin Liu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Mengying Hu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Handong Liang
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Cai Tie
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
16
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
17
|
Kummola L, Salomaa T, Ortutay Z, Savan R, Young HA, Junttila IS. IL-4, IL-13 and IFN-γ -induced genes in highly purified human neutrophils. Cytokine 2023; 164:156159. [PMID: 36809715 DOI: 10.1016/j.cyto.2023.156159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Interleukin (IL)-4 and IL-13 are related cytokines with well-known specific roles in type 2 immune response. However, their effects on neutrophils are not completely understood. For this, we studied human primary neutrophil responses to IL-4 and IL-13. Neutrophils are dose-dependently responsive to both IL-4 and IL-13 as indicated by signal transducer and activator of transcription 6 (STAT6) phosphorylation upon stimulation, with IL-4 being more potent inducer of STAT6. IL-4-, IL-13- and Interferon (IFN)-γ-stimulated gene expression in highly purified human neutrophils induced both overlapping and unique gene expression in highly purified human neutrophils. IL-4 and IL-13 specifically regulate several immune-related genes, including IL-10, tumor necrosis factor (TNF) and leukemia inhibitory factor (LIF), while type1 immune response-related IFN-γ induced gene expression related for example, to intracellular infections. In analysis of neutrophil metabolic responses, oxygen independent glycolysis was specifically regulated by IL-4, but not by IL-13 or IFN-γ, suggesting specific role for type I IL-4 receptor in this process. Our results provide a comprehensive analysis of IL-4, IL-13 and IFN-γ -induced gene expression in neutrophils while also addressing cytokine-mediated metabolic changes in neutrophils.
Collapse
Affiliation(s)
- Laura Kummola
- Biodiversity Interventions for Well-being, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Tanja Salomaa
- Cytokine Biology Research Group, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; Fimlab Laboratories, 33520 Tampere, Finland
| | | | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, 98195 Seattle, WA, USA
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute, 21702 Frederick, MD, USA
| | - Ilkka S Junttila
- Cytokine Biology Research Group, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; Fimlab Laboratories, 33520 Tampere, Finland; Northern Finland Laboratory Centre (NordLab), 90220 Oulu, Finland; Research Unit of Biomedicine, University of Oulu, 90570 Oulu, Finland.
| |
Collapse
|
18
|
Erjefält JS. Anatomical and histopathological approaches to asthma phenotyping. Respir Med 2023; 210:107168. [PMID: 36822489 DOI: 10.1016/j.rmed.2023.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Asthma is typically characterized by variable respiratory symptoms and airflow limitation. Along with the pathophysiology and symptoms are immunological and inflammatory processes. The last decades research has revealed that the immunology of asthma is highly heterogeneous. This has clinical consequences and identification of immunological phenotypes is currently used to guide biological treatment. The focus of this review is on another dimension of asthma diversity, namely anatomical heterogeneity. Immunopathological alterations may go beyond the central airways to also involve the distal airways, the alveolar parenchyma, and pulmonary vessels. Also, extrapulmonary tissues are affected. The anatomical distribution of inflammation in asthma has remained relatively poorly discussed despite its potential implication on both clinical presentation and response to treatment. There is today evidence that a significant proportion of the asthma patients has small airway disease with type 2 immunity, eosinophilia and smooth muscle infiltration of mast cells. The small airways in asthma are also subjected to remodelling, constriction, and luminal plugging, events that are likely to contribute to the elevated distal airway resistance seen in some patients. In cases when the inflammation extends into the alveolar parenchyma alveolar FCER1-high mast cells, eosinophilia, type 2 immunity and activated alveolar macrophages, together with modest interstitial remodelling, create a complex immunopathological picture. Importantly, the distal lung inflammation in asthma can be pharmacologically targeted by use of inhalers with more distal drug deposition. Biological treatments, which are readily distributed to the distal lung, may also be beneficial in eligible patients with more severe and anatomically widespread disease.
Collapse
Affiliation(s)
- Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Research, Lund University, Lund, Sweden; Department of Allergology and Respiratory Medicine, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
19
|
Santos NG, Lima RM, Athanazio RA, Carvalho Pinto RM, Rabe K, Cukier A, Stelmach R. Changes after 12 years of follow-up severe asthma patients cohort: higher obstruction and comorbidities, but significant better quality of life. J Asthma 2023; 60:298-303. [PMID: 35274580 DOI: 10.1080/02770903.2022.2045311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Brazilian Cohort of Asthma São Paulo (BRASASP) had a well-characterized severe asthmatic in Brazil, with 12 years of follow-up under standard treatment. METHODS Sequential assessment of patients with uncontrolled asthma from BRASASP cohort was carried out with 12 years of follow-up, performing exams and comparing with previous measurements. RESULTS 50 from the 60 initial patients were reevaluated. Twelve years later, FEV1 and the FEV1/FVC ratio have significantly decreased, with a rate of loss of lung function of 11.8 and 14%, respectively, and worsening in small airway parameters such as RV/TLC. BMI, The Asthma Control Test (ACT) and Asthma Control Questionnaire (ACQ) scores haven't changed. However, exacerbations decreased by 56%. Mean daily inhaled corticosteroid use was similar over time, but daily oral corticosteroid use decreased, in addition to a significant reduction in induced sputum eosinophilic and neutrophilic profile and serum IgE. Rhinitis, sinusitis, and GERD were the main comorbidities. In quality of life according to respiratory questionnaire SGRQ, total score showed a huge improvement (62% of patients). CONCLUSIONS There was significant decrease in FEV1 and FEV1/FVC. Data of pulmonary functional small airway characteristics show globally affected airways. Although higher doses of medications, patients were still uncontrolled, but with reduction of exacerbations, daily use of oral corticosteroid, less eosinophils and neutrophils in induced sputum and lower levels of IgE. Improvement in quality of life in 62% of patients.
Collapse
Affiliation(s)
- N G Santos
- Pulmonary Division, Heart Institute (InCor) Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - R M Lima
- Pulmonary Division, Heart Institute (InCor) Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - R A Athanazio
- Pulmonary Division, Heart Institute (InCor) Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - R M Carvalho Pinto
- Pulmonary Division, Heart Institute (InCor) Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - K Rabe
- LungenClinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, Grosshansdorf, Germany
| | - A Cukier
- Pulmonary Division, Heart Institute (InCor) Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - R Stelmach
- Pulmonary Division, Heart Institute (InCor) Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Brazil
| |
Collapse
|
20
|
Killian KN, Kosanovich JL, Lipp MA, Empey KM, Oury TD, Perkins TN. RAGE contributes to allergen driven severe neutrophilic airway inflammation via NLRP3 inflammasome activation in mice. Front Immunol 2023; 14:1039997. [PMID: 36776857 PMCID: PMC9910358 DOI: 10.3389/fimmu.2023.1039997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Background Asthma is a major public healthcare burden, affecting over 300 million people worldwide. While there has been great progress in the treatment of asthma, subsets of patients who present with airway neutrophilia, often have more severe disease, and tend to be resistant to conventional corticosteroid treatments. The receptor for advanced glycation endproducts (RAGE) plays a central role in the pathogenesis of eosinophilic asthma, however, it's role in neutrophilic asthma remains largely uninvestigated. Methods A mouse model of severe steroid resistant neutrophilic airway disease (SSRNAD) using the common fungal allergen Alternaria alternata (AA) was employed to evaluate the effects of genetic ablation of RAGE and pharmacological inhibition of the NLRP3 inflammasome on neutrophilic airway inflammation. Results AA exposure induced robust neutrophil-dominant airway inflammation and increased BALF levels of Th1/Th17 cytokines in wild-type mice, which was significantly reduced in RAGE-/- mice. Serum levels of IgE and IgG1 were increased similarly in both wild-type and RAGE-/- mice. Pharmacological inhibition of NLRP3 blocked the effects of AA exposure and NLRP3 inflammasome activation was RAGE-dependent. Neutrophil extracellular traps were elevated in the BALF of wild-type but not RAGE-/- mice and an atypical population of SiglecF+ neutrophils were identified in the BALF. Lastly, time-course studies found that RAGE expression promoted sustained neutrophil accumulation in the BALF of mice in response to AA.
Collapse
Affiliation(s)
- Katherine N. Killian
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Jessica L. Kosanovich
- Department of Pharmaceutical Sciences, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, United States
| | - Madeline A. Lipp
- Department of Pharmaceutical Sciences, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, United States
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Timothy N. Perkins
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Cottin S, Doyen V, Pilette C. Upper airway disease diagnosis as a predictive biomarker of therapeutic response to biologics in severe asthma. Front Med (Lausanne) 2023; 10:1129300. [PMID: 37035303 PMCID: PMC10073432 DOI: 10.3389/fmed.2023.1129300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Asthma is a heterogeneous disease sharing airway instability but with different biology, risk factors, and response-to-therapy patterns. Biologics have revolutionized the one-size-fits-to-all approach to personalized medicine in severe asthma (SA), which relies on the identification of biomarkers that define distinct endotypes. Thus, blood eosinophils and, to some extent, exhaled nitric oxide (FeNO) can predict the response to approved anti-type 2 (T2) biologics (anti-IgE, anti-IL-5, and anti-IL-4R alpha), whereas age at onset and comorbidities such as anxiety/depression, obesity, reflux, and upper airway disease (UAD) also influence therapeutic responses in SA. In this article, focusing on the predictive value of biomarkers for the therapeutic response to biologics in SA, we first summarize the level of prediction achieved by T2 biomarkers (blood eosinophils, FeNO) and then review whether data support the predictive value of upper airway diagnosis on such outcomes. Post hoc analysis of most studies with T2 biologics suggests that chronic rhinosinusitis with nasal polyps (CRSwNP) and, to a lower extent, allergic rhinitis may help in predicting clinical response. Considering that T2 biologics are now also approved for the treatment of severe CRSwNP, diagnosis of upper airway disease is a key step in determining eligibility for such therapy.
Collapse
Affiliation(s)
- Sophie Cottin
- Department of Pulmonary Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Virginie Doyen
- Department of Pulmonary Medicine, Centre Hospitalier Universitaire UCL Namur, Université catholique de Louvain, Yvoir, Belgium
| | - Charles Pilette
- Department of Pulmonary Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Pole of Pulmonology, ENT and Dermatology, Institute of Experimental and Cliniqal Research, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Charles Pilette
| |
Collapse
|
22
|
Yuliani FS, Chen JY, Cheng WH, Wen HC, Chen BC, Lin CH. Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells. J Biomed Sci 2022; 29:95. [PMID: 36369000 PMCID: PMC9650896 DOI: 10.1186/s12929-022-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Doublecortin-like kinase 1 (DCLK1) has been recognized as a marker of cancer stem cell in several malignancies. Thrombin is crucial in asthma severity as it can promote IL-8/CXCL8 production in lung epithelial cells, which is a potent chemoattractant for neutrophils. However, the pathologic role of DCLK1 in asthma and its involvement in thrombin-stimulated IL-8/CXCL8 expression remain unknown. Methods IL-8/CXCL8, thrombin, and DCLK1 expression were observed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. A549 and BEAS-2B cells were either pretreated with inhibitors or small interfering RNAs (siRNAs) before being treated with thrombin. IL-8/CXCL8 expression and the molecules involved in signaling pathway were performed using ELISA, luciferase activity assay, Western blot, or ChIP assay. Results IL-8/CXCL8, thrombin, and DCLK1 were overexpressed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. Our in vitro study found that DCLK siRNA or LRKK2-IN-1 (DCLK1 inhibitor) attenuated IL-8/CXCL8 release after thrombin induction in A549 and BEAS-2B cells. Thrombin activated DCLK1, RhoA, and YAP in a time-dependent manner, in which DCLK1 siRNA inhibited RhoA and YAP activation. YAP was dephosphorylated on the Ser127 site after thrombin stimulation, resulting in YAP translocation to the nucleus from the cytosol. DCLK1, RhoA and YAP activation following thrombin stimulation were inhibited by U0126 (ERK inhibitor). Moreover, DCLK1 and YAP siRNA inhibited κB-luciferase activity. Thrombin stimulated the recruitment of YAP and p65 to the NF-κB site of the IL-8/CXCL8 promoter and was inhibited by DCLK1 siRNA. Conclusions Thrombin activates the DCLK1/RhoA signaling pathway, which promotes YAP activation and translocation to the nucleus from the cytosol, resulting in YAP/p65 formation, and binding to the NF-κB site, which enhances IL-8/CXCL8 expression. DCLK1 might be essential in thrombin-stimulated IL-8/CXCL8 expression in asthmatic lungs and indicates a potential therapeutic strategy for severe asthma treatment.
Collapse
|
23
|
Mank MM, Reed LF, Fastiggi VA, Peña-García PE, Hoyt LR, Van Der Vliet KE, Ather JL, Poynter ME. Ketone body augmentation decreases methacholine hyperresponsiveness in mouse models of allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:282-298. [PMID: 36466740 PMCID: PMC9718535 DOI: 10.1016/j.jacig.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Individuals with allergic asthma exhibit lung inflammation and remodeling accompanied by methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility, and they can present with a range of mild-to-severe disease amenable or resistant to therapeutic intervention, respectively. There remains a need for alternatives or complements to existing treatments that could control the physiologic manifestations of allergic asthma. Objectives Our aim was to examine the hypothesis that because ketone bodies elicit anti-inflammatory activity and are effective in mitigating the methacholine hyperresponsiveness associated with obese asthma, increasing systemic concentrations of ketone bodies would diminish pathologic outcomes in asthma-relevant cell types and in mouse models of allergic asthma. Methods We explored the effects of ketone bodies on allergic asthma-relevant cell types (macrophages, airway epithelial cells, CD4 T cells, and bronchial smooth muscle cells) in vitro as well as in vivo by using preclinical models representative of several endotypes of allergic asthma to determine whether promotion of ketosis through feeding a ketogenic diet or providing a ketone precursor or a ketone ester dietary supplement could affect immune and inflammatory parameters as well as methacholine hyperresponsiveness. Results In a dose-dependent manner, the ketone bodies acetoacetate and β-hydroxybutyrate (BHB) decreased proinflammatory cytokine secretion from mouse macrophages and airway epithelial cells, decreased house dust mite (HDM) extract-induced IL-8 secretion from human airway epithelial cells, and decreased cytokine production from polyclonally and HDM-activated T cells. Feeding a ketogenic diet, providing a ketone body precursor, or supplementing the diet with a ketone ester increased serum BHB concentrations and decreased methacholine hyperresponsiveness in several acute HDM sensitization and challenge models of allergic asthma. A ketogenic diet or ketone ester supplementation decreased methacholine hyperresponsiveness in an HDM rechallenge model of chronic allergic asthma. Ketone ester supplementation synergized with corticosteroid treatment to decrease methacholine hyperresponsiveness in an HDM-driven model of mixed-granulocytic severe asthma. HDM-induced morphologic changes in bronchial smooth muscle cells were inhibited in a dose-dependent manner by BHB, as was HDM protease activity. Conclusions Increasing systemic BHB concentrations through dietary interventions could provide symptom relief for several endotypes of allergic asthmatic individuals through effects on multiple asthma-relevant cells.
Collapse
Affiliation(s)
- Madeleine M Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Leah F Reed
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - V Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Paola E Peña-García
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Laura R Hoyt
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Katherine E Van Der Vliet
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Jennifer L Ather
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| |
Collapse
|
24
|
NOD2 Signaling Circuitry during Allergen Sensitization Does Not Worsen Experimental Neutrophilic Asthma but Promotes a Th2/Th17 Profile in Asthma Patients but Not Healthy Subjects. Int J Mol Sci 2022; 23:ijms231911894. [PMID: 36233196 PMCID: PMC9569442 DOI: 10.3390/ijms231911894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) recognizes pathogens associated with the development of asthma. Moreover, NOD2 adjuvants are used in vaccine design to boost immune responses. Muramyl di-peptide (MDP) is a NOD2 ligand, which is able to promote Th2/Th17 responses. Furthermore, polymorphisms of the NOD2 receptor are associated with allergy and asthma development. This study aimed to evaluate if MDP given as an adjuvant during allergen sensitization may worsen the development of Th2/Th17 responses. We used a mouse model of Th2/Th17-type allergic neutrophil airway inflammation (AAI) to dog allergen, with in vitro polarization of human naive T cells by dendritic cells (DC) from healthy and dog-allergic asthma subjects. In the mouse model, intranasal co-administration of MDP did not modify the AAI parameters, including Th2/Th17-type lung inflammation. In humans, MDP co-stimulation of allergen-primed DC did not change the polarization profile of T cells in healthy subjects but elicited a Th2/Th17 profile in asthma subjects, as compared with MDP alone. These results support the idea that NOD2 may not be involved in the infection-related development of asthma and that, while care has to be taken in asthma patients, NOD2 adjuvants might be used in non-sensitized individuals.
Collapse
|
25
|
Wang G, Yu X, Cong Y, Li L. Cow milk αs1-casein induces allergic responses in a mouse model of atopy. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zhang QN, Xiao H, Fang LT, Sun QX, Li LD, Xu SY, Li CQ. Aerosol inhalation of Mycobacterium vaccae ameliorates airway structural remodeling in chronic asthma mouse model. Exp Lung Res 2022; 48:239-250. [PMID: 36001552 DOI: 10.1080/01902148.2022.2115166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Airway remodeling is accepted to be a determining component within the natural history of asthma. Nebulized inhalation of Mycobacterium vaccae (M. vaccae) has a protective effect on asthmatic mice. However, little is known regarding the effect of M. vaccae on airway structural remodeling in asthmatic mice. The purpose of this study was to explore the effect and the underlying mechanism of M. vaccae aerosol inhalation on airway structural remodeling in an asthma mouse model. Methods: Chronic asthma mouse models were established by ovalbumin induction. The number of inflammatory cells in bronchoalveolar lavage fluid (BALF), pathological alterations in lung tissue, and levels of associated cytokines (IL-5, IL-13, TNF-α, and ovalbumin-specific immunoglobulin E [OVA-sIgE]) were all assessed after M. vaccae therapy. The relative expression of interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), and Wnt1-induced signaling protein 1 (WISP1) mRNA were detected. Western blotting and immunohistochemistry detected the expression of Wnt/β-catenin pathway-related proteins in lung tissue. Results: M. vaccae aerosol inhalation relieved airway inflammation, airway hyper-responsiveness, and airway remodeling. M. vaccae reduced the levels of IL-5, IL-13, TNF-α, and OVA-sIgE in and downregulated the expression of IL-1β, TNF-α, NF-κB, and WISP1 mRNA in the pulmonary. In addition, M. vaccae inhibited the expression of β-catenin, WISP1, and Wnt1 protein and upregulated the expression of glycogen synthase kinase-3beta (GSK-3β). Conclusion: Nebulized inhalation of M. vaccae can reduce airway remodeling during asthma.
Collapse
Affiliation(s)
- Qian-Nan Zhang
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huan Xiao
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Ting Fang
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi-Xiang Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lao-Dong Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Si-Yue Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Home Dust Mites Promote MUC5AC Hyper-Expression by Modulating the sNASP/TRAF6 Axis in the Airway Epithelium. Int J Mol Sci 2022; 23:ijms23169405. [PMID: 36012669 PMCID: PMC9408837 DOI: 10.3390/ijms23169405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
House dust mites (HDMs) are a common source of respiratory allergens responsible for allergic asthma and innate immune responses in human diseases. Since HDMs are critical factors in the triggering of allergen-induced airway mucosa from allergic asthma, we aimed to investigate the mechanisms of Toll-like receptors (TLR) in the signaling of the HDM extract that is involved in mucus hypersecretion and airway inflammation through the engagement of innate immunity. Previously, we reported that the somatic nuclear autoantigenic sperm protein (sNASP)/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis controls the initiation of TLRs to maintain the homeostasis of the innate immune response. The present study showed that the HDM extract stimulated the biogenesis of Mucin 5AC (MUC5AC) in bronchial epithelial cells via the TLR2/4 signaling pathway involving MyD88 and TRAF6. Specifically, sNASP binds to TRAF6 in unstimulated bronchial epithelial cells to prevent the activation of TRAF6-depenedent kinases. Upon on HDMs’ stimulation, sNASP is phosphorylated, leading to the activation of TRAF6 downstream of the p38 MAPK and NF-κB signaling pathways. Further, NASP-knockdown enhanced TRAF6 signaling and MUC5AC biogenesis. In the HDM-induced mouse asthma model, we found that the HDM extract promoted airway hyperresponsiveness (AHR), MUC5AC, and allergen-specific IgE production as well as IL-5 and IL-13 for recruiting inflammatory cells. Treatment with the PEP-NASP peptide, a selective TRAF6-blocking peptide, ameliorated HDM-induced asthma in mice. In conclusion, this study indicated that the sNASP/TRAF6 axis plays a regulatory role in asthma by modulating mucus overproduction, and the PEP-NASP peptide might be a potential target for asthma treatment.
Collapse
|
28
|
Treatment of allergic eosinophilic asthma through engineered IL-5-anchored chimeric antigen receptor T cells. Cell Discov 2022; 8:80. [PMID: 35973984 PMCID: PMC9381771 DOI: 10.1038/s41421-022-00433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
Severe eosinophilic asthma (SEA) is a therapy-resistant respiratory condition with poor clinical control. Treatment efficacy and patient compliance of current therapies remain unsatisfactory. Here, inspired by the remarkable success of chimeric antigen receptor-based cellular adoptive immunotherapies demonstrated for the treatment of a variety of malignant tumors, we engineered a cytokine-anchored chimeric antigen receptor T (CCAR-T) cell system using a chimeric IL-5-CD28-CD3ζ receptor to trigger T-cell-mediated killing of eosinophils that are elevated during severe asthma attacks. IL-5-anchored CCAR-T cells exhibited selective and effective killing capacity in vitro and restricted eosinophil differentiation with apparent protection against allergic airway inflammation in two mouse models of asthma. Notably, a single dose of IL-5-anchored CCAR-T cells resulted in persistent protection against asthma-related conditions over three months, significantly exceeding the typical therapeutic window of current mAb-based treatments in the clinics. This study presents a cell-based treatment strategy for SEA and could set the stage for a new era of precision therapies against a variety of intractable allergic diseases in the future.
Collapse
|
29
|
Kim JY, Stevens P, Karpurapu M, Lee H, Englert JA, Yan P, Lee TJ, Pabla N, Pietrzak M, Park GY, Christman JW, Chung S. Targeting ETosis by miR-155 inhibition mitigates mixed granulocytic asthmatic lung inflammation. Front Immunol 2022; 13:943554. [PMID: 35958610 PMCID: PMC9360579 DOI: 10.3389/fimmu.2022.943554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is phenotypically heterogeneous with several distinctive pathological mechanistic pathways. Previous studies indicate that neutrophilic asthma has a poor response to standard asthma treatments comprising inhaled corticosteroids. Therefore, it is important to identify critical factors that contribute to increased numbers of neutrophils in asthma patients whose symptoms are poorly controlled by conventional therapy. Leukocytes release chromatin fibers, referred to as extracellular traps (ETs) consisting of double-stranded (ds) DNA, histones, and granule contents. Excessive components of ETs contribute to the pathophysiology of asthma; however, it is unclear how ETs drive asthma phenotypes and whether they could be a potential therapeutic target. We employed a mouse model of severe asthma that recapitulates the intricate immune responses of neutrophilic and eosinophilic airway inflammation identified in patients with severe asthma. We used both a pharmacologic approach using miR-155 inhibitor-laden exosomes and genetic approaches using miR-155 knockout mice. Our data show that ETs are present in the bronchoalveolar lavage fluid of patients with mild asthma subjected to experimental subsegmental bronchoprovocation to an allergen and a severe asthma mouse model, which resembles the complex immune responses identified in severe human asthma. Furthermore, we show that miR-155 contributes to the extracellular release of dsDNA, which exacerbates allergic lung inflammation, and the inhibition of miR-155 results in therapeutic benefit in severe asthma mice. Our findings show that targeting dsDNA release represents an attractive therapeutic target for mitigating neutrophilic asthma phenotype, which is clinically refractory to standard care.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Patrick Stevens
- Comprehensive Cancer Center, Biomedical Informatics Shared Resources, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Hyunwook Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Pearlly Yan
- Comprehensive Cancer Center, Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Comprehensive Cancer Center, Biomedical Informatics Shared Resources, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Gye Young Park
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - John W. Christman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
30
|
Cahill KM, Johnson TK, Perveen Z, Schexnayder M, Xiao R, Heffernan LM, Langohr IM, Paulsen DB, Penn AL, Noël A. In utero exposures to mint-flavored JUUL aerosol impair lung development and aggravate house dust mite-induced asthma in adult offspring mice. Toxicology 2022; 477:153272. [PMID: 35878681 DOI: 10.1016/j.tox.2022.153272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
There are few reports concerning electronic nicotine delivery system (ENDS) use during pregnancy and no studies on asthma in prenatally JUUL-exposed offspring. Here, we tested the hypothesis that in utero JUUL exposure causes unfavorable birth outcomes and lasting pulmonary health effects in adult offspring. BALB/c dams were exposed to either air or mint-flavored JUUL aerosol, 1-hr/d, 20 consecutive days during gestation. Offspring were sacrificed on post-natal day (PND) 0 or at 11-week of age, following house dust mite (HDM) challenge. Gene expression was assessed in the uterine/placental tissue of the dams and lung responses were assessed in offspring at PND0 and at 11 weeks of age. JUUL-exposed offspring exhibited decreased body weights and lengths at PND0. These birth outcomes were accompanied by dysregulation of 54 genes associated with hypoxia and oxidative stress in the uterine/placental tissues of JUUL-exposed dams, as well as 24 genes in the lungs of the offspring related to Wnt signaling, plus 9 genes related to epigenetics, and 7 genes related to inflammation. At 11 weeks of age, JUUL + HDM exposed mice exhibited pulmonary inflammation when compared to their respective air + HDM controls. Additionally, the JUUL + HDM exposure dysregulated several genes associated with allergies and asthma. Further, the JUUL + HDM females showed decreased methylation of the promoter region of the Il10ra gene. Taken together, our mouse model shows that inhalation of JUUL aerosols during pregnancy affects the intrauterine environment, impairs lung development, and heightens the effects of allergic airway responses later in life.
Collapse
Affiliation(s)
- Kerin M Cahill
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Trenton K Johnson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Matthew Schexnayder
- Lincoln Memorial University, College of Veterinary Medicine, 6965 Cumberland Gap Parkway, Harrogate, TN, USA
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Linda M Heffernan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
31
|
Zhang N, Xu J, Jiang C, Lu S. Neuro-Immune Regulation in Inflammation and Airway Remodeling of Allergic Asthma. Front Immunol 2022; 13:894047. [PMID: 35784284 PMCID: PMC9245431 DOI: 10.3389/fimmu.2022.894047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a common chronic inflammation of the airways and causes airway remodeling eventually. For a long time, investigators have been focusing on the immunological mechanism of asthma. However, in recent years, the role of neuro-regulation in the occurrence of asthma has gradually attracted investigators’ attention. In this review, we firstly describe neuro-immune regulation in inflammation of allergic asthma from two aspects: innate immunity and adaptive immunity. Secondly, we introduce neuro-immune regulation in airway remodeling of asthma. Finally, we prospect the role of pulmonary neuroendocrine cells in the development of asthma. In general, the amount of researches is limited. Further researches on the neural regulation during the occurrence of asthma will help us clarify the mechanism of asthma more comprehensively and find more effective ways to prevent and control asthma.
Collapse
Affiliation(s)
- Ning Zhang
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jing Xu
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Congshan Jiang
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| |
Collapse
|
32
|
Jackson D, Walum J, Banerjee P, Lewis BW, Prakash YS, Sathish V, Xu Z, Britt RD. Th1 cytokines synergize to change gene expression and promote corticosteroid insensitivity in pediatric airway smooth muscle. Respir Res 2022; 23:126. [PMID: 35578269 PMCID: PMC9109364 DOI: 10.1186/s12931-022-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Corticosteroids remain a key therapy for treating children with asthma. Patients with severe asthma are insensitive, resistant, or refractory to corticosteroids and have poorly controlled symptoms that involve airway inflammation, airflow obstruction, and frequent exacerbations. While the pathways that mediate corticosteroid insensitivity in asthma remain poorly defined, recent studies suggest that enhanced Th1 pathways, mediated by TNFα and IFNγ, may play a role. We previously reported that the combined effects of TNFα and IFNγ promote corticosteroid insensitivity in developing human airway smooth muscle (ASM).
Methods
To further understand the effects of TNFα and IFNγ on corticosteroid sensitivity in the context of neonatal and pediatric asthma, we performed RNA sequencing (RNA-seq) on human pediatric ASM treated with fluticasone propionate (FP), TNFα, and/or IFNγ.
Results
We found that TNFα had a greater effect on gene expression (~ 1000 differentially expressed genes) than IFNγ (~ 500 differentially expressed genes). Pathway and transcription factor analyses revealed enrichment of several pro-inflammatory responses and signaling pathways. Interestingly, treatment with TNFα and IFNγ augmented gene expression with more than 4000 differentially expressed genes. Effects of TNFα and IFNγ enhanced several pro-inflammatory genes and pathways related to ASM and its contributions to asthma pathogenesis, which persisted in the presence of corticosteroids. Co-expression analysis revealed several gene networks related to TNFα- and IFNγ-mediated signaling, pro-inflammatory mediator production, and smooth muscle contractility. Many of the co-expression network hubs were associated with genes that are insensitive to corticosteroids.
Conclusions
Together, these novel studies show the combined effects of TNFα and IFNγ on pediatric ASM and implicate Th1-associated cytokines in promoting ASM inflammation and hypercontractility in severe asthma.
Collapse
|
33
|
Severe asthma treatment patterns: A multicenter observational study in the Gulf region. World Allergy Organ J 2022; 15:100647. [PMID: 35663273 PMCID: PMC9127696 DOI: 10.1016/j.waojou.2022.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
|
34
|
Loewenthal L, Menzies-Gow A. FeNO in Asthma. Semin Respir Crit Care Med 2022; 43:635-645. [DOI: 10.1055/s-0042-1743290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractAsthma is a common disease affecting 350 million people worldwide, which is characterized by airways inflammation and hyperreactivity. Historically diagnosis and treatment have been mainly based on symptoms, which have the potential to result in misdiagnosis and inappropriate treatment. Nitric oxide (NO) is exhaled in human breath and is a marker of airways inflammation. Levels of NO are increased in the exhaled breath of patients with type 2 asthma and fractional exhaled nitric oxide (FeNO) provides an objective biomarker of airway inflammation. FeNO testing is an accessible, noninvasive, and easy-to-use test. Cut-off values have been established by the American Thoracic Society (ATS), the Global Initiative for Asthma (GINA), and the National Institute for Health and Care Excellence (NICE) but vary between guidance. FeNO levels have been shown to be predictive of blood and sputum eosinophil levels but should not be used in isolation and current guidance emphasizes the importance of incorporating clinical symptoms and testing when utilizing FeNO results. The inclusion of FeNO testing can increase diagnostic accuracy of asthma, while high levels in asthmatic patients can help predict response to inhaled corticosteroids (ICS) and suppression of levels with ICS to monitor adherence. FeNO levels are also a predictor of asthma risk with increased exacerbation rates and accelerated decline in lung function associated with high levels as well as having an emerging role in predicting response to some biologic therapies in severe asthma. FeNO testing is cost-effective and has been shown, when combined with clinical assessment, to improve asthma management.
Collapse
Affiliation(s)
- Lola Loewenthal
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andrew Menzies-Gow
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, United Kingdom
| |
Collapse
|
35
|
Immormino RM, Jania CM, Tilley SL, Moran TP. Neuropilin‐2 regulates airway inflammation in a neutrophilic asthma model. Immun Inflamm Dis 2022; 10:e575. [PMID: 34861108 PMCID: PMC8926497 DOI: 10.1002/iid3.575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Asthma is a heterogenous disease that can be classified into eosinophilic (type 2‐high) and noneosinophilic (type 2‐low) endotypes. The type 2‐low endotype of asthma can be characterized by the presence of neutrophilic airway inflammation that is poorly responsive to corticosteroids. Dysregulated innate immune responses to microbial products including Toll‐like receptor (TLR) ligands have been associated with the pathogenesis of neutrophilic asthma. The key molecules that regulate inflammatory responses in individuals with neutrophilic asthma remain unclear. We previously reported that the immunoregulatory receptor neuropilin‐2 (NRP2) is expressed by murine and human alveolar macrophage (AM) and suppresses lipopolysaccharide (LPS)‐induced neutrophilic airway inflammation. Methods Here, we investigated the immunoregulatory role of NRP2 in a mouse model of neutrophilic asthma. Results We found that TLR ligands, but not T helper 2 (Th2)‐promoting adjuvants, induced NRP2 expression by AM. Using an LPS‐mediated model of neutrophilic asthma, we demonstrate that NRP2 was increased in AM and other lung antigen‐presenting cells following airway challenge with antigen. Conditional deletion of NRP2 in myeloid cells exacerbated airway inflammation in a neutrophilic asthma model. In contrast, myeloid‐specific ablation of NRP2 did not affect airway inflammation in a Th2‐mediated eosinophilic asthma model. Myeloid‐specific ablation of NRP2 did not affect Th1/Th17 responses to inhaled antigens or expression of neutrophil chemokines but rather resulted in impaired efferocytosis by AM, which is necessary for effective resolution of airway inflammation. Conclusion Our findings suggest that NRP2 is a negative regulator of airway inflammation associated with neutrophilic asthma.
Collapse
Affiliation(s)
- Robert M. Immormino
- Center for Environmental Medicine, Asthma and Lung Biology University of North Carolina Chapel Hill North Carolina USA
| | - Corey M. Jania
- Department of Medicine University of North Carolina Chapel Hill North Carolina USA
| | - Stephen L. Tilley
- Department of Medicine University of North Carolina Chapel Hill North Carolina USA
| | - Timothy P. Moran
- Center for Environmental Medicine, Asthma and Lung Biology University of North Carolina Chapel Hill North Carolina USA
- Department of Pediatrics University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
36
|
Calcaterra V, Nappi RE, Farolfi A, Tiranini L, Rossi V, Regalbuto C, Zuccotti G. Perimenstrual Asthma in Adolescents: A Shared Condition in Pediatric and Gynecological Endocrinology. CHILDREN 2022; 9:children9020233. [PMID: 35204953 PMCID: PMC8870409 DOI: 10.3390/children9020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
Asthma is a frequent medical condition in adolescence. The worsening of the most common symptoms perimenstrually is defined as perimenstrual asthma (PMA). The cause of PMA remains unclear, but a role for hormonal milieu is plausible. Data on PMA in adolescents are limited, and its management is not fully established. We aimed to discuss the PMA phenomenon in young females from pathophysiology to preventive strategies, focusing on the relationship with the hormonal pattern. The fluctuation of estrogens at ovulation and before menstruation and the progesterone secretion during the luteal phase and its subsequent withdrawal seem to be the culprits, because the deterioration of asthma is cyclical during the luteal phase and/or during the first days of the menstrual cycle. Conventional asthma therapies are not always effective for PMA. Preventive strategies may include innovative hormonal contraception. Even a possible beneficial effect of other hormonal treatments, including estrogens, progestogens, and androgens, as well as leukotriene receptor antagonists and explorative approach using microbial-directed therapy, is considered. The underlying mechanisms, through which sex-hormone fluctuations influence asthma symptoms, represent a challenge in the clinical management of such a distressing condition. Further studies focused on young females are mandatory to promote adolescent health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Department of Pediatrics, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy; (A.F.); (V.R.); (G.Z.)
- Correspondence:
| | - Rossella Elena Nappi
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.E.N.); (L.T.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Andrea Farolfi
- Department of Pediatrics, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy; (A.F.); (V.R.); (G.Z.)
| | - Lara Tiranini
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.E.N.); (L.T.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Virginia Rossi
- Department of Pediatrics, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy; (A.F.); (V.R.); (G.Z.)
| | - Corrado Regalbuto
- Pediatric Unit, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy; (A.F.); (V.R.); (G.Z.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| |
Collapse
|
37
|
Georas SN, Wright RJ, Ivanova A, Israel E, LaVange LM, Akuthota P, Carr TF, Denlinger LC, Fajt ML, Kumar R, O'Neal WK, Phipatanakul W, Szefler SJ, Aronica MA, Bacharier LB, Burbank AJ, Castro M, Crotty Alexander L, Bamdad J, Cardet JC, Comhair SAA, Covar RA, DiMango EA, Erwin K, Erzurum SC, Fahy JV, Gaffin JM, Gaston B, Gerald LB, Hoffman EA, Holguin F, Jackson DJ, James J, Jarjour NN, Kenyon NJ, Khatri S, Kirwan JP, Kraft M, Krishnan JA, Liu AH, Liu MC, Marquis MA, Martinez F, Mey J, Moore WC, Moy JN, Ortega VE, Peden DB, Pennington E, Peters MC, Ross K, Sanchez M, Smith LJ, Sorkness RL, Wechsler ME, Wenzel SE, White SR, Zein J, Zeki AA, Noel P. The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. J Allergy Clin Immunol 2022; 149:488-516.e9. [PMID: 34848210 PMCID: PMC8821377 DOI: 10.1016/j.jaci.2021.10.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here, we describe the Precision Interventions for Severe and/or Exacerbation-Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the United States. The PrecISE Network was designed to conduct phase II/proof-of-concept clinical trials of precision interventions in the population with severe asthma, and is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the PrecISE Network will evaluate up to 6 interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the PrecISE Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for severe asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Anastasia Ivanova
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Elliot Israel
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Lisa M LaVange
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Praveen Akuthota
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Merritt L Fajt
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | | | - Wanda K O'Neal
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Stanley J Szefler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark A Aronica
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Allison J Burbank
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Mo
| | - Laura Crotty Alexander
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Julie Bamdad
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| | | | | | | | | | - Kim Erwin
- Institute for Healthcare Delivery Design, University of Illinois at Chicago, Chicago, Ill
| | | | - John V Fahy
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | | | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University, Indianapolis, Ind
| | - Lynn B Gerald
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | | | - Daniel J Jackson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - John James
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Sumita Khatri
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - John P Kirwan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Andrew H Liu
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark C Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, the Johns Hopkins University, Baltimore, Md
| | - M Alison Marquis
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Fernando Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jacob Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Wendy C Moore
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - James N Moy
- Rush University Medical Center, Chicago, Ill
| | - Victor E Ortega
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Michael C Peters
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | - Kristie Ross
- The Cleveland Clinic, Cleveland, Ohio; UH Rainbow Babies and Children's Hospitals, Cleveland, Ohio
| | - Maria Sanchez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Ronald L Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael E Wechsler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Patricia Noel
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| |
Collapse
|
38
|
Salter B, Lacy P, Mukherjee M. Biologics in Asthma: A Molecular Perspective to Precision Medicine. Front Pharmacol 2022; 12:793409. [PMID: 35126131 PMCID: PMC8807637 DOI: 10.3389/fphar.2021.793409] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Recent developments in therapeutic strategies have provided alternatives to corticosteroids as the cornerstone treatment for managing airway inflammation in asthma. The past two decades have witnessed a tremendous boost in the development of anti-cytokine monoclonal antibody (mAb) therapies for the management of severe asthma. Novel biologics that target eosinophilic inflammation (or type 2, T2 inflammation) have been the most successful at treating asthma symptoms, though there are a few in the drug development pipeline for treating non-eosinophilic or T2-low asthma. There has been significant improvement in clinical outcomes for asthmatics treated with currently available monoclonal antibodies (mAbs), including anti-immunoglobulin (Ig) E, anti-interleukin (IL)-4 receptor α subunit, anti-IL-5, anti-IL-5Rα, anti-IL-6, anti-IL-33, and anti-thymic stromal lymphopoietin (TSLP). Despite these initiatives in precision medicine for asthma therapy, a significant disease burden remains, as evident from modest reduction of exacerbation rates, i.e., approximately 40-60%. There are numerous studies that highlight predictors of good responses to these biologics, but few have focused on those who fail to respond adequately despite targeted treatment. Phenotyping asthmatics based on blood eosinophils is proving to be inadequate for choosing the right drug for the right patient. It is therefore pertinent to understand the underlying immunology, and perhaps, carry out immune endotyping of patients before prescribing appropriate drugs. This review summarizes the immunology of asthma, the cytokines or receptors currently targeted, the possible mechanisms of sub-optimal responses, and the importance of determining the immune make-up of individual patients prior to prescribing mAb therapy, in the age of precision medicine for asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, ON, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Manali Mukherjee
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, ON, Canada
| |
Collapse
|
39
|
Pascoe CD, Basu S, Schwartz J, Fonseca M, Kahnamoui S, Jha A, Dolinsky VW, Halayko AJ. Maternal diabetes promotes offspring lung dysfunction and inflammation in a sex-dependent manner. Am J Physiol Lung Cell Mol Physiol 2022; 322:L373-L384. [PMID: 35043678 DOI: 10.1152/ajplung.00425.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exposure to maternal diabetes is increasingly recognized as a risk factor for chronic respiratory disease in children. It is currently unclear, however, whether maternal diabetes affects the lung health of male and female offspring equally. This study characterizes the sex-specific impact of a murine model of diet-induced gestational diabetes (GDM) on offspring lung function and airway inflammation. Female adult mice are fed a high-fat (45% kcal) diet for 6-weeks prior to mating. Control offspring are from mothers fed a low fat (10% kcal) diet. Offspring were weaned and fed a chow diet until 10-weeks of age, at which point lung function was measured and lung lavage was collected. Male, but not female offspring exposed to GDM had increased lung compliance and reduced lung resistance at baseline. Female offspring exposed to GDM displayed increased methacholine reactivity and elevated levels of pro-inflammatory cytokines (e.g. interleukin (IL)-1β, IL-5, and CXCL1) in lung lavage. Female GDM offspring also displayed elevated abundance of matrix metalloproteinases (MMP) within their airways, namely MMP-3 and MMP-8. These results indicate disparate effects of maternal diabetes on lung health and airway inflammation of male and female offspring exposed to GDM. Female mice may be at greater risk of inflammatory lung conditions, such as asthma, while male offspring display changes that more closely align with models of chronic obstructive pulmonary disease. In conclusion, there are important sex-based differences in the impact of maternal diabetes on offspring lung health that could signal differences in future disease risk.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacquie Schwartz
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Mario Fonseca
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew John Halayko
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
40
|
Theofani E, Semitekolou M, Samitas K, Mais A, Galani IE, Triantafyllia V, Lama J, Morianos I, Stavropoulos A, Jeong S, Andreakos E, Razani B, Rovina N, Xanthou G. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy 2022; 77:2131-2146. [PMID: 35038351 DOI: 10.1111/all.15221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND NLRP3-driven inflammatory responses by circulating and lung-resident monocytes are critical drivers of asthma pathogenesis. Autophagy restrains NLRP3-induced monocyte activation in asthma models. Yet, the effects of autophagy and its master regulator, transcription factor EB (TFEB), on monocyte responses in human asthma remain unexplored. Here, we investigated whether activation of autophagy and TFEB signaling suppress inflammatory monocyte responses in asthmatic individuals. METHODS Peripheral blood CD14+ monocytes from asthmatic patients (n = 83) and healthy controls (n = 46) were stimulated with LPS/ATP to induce NLRP3 activation with or without the autophagy inducer, rapamycin. ASC specks, caspase-1 activation, IL-1β and IL-18 levels, mitochondrial function, ROS release, and mTORC1 signaling were examined. Autophagy was evaluated by LC3 puncta formation, p62/SQSTM1 degradation and TFEB activation. In a severe asthma (SA) model, we investigated the role of NLRP3 signaling using Nlrp3-/- mice and/or MCC950 administration, and the effects of TFEB activation using myeloid-specific TFEB-overexpressing mice or administration of the TFEB activator, trehalose. RESULTS We observed increased NLRP3 inflammasome activation, concomitant with impaired autophagy in circulating monocytes that correlated with asthma severity. SA patients also exhibited mitochondrial dysfunction and ROS accumulation. Autophagy failed to inhibit NLRP3-driven monocyte responses, due to defective TFEB activation and excessive mTORC1 signaling. NLRP3 blockade restrained inflammatory cytokine release and linked airway disease. TFEB activation restored impaired autophagy, attenuated NLRP3-driven pulmonary inflammation, and ameliorated SA phenotype. CONCLUSIONS Our studies uncover a crucial role for TFEB-mediated reprogramming of monocyte inflammatory responses, raising the prospect that this pathway can be therapeutically harnessed for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 7th Respiratory Clinic and Asthma Center of the ‘Sotiria’ Athens Chest Hospital Athens Greece
| | - Annie Mais
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioanna E. Galani
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Joanna Lama
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Athanasios Stavropoulos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Se‐Jin Jeong
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Babak Razani
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
- John Cochran VA Medical Center St. Louis Missouri USA
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| |
Collapse
|
41
|
Validation of a food frequency questionnaire for assessing total antioxidant status. Clin Nutr ESPEN 2022; 48:351-355. [DOI: 10.1016/j.clnesp.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
|
42
|
Allam VSRR, Paudel KR, Gupta G, Singh SK, Vishwas S, Gulati M, Gupta S, Chaitanya MVNL, Jha NK, Gupta PK, Patel VK, Liu G, Kamal MA, Hansbro PM, Oliver BGG, Chellappan DK, Dua K. Nutraceuticals and mitochondrial oxidative stress: bridging the gap in the management of bronchial asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62733-62754. [PMID: 35796922 PMCID: PMC9477936 DOI: 10.1007/s11356-022-21454-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Asthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenuate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.
Collapse
Affiliation(s)
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, Australia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia
- Institutes for Systems Genetics, Frontiers Science Center for Disease related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
43
|
Martínez-Moragón E, García-Moguel I, Nuevo J, Resler G. Real-world study in severe eosinophilic asthma patients refractory to anti-IL5 biological agents treated with benralizumab in Spain (ORBE study). BMC Pulm Med 2021; 21:417. [PMID: 34922515 PMCID: PMC8684207 DOI: 10.1186/s12890-021-01785-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Benralizumab, a monoclonal antibody targeting the human interleukin-5 (IL-5) receptor (IL-5R), was used before marketing authorisation in Spain in a real world setting as part of an early-access programme (EAP) to treat patients with severe eosinophilic asthma with prior insufficient response or intolerance to anti-IL5 treatment (mepolizumab or reslizumab). The objective of this study is to describe the patient profile candidate for treatment and to assess benralizumab effectiveness. Methods This is an observational, retrospective, multicentre study in severe eosinophilic asthma patients refractory to other biological agents targeting the IL-5 pathway. Baseline characteristics included closest data, from the previous 12 months, to benralizumab treatment onset (index date). Patients were followed until the last treatment dosage while EAP was active (March to December 2018). Effectiveness was evaluated versus baseline, in patients who received at least three doses, with asthma control test (ACT), Mini Asthma Quality of Life Questionnaire (MiniAQLQ), annual severe exacerbation rate, oral corticosteroids treatment (OCS) and asthma-related healthcare resources utilization. Results Twenty-seven patients treated with benralizumab were included in the analysis. Effectiveness was assessed in 19 patients. Both questionnaires showed clinically meaningful differences, i.e. ACT score ≥ 3 and MiniAQLQ score ≥ 0.5, compared with baseline [mean (SD), 3.3 (6.8) and 1.2 (1.9), respectively]. Patients treated with OCS decreased during follow-up from 88.9% (n = 24/27) at baseline to 78.9% (n = 15/19) and 31.6% (n = 6/19) had an OCS dose reduction ≥ 50%. The difference in annual severe exacerbation rate during follow-up showed a significant reduction vs. baseline (2.12 per patient-year, 95% CI 0.99–3.24, p = 0.002). The differences in annual rate of non-scheduled primary care and specialist visits during follow-up indicated a significant decrease [2.28 per patient-year (95% CI 1.55–3.01; p < 0.001) and 1.47 per patient-year (95% CI 0.65–2.30; p = 0.004), respectively], as well as the difference in annual rate of number of emergency department visits [1.18 per patient-year (95% CI 0.51–1.85; p = 0.007)]. Conclusions These results suggest that severe eosinophilic asthma patients receiving benralizumab, presented clinically meaningful improvement in asthma control and asthma-related QoL as well as OCS dose reduction. Results also aim to significant reductions in annual severe exacerbation rates, non-scheduled primary care and specialist visits, and emergency department visits rates.
Collapse
Affiliation(s)
| | - Ismael García-Moguel
- Severe Asthma Unit, Allergy Department, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Javier Nuevo
- AstraZeneca Farmacéutica Spain S.A., Madrid, Spain
| | | | | |
Collapse
|
44
|
Lewis BW, Jackson D, Amici SA, Walum J, Guessas M, Guessas S, Coneglio E, Boda AV, Guerau-de-Arellano M, Grayson MH, Britt RD. Corticosteroid insensitivity persists in the absence of STAT1 signaling in severe allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1194-L1205. [PMID: 34755542 PMCID: PMC8715027 DOI: 10.1152/ajplung.00244.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.
Collapse
Affiliation(s)
- Brandon W. Lewis
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Devine Jackson
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Stephanie A. Amici
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio
| | - Joshua Walum
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Manel Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Sonia Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Elise Coneglio
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Akhila V. Boda
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Mireia Guerau-de-Arellano
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio,6Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio,7Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio,8Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Mitchell H. Grayson
- 2Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,3Division of Allergy and Immunology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Rodney D. Britt
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
45
|
Vafaee F, Shirzad S, Shamsi F, Boskabady MH. Neuroscience and treatment of asthma, new therapeutic strategies and future aspects. Life Sci 2021; 292:120175. [PMID: 34826435 DOI: 10.1016/j.lfs.2021.120175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
AIMS Asthma is an airway inflammatory disease that is affected by neurological and psychological factors. The aim of present review is to investigating the relationship between neural functions and neurobiological changes and asthma symptoms. MAIN METHODS The information in this article is provided from articles published in English and reputable database using appropriate keywords from 1970 to October 2020. KEY FINDINGS The symptoms of asthma such as cough, difficult breathing, and mucus secretion get worse when a person is suffering from stress, anxiety, and depression. The function of the insula, anterior cingulate cortex, and hypothalamic-pituitary-adrenal axis changes in response to stress and psychological disease; then the stress hormones are produced from neuroendocrine system, which leads to asthma exacerbation. The evidence represents that psychological therapies or neurological rehabilitation reduces the inflammation through modulating the activity of neurocircuitry and the function of brain centers involved in asthma. Moreover, the neurotrophins and neuropeptides are the key mediators in the neuro-immune interactions, which secrete from the airway nerves in response to brain signals, and they could be the target of many new therapies in asthma. SIGNIFICANCE This review provides an insight into the vital role of the central and peripheral nervous system in development and exacerbation of asthma and provides practical approaches and strategies on neural networks to improve the airway inflammation and asthma severity.
Collapse
Affiliation(s)
- Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Laboratory (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Subramanian H, Hashem T, Bahal D, Kammala AK, Thaxton K, Das R. Ruxolitinib Ameliorates Airway Hyperresponsiveness and Lung Inflammation in a Corticosteroid-Resistant Murine Model of Severe Asthma. Front Immunol 2021; 12:786238. [PMID: 34777398 PMCID: PMC8586657 DOI: 10.3389/fimmu.2021.786238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
Asthma prevalence has increased considerably over the decades and it is now considered as one of the most common chronic disorders in the world. While the current anti-asthmatic therapies are effective for most asthma patients, there are 5-10% subjects whose disease is not controlled by such agents and they account for about 50% of the asthma-associated healthcare costs. Such patients develop severe asthma (SA), a condition characterized by a dominant Th1/Th17 cytokine response that is accompanied by Type 2 (T2)-low endotype. As JAK (Janus Kinase) signaling is very important for the activation of several cytokine pathways, we examined whether inhibition of JAKs might lessen the clinical and laboratory manifestations of SA. To that end, we employed a recently described murine model that recapitulates the complex immune response identified in the airways of human SA patients. To induce SA, mice were sensitized with house dust mite extract (HDME) and cyclic (c)-di-GMP and then subsequently challenged with HDME and a lower dose of c-di-GMP. In this model, treatment with the JAK inhibitor, Ruxolitinib, significantly ameliorated all the features of SA, including airway hyperresponsiveness and lung inflammation as well as total IgE antibody titers. Thus, these studies highlight JAKs as critical targets for mitigating the hyper-inflammation that occurs in SA and provide the framework for their incorporation into future clinical trials for patients that have severe or difficult-to manage asthma.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Tanwir Hashem
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Devika Bahal
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Ananth K Kammala
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Kanedra Thaxton
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
47
|
Huang WC, Huang TH, Yeh KW, Chen YL, Shen SC, Liou CJ. Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res 2021; 45:654-664. [PMID: 34764720 PMCID: PMC8569325 DOI: 10.1016/j.jgr.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 01/08/2021] [Accepted: 03/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. Methods Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. Results Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells. Conclusion Ginsenoside Rg3 is a potential immunomodulator that can ameliorate pathological features of asthma by decreasing oxidative stress and inflammation Ginsenoside Rg3 reduced eosinophil infiltration, and airway hyperresponsiveness in the lungs of asthmatic mice. Ginsenoside Rg3 inhibited oxidative responses in the lungs. Ginsenoside Rg3 reduced the levels of Th2 cytokines in BALF and lung. Ginsenoside Rg3 inhibited monocyte cell adherence to tracheal epithelial cells. Ginsenoside Rg3 reduced the levels of pro-inflammatory cytokines in tracheal epithelial cells.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Tse-Hung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan.,School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei City, Taiwan
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Chian-Jiun Liou
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| |
Collapse
|
48
|
Effective Management of Severe Asthma with Biologic Medications in Adult Patients: A Literature Review and International Expert Opinion. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:422-432. [PMID: 34763123 DOI: 10.1016/j.jaip.2021.10.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Severe asthma often remains uncontrolled despite effective treatments and evidence-based guidelines. A group of global experts in asthma and biologic medications from 9 countries considered the most relevant clinical variables to manage severe asthma in adult patients and guide treatment choice. The resulting recommendations address the investigation of biomarker levels (blood eosinophil count along with fractional concentration of exhaled nitric oxide [FeNO]), clinical features (oral corticosteroid [OCS] dependence, specific comorbid disease entities associated with severe type 2 asthma), and safety considerations. Current evidence suggests that biomarkers, including both blood or sputum eosinophil counts as well as FeNO, add prognostic and predictive value and should be measured in all patients with severe asthma. OCS use is an important factor in biologic selection, especially given the documented ability of some biologics to reduce OCS dependence. Comorbid diseases and relevant safety considerations to each biologic should also be considered. More data are needed to determine whether biomarker profiles identify patients suited to one biologic versus another as limited data support differential predictors of response. Further prospective head-to-head trials and post hoc analyses of clinical trial data are warranted. The authors believe that these recommendations have value as they offer expert opinion to assist health care providers in making difficult decisions regarding the quality of care in severe, type 2 asthma with biologic medications. They remain conditional and are based on limited data owing to a lack of head-to-head comparisons.
Collapse
|
49
|
Shen W, Yin Y, Li T, Cao G. Euxanthone inhibits lipopolysaccharide-induced injury, inflammatory response, and MUC5AC hypersecretion in human airway epithelial cells by the TLR4/MyD88 pathway. J Appl Toxicol 2021; 42:671-682. [PMID: 34655103 DOI: 10.1002/jat.4249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/07/2023]
Abstract
Asthma progression is involved in airway epithelial dysfunction, airway inflammatory response, and mucus hypersecretion. Euxanthone has been found to exhibit cytotoxic activity on several human diseases, such as neurological disorders and cancers. Our study aimed to explore the influence of euxanthone on lipopolysaccharide (LPS)-induced injury, inflammatory response, and mucin 5AC (MUC5AC) hypersecretion in human airway epithelial cells (AECs). Network pharmacology analysis was carried out to analyze the drug targets and key pathways of euxanthone against asthma. Cell injury was evaluated by CCK-8, Lactate dehydrogenase (LDH) release assay, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. The production of interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), and MUC5AC was measured using enzyme-linked immunosorbent assay (ELISA). MUC5AC mRNA expression was detected by qRT-PCR. Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) protein expression was examined by western blot analysis. Venn diagram showed 14 overlapping targets between euxanthone and asthma. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we focused on TLR signaling pathway. LPS exposure evoked viability reduction, increased LDH release and apoptosis, and induced production of inflammatory cytokines (IL-6, IL-8, and MCP-1) and MUC5AC hypersecretion in human AECs, which were alleviated by euxanthone. Mechanistically, we validated that euxanthone attenuated LPS-induced activation of TLR4/MyD88 pathway in AECs. Moreover, inhibition of the TLR4/MyD88 pathway enhanced the inhibitory effect of euxanthone on LPS-induced cell injury, inflammatory response and MUC5AC expression. In conclusion, euxanthone attenuated LPS-induced cell injury, inflammatory response, and MUC5AC expression in AECs by inhibiting the activation of TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Wen Shen
- Department of Respiratory Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yuyao Yin
- Gastroenterology Department, Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Tiantian Li
- Department of Ultrasound, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, China
| |
Collapse
|
50
|
Hsu AT, Gottschalk TA, Tsantikos E, Hibbs ML. The Role of Innate Lymphoid Cells in Chronic Respiratory Diseases. Front Immunol 2021; 12:733324. [PMID: 34630416 PMCID: PMC8492945 DOI: 10.3389/fimmu.2021.733324] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
The lung is a vital mucosal organ that is constantly exposed to the external environment, and as such, its defenses are continuously under threat. The pulmonary immune system has evolved to sense and respond to these danger signals while remaining silent to innocuous aeroantigens. The origin of the defense system is the respiratory epithelium, which responds rapidly to insults by the production of an array of mediators that initiate protection by directly killing microbes, activating tissue-resident immune cells and recruiting leukocytes from the blood. At the steady-state, the lung comprises a large collection of leukocytes, amongst which are specialized cells of lymphoid origin known as innate lymphoid cells (ILCs). ILCs are divided into three major helper-like subsets, ILC1, ILC2 and ILC3, which are considered the innate counterparts of type 1, 2 and 17 T helper cells, respectively, in addition to natural killer cells and lymphoid tissue inducer cells. Although ILCs represent a small fraction of the pulmonary immune system, they play an important role in early responses to pathogens and facilitate the acquisition of adaptive immunity. However, it is now also emerging that these cells are active participants in the development of chronic lung diseases. In this mini-review, we provide an update on our current understanding of the role of ILCs and their regulation in the lung. We summarise how these cells and their mediators initiate, sustain and potentially control pulmonary inflammation, and their contribution to the respiratory diseases chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Amy T Hsu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Timothy A Gottschalk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|