1
|
Eshghi S, Mousakhan Bakhtiari M, Behfar M, Izadi E, Naji P, Jafari L, Mohseni R, Saltanatpour Z, Hamidieh AA. Viral-based gene therapy clinical trials for immune deficiencies and blood disorders from 2013 until 2023 - an overview. Regen Ther 2025; 28:262-279. [PMID: 39844821 PMCID: PMC11751425 DOI: 10.1016/j.reth.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery. Generally, gene delivery systems are categorized into two types depending on utilized vectors: non-viral and viral. Viral vectors are commonly used in GT because of their high efficiency compared to non-viral vectors. In this article, all clinical trials on viral-based GT (with the exclusion of CRISPR and CAR-T cell Therapy) in the last decade for immune deficiencies and blood disorders including Severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), Chronic granulomatous disease (CGD), Leukocyte adhesion deficiency (LAD), Fanconi anemia (FA), Hemoglobinopathies, and Hemophilia will thoroughly be discussed. Moreover, viral vectors used in these trials including Retroviruses (RVs), Lentiviruses (LVs), and Adeno-Associated Viruses (AAVs) will be reviewed. This review provides a concise overview of traditional treatments for the mentioned disease and precise details of their viral-based GT clinical trial studies in the last decade, then presents the advantages, disadvantages, and potential adverse events of GT. In conclusion, this review presents GT as a hopeful and growing field in healthcare that could offer cures to diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Shirin Eshghi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Elaheh Izadi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Naji
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Cesana D, Cicalese MP, Calabria A, Merli P, Caruso R, Volpin M, Rudilosso L, Migliavacca M, Barzaghi F, Fossati C, Gazzo F, Pizzi S, Ciolfi A, Bruselles A, Tucci F, Spinozzi G, Pais G, Benedicenti F, Barcella M, Merelli I, Gallina P, Giannelli S, Dionisio F, Scala S, Casiraghi M, Strocchio L, Vinti L, Pacillo L, Draghi E, Cesana M, Riccardo S, Colantuono C, Six E, Cavazzana M, Carlucci F, Schmidt M, Cancrini C, Ciceri F, Vago L, Cacchiarelli D, Gentner B, Naldini L, Tartaglia M, Montini E, Locatelli F, Aiuti A. A case of T-cell acute lymphoblastic leukemia in retroviral gene therapy for ADA-SCID. Nat Commun 2024; 15:3662. [PMID: 38688902 PMCID: PMC11061298 DOI: 10.1038/s41467-024-47866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.
Collapse
Affiliation(s)
- Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Merli
- IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Rudilosso
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Fossati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gazzo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Pierangela Gallina
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Lucia Pacillo
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Eleonora Draghi
- Immunogenetics, Leukemia Genomics and Immunobiology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA S.r.l., Pozzuoli, Italy
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA S.r.l., Pozzuoli, Italy
| | - Emmanuelle Six
- Laboratory of Human Lympho-hematopoiesis, INSERM, Paris, France
| | | | - Filippo Carlucci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Caterina Cancrini
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine University of Rome Tor Vergata, Rome, Italy
| | - Fabio Ciceri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Haematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Università Vita-Salute San Raffaele, Milan, Italy
- Immunogenetics, Leukemia Genomics and Immunobiology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132, Milan, Italy
- Haematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Haematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
3
|
Hicks ED, Hall G, Hershfield MS, Tarrant TK, Bali P, Sleasman JW, Buckley RH, Mousallem T. Treatment with Elapegademase Restores Immunity in Infants with Adenosine Deaminase Deficient Severe Combined Immunodeficiency. J Clin Immunol 2024; 44:107. [PMID: 38676811 PMCID: PMC11055758 DOI: 10.1007/s10875-024-01710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Patients with adenosine deaminase 1 deficient severe combined immunodeficiency (ADA-SCID) are initially treated with enzyme replacement therapy (ERT) with polyethylene glycol-modified (PEGylated) ADA while awaiting definitive treatment with hematopoietic stem cell transplant (HSCT) or gene therapy. Beginning in 1990, ERT was performed with PEGylated bovine intestinal ADA (ADAGEN®). In 2019, a PEGylated recombinant bovine ADA (Revcovi®) replaced ADAGEN following studies in older patients previously treated with ADAGEN for many years. There are limited longitudinal data on ERT-naïve newborns treated with Revcovi. METHODS We report our clinical experience with Revcovi as initial bridge therapy in three newly diagnosed infants with ADA-SCID, along with comprehensive biochemical and immunologic data. RESULTS Revcovi was initiated at twice weekly dosing (0.2 mg/kg intramuscularly), and monitored by following plasma ADA activity and the concentration of total deoxyadenosine nucleotides (dAXP) in erythrocytes. All patients rapidly achieved a biochemically effective level of plasma ADA activity, and red cell dAXP were eliminated within 2-3 months. Two patients reconstituted B-cells and NK-cells within the first month of ERT, followed by naive T-cells one month later. The third patient reconstituted all lymphocyte subsets within the first month of ERT. One patient experienced declining lymphocyte counts with improvement following Revcovi dose escalation. Two patients developed early, self-resolving thrombocytosis, but no thromboembolic events occurred. CONCLUSION Revcovi was safe and effective as initial therapy to restore immune function in these newly diagnosed infants with ADA-SCID, however, time course and degree of reconstitution varied. Revcovi dose may need to be optimized based on immune reconstitution, clinical status, and biochemical data.
Collapse
Affiliation(s)
- Elizabeth Daly Hicks
- Department of Pediatrics, Division of Pediatric Transplant and Cellular Therapies, Duke University Medical Center, Durham, NC, USA
| | - Geoffrey Hall
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael S Hershfield
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Division of Rheumatology, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - Pawan Bali
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, USA
| | - John W Sleasman
- Department of Pediatrics, Division of Allergy and Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca H Buckley
- Department of Pediatrics, Division of Allergy and Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Talal Mousallem
- Department of Pediatrics, Division of Allergy and Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Kohn DB. Gene therapy for adenosine deaminase severe combined immune deficiency-An unexpected journey of four decades. Immunol Rev 2024; 322:148-156. [PMID: 38033164 DOI: 10.1111/imr.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Severe combined immune deficiency due to adenosine deaminase deficiency (ADA SCID) is an inborn error of immunity with pan-lymphopenia, due to accumulated cytotoxic adenine metabolites. ADA SCID has been treated using gene therapy with a normal human ADA gene added to autologous hematopoietic stem cells (HSC) for over 30 years. Iterative improvements in vector design, HSC processing methods, and clinical HSC transplant procedures have led nearly all ADA SCID gene therapy patients to achieve consistently beneficial immune restoration with stable engraftment of ADA gene-corrected HSC over the duration of observation (as long as 20 years). One gene therapy for ADA SCID is approved by the European Medicines Agency (EMA) in the European Union (EU) and another is being advanced to licensure in the U.S. and U.K. Despite the clear-cut benefits and safety of this curative gene and cell therapy, it remains challenging to achieve sustained availability and access, especially for rare disorders like ADA SCID.
Collapse
Affiliation(s)
- Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Rossi A, Brunetti-Pierri N. Gene therapies for mucopolysaccharidoses. J Inherit Metab Dis 2024; 47:135-144. [PMID: 37204267 DOI: 10.1002/jimd.12626] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Current specific treatments for mucopolysaccharidoses (MPSs) include enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). Both treatments are hampered by several limitations, including lack of efficacy on brain and skeletal manifestations, need for lifelong injections, and high costs. Therefore, more effective treatments are needed. Gene therapy in MPSs is aimed at obtaining high levels of the therapeutic enzyme in multiple tissues either by engrafted gene-modified hematopoietic stem progenitor cells (ex vivo) or by direct infusion of a viral vector expressing the therapeutic gene (in vivo). This review focuses on the most recent clinical progress in gene therapies for MPSs. The various gene therapy approaches with their strengths and limitations are discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Provide an overview of the landmark accomplishments and state of the art of gene therapy for inborn errors of immunity (IEI). RECENT FINDINGS Three decades after the first clinical application of gene therapy for IEI, there is one market authorized product available, while for several others efficacy has been demonstrated or is currently being tested in ongoing clinical trials. Gene editing approaches using programmable nucleases are being explored preclinically and could be beneficial for genes requiring tightly regulated expression, gain-of-function mutations and dominant-negative mutations. SUMMARY Gene therapy by modifying autologous hematopoietic stem cells (HSCs) offers an attractive alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current standard of care to treat severe IEI. This approach does not require availability of a suitable allogeneic donor and eliminates the risk of graft versus host disease (GvHD). Gene therapy can be attempted by using a viral vector to add a copy of the therapeutic gene (viral gene addition) or by using programmable nucleases (gene editing) to precisely correct mutations, disrupt a gene or introduce an entire copy of a gene at a specific locus. However, gene therapy comes with its own challenges such as safety, therapeutic effectiveness and access. For viral gene addition, a major safety concern is vector-related insertional mutagenesis, although this has been greatly reduced with the introduction of safer vectors. For gene editing, the risk of off-site mutagenesis is a main driver behind the ongoing search for modified nucleases. For both approaches, HSCs have to be manipulated ex vivo, and doing this efficiently without losing stemness remains a challenge, especially for gene editing.
Collapse
Affiliation(s)
- Lisa M. Ott de Bruin
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
| | - Frank J.T. Staal
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Ellison S, Parker H, Bigger B. Advances in therapies for neurological lysosomal storage disorders. J Inherit Metab Dis 2023; 46:874-905. [PMID: 37078180 DOI: 10.1002/jimd.12615] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death. The majority of LSDs have no curative treatment, with many clinical subtypes presenting in early infancy and childhood. Over two-thirds of LSDs present with progressive neurodegeneration, often in combination with other debilitating peripheral symptoms. Consequently, there is a pressing unmet clinical need to develop new therapeutic interventions to treat these conditions. The blood-brain barrier is a crucial hurdle that needs to be overcome in order to effectively treat the central nervous system (CNS), adding considerable complexity to therapeutic design and delivery. Enzyme replacement therapy (ERT) treatments aimed at either direct injection into the brain, or using blood-brain barrier constructs are discussed, alongside more conventional substrate reduction and other drug-related therapies. Other promising strategies developed in recent years, include gene therapy technologies specifically tailored for more effectively targeting treatment to the CNS. Here, we discuss the most recent advances in CNS-targeted treatments for neurological LSDs with a particular emphasis on gene therapy-based modalities, such as Adeno-Associated Virus and haematopoietic stem cell gene therapy approaches that encouragingly, at the time of writing are being evaluated in LSD clinical trials in increasing numbers. If safety, efficacy and improved quality of life can be demonstrated, these therapies have the potential to be the new standard of care treatments for LSD patients.
Collapse
Affiliation(s)
- S Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| | - H Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Bueren JA, Auricchio A. Advances and Challenges in the Development of Gene Therapy Medicinal Products for Rare Diseases. Hum Gene Ther 2023; 34:763-775. [PMID: 37694572 DOI: 10.1089/hum.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The development of viral vectors and recombinant DNA technology since the 1960s has enabled gene therapy to become a real therapeutic option for several inherited and acquired diseases. After several ups and downs in the gene therapy field, we are currently living a new era in the history of medicine in which several ex vivo and in vivo gene therapies have reached maturity. This is testified by the recent marketing authorization of several gene therapy medicinal products. In addition, many others are currently under evaluation after exhaustive investigation in human clinical trials. In this review, we summarize some of the most significant milestones in the development of gene therapy medicinal products that have already facilitated the treatment of a significant number of rare diseases. Despite progresses in the gene therapy field, the transfer of these innovative therapies to clinical practice is also finding important restrictions. Advances and also challenges in the progress of gene therapy for rare diseases are discussed in this opening review of a Human Gene Therapy issue dedicated to the 30th annual Congress of the European Society for Gene and Cell Therapy.
Collapse
Affiliation(s)
- Juan A Bueren
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
9
|
Michali M, Basiari L, Komnos I, Makis A, Psychogios G. Hemorrhage of Upper Digestive and Respiratory Tracts in a Child with Glanzmann Thrombasthenia. MAEDICA 2023; 18:363-367. [PMID: 37588843 PMCID: PMC10427102 DOI: 10.26574/maedica.2023.18.2.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Glanzmann thrombasthenia (GT) is an autosomal recessive platelet disorder that could cause mild to severe bleeding episodes. The incidence is approximately 1 per 1,000,000 births. Patients with GT frequently have mucocutaneous bleeding with absent platelet aggregation in response to all physiologic stimuli, but a normal platelet count and morphology. Specifically, the glycoprotein IIb/IIIa (GP IIb/IIIa) complex is either inadequate or dysfunctional. This case reports a 3.5-year-old boy with Glanzmann thrombasthenia who had two episodes with uncontrolled hemorrhage from upper digestive and respiratory tracts, the first with the bleeding point found in the left tonsil and the second in the adenoids.
Collapse
Affiliation(s)
- Maria Michali
- Department of Otorhinolaryngology-Head and Neck Surgery, University General Hospital of Ioannina, Ioannina, Greece
| | - Lentiona Basiari
- Department of Otorhinolaryngology-Head and Neck Surgery, University General Hospital of Ioannina, Ioannina, Greece
| | - Ioannis Komnos
- Department of Otorhinolaryngology-Head and Neck Surgery, University General Hospital of Ioannina, Ioannina, Greece
| | - Alexandros Makis
- Pediatric Department, University General Hospital of Ioannina, Ioannina, Greece
| | - Georgios Psychogios
- Department of Otorhinolaryngology-Head and Neck Surgery, University General Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
10
|
Grunebaum E, Booth C, Cuvelier GDE, Loves R, Aiuti A, Kohn DB. Updated Management Guidelines for Adenosine Deaminase Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1665-1675. [PMID: 36736952 DOI: 10.1016/j.jaip.2023.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023]
Abstract
Inherited defects in the adenosine deaminase (ADA) gene typically cause severe combined immunodeficiency. In addition to infections, ADA-deficient patients can present with neurodevelopmental, behavioral, hearing, skeletal, lung, heart, skin, kidney, urogenital, and liver abnormalities. Some patients also suffer from autoimmunity and malignancies. In recent years, there have been remarkable advances in the management of ADA deficiency. Most ADA-deficient patients can be identified by newborn screening for severe combined immunodeficiency, which facilitates early diagnosis and treatment of asymptomatic infants. Most patients benefit from enzyme replacement therapy (ERT). Allogeneic hematopoietic cell transplantation from an HLA-matched sibling donor or HLA-matched family member donor with no conditioning is currently the preferable treatment. When matched sibling donor or matched family member donor is not available, autologous ADA gene therapy with nonmyeloablative conditioning and ERT withdrawal, which is reported in recent studies to result in 100% overall survival and 90% to 95% engraftment, should be pursued. If gene therapy is not immediately available, ERT can be continued for a few years, although its excessive cost might be prohibitive. The recent improved outcome of hematopoietic cell transplantation using HLA-mismatched family-related donors or HLA-matched unrelated donors, after reduced-intensity conditioning, suggests that such procedures might also be considered rather than continuing ERT for prolonged periods. Long-term follow-up will further assist in determining the optimal treatment approach for ADA-deficient patients.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital, London, United Kingdom
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robyn Loves
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, and the Università Vita-Salute San Raffaele, Milan, Italy
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif
| |
Collapse
|
11
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
12
|
White SL, Lee TD, Toy T, Carroll JE, Polsky L, Campo Fernandez B, Davila A, Kohn DB, Chang VY. Evaluation of clonal hematopoiesis in pediatric ADA-SCID gene therapy participants. Blood Adv 2022; 6:5732-5736. [PMID: 35914227 PMCID: PMC9619180 DOI: 10.1182/bloodadvances.2022007803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022] Open
Abstract
Autologous stem cell transplant with gene therapy (ASCT-GT) provides curative therapy while reducing pretransplant immune-suppressive conditioning and eliminating posttransplant immune suppression. Clonal hematopoiesis of indeterminate potential (CHIP)-associated mutations increase and telomere lengths (TLs) shorten with natural aging and DNA damaging processes. It is possible that, if CHIP is present before ASCT-GT or mutagenesis occurs after busulfan exposure, the hematopoietic stem cells carrying these somatic variants may survive the conditioning chemotherapy and have a selective reconstitution advantage, increasing the risk of hematologic malignancy and overall mortality. Seventy-four peripheral blood samples (ranging from baseline to 120 months after ASCT-GT) from 10 pediatric participants who underwent ASCT-GT for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) after reduced-intensity conditioning with busulfan and 16 healthy controls were analyzed for TL and CHIP. One participant had a significant decrease in TL. There were no CHIP-associated mutations identified by the next-generation sequencing in any of the ADA-SCID participants. This suggests that further studies are needed to determine the utility of germline analyses in revealing the underlying genetic risk of malignancy in participants who undergo gene therapy. Although these results are promising, larger scale studies are needed to corroborate the effect of ASCT-GT on TL and CHIP. This trial was registered at www.clinicaltrials.gov as #NCT00794508.
Collapse
Affiliation(s)
- Shanna L. White
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Thomas D. Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Traci Toy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Judith E. Carroll
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA
| | - Lilian Polsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA
| | - Beatriz Campo Fernandez
- Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Alejandra Davila
- Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Donald B. Kohn
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
| | - Vivian Y. Chang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
- Childrens Discovery and Innovation Institute, University of California, Los Angeles, CA
| |
Collapse
|
13
|
Petaroudi M, Rodrigo‐Navarro A, Dobre O, Dalby MJ, Salmeron‐Sanchez M. Living Biomaterials to Engineer Hematopoietic Stem Cell Niches. Adv Healthc Mater 2022; 11:e2200964. [PMID: 35933595 PMCID: PMC11469072 DOI: 10.1002/adhm.202200964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Living biointerfaces are a new class of biomaterials combining living cells and polymeric matrices that can act as biologically active and instructive materials that host and provide signals to surrounding cells. Here, living biomaterials based on Lactococcus lactis to control hematopoietic stem cells in 2D surfaces and 3D hydrogels are introduced. L. lactis is modified to express C-X-C motif chemokine ligand 12 (CXCL12), thrombopoietin (TPO), vascular cell adhesion protein 1 (VCAM1), and the 7th-10th type III domains of human plasma fibronectin (FN III7-10 ), in an attempt to mimic ex vivo the conditions of the human bone marrow. These results suggest that living biomaterials that incorporate bacteria expressing recombinant CXCL12, TPO, VCAM1, and FN in both 2D systems direct hematopoietic stem and progenitor cells (HSPCs)-bacteria interaction, and in 3D using hydrogels functionalized with full-length human plasma fibronectin allow for a notable expansion of the CD34+ /CD38- /CD90+ HSPC population compared to the initial population. These results provide a strong evidence based on data that suggest the possibility of using living materials based on genetically engineered bacteria for the ex-vivo expansion of HSPC with eventual practical clinical applications in HSPCs transplantation for hematological disorders.
Collapse
Affiliation(s)
- Michaela Petaroudi
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | | | - Oana Dobre
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | | |
Collapse
|
14
|
Palamenghi M, De Luca M, De Rosa L. The steep uphill path leading to ex vivo gene therapy for genodermatoses. Am J Physiol Cell Physiol 2022; 323:C896-C906. [PMID: 35912986 DOI: 10.1152/ajpcell.00117.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapy, gene therapy and tissue engineering have the potential to revolutionize the field of regenerative medicine. In particular, gene therapy is understood as the therapeutical correction of mutated genes by addition of a correct copy of the gene or site-specific gene modifications. Gene correction of somatic stem cells sustaining renewing tissues is critical to ensure long-term clinical success of ex vivo gene therapy. To date, remarkable clinical outcomes arose from combined ex vivo cell and gene therapy of different genetic diseases, such as immunodeficiencies and genodermatoses. Despite the efforts of researchers around the world, only few of these advanced approaches has yet made it to routine therapy. In fact, gene therapy poses one of the greatest technical challenges in modern medicine, spanning safety and efficacy issues, regulatory constraints, registration and market access, all of which need to be addressed to make the therapy available to rare disease patients. In this review, we survey at some of the main challenges in the development of combined cell and gene therapy of genetic skin diseases.
Collapse
Affiliation(s)
- Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
15
|
Hartog N, Hershfield M, Michniacki T, Moloney S, Holsworth A, Hurden I, Fredrickson M, Kleyn M, Walkovich K, Secord E. Newborn Tandem Mass Spectroscopy Screening for Adenosine Deaminase Deficiency-First Two Years' Experience. Ann Allergy Asthma Immunol 2022; 129:776-783.e2. [PMID: 35914665 DOI: 10.1016/j.anai.2022.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Newborn screening (NBS) via T-cell receptor excision circles (TREC) is now universal in the United States, Puerto Rico, and the Navajo Nation as a strategy to identify severe combined immunodeficiency (SCID) in newborns. Due to the characteristics of adenosine deaminase (ADA) deficiency, small but significant number of cases can be missed by this screening. OBJECTIVE To evaluate the results of the first year of statewide NBS for ADA via dried blood spot newborn screening. METHODS On October 7, 2019, the state of Michigan began screening newborn dried blood spots for ADA deficiency via the Neobase-2 tandem mass spectroscopy (TMS) kit. We report one known case of ADA deficiency in the 18 months prior to screening. We then reviewed the results of the first two years of TMS ADA screening in Michigan. RESULTS There was one ADA deficient patient known to our centers in the 18 months before initiation of TMS ADA screening, this patient died of complications of their disease. In the first two years of TMS ADA NBS, 206,321 infants were screened, and two patients had positive ADA screens. Both patients had ADA deficiency confirmed through biochemical and genetic testing. One patient identified also had a positive TREC screen and was confirmed to have ADA SCID. CONCLUSION In our first two years, TMS NBS for ADA deficiency identified two patients with ADA deficiency at negligible cost; including one patient who would not have been identified by TREC NBS. This report provides initial evidence of the value of specific NBS for ADA deficiency.
Collapse
Affiliation(s)
- Nicholas Hartog
- Helen DeVos Children's Hospital and Spectrum Health Division of Allergy and Immunology; Michigan State University College of Human Medicine.
| | - Michael Hershfield
- Department of Medicine, Duke University School of Medicine; Department of Biochemistry, Duke University School of Medicine
| | - Thomas Michniacki
- Pediatric Hematology, Oncology, and Bone Marrow Transplantation C.S. Mott Children's Hospital and University of Michigan
| | | | - Amanda Holsworth
- Helen DeVos Children's Hospital and Spectrum Health Division of Allergy and Immunology; Michigan State University College of Human Medicine
| | | | - Mary Fredrickson
- Division of Allergy and Immunology, Children's Hospital of Michigan
| | - Mary Kleyn
- Michigan Department of Health and Human Services
| | - Kelly Walkovich
- Pediatric Hematology, Oncology, and Bone Marrow Transplantation C.S. Mott Children's Hospital and University of Michigan
| | - Elizabeth Secord
- Wayne State University School of Medicine, Department of Pediatrics, Division of Allergy and Immunology
| |
Collapse
|
16
|
Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti A. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun 2022; 13:1315. [PMID: 35288539 PMCID: PMC8921234 DOI: 10.1038/s41467-022-28762-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ex-vivo gene therapy (GT) with hematopoietic stem and progenitor cells (HSPCs) engineered with integrating vectors is a promising treatment for monogenic diseases, but lack of centralized databases is hampering an overall outcomes assessment. Here we aim to provide a comprehensive assessment of the short and long term safety of HSPC-GT from trials using different vector platforms. We review systematically the literature on HSPC-GT to describe survival, genotoxicity and engraftment of gene corrected cells. From 1995 to 2020, 55 trials for 14 diseases met inclusion criteria and 406 patients with primary immunodeficiencies (55.2%), metabolic diseases (17.0%), haemoglobinopathies (24.4%) and bone marrow failures (3.4%) were treated with gammaretroviral vector (γRV) (29.1%), self-inactivating γRV (2.2%) or lentiviral vectors (LV) (68.7%). The pooled overall incidence rate of death is 0.9 per 100 person-years of observation (PYO) (95% CI = 0.37-2.17). There are 21 genotoxic events out of 1504.02 PYO, which occurred in γRV trials (0.99 events per 100 PYO, 95% CI = 0.18-5.43) for primary immunodeficiencies. Pooled rate of engraftment is 86.7% (95% CI = 67.1-95.5%) for γRV and 98.7% (95% CI = 94.5-99.7%) for LV HSPC-GT (p = 0.005). Our analyses show stable reconstitution of haematopoiesis in most recipients with superior engraftment and safer profile in patients receiving LV-transduced HSPCs.
Collapse
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
17
|
Nonconditioned ADA-SCID gene therapy reveals ADA requirement in the hematopoietic system and clonal dominance of vector-marked clones. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:424-433. [PMID: 34786435 PMCID: PMC8566957 DOI: 10.1016/j.omtm.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
Two patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency (ADA-SCID) received stem cell-based gene therapy (SCGT) using GCsapM-ADA retroviral vectors without preconditioning in 2003 and 2004. The first patient (Pt1) was treated at 4.7 years old, and the second patient (Pt2), who had previously received T cell gene therapy (TCGT), was treated at 13 years old. More than 10 years after SCGT, T cells showed a higher vector copy number (VCN) than other lineages. Moreover, the VCN increased with differentiation toward memory T and B cells. The distribution of vector-marked cells reflected variable levels of ADA requirements in hematopoietic subpopulations. Although neither patient developed leukemia, clonal expansion of SCGT-derived clones was observed in both patients. The use of retroviral vectors yielded clonal dominance of vector-marked clones, irrespective of the lack of leukemic changes. Vector integration sites common to all hematopoietic lineages suggested the engraftment of gene-marked progenitors in Pt1, who showed severe osteoblast (OB) insufficiency compared to Pt2, which might cause a reduction in the stem/progenitor cells in the bone marrow (BM). The impaired BM microenvironment due to metabolic abnormalities may create space for the engraftment of vector-marked cells in ADA-SCID, despite the lack of preconditioning.
Collapse
|
18
|
Abstract
Primary immunodeficiencies (PIDs) have become a prime target for gene therapy given the morbidity, mortality, and the single gene etiology. Given that outcomes are better the earlier gene therapy is implemented, it is possible that fetal gene therapy may be an important future direction for the treatment of PIDs. In this chapter, the current treatments available for several PIDs will be reviewed, as well as the history and current status of gene therapy for PIDs. The possibility of in utero gene therapy as a possibility will then be discussed.
Collapse
Affiliation(s)
- Anne H Mardy
- Department of Obstetrics, Gynecology, and Reproductive Services, University of California, San Francisco, California
| | | |
Collapse
|
19
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
20
|
Kreins AY, Velasco HF, Cheong KN, Rao K, Veys P, Worth A, Gaspar HB, Booth C. Long-Term Immune Recovery After Hematopoietic Stem Cell Transplantation for ADA Deficiency: a Single-Center Experience. J Clin Immunol 2021; 42:94-107. [PMID: 34654999 PMCID: PMC8821083 DOI: 10.1007/s10875-021-01145-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Unconditioned hematopoietic stem cell transplantation (HSCT) is the recommended treatment for patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency with an HLA-matched sibling donor (MSD) or family donor (MFD). Improved overall survival (OS) has been reported compared to the use of unrelated donors, and previous studies have demonstrated that adequate cellular and humoral immune recovery can be achieved even in the absence of conditioning. Detailed insight of the long-term outcome is still limited. We aim to address this by studying a large single-center cohort of 28 adenosine deaminase-deficient patients who underwent a total of 31 HSCT procedures, of which more than half were unconditioned. We report an OS of 85.7% and event-free survival of 71% for the entire cohort, with no statistically significant differences after procedures using related or unrelated HLA-matched donors. We find that donor engraftment in the myeloid compartment is significantly diminished in unconditioned procedures, which typically use a MSD or MFD. This is associated with poor metabolic correction and more frequent failure to discontinue immunoglobulin replacement therapy. Approximately one in four patients receiving an unconditioned procedure required a second procedure, whereas the use of reduced intensity conditioning (RIC) prior to allogeneic transplantation improves the long-term outcome by achieving better myeloid engraftment, humoral immune recovery, and metabolic correction. Further longitudinal studies are needed to optimize future management and guidelines, but our findings support a potential role for the routine use of RIC in most ADA-deficient patients receiving an HLA-identical hematopoietic stem cell transplant, even when a MSD or MFD is available.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena F Velasco
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Pediatric Allergy and Immunology, Federal University of São Paolo, São Paolo, Brazil
| | - Kai-Ning Cheong
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Paediatric Rheumatology and Immunology, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Kanchan Rao
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Paul Veys
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- UCL Great Ormond Street Institute of Child Health, London, UK.,Orchard Therapeutics, London, UK
| | - Claire Booth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. .,UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
21
|
Reinhardt B, Habib O, Shaw KL, Garabedian E, Carbonaro-Sarracino DA, Terrazas D, Fernandez BC, De Oliveira S, Moore TB, Ikeda AK, Engel BC, Podsakoff GM, Hollis RP, Fernandes A, Jackson C, Shupien S, Mishra S, Davila A, Mottahedeh J, Vitomirov A, Meng W, Rosenfeld AM, Roche AM, Hokama P, Reddy S, Everett J, Wang X, Luning Prak ET, Cornetta K, Hershfield MS, Sokolic R, De Ravin SS, Malech HL, Bushman FD, Candotti F, Kohn DB. Long-term outcomes after gene therapy for adenosine deaminase severe combined immune deficiency. Blood 2021; 138:1304-1316. [PMID: 33974038 PMCID: PMC8525336 DOI: 10.1182/blood.2020010260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Patients lacking functional adenosine deaminase activity have severe combined immunodeficiency (ADA SCID), which can be treated with ADA enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT), or autologous HSCT with gene-corrected cells (gene therapy [GT]). A cohort of 10 ADA SCID patients, aged 3 months to 15 years, underwent GT in a phase 2 clinical trial between 2009 and 2012. Autologous bone marrow CD34+ cells were transduced ex vivo with the MND (myeloproliferative sarcoma virus, negative control region deleted, dl587rev primer binding site)-ADA gammaretroviral vector (gRV) and infused following busulfan reduced-intensity conditioning. These patients were monitored in a long-term follow-up protocol over 8 to 11 years. Nine of 10 patients have sufficient immune reconstitution to protect against serious infections and have not needed to resume ERT or proceed to secondary allogeneic HSCT. ERT was restarted 6 months after GT in the oldest patient who had no evidence of benefit from GT. Four of 9 evaluable patients with the highest gene marking and B-cell numbers remain off immunoglobulin replacement therapy and responded to vaccines. There were broad ranges of responses in normalization of ADA enzyme activity and adenine metabolites in blood cells and levels of cellular and humoral immune reconstitution. Outcomes were generally better in younger patients and those receiving higher doses of gene-marked CD34+ cells. No patient experienced a leukoproliferative event after GT, despite persisting prominent clones with vector integrations adjacent to proto-oncogenes. These long-term findings demonstrate enduring efficacy of GT for ADA SCID but also highlight risks of genotoxicity with gRVs. This trial was registered at www.clinicaltrials.gov as #NCT00794508.
Collapse
Affiliation(s)
- Bryanna Reinhardt
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Omar Habib
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kit L Shaw
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Elizabeth Garabedian
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Denise A Carbonaro-Sarracino
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Dayna Terrazas
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Beatriz Campo Fernandez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Satiro De Oliveira
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Theodore B Moore
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Alan K Ikeda
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Barbara C Engel
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Roger P Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Augustine Fernandes
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Connie Jackson
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sally Shupien
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Suparna Mishra
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alejandra Davila
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jack Mottahedeh
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Andrej Vitomirov
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine and
| | | | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Pascha Hokama
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Michael S Hershfield
- Departments of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC
| | - Robert Sokolic
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI
| | - Suk See De Ravin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Harry L Malech
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
22
|
Built to last: gene therapy for ADA SCID. Blood 2021; 138:1287-1288. [PMID: 34647983 DOI: 10.1182/blood.2021012300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
|
23
|
Baloh CH, Borkar SA, Chang KF, Yao J, Hershfield MS, Parikh SH, Kohn DB, Goodenow MM, Sleasman JW, Yin L. Normal IgH Repertoire Diversity in an Infant with ADA Deficiency After Gene Therapy. J Clin Immunol 2021; 41:1597-1606. [PMID: 34184208 PMCID: PMC9906566 DOI: 10.1007/s10875-021-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Adenosine deaminase (ADA) deficiency causes severe combined immunodeficiency (SCID) through an accumulation of toxic metabolites within lymphocytes. Recently, ADA deficiency has been successfully treated using lentiviral-transduced autologous CD34+ cells carrying the ADA gene. T and B cell function appears to be fully restored, but in many patients' B cell numbers remain low, and assessments of the immunoglobulin heavy (IgHV) repertoire following gene therapy are lacking. METHODS We performed deep sequencing of IgHV repertoire in peripheral blood lymphocytes from a child following lentivirus-based gene therapy for ADA deficiency and compared to the IgHV repertoire in healthy infants and adults. RESULTS After gene therapy, Ig diversity increased over time as evidenced by V, D, and J gene usage, N-additions, CDR3 length, extent of somatic hypermutation, and Ig class switching. There was the emergence of predominant IgHM, IgHG, and IgHA CDR3 lengths after gene therapy indicating successful oligoclonal expansion in response to antigens. This provides proof of concept for the feasibility and utility of molecular monitoring in following B cell reconstitution following gene therapy for ADA deficiency. CONCLUSION Based on deep sequencing, gene therapy resulted in an IgHV repertoire with molecular diversity similar to healthy infants.
Collapse
Affiliation(s)
- Carolyn H Baloh
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Samiksha A Borkar
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Jiqiang Yao
- Department of Biostatistics and bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Michael S Hershfield
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Suhag H Parikh
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Donald B Kohn
- Division of Hematology & Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - Maureen M Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
24
|
Abraham RS, Butte MJ. The New "Wholly Trinity" in the Diagnosis and Management of Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:613-625. [PMID: 33551037 DOI: 10.1016/j.jaip.2020.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The field of immunology has a rich and diverse history, and the study of inborn errors of immunity (IEIs) represents both the "cake" and the "icing on top of the cake," as it has enabled significant advances in our understanding of the human immune system. This explosion of knowledge has been facilitated by a unique partnership, a triumvirate formed by the physician who gathers detailed immunological and clinical phenotypic information from, and shares results with, the patient; the laboratory scientist/immunologist who performs diagnostic testing, as well as advanced functional correlative studies; and the genomics scientist/genetic counselor, who conducts and interprets varied genetic analyses, all of which are essential for dissecting constitutional genetic disorders. Although the basic principles of clinical care have not changed in recent years, the practice of clinical immunology has changed to reflect the prodigious advances in diagnostics, genomics, and therapeutics. An "omic/tics"-centric approach to IEI reflects the tremendous strides made in the field in the new millennium with recognition of new disorders, characterization of the molecular underpinnings, and development and implementation of personalized treatment strategies. This review brings renewed attention to bear on the indispensable "trinity" of phenotypic, genomic, and immunological analyses in the diagnosis, management, and treatment of IEIs.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Calif.
| |
Collapse
|
25
|
Kuo CY, Kohn DB. Overview of the current status of gene therapy for primary immune deficiencies (PIDs). J Allergy Clin Immunol 2021; 146:229-233. [PMID: 32771134 DOI: 10.1016/j.jaci.2020.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
Over 3 decades, gene therapy has advanced from a logical idea to becoming a clinical reality for several of the most severe primary immune deficiencies, as well as other inherited disorders. The first gene therapy medicines have been licensed for marketing and several more are advancing toward that goal to make them widely available, beyond clinical trials. Although common platforms of cells, vectors, or editing reagents are used for these disorders, each individual genetic cause of an immune deficiency requires its own vector or editing tools and a package of preclinical data on efficacy and safety to initiate clinical trials. One-by-one, gene therapy for primary immune deficiencies is being brought to the clinic and hopefully will provide safe and effective therapies.
Collapse
Affiliation(s)
- Caroline Y Kuo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Calif
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Calif; Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Calif; Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Calif; Department of Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, David Geffen School of Medicine, University of California, Los Angeles, Calif.
| |
Collapse
|
26
|
Segundo GRS, Condino-Neto A. Treatment of patients with immunodeficiency: Medication, gene therapy, and transplantation. J Pediatr (Rio J) 2021; 97 Suppl 1:S17-S23. [PMID: 33181112 PMCID: PMC9432285 DOI: 10.1016/j.jped.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To provide an overview of drug treatment, transplantation, and gene therapy for patients with primary immunodeficiencies. SOURCE OF DATA Non-systematic review of the literature in the English language carried out at PubMed. SYNTHESIS OF DATA The treatment of patients with primary immunodeficiencies aims to control their disease, especially the treatment and prevention of infections through antibiotic prophylaxis and/or immunoglobulin replacement therapy. In several diseases, it is possible to use specific medications for the affected pathway with control of the condition, especially in autoimmune or autoinflammatory processes associated with inborn immunity errors. In some diseases, treatment can be curative through hematopoietic stem cell transplantation (HSCT); more recently, gene therapy has opened new horizons through new technologies. CONCLUSIONS Immunoglobulin replacement therapy remains the main therapeutic tool. Precision medicine with specific drugs for altered immune pathways is already a reality for several immune defects. Advances in the management of HSCT and gene therapy have expanded the capacity for curative treatments in patients with primary immunodeficiencies.
Collapse
Affiliation(s)
| | - Antonio Condino-Neto
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Abstract
Gene therapy is an innovative treatment for Primary Immune Deficiencies (PIDs) that uses autologous hematopoietic stem cell transplantation to deliver stem cells with added or edited versions of the missing or malfunctioning gene that causes the PID. Initial studies of gene therapy for PIDs in the 1990-2000's used integrating murine gamma-retroviral vectors. While these studies showed clinical efficacy in many cases, especially with the administration of marrow cytoreductive conditioning before cell re-infusion, these vectors caused genotoxicity and development of leukoproliferative disorders in several patients. More recent studies used lentiviral vectors in which the enhancer elements of the long terminal repeats self-inactivate during reverse transcription ("SIN" vectors). These SIN vectors have excellent safety profiles and have not been reported to cause any clinically significant genotoxicity. Gene therapy has successfully treated several PIDs including Adenosine Deaminase Severe Combined Immunodeficiency (SCID), X-linked SCID, Artemis SCID, Wiskott-Aldrich Syndrome, X-linked Chronic Granulomatous Disease and Leukocyte Adhesion Deficiency-I. In all, gene therapy for PIDs has progressed over the recent decades to be equal or better than allogeneic HSCT in terms of efficacy and safety. Further improvements in methods should lead to more consistent and reliable efficacy from gene therapy for a growing list of PIDs.
Collapse
Affiliation(s)
- Lisa A. Kohn
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Donald B. Kohn
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Thorsen J, Kolbert K, Joshi A, Baker M, Seroogy CM. Newborn Screening for Severe Combined Immunodeficiency: 10-Year Experience at a Single Referral Center (2009-2018). J Clin Immunol 2021; 41:595-602. [PMID: 33409868 DOI: 10.1007/s10875-020-00956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
In 2008, newborn screening (NBS) for severe combined immunodeficiency (SCID) began as a pilot study in Wisconsin and has recently been added to every state's newborn screen panel. The incidence of SCID is estimated at 1 per 58,000 births which may suggest infrequent NBS SCID screen positive results in states with low annual birth rates. In this study, we report our center's experience with NBS positive SCID screen referrals over a 10-year period. A total of 68 full-term newborns were referred to our center for confirmatory testing. Of these referrals, 50% were false positives, 12% were SCID diagnoses, 20% syndromic T cell lymphopenia (TCL) disorders, and 18% non-SCID, non-syndromic TCL. Through collaboration with our newborn screening lab, second-tier targeted gene sequencing was performed for newborns with SCID screen positive results from communities with known founder pathogenic variants and provided rapid genetic confirmation of SCID and non-SCID TCL disorders. Despite extensive genetic testing, two of the eight (25%) identified newborns with SCID diagnoses lacked a definable genetic defect. Additionally, our referrals included ten newborns who were otherwise healthy newborns with idiopathic TCL and varied CD3+ T cell number longitudinal trajectories. Collectively, referrals to our single site over a 10-year period describe a broad spectrum of medically actionable and idiopathic TCL disorders which highlight the importance of clinical immunology expertise in all states, demonstrate efficiencies and challenges for second-tier genetic testing, and further emphasize the need to development standardized evaluation algorithms for non-SCID TCL.
Collapse
Affiliation(s)
- Julia Thorsen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA
| | - Kayla Kolbert
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA
| | - Avni Joshi
- Division of Allergy and Immunology, Mayo Clinic Children's Center, Rochester, MN, USA
| | - Mei Baker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA.
| |
Collapse
|
29
|
Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 5:e509. [PMID: 33403354 PMCID: PMC7773329 DOI: 10.1097/hs9.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past 3 decades, there has been significant progress in refining gene therapy technologies and procedures. Transduction of hematopoietic stem cells ex vivo using lentiviral vectors can now create a highly effective therapeutic product, capable of reconstituting many different immune system dysfunctions when reinfused into patients. Here, we review the key developments in the gene therapy landscape for primary immune deficiency, from an experimental therapy where clinical efficacy was marred by adverse events, to a commercialized product with enhanced safety and efficacy. We also discuss progress being made in preclinical studies for challenging disease targets and emerging gene editing technologies that are showing promising results, particularly for conditions where gene regulation is important for efficacy.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
30
|
Abstract
Haematopoietic stem and progenitor cell (HSPC) gene therapy has emerged as an effective treatment modality for monogenic disorders of the blood system such as primary immunodeficiencies and β-thalassaemia. Medicinal products based on autologous HSPCs corrected using lentiviral and gammaretroviral vectors have now been approved for clinical use, and the site-specific genome modification of HSPCs using gene editing techniques such as CRISPR-Cas9 has shown great clinical promise. Preclinical studies have shown engineered HSPCs could also be used to cross-correct non-haematopoietic cells in neurodegenerative metabolic diseases. Here, we review the most recent advances in HSPC gene therapy and discuss emerging strategies for using HSPC gene therapy for a range of diseases.
Collapse
|
31
|
Blanco E, Izotova N, Booth C, Thrasher AJ. Immune Reconstitution After Gene Therapy Approaches in Patients With X-Linked Severe Combined Immunodeficiency Disease. Front Immunol 2020; 11:608653. [PMID: 33329605 PMCID: PMC7729079 DOI: 10.3389/fimmu.2020.608653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-threating disease. The genetic origin is a defect in the interleukin 2 receptor γ chain (IL2RG) gene and patients are classically characterized by absence of T and NK cells, as well as presence of partially-functional B cells. Without any treatment the disease is usually lethal during the first year of life. The treatment of choice for these patients is hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an HLA-matched sibling donor is available. However, when alternative donors are used, the success and survival rates are often lower. Gene therapy has been developed as an alternative treatment initially using γ-retroviral vectors to correct the defective γ chain in the absence of pre-conditioning treatment. The results were highly promising in SCID-X1 infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell recovery was less robust. However, some infants developed T-cell acute lymphoblastic leukemia after the gene therapy, due to vector-mediated insertional mutagenesis. Consequently, considerable efforts have been made to develop safer vectors. The most recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in both children and adults. This review provides an overview about the different gene therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly focusing on lymphoid immune reconstitution, as well as the developments that have improved the process and outcomes.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalia Izotova
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adrian James Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
32
|
Tucci F, Scaramuzza S, Aiuti A, Mortellaro A. Update on Clinical Ex Vivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Mol Ther 2020; 29:489-504. [PMID: 33221437 DOI: 10.1016/j.ymthe.2020.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gene transfer into autologous hematopoietic stem progenitor cells (HSPCs) has the potential to cure monogenic inherited disorders caused by an altered development and/or function of the blood system, such as immune deficiencies and red blood cell and platelet disorders. Gene-corrected HSPCs and their progeny can also be exploited as cell vehicles to deliver molecules into the circulation and tissues, including the central nervous system. In this review, we focus on the progress of clinical development of medicinal products based on HSPCs engineered and modified by integrating viral vectors for the treatment of monogenic blood disorders and metabolic diseases. Two products have reached the stage of market approval in the EU, and more are foreseen to be approved in the near future. Despite these achievements, several challenges remain for HSPC gene therapy (HSPC-GT) precluding a wider application of this type of gene therapy to a wider set of diseases while gene-editing approaches are entering the clinical arena.
Collapse
Affiliation(s)
- Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy.
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
33
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
34
|
Bradford KL, Liu S, Krajinovic M, Ansari M, Garabedian E, Tse J, Wang X, Shaw KL, Gaspar HB, Candotti F, Kohn DB. Busulfan Pharmacokinetics in Adenosine Deaminase-Deficient Severe Combined Immunodeficiency Gene Therapy. Biol Blood Marrow Transplant 2020; 26:1819-1827. [PMID: 32653625 PMCID: PMC7529956 DOI: 10.1016/j.bbmt.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
The pharmacokinetics of low-dose busulfan (BU) were investigated as a nonmyeloablative conditioning regimen for autologous gene therapy (GT) in pediatric subjects with adenosine deaminase-deficient severe combined immunodeficiency disease (ADA SCID). In 3 successive clinical trials, which included either γ-retroviral (γ-RV) or lentiviral (LV) vectors, subjects were conditioned with BU using different dosing nomograms. The first cohort received BU doses based on body surface area (BSA), the second cohort received doses based on actual body weight (ABW), and in the third cohort, therapeutic drug monitoring (TDM) was used to target a specific area under the concentration-time curve (AUC). Neither BSA-based nor ABW-based dosing achieved a consistent cumulative BU AUC; in contrast, TDM-based dosing led to more consistent AUC. BU clearance increased as subject age increased from birth to 18 months. However, weight and age alone were insufficient to accurately predict the dose that would consistently achieve a target AUC. Furthermore, various clinical, laboratory, and genetic factors (eg, genotypes for glutathione-S-transferase isozymes known to participate in BU metabolism) were analyzed, but no single finding predicted subjects with rapid versus slow clearance. Analysis of BU AUC and the postengraftment vector copy number (VCN) in granulocytes, a surrogate marker of the level of engrafted gene-modified hematopoietic stem and progenitor cells (HSPCs), demonstrated gene marking at levels sufficient for therapeutic benefit in the subjects who had achieved the target BU AUC. Although many factors determine the ultimate engraftment following GT, this work demonstrates that the BU AUC correlated with the eventual level of engrafted gene-modified HSPCs within a vector group (γ-RV versus LV), with significantly higher levels of granulocyte VCN in the recipients of LV-modified grafts compared to recipients of γ-RV-transduced grafts. Taken together, these findings provide insight into low-dose BU pharmacokinetics in the unique setting of autologous GT for ADA SCID, and these dosing principles may be applied to future GT trials using low-dose BU to open the bone marrow niche.
Collapse
Affiliation(s)
- Kathryn L Bradford
- Department of Pediatric Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Siyu Liu
- Department of Population Sciences, City of Hope/Beckman Research Institute, Duarte, California; Department of Hematology and Hematopoietic Cell Transplantation, City of Hope/Beckman Research Institute, Duarte, California
| | - Maja Krajinovic
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada; Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada
| | - Marc Ansari
- Hematology-Oncology Unit, Department of Pediatrics, Geneva University Hospital & CANSEARCH Research Laboratory, University of Geneva, Geneva, Switzerland
| | - Elizabeth Garabedian
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - John Tse
- Department of Pharmaceutical Services, Ronald Reagan Medical Center, UCLA, Los Angeles, California
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, UCLA Health, Los Angeles, California
| | - Kit L Shaw
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California
| | - H Bobby Gaspar
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Orchard Therapeutics, London, United Kingdom
| | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland; Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - Donald B Kohn
- Department of Pediatric Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California; The Broad Stem Cell Research Center, University of California, Los Angeles, California.
| |
Collapse
|
35
|
Jofra Hernández R, Calabria A, Sanvito F, De Mattia F, Farinelli G, Scala S, Visigalli I, Carriglio N, De Simone M, Vezzoli M, Cecere F, Migliavacca M, Basso-Ricci L, Omrani M, Benedicenti F, Norata R, Rancoita PMV, Di Serio C, Albertini P, Cristofori P, Naldini L, Gentner B, Montini E, Aiuti A, Mortellaro A. Hematopoietic Tumors in a Mouse Model of X-linked Chronic Granulomatous Disease after Lentiviral Vector-Mediated Gene Therapy. Mol Ther 2020; 29:86-102. [PMID: 33010230 PMCID: PMC7791081 DOI: 10.1016/j.ymthe.2020.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/03/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder due to loss-of-function mutations in genes encoding the NADPH oxidase subunits. Hematopoietic stem and progenitor cell (HSPC) gene therapy (GT) using regulated lentiviral vectors (LVs) has emerged as a promising therapeutic option for CGD patients. We performed non-clinical Good Laboratory Practice (GLP) and laboratory-grade studies to assess the safety and genotoxicity of LV targeting myeloid-specific Gp91phox expression in X-linked chronic granulomatous disease (XCGD) mice. We found persistence of gene-corrected cells for up to 1 year, restoration of Gp91phox expression and NADPH oxidase activity in XCGD phagocytes, and reduced tissue inflammation after LV-mediated HSPC GT. Although most of the mice showed no hematological or biochemical toxicity, a small subset of XCGD GT mice developed T cell lymphoblastic lymphoma (2.94%) and myeloid leukemia (5.88%). No hematological malignancies were identified in C57BL/6 mice transplanted with transduced XCGD HSPCs. Integration pattern analysis revealed an oligoclonal composition with rare dominant clones harboring vector insertions near oncogenes in mice with tumors. Collectively, our data support the long-term efficacy of LV-mediated HSPC GT in XCGD mice and provide a safety warning because the chronic inflammatory XCGD background may contribute to oncogenesis.
Collapse
Affiliation(s)
- Raisa Jofra Hernández
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pathology Unit, Department of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Farinelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Visigalli
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Carriglio
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maura De Simone
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Vezzoli
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Cecere
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossana Norata
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Albertini
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Cristofori
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Non-Clinical Safety In Vivo Translation Research, Glaxo Smith Kline, Ware, UK
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Medical School, Vita-Salute San Raffaele University, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Medical School, Vita-Salute San Raffaele University, Milan, Italy.
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
36
|
Brommel CM, Cooney AL, Sinn PL. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Hum Gene Ther 2020; 31:985-995. [PMID: 32718227 PMCID: PMC7495917 DOI: 10.1089/hum.2020.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
The list of successful gene therapy trials using adeno-associated virus (AAV)-based vectors continues to grow and includes a wide range of monogenic diseases. Replication incompetent AAV genomes typically remain episomal and expression dilutes as cells divide and die. Consequently, long-term transgene expression from AAV is best suited for quiescent cell types, such as retinal cells, myocytes, or neurons. For genetic diseases that involve cells with steady turnover, AAV-conferred correction may require routine readministration, where every dose carries the risk of developing an adaptive immune response that renders treatment ineffective. Here, we discuss innovative approaches to permanently modify the host genome using AAV-based platforms, thus potentially requiring only a single dose. Such approaches include using AAV delivery of DNA transposons, homologous recombination templates into safe harbors, and nucleases for targeting integration. In tissues with continual cell turnover, genetic modification of progenitor cell populations will help ensure persistent therapeutic outcomes. Combining the safety profile of AAV-based gene therapy vectors with the ability to integrate a therapeutic transgene creates novel solutions to the challenge of lifelong curative treatments for human genetic diseases.
Collapse
Affiliation(s)
| | - Ashley L. Cooney
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
37
|
Fischer A, Hacein-Bey-Abina S. Gene therapy for severe combined immunodeficiencies and beyond. J Exp Med 2020; 217:132743. [PMID: 31826240 PMCID: PMC7041706 DOI: 10.1084/jem.20190607] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
This review describes how gene therapy of severe combined immunodeficiency became a reality, primarily based on the expected selective advantage conferred by transduction of hematopoietic progenitor cells. Thus, it resulted in a progressive extension to the treatment of other primary immunodeficiencies. Ex vivo retrovirally mediated gene therapy has been shown within the last 20 yr to correct the T cell immunodeficiency caused by γc-deficiency (SCID X1) and adenosine deaminase (ADA) deficiency. The rationale was brought up by the observation of the revertant of SCIDX1 and ADA deficiency as a kind of natural gene therapy. Nevertheless, the first attempts of gene therapy for SCID X1 were associated with insertional mutagenesis causing leukemia, because the viral enhancer induced transactivation of oncogenes. Removal of this element and use of a promoter instead led to safer but still efficacious gene therapy. It was observed that a fully diversified T cell repertoire could be generated by a limited set (<1,000) of progenitor cells. Further advances in gene transfer technology, including the use of lentiviral vectors, has led to success in the treatment of Wiskott–Aldrich syndrome, while further applications are pending. Genome editing of the mutated gene may be envisaged as an alternative strategy to treat SCID diseases.
Collapse
Affiliation(s)
- Alain Fischer
- Imagine Institute, Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Salima Hacein-Bey-Abina
- Unité de Technologies Chimiques et Biologiques pour la Santé, UMR8258 Centre National de la Recherche Scientifique - U1267 Institut National de la Santé et de la Recherche Médicale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
38
|
Successful Use of Hematopoietic Stem Cell Transplantation for 2 Pediatric Cases of Glanzmann Thrombasthenia and Review of the Literature. J Pediatr Hematol Oncol 2020; 42:e521-e526. [PMID: 31693514 DOI: 10.1097/mph.0000000000001646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glanzmann thrombasthenia is a rare platelet disorder characterized by an abnormal integrin receptor on the surface of platelets that results in the failure of platelets to aggregate. Currently, curative therapy is allogeneic hematopoietic stem cell transplantation (HSCT). The authors report 2 patients with Glanzmann thrombasthenia who successfully underwent allogeneic HSCT from unrelated donors, including one using umbilical cord blood stem cells. Although both patients had evidence of engraftment, hematopoietic recovery, and normalization of platelet aggregation, they also experienced several post-transplant complications. Allogeneic HSCT carries a significant risk of morbidity and mortality that should be considered before proceeding with the transplant.
Collapse
|
39
|
Preclinical Development of Autologous Hematopoietic Stem Cell-Based Gene Therapy for Immune Deficiencies: A Journey from Mouse Cage to Bed Side. Pharmaceutics 2020; 12:pharmaceutics12060549. [PMID: 32545727 PMCID: PMC7357087 DOI: 10.3390/pharmaceutics12060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).
Collapse
|
40
|
Humbert O, Samuelson C, Kiem HP. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. Br J Haematol 2020; 192:33-49. [PMID: 32506752 DOI: 10.1111/bjh.16807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/26/2022]
Abstract
Genome editing therapies represent a significant advancement in next-generation, precision medicine for the management of haematological diseases, and CRISPR/Cas9 has to date been the most successful implementation platform. From discovery in bacteria and archaea over three decades ago, through intensive basic research and pre-clinical development phases involving the modification of therapeutically relevant cell types, CRISPR/Cas9 genome editing is now being investigated in ongoing clinic trials. Despite the widespread enthusiasm brought by this new technology, significant challenges remain before genome editing can be routinely recommended and implemented in the clinic. These include risks of genotoxicity resulting from off-target DNA cleavage or chromosomal rearrangement, and suboptimal efficacy of homology-directed repair editing strategies, which thus limit therapeutic options. Practical hurdles such as high costs and inaccessibility to patients outside specialised centres must also be addressed. Future improvements in this rapidly developing field should circumvent current limitations with novel editing platforms and with the simplification of clinical protocols using in vivo delivery of editing reagents.
Collapse
Affiliation(s)
| | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
41
|
Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, Chen NY, Young TD, Wattanatorn N, Park JH, Scarabelli L, Chiang N, Takahashi J, Young SG, Stieg AZ, De Oliveira S, Huang TJ, Weiss PS, Jonas SJ. Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 2020; 117:10976-10982. [PMID: 32358194 PMCID: PMC7245081 DOI: 10.1073/pnas.1917125117] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in gene editing are leading to new medical interventions where patients' own cells are used for stem cell therapies and immunotherapies. One of the key limitations to translating these treatments to the clinic is the need for scalable technologies for engineering cells efficiently and safely. Toward this goal, microfluidic strategies to induce membrane pores and permeability have emerged as promising techniques to deliver biomolecular cargo into cells. As these technologies continue to mature, there is a need to achieve efficient, safe, nontoxic, fast, and economical processing of clinically relevant cell types. We demonstrate an acoustofluidic sonoporation method to deliver plasmids to immortalized and primary human cell types, based on pore formation and permeabilization of cell membranes with acoustic waves. This acoustofluidic-mediated approach achieves fast and efficient intracellular delivery of an enhanced green fluorescent protein-expressing plasmid to cells at a scalable throughput of 200,000 cells/min in a single channel. Analyses of intracellular delivery and nuclear membrane rupture revealed mechanisms underlying acoustofluidic delivery and successful gene expression. Our studies show that acoustofluidic technologies are promising platforms for gene delivery and a useful tool for investigating membrane repair.
Collapse
Affiliation(s)
- Jason N Belling
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Liv K Heidenreich
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Zhenhua Tian
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707
- Department of Aerospace Engineering, Mississippi State University, Starkville, MS 39762
| | - Alexandra M Mendoza
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tzu-Ting Chiou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
| | - Yao Gong
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Natalie Y Chen
- Department of Medicine and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Department of Human Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Thomas D Young
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Natcha Wattanatorn
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jae Hyeon Park
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Leonardo Scarabelli
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Naihao Chiang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jack Takahashi
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Adam Z Stieg
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Satiro De Oliveira
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| |
Collapse
|
42
|
Abstract
Gene transfer to and correction of hematopoietic stem cells (HSCs) are ideal strategies to cure a number of congenital and acquired disorders. However, transgene products may trigger immunological rejection of modified cells, limiting their therapeutic benefits. Preclinical and clinical data indicate that myeloablative total body irradiation (TBI) allows for efficient engraftment and tolerance to gene-modified HSCs. In contrast, myeloablative chemotherapy using busulfan or similar agents is only sufficient to induce tolerance to gene-modified HSCs producing no or non-immunogenic protein. If cells are modified to produce a protein that is xenogenic or congenitally absent in the patient, additional immunosuppression may be required to prevent an immunological reaction to the transduced cells. New gene editing and in vivo gene therapy techniques could pose additional immune concerns compared to ex vivo gene therapy methods. This review is intended to guide the design of conditioning and immunosuppression therapy in HSC-targeted gene therapy, as well as gene editing.
Collapse
Affiliation(s)
- Claire M. Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI) /National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI) /National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI) /National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| |
Collapse
|
43
|
Zhang ZY, Thrasher AJ, Zhang F. Gene therapy and genome editing for primary immunodeficiency diseases. Genes Dis 2020; 7:38-51. [PMID: 32181274 PMCID: PMC7063425 DOI: 10.1016/j.gendis.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
In past two decades the gene therapy using genetic modified autologous hematopoietic stem cells (HSCs) transduced with the viral vector has become a promising alternative option for treating primary immunodeficiency diseases (PIDs). Despite of some pitfalls at early stage clinical trials, the field of gene therapy has advanced significantly in the last decade with improvements in viral vector safety, preparatory regime for manufacturing high quality virus, automated CD34 cell purification. Hence, the overall outcome from the clinical trials for the different PIDs has been very encouraging. In addition to the viral vector based gene therapy, the recent fast moving forward developments in genome editing using engineered nucleases in HSCs has provided a new promising platform for the treatment of PIDs. This review provides an overall outcome and progress in gene therapy clinical trials for SCID-X, ADA-SCID, WAS, X- CGD, and the recent developments in genome editing technology applied in HSCs for developing potential therapy, particular in the key studies for PIDs.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Department of Immunology and Rheumatology, Children's Hospital of Chongqing Medical University, China
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| |
Collapse
|
44
|
Morbidity in an adenosine deaminase-deficient patient during 27 years of enzyme replacement therapy. Clin Immunol 2020; 211:108321. [DOI: 10.1016/j.clim.2019.108321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
|
45
|
Talib S, Shepard KA. Unleashing the cure: Overcoming persistent obstacles in the translation and expanded use of hematopoietic stem cell-based therapies. Stem Cells Transl Med 2020; 9:420-426. [PMID: 31957346 PMCID: PMC7103620 DOI: 10.1002/sctm.19-0375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is broadly used for treating and curing hematological cancers and various disorders of the blood and immune system. However, its true therapeutic potential remains vastly constrained by significant scientific and technical hurdles that preclude expansion to new indications and limit the number of patients who could benefit from, gain access to, or financially afford the procedure. To define and overcome these challenges, the California Institute for Regenerative Medicine (CIRM) held multiple workshops related to HSCT and has subsequently invested in a new generation of approaches to address the most compelling needs of the field, including new sources of healthy and immunologically compatible hematopoietic stem cells for transplant; safe and efficient genome modification technologies for correction of inherited genetic defects and other forms of gene therapy; safer and more tractable transplantation procedures such as nongenotoxic conditioning regimens, methods to accelerate immune reconstitution and recovery of immune function, and innovations to minimize the risk of immune rejection; and other life‐threatening complications from transplant. This Perspective serves to highlight these needs through examples from the recent CIRM‐funded and other notable investigations, presents rationale for comprehensive, systematic, and focused strategies to unleash the full potential of HSCT, thereby enabling cures for a greatly expanded number of disorders and making HSCT feasible, accessible, and affordable to all who could benefit.
Collapse
Affiliation(s)
- Sohel Talib
- California Institute for Regenerative Medicine, Oakland, California
| | - Kelly A Shepard
- California Institute for Regenerative Medicine, Oakland, California
| |
Collapse
|
46
|
Pai SY. Treatment of primary immunodeficiency with allogeneic transplant and gene therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:457-465. [PMID: 31808905 PMCID: PMC6913427 DOI: 10.1182/hematology.2019000052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The treatment of primary immunodeficiency disorders with allogeneic hematopoietic cell transplantation (HCT) has a history dating back to 1968 with the first successful transplant for a patient with severe combined immunodeficiency (SCID). The omission of conditioning for patients with SCID owing to their inability to reject allogeneic grafts and the increasing use of reduced intensity conditioning regimens often result in a state of mixed or split donor-recipient chimerism. The use of gene therapy (GT) via retroviral or lentiviral transduction of autologous CD34+ hematopoietic stem and progenitor cells is expected to correct only a portion of the hematopoietic stem cell compartment. The consequences of partial correction after either form of cellular therapy differ according to how the genetic deficiency affects immune cell development and function. Moreover, the conditioning regimen or lack thereof impacts the cell lineages at risk of partial correction. Advances in our understanding of immune reconstitution after HCT and GT for SCID, Wiskott-Aldrich syndrome, and chronic granulomatous disease are discussed.
Collapse
Affiliation(s)
- Sung-Yun Pai
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA; and
- Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
48
|
Booth C, Romano R, Roncarolo MG, Thrasher AJ. Gene therapy for primary immunodeficiency. Hum Mol Genet 2019; 28:R15-R23. [DOI: 10.1093/hmg/ddz170] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/21/2023] Open
Abstract
Abstract
Gene therapy is now being trialled as a therapeutic option for an expanding number of conditions, based primarily on the successful treatment over the past two decades of patients with specific primary immunodeficiencies (PIDs) including severe combined immunodeficiency and Wiskott–Aldrich syndrome and metabolic conditions such as leukodystrophy. The field has evolved from the use of gammaretroviral vectors to more sophisticated lentiviral platforms that offer an improved biosafety profile alongside greater efficiency for hematopoietic stem cells gene transfer. Here we review more recent developments including licensing of gene therapies, use of gene corrected autologous T cells as an alternative strategy for some PIDs and the potential of targeted gene correction using various gene editing platforms. Given the promising results of recent clinical trials, it is likely that autologous gene therapies will become standard of care for a number of devastating diseases in the coming decade.
Collapse
Affiliation(s)
- Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rosa Romano
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, USA
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
49
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
50
|
Bone marrow harvesting from paediatric patients undergoing haematopoietic stem cell gene therapy. Bone Marrow Transplant 2019; 54:1995-2003. [PMID: 31150018 PMCID: PMC6897559 DOI: 10.1038/s41409-019-0573-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 01/06/2023]
Abstract
Collection of an adequate amount of autologous haematopoietic stem progenitor cells (HSPC) is required for ex vivo manipulation and successful engraftment for certain inherited disorders. Fifty-seven paediatric patients (age 0.5–11.4 years) underwent a bone marrow harvest for the purpose of HSPC gene therapy (GT), including adenosine deaminase-severe combined immunodeficiency (ADA-SCID), Wiskott–Aldrich syndrome (WAS) and metachromatic leukodystrophy (MLD) patients. Total nucleated cells and the percentage and absolute counts of CD34+ cells were calculated at defined steps of the procedure (harvest, CD34+ cell purification, transduction with the gene transfer vector and infusion of the medicinal product). A minimum CD34+ cell dose for infusion was 2 × 106/kg, with an optimal target at 5–10 × 106/kg. Median volume of bone marrow harvested was 34.2 ml/kg (range 14.2–56.6). The number of CD34+ cells collected correlated inversely with weight and age in all patients and particularly in the MLD children group. All patients reached the minimum target dose for infusion: median dose of CD34+ cells/kg infused was 10.3 × 106/kg (3.7–25.9), with no difference among the three groups. Bone marrow harvest of volumes > 30 ml/kg in infants and children with ADA-SCID, WAS and MLD is well tolerated and allows obtaining an adequate dose of a medicinal product for HSPC-GT.
Collapse
|