1
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2024; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
2
|
Toms M, Heppell C, Owen N, Malka S, Moosajee M. A Novel De Novo Missense Variant in Netrin-1 (NTN1) Associated With Chorioretinal Coloboma, Sensorineural Hearing Loss and Polydactyly. Clin Genet 2024. [PMID: 39648562 DOI: 10.1111/cge.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) comprise a highly heterogeneous spectrum of congenital ocular malformations with an estimated incidence of 1 in 5000 to 1 in 30 000 live births. Although there is likely to be a genetic component in the majority of cases, many remain without a molecular diagnosis. Netrin-1 was previously identified as a mediator of optic fissure closure from transcriptome analyses of chick and zebrafish and was shown to cause ocular coloboma when knocked out in both mouse and zebrafish. Here, we report the first patient with chorioretinal coloboma and microphthalmia harbouring a novel heterozygous likely pathogenic NTN1 missense variant, c.1483T>A p.(Tyr495Asn), validating a conserved gene function in ocular development. In addition, the patient displayed bilateral sensorineural hearing loss which was investigated by examining the sensory hair cells of ntn1a morphant zebrafish, suggesting a role for netrin-1 in hair cell development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
| | - Cara Heppell
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Samantha Malka
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Hu L, Liu XY, Zhao L, Hu ZB, Li ZX, Liu WT, Song NN, Hu YQ, Jiang LP, Zhang L, Tao YC, Zhang Q, Chen JY, Lang B, Wang YB, Yue L, Ding YQ. Ventricular Netrin-1 deficiency leads to defective pyramidal decussation and mirror movement in mice. Cell Death Dis 2024; 15:343. [PMID: 38760361 PMCID: PMC11101614 DOI: 10.1038/s41419-024-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Zhao
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Xuan Li
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Wei-Tang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Luo-Peng Jiang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lei Yue
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Trouillard O, Méneret A, Dunoyer M, Doulazmi M, Dusart I, Dubacq C, Roze E. Comment on "Defining the Genetic Landscape of Congenital Mirror Movements in 80 Affected Individuals". Mov Disord 2024; 39:925-926. [PMID: 38757571 DOI: 10.1002/mds.29799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Oriane Trouillard
- Sorbonne Université, INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Paris, France
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Aurélie Méneret
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, Paris, France
| | - Margaux Dunoyer
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Biological Adaptation and Ageing, B2A, Paris, France
| | - Isabelle Dusart
- Sorbonne Université, INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Paris, France
| | - Caroline Dubacq
- Sorbonne Université, INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Paris, France
| | - Emmanuel Roze
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, Paris, France
| |
Collapse
|
6
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Collins Hutchinson ML, St-Onge J, Schlienger S, Boudrahem-Addour N, Mougharbel L, Michaud JF, Lloyd C, Bruneau E, Roux C, Sahly AN, Osterman B, Myers KA, Rouleau GA, Jimenez Cruz DA, Rivière JB, Accogli A, Charron F, Srour M. Defining the Genetic Landscape of Congenital Mirror Movements in 80 Affected Individuals. Mov Disord 2024; 39:400-410. [PMID: 38314870 DOI: 10.1002/mds.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Meagan L Collins Hutchinson
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Judith St-Onge
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Lina Mougharbel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Clara Lloyd
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elena Bruneau
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cedric Roux
- Bioinformatics Platform, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ahmed N Sahly
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Bradley Osterman
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guy A Rouleau
- Montréal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | | | - Jean-Baptiste Rivière
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrea Accogli
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Myriam Srour
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Trouillard O, Dupaigne P, Dunoyer M, Doulazmi M, Herlin MK, Frismand S, Riou A, Legros V, Chevreux G, Veaute X, Busso D, Fouquet C, Saint-Martin C, Méneret A, Trembleau A, Dusart I, Dubacq C, Roze E. Congenital mirror movements are associated with defective polymerisation of RAD51. J Med Genet 2023; 60:1116-1126. [PMID: 37308287 DOI: 10.1136/jmg-2023-109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/21/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mirror movements are involuntary movements of one hand that mirror intentional movements of the other hand. Congenital mirror movements (CMM) is a rare genetic disorder with autosomal dominant inheritance, in which mirror movements are the main neurological manifestation. CMM is associated with an abnormal decussation of the corticospinal tract, a major motor tract for voluntary movements. RAD51 is known to play a key role in homologous recombination with a critical function in DNA repair. While RAD51 haploinsufficiency was first proposed to explain CMM, other mechanisms could be involved. METHODS We performed Sanger sequencing of RAD51 in five newly identified CMM families to identify new pathogenic variants. We further investigated the expression of wild-type and mutant RAD51 in the patients' lymphoblasts at mRNA and protein levels. We then characterised the functions of RAD51 altered by non-truncating variants using biochemical approaches. RESULTS The level of wild-type RAD51 protein was lower in the cells of all patients with CMM compared with their non-carrier relatives. The reduction was less pronounced in asymptomatic carriers. In vitro, mutant RAD51 proteins showed loss-of-function for polymerisation, DNA binding and strand exchange activity. CONCLUSION Our study demonstrates that RAD51 haploinsufficiency, including loss-of-function of non-truncating variants, results in CMM. The incomplete penetrance likely results from post-transcriptional compensation. Changes in RAD51 levels and/or polymerisation properties could influence guidance of the corticospinal axons during development. Our findings open up new perspectives to understand the role of RAD51 in neurodevelopment.
Collapse
Affiliation(s)
- Oriane Trouillard
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Margaux Dunoyer
- Hôpital Pitié-Salpêtrière, Département de Neurologie, AP-HP, Paris, France
| | - Mohamed Doulazmi
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Biological Adaptation and Ageing, B2A, Sorbonne Université, F-75005 Paris, France
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Audrey Riou
- Service de génétique clinique & Service de neurologie, CHU Rennes, Rennes, France
| | - Véronique Legros
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Guillaume Chevreux
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Xavier Veaute
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Didier Busso
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Coralie Fouquet
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Cécile Saint-Martin
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique Médicale, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| | - Alain Trembleau
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Isabelle Dusart
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Caroline Dubacq
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Emmanuel Roze
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| |
Collapse
|
9
|
Quattrone A, Latorre A, Magrinelli F, Mulroy E, Rajan R, Neo RJ, Quattrone A, Rothwell JC, Bhatia KP. A Reflection on Motor Overflow, Mirror Phenomena, Synkinesia and Entrainment. Mov Disord Clin Pract 2023; 10:1243-1252. [PMID: 37772299 PMCID: PMC10525069 DOI: 10.1002/mdc3.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/30/2023] Open
Abstract
In patients with movement disorders, voluntary movements can sometimes be accompanied by unintentional muscle contractions in other body regions. In this review, we discuss clinical and pathophysiological aspects of several motor phenomena including mirror movements, dystonic overflow, synkinesia, entrainment and mirror dystonia, focusing on their similarities and differences. These phenomena share some common clinical and pathophysiological features, which often leads to confusion in their definition. However, they differ in several aspects, such as the body part showing the undesired movement, the type of this movement (identical or not to the intentional movement), the underlying neurological condition, and the role of primary motor areas, descending pathways and inhibitory circuits involved, suggesting that these are distinct phenomena. We summarize the main features of these fascinating clinical signs aiming to improve the clinical recognition and standardize the terminology in research studies. We also suggest that the term "mirror dystonia" may be not appropriate to describe this peculiar phenomenon which may be closer to dystonic overflow rather than to the classical mirror movements.
Collapse
Affiliation(s)
- Andrea Quattrone
- Institute of NeurologyUniversity “Magna Graecia”CatanzaroItaly
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Roopa Rajan
- Department of NeurologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Ray Jen Neo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of NeurologyHospital Kuala LumpurKuala LumpurMalaysia
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
10
|
Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud JF, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. SCIENCE ADVANCES 2023; 9:eadd5501. [PMID: 37172092 PMCID: PMC10181192 DOI: 10.1126/sciadv.add5501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Nursen Balekoglu
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hugo Ducuing
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Shirin Makihara
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Daniel K. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Fadi F. Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
| | - Guy A. Rouleau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
- Department of Human Genetics, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC H4A 3J1, Canada
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
11
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|
12
|
Heide F, Koch M, Stetefeld J. Heparin Mimetics and Their Impact on Extracellular Matrix Protein Assemblies. Pharmaceuticals (Basel) 2023; 16:ph16030471. [PMID: 36986571 PMCID: PMC10059586 DOI: 10.3390/ph16030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Heparan sulfate is a crucial extracellular matrix component that organizes structural features and functional protein processes. This occurs through the formation of protein-heparan sulfate assemblies around cell surfaces, which allow for the deliberate local and temporal control of cellular signaling. As such, heparin-mimicking drugs can directly affect these processes by competing with naturally occurring heparan sulfate and heparin chains that then disturb protein assemblies and decrease regulatory capacities. The high number of heparan-sulfate-binding proteins that are present in the extracellular matrix can cause obscure pathological effects that should be considered and examined in more detail, especially when developing novel mimetics for clinical use. The objective of this article is to investigate recent studies that present heparan-sulfate-mediated protein assemblies and the impact of heparin mimetics on the assembly and function of these protein complexes.
Collapse
Affiliation(s)
- Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Manuel Koch
- Institute for Experimental Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
13
|
Thomas F, Gallea C, Moulier V, Bouaziz N, Valero-Cabré A, Januel D. Local Alterations of Left Arcuate Fasciculus and Transcallosal White Matter Microstructure in Schizophrenia Patients with Medication-resistant Auditory Verbal Hallucinations: A Pilot Study. Neuroscience 2022; 507:1-13. [PMID: 36370935 DOI: 10.1016/j.neuroscience.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Auditory verbal hallucinations (AVH) in schizophrenia (SZ) have been associated with abnormalities of the left arcuate fasciculus and transcallosal white matter projections linking homologous language areas of both hemispheres. While most studies have used a whole-tract approach, here we focused on analyzing local alterations of the above-mentioned pathways in SZ patients suffering medication-resistant AVH. Fractional anisotropy (FA) was estimated along the left arcuate fasciculus and interhemispheric projections of the rostral and caudal corpus callosum. Then, potential associations between white matter tracts and SZ symptoms were explored by correlating local site-by-site FA values and AVH severity estimated via the Auditory Hallucinations Rating Scale (AHRS). Compared to a sample of healthy controls, SZ patients displayed lower FA values in the rostral portion of the left arcuate fasciculus, near the frontal operculum, and in the left and right lateral regions of the rostral portion of the transcallosal pathways. In contrast, SZ patients showed higher FA values than healthy controls in the medial portion of the latter transcallosal pathway and in the midsagittal section of the interhemispheric auditory pathway. Finally, significant correlations were found between local FA values in the left arcuate fasciculus and the severity of the AVH's attentional salience. Contributing to the study of associations between local white matter alterations of language networks and SZ symptoms, our findings highlight local alterations of white matter integrity in these pathways linking language areas in SZ patients with AVH. We also hypothesize a link between the left arcuate fasciculus and the attentional capture of AVH.
Collapse
Affiliation(s)
- Fanny Thomas
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB, Institut du Cerveau, CNRS UMR 7225, INSERM UMRS 1127, France.
| | - Cécile Gallea
- Movement Investigations and Therapeutics, MOVIT, Institut du Cerveau, CNRS UMR 7225, INSERM UMRS 1127, France; Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Virginie Moulier
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France; Centre Hospitalier du Rouvray, University Department of Psychiatry, 76301 Sotteville-lès-Rouen, France
| | - Noomane Bouaziz
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB, Institut du Cerveau, CNRS UMR 7225, INSERM UMRS 1127, France; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 700 Albany Street, Boston, MA W-702A, USA; Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Dominique Januel
- Centre de Recherche Clinique, Établissement Public de Santé de Ville-Evrard, 202 avenue Jean Jaurès, 93330 Neuilly-sur-Marne, France; Université Sorbonne Paris Nord, Campus de Bobigny, 1 rue de Chablis, 93000 Bobigny
| |
Collapse
|
14
|
Identification, molecular characterization, and in silico structural analysis of larval salivary glands Netrin-A as a potent biomarker from Lucilia sericata (Diptera: Calliphoridae). Genetica 2022; 150:379-394. [PMID: 36136258 DOI: 10.1007/s10709-022-00164-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/04/2022]
Abstract
The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.
Collapse
|
15
|
Stoupa A, Kariyawasam D, Polak M, Carré A. Genetics of congenital hypothyroidism: Modern concepts. Pediatr Investig 2022; 6:123-134. [PMID: 35774517 PMCID: PMC9218988 DOI: 10.1002/ped4.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and one of the most common preventable causes of intellectual disability in the world. CH may be due to developmental or functional thyroid defects (primary or peripheral CH) or be hypothalamic-pituitary in origin (central CH). In most cases, primary CH is caused by a developmental malformation of the gland (thyroid dysgenesis, TD) or by a defect in thyroid hormones synthesis (dyshormonogenesis, DH). TD represents about 65% of CH and a genetic cause is currently identified in fewer than 5% of patients. The remaining 35% are cases of DH and are explained with certainty at the molecular level in more than 50% of cases. The etiology of CH is mostly unknown and may include contributions from individual and environmental factors. In recent years, the detailed phenotypic description of patients, high-throughput sequencing technologies, and the use of animal models have made it possible to discover new genes involved in the development or function of the thyroid gland. This paper reviews all the genetic causes of CH. The modes by which CH is transmitted will also be discussed, including a new oligogenic model. CH is no longer simply a dominant disease for cases of CH due to TD and recessive for cases of CH due to DH, but a far more complex disorder.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Dulanjalee Kariyawasam
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Michel Polak
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
- Université de Paris CitéParisFrance
| | - Aurore Carré
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
| |
Collapse
|
16
|
Stoupa A, Kariyawasam D, Polak M, Carré A. [Genetic of congenital hypothyroidism]. Med Sci (Paris) 2022; 38:263-273. [PMID: 35333163 DOI: 10.1051/medsci/2022028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). DH accounts for about 35% of CH and a genetic cause is identified in 50% of patients. However, TD accounts for about 65% of CH, and a genetic cause is identified in less than 5% of patients. The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development and function. We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Dulanjalee Kariyawasam
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Michel Polak
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France - Université de Paris, Paris, France
| | - Aurore Carré
- Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France
| |
Collapse
|
17
|
Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype. eNeuro 2022; 9:ENEURO.0216-18.2021. [PMID: 35115383 PMCID: PMC8906791 DOI: 10.1523/eneuro.0216-18.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in DCC have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic Dcc mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of Dcc heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the Dcc+/− motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult Dcc+/− mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated Dcc+/− spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although Dcc+/− mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.
Collapse
|
18
|
Lo PS, Rymar VV, Kennedy TE, Sadikot AF. The Netrin-1 Receptor DCC Promotes the Survival of a Subpopulation of Midbrain Dopaminergic Neurons: Relevance for Ageing and Parkinson's Disease. J Neurochem 2022; 161:254-265. [PMID: 35118677 PMCID: PMC9305203 DOI: 10.1111/jnc.15579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Mechanisms that determine the survival of midbrain dopaminergic (mDA) neurons in the adult central nervous system (CNS) are not fully understood. Netrins are a family of secreted proteins that are essential for normal neural development. In the mature CNS, mDA neurons express particularly high levels of netrin‐1 and its receptor Deleted in Colorectal Cancer (DCC). Recent findings indicate that overexpressing netrin‐1 protects mDA neurons in animal models of Parkinson’s disease (PD), with a proposed pro‐apoptotic dependence function for DCC that triggers cell death in the absence of a ligand. Here, we sought to determine if DCC expression influences mDA neuron survival in young adult and ageing mice. To circumvent the perinatal lethality of DCC null mice, we selectively deleted DCC from mDA neurons utilizing DATcre/loxP gene‐targeting and examined neuronal survival in adult and aged animals. Reduced numbers of mDA neurons were detected in the substantia nigra pars compacta (SNc) of young adult DATcre/DCCfl/fl mice, with further reduction in aged DATcre/DCCfl/fl animals. In contrast to young adults, aged mice also exhibited a gene dosage effect, with fewer SNc mDA neurons in DCC heterozygotes (DATcre/DCCfl/wt). Notably, loss of mDA neurons in the SN was not uniform. Neuronal loss in the SN was limited to ventral tier mDA neurons, while mDA neurons in the dorsal tier of the SN, which resist degeneration in PD, were spared from the effect of DCC deletion in both young and aged mice. In the ventral tegmental area (VTA), young adult mice with conditional deletion of DCC had normal mDA neuronal numbers, while significant loss occurred in aged DATcre/DCCfl/fl and DATcre/DCCfl/wt mice compared to age‐matched wild‐type mice. Our results indicate that expression of DCC is required for the survival of subpopulations of mDA neurons and may be relevant to the degenerative processes in PD.![]()
Collapse
Affiliation(s)
- Pik-Shan Lo
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada.,Cone Laboratory, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Vladimir V Rymar
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada.,Cone Laboratory, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada
| | - Abbas F Sadikot
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada.,Cone Laboratory, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Quinta HR. Locomotor recovery after spinal cord injury: intimate dependence between axonal regeneration and re-connection. Neural Regen Res 2022; 17:553-554. [PMID: 34380886 PMCID: PMC8504387 DOI: 10.4103/1673-5374.320977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hector Ramiro Quinta
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET; Laboratorio de Medicina Experimental "Dr. Jorge E. Toblli", Hospital Alemán, Buenos Aires, Argentina
| |
Collapse
|
20
|
Ahmed G, Shinmyo Y. Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain. Front Neuroanat 2021; 15:766911. [PMID: 34899198 PMCID: PMC8655782 DOI: 10.3389/fnana.2021.766911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Quintá HR. Intraspinal Administration of Netrin-1 Promotes Locomotor Recovery after Complete Spinal Cord Transection. J Neurotrauma 2021; 38:2084-2102. [PMID: 33599152 DOI: 10.1089/neu.2020.7571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Complete spinal cord lesions interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. In particular, the interruption of connections with the neurons at lumbar segments after thoracic injuries impairs voluntary body control below the injury. The failure of spontaneous regrowth of transected axons across the lesion prevents the reconnection and reinnervation of the neuronal targets. At present, the only treatment in humans that has proven to promote some degree of locomotor recovery is physical therapy. The success of these strategies, however, depends greatly on the type of lesion and the level of preservation of neural tissue in the spinal cord after injury. That is the reason it is key to design strategies to promote axonal regrowth and neuronal reconnection. Here, we test the use of a developmental axon guidance molecule as a biological agent to promote axonal regrowth, axonal reconnection, and recovery of locomotor activity after spinal cord injury (SCI). This molecule, netrin-1, guides the growth of the corticospinal tract (CST) during the development of the central nervous system. To assess the potential of this molecule, we used a model of complete spinal cord transection in rats, at thoracic level 10-11. We show that in situ delivery of netrin-1 at the epicenter of the lesion: (1) promotes regrowth of CST through the lesion and prevents CST dieback, (2) promotes synaptic reconnection of regenerated motor and sensory axons, and (3) preserves the polymerization of the neurofilaments in the sciatic nerve axons. These anatomical findings correlate with a significant recovery of locomotor function. Our work identifies netrin-1 as a biological agent with the capacity to promote the functional repair and recovery of locomotor function after SCI. These findings support the use of netrin-1 as a therapeutic intervention to be tested in humans.
Collapse
Affiliation(s)
- Héctor R Quintá
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Buenos Aires, Argentina
- Laboratorio de Medicina Experimental "Dr. Jorge E. Toblli," Hospital Alemán. CABA, Buenos Aires, Argentina
| |
Collapse
|
22
|
Moya-Torres A, Gupta M, Heide F, Krahn N, Legare S, Nikodemus D, Imhof T, Meier M, Koch M, Stetefeld J. Homogenous overexpression of the extracellular matrix protein Netrin-1 in a hollow fiber bioreactor. Appl Microbiol Biotechnol 2021; 105:6047-6057. [PMID: 34342709 PMCID: PMC8390410 DOI: 10.1007/s00253-021-11438-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
The production of recombinant proteins for functional and biophysical studies, especially in the field of structural determination, still represents a challenge as high quality and quantities are needed to adequately perform experiments. This is in part solved by optimizing protein constructs and expression conditions to maximize the yields in regular flask expression systems. Still, work flow and effort can be substantial with no guarantee to obtain improvements. This study presents a combination of workflows that can be used to dramatically increase protein production and improve processing results, specifically for the extracellular matrix protein Netrin-1. This proteoglycan is an axon guidance cue which interacts with various receptors to initiate downstream signaling cascades affecting cell differentiation, proliferation, metabolism, and survival. We were able to produce large glycoprotein quantities in mammalian cells, which were engineered for protein overexpression and secretion into the media using the controlled environment provided by a hollow fiber bioreactor. Close monitoring of the internal bioreactor conditions allowed for stable production over an extended period of time. In addition to this, Netrin-1 concentrations were monitored in expression media through biolayer interferometry which allowed us to increase Netrin-1 media concentrations tenfold over our current flask systems while preserving excellent protein quality and in solution behavior. Our particular combination of genetic engineering, cell culture system, protein purification, and biophysical characterization permitted us to establish an efficient and continuous production of high-quality protein suitable for structural biology studies that can be translated to various biological systems. KEY POINTS: • Hollow fiber bioreactor produces substantial yields of homogenous Netrin-1 • Biolayer interferometry allows target protein quantitation in expression media • High production yields in the bioreactor do not impair Netrin-1 proteoglycan quality.
Collapse
Affiliation(s)
- Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Monika Gupta
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Scott Legare
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Denise Nikodemus
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Center for Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
23
|
Nissenkorn A, Yosovich K, Leibovitz Z, Hartman TG, Zelcer I, Hugirat M, Lev D, Lerman-Sagie T, Blumkin L. Congenital Mirror Movements Associated With Brain Malformations. J Child Neurol 2021; 36:545-555. [PMID: 33413009 DOI: 10.1177/0883073820984068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Congenital mirror movements are involuntary movements of a side of the body imitating intentional movements on the opposite side, appearing in early childhood and persisting beyond 7 years of age. Congenital mirror movements are usually idiopathic but have been reported in association with various brain malformations. METHODS We describe clinical, genetic, and radiologic features in 9 individuals from 5 families manifesting congenital mirror movements. RESULTS The brain malformations associated with congenital mirror movements were: dysplastic corpus callosum in father and daughter with a heterozygous p.Met1* mutation in DCC; hypoplastic corpus callosum, dysgyria, and malformed vermis in a mother and son with a heterozygous p.Thr312Met mutation in TUBB3; dysplastic corpus callosum, dysgyria, abnormal vermis, and asymmetric ventricles in a father and 2 daughters with a heterozygous p.Arg121Trp mutation in TUBB; hypoplastic corpus callosum, dysgyria, malformed basal ganglia and abnormal vermis in a patient with a heterozygous p.Glu155Asp mutation in TUBA1A; hydrocephalus, hypoplastic corpus callosum, polymicrogyria, and cerebellar cysts in a patient with a homozygous p.Pro312Leu mutation in POMGNT1. CONCLUSION DCC, TUBB3, TUBB, TUBA1A, POMGNT1 cause abnormal axonal guidance via different mechanisms and result in congenital mirror movements associated with brain malformations.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Yosovich
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Molecular Genetics Laboratory, 58883Wolfson Medical Center, Holon, Israel
| | - Zvi Leibovitz
- Fetal Neurology Clinic, 58883Wolfson Medical Center, Holon, Israel
| | - Tamar Gur Hartman
- Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Movement Disorders Service, 58883Wolfson Medical Center, Holon, Israel
| | - Itay Zelcer
- Pediatric Neurology Unit, 61172HaEmek Medical Center, Afula, Israel
| | - Mohammad Hugirat
- Pediatric Neurology Unit, 61172HaEmek Medical Center, Afula, Israel
| | - Dorit Lev
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Rina Mor Institute of Medical Genetics, 58883Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Fetal Neurology Clinic, 58883Wolfson Medical Center, Holon, Israel
| | - Lubov Blumkin
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Movement Disorders Service, 58883Wolfson Medical Center, Holon, Israel
| |
Collapse
|
24
|
Stoupa A, Kariyawasam D, Muzza M, de Filippis T, Fugazzola L, Polak M, Persani L, Carré A. New genetics in congenital hypothyroidism. Endocrine 2021; 71:696-705. [PMID: 33650047 DOI: 10.1007/s12020-021-02646-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder and one of the most common preventable forms of mental retardation worldwide. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). TD accounts for about 65% of CH, however a genetic cause is identified in less than 5% of patients. PURPOSE The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development, function and pathways. RESULTS AND CONCLUSION We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| | - Marina Muzza
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
| | - Tiziana de Filippis
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
| | - Laura Fugazzola
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20100, Milan, Italy
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Luca Persani
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, 20100, Milan, Italy
| | - Aurore Carré
- IMAGINE Institute affiliate, INSERM U1163, Paris, France.
- Cochin Institute, INSERM U1016, Paris, France.
| |
Collapse
|
25
|
Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison? Biomolecules 2021; 11:biom11020191. [PMID: 33573025 PMCID: PMC7911486 DOI: 10.3390/biom11020191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023] Open
Abstract
Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.
Collapse
|
26
|
Yamagishi S, Bando Y, Sato K. Involvement of Netrins and Their Receptors in Neuronal Migration in the Cerebral Cortex. Front Cell Dev Biol 2021; 8:590009. [PMID: 33520982 PMCID: PMC7843923 DOI: 10.3389/fcell.2020.590009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
In mammals, excitatory cortical neurons develop from the proliferative epithelium and progenitor cells in the ventricular zone and subventricular zone, and migrate radially to the cortical plate, whereas inhibitory GABAergic interneurons are born in the ganglionic eminence and migrate tangentially. The migration of newly born cortical neurons is tightly regulated by both extracellular and intracellular signaling to ensure proper positioning and projections. Non-cell-autonomous extracellular molecules, such as growth factors, axon guidance molecules, extracellular matrix, and other ligands, play a role in cortical migration, either by acting as attractants or repellents. In this article, we review the guidance molecules that act as cell-cell recognition molecules for the regulation of neuronal migration, with a focus on netrin family proteins, their receptors, and related molecules, including neogenin, repulsive guidance molecules (RGMs), Down syndrome cell adhesion molecule (DSCAM), fibronectin leucine-rich repeat transmembrane proteins (FLRTs), and draxin. Netrin proteins induce attractive and repulsive signals depending on their receptors. For example, binding of netrin-1 to deleted in colorectal cancer (DCC), possibly together with Unc5, repels migrating GABAergic neurons from the ventricular zone of the ganglionic eminence, whereas binding to α3β1 integrin promotes cortical interneuron migration. Human genetic disorders associated with these and related guidance molecules, such as congenital mirror movements, schizophrenia, and bipolar disorder, are also discussed.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Bando
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
27
|
Jahan I, Kersigo J, Elliott KL, Fritzsch B. Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. Cell Tissue Res 2021; 384:59-72. [PMID: 33409653 DOI: 10.1007/s00441-020-03352-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
The trochlear projection is unique among the cranial nerves in that it exits the midbrain dorsally to innervate the contralateral superior oblique muscle in all vertebrates. Trochlear as well as oculomotor motoneurons uniquely depend upon Phox2a and Wnt1, both of which are downstream of Lmx1b, though why trochlear motoneurons display such unusual projections is not fully known. We used Pax2-cre to drive expression of ectopically activated Smoothened (SmoM2) dorsally in the midbrain and anterior hindbrain. We documented the expansion of oculomotor and trochlear motoneurons using Phox2a as a specific marker at E9.5. We show that the initial expansion follows a demise of these neurons by E14.5. Furthermore, SmoM2 expression leads to a ventral exit and ipsilateral projection of trochlear motoneurons. We compare that data with Unc5c mutants that shows a variable ipsilateral number of trochlear fibers that exit dorsal. Our data suggest that Shh signaling is involved in trochlear motoneuron projections and that the deflected trochlear projections after SmoM2 expression is likely due to the dorsal expression of Gli1, which impedes the normal dorsal trajectory of these neurons.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennifer Kersigo
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA. .,Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
28
|
Loss of floor plate Netrin-1 impairs midline crossing of corticospinal axons and leads to mirror movements. Cell Rep 2021; 34:108654. [PMID: 33472083 DOI: 10.1016/j.celrep.2020.108654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
In humans, execution of unimanual movements requires lateralized activation of the primary motor cortex, which then transmits the motor command to the contralateral hand through the crossed corticospinal tract (CST). Mutations in NTN1 alter motor control lateralization, leading to congenital mirror movements. To address the role of midline Netrin-1 on CST development and subsequent motor control, we analyze the morphological and functional consequences of floor plate Netrin-1 depletion in conditional knockout mice. We show that depletion of floor plate Netrin-1 in the brainstem critically disrupts CST midline crossing, whereas the other commissural systems are preserved. The only associated defect is an abnormal entry of CST axons within the inferior olive. Alteration of CST midline crossing results in functional ipsilateral projections and is associated with abnormal symmetric movements. Our study reveals the role of Netrin-1 in CST development and describes a mouse model recapitulating the characteristics of human congenital mirror movements.
Collapse
|
29
|
Thams S, Islam M, Lindefeldt M, Nordgren A, Granberg T, Tesi B, Barbany G, Nilsson D, Paucar M. Heterozygous variants in DCC: Beyond congenital mirror movements. NEUROLOGY-GENETICS 2020; 6:e526. [PMID: 33209984 PMCID: PMC7670573 DOI: 10.1212/nxg.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
Objective To perform a comprehensive characterization of a cohort of patients with congenital mirror movements (CMMs) in Sweden. Methods Clinical examination with the Woods and Teuber scale for mirror movements (MMs), neuroimaging, navigated transcranial magnetic stimulation (nTMS), and massive parallel sequencing (MPS) were applied. Results The cohort is ethnically diverse and includes a total of 7 patients distributed in 2 families and 2 sporadic cases. The degree of MMs was variable in this cohort. MPS revealed 2 novel heterozygous frameshift variants in DCC netrin 1 receptor (DCC). Two siblings harboring the pathogenic variant in c.1466_1476del display a complex syndrome featuring MMs and in 1 case receptive-expressive language disorder, chorea, epilepsy, and agenesis of the corpus callosum. The second DCC variant, c.1729delG, was associated with a typical benign CMM phenotype. No variants in DCC, NTN1, RAD51, or DNAL4 were found for the 2 sporadic CMM cases. However, one of these sporadic cases had concomitant high-risk myelodysplastic syndrome and a homozygous variant in ERCC excision repair like 2 (ERCC6L2). Reorganized corticospinal projection patterns to upper extremities were demonstrated with nTMS. Conclusions The presence of chorea expands the clinical spectrum of syndromes associated with variants in DCC. Biallelic pathogenic variants in ERCC6L2 cause bone marrow failure, but a potential association with CMM remains to be studied in larger cohorts.
Collapse
Affiliation(s)
- Sebastian Thams
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Mominul Islam
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Marie Lindefeldt
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Franz EA. Characterizing the phenotypes of congenital mirror movements and other rare genetic disorders. Dev Med Child Neurol 2020; 62:669. [PMID: 32157690 DOI: 10.1111/dmcn.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
|
31
|
The pan-cancer landscape of netrin family reveals potential oncogenic biomarkers. Sci Rep 2020; 10:5224. [PMID: 32251318 PMCID: PMC7090012 DOI: 10.1038/s41598-020-62117-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 03/09/2020] [Indexed: 02/02/2023] Open
Abstract
Recent cancer studies have found that the netrin family of proteins plays vital roles in the development of some cancers. However, the functions of the many variants of these proteins in cancer remain incompletely understood. In this work, we used the most comprehensive database available, including more than 10000 samples across more than 30 tumor types, to analyze the six members of the netrin family. We performed comprehensive analysis of genetic change and expression of the netrin genes and analyzed epigenetic and pathway relationships, as well as the correlation of expression of these proteins with drug sensitivity. Although the mutation rate of the netrin family is low in pan-cancer, among the tumor patients with netrin mutations, the highest number are Uterine Corpus Endometrial Carcinoma patients, accounting for 13.6% of cases (54 of 397). Interestingly, the highest mutation rate of a netrin family member is 38% for NTNG1 (152 of 397). Netrin proteins may participate in the development of endocrine-related tumors and sex hormone-targeting organ tumors. Additionally, the participation of NTNG1 and NTNG2 in various cancers shows their potential for use as new tumor markers and therapeutic targets. This analysis provides a broad molecular perspective of this protein family and suggests some new directions for the treatment of cancer.
Collapse
|
32
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
33
|
Aizawa S, Okada T, Keino-Masu K, Doan TH, Koganezawa T, Akiyama M, Tamaoka A, Masu M. Abnormal Pyramidal Decussation and Bilateral Projection of the Corticospinal Tract Axons in Mice Lacking the Heparan Sulfate Endosulfatases, Sulf1 and Sulf2. Front Mol Neurosci 2020; 12:333. [PMID: 32038163 PMCID: PMC6985096 DOI: 10.3389/fnmol.2019.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
The corticospinal tract (CST) plays an important role in controlling voluntary movement. Because the CST has a long trajectory throughout the brain toward the spinal cord, many axon guidance molecules are required to navigate the axons correctly during development. Previously, we found that double-knockout (DKO) mouse embryos lacking the heparan sulfate endosulfatases, Sulf1 and Sulf2, showed axon guidance defects of the CST owing to the abnormal accumulation of Slit2 protein on the brain surface. However, postnatal development of the CST, especially the pyramidal decussation and spinal cord projection, could not be assessed because DKO mice on a C57BL/6 background died soon after birth. We recently found that Sulf1/2 DKO mice on a mixed C57BL/6 and CD-1/ICR background can survive into adulthood and therefore investigated the anatomy and function of the CST in the adult DKO mice. In Sulf1/2 DKO mice, abnormal dorsal deviation of the CST fibers on the midbrain surface persisted after maturation of the CST. At the pyramidal decussation, some CST fibers located near the midline crossed the midline, whereas others located more laterally extended ipsilaterally. In the spinal cord, the crossed CST fibers descended in the dorsal funiculus on the contralateral side and entered the contralateral gray matter normally, whereas the uncrossed fibers descended in the lateral funiculus on the ipsilateral side and entered the ipsilateral gray matter. As a result, the CST fibers that originated from 1 side of the brain projected bilaterally in the DKO spinal cord. Consistently, microstimulation of 1 side of the motor cortex evoked electromyogram responses only in the contralateral forelimb muscles of the wild-type mice, whereas the same stimulation evoked bilateral responses in the DKO mice. The functional consequences of the CST defects in the Sulf1/2 DKO mice were examined using the grid-walking, staircase, and single pellet-reaching tests, which have been used to evaluate motor function in mice. Compared with the wild-type mice, the Sulf1/2 DKO mice showed impaired performance in these tests, indicating deficits in motor function. These findings suggest that disruption of Sulf1/2 genes leads to both anatomical and functional defects of the CST.
Collapse
Affiliation(s)
- Satoshi Aizawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takuya Okada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Keino-Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tri Huu Doan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadachika Koganezawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Tamaoka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
34
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
35
|
Accogli A, Calabretta S, St-Onge J, Boudrahem-Addour N, Dionne-Laporte A, Joset P, Azzarello-Burri S, Rauch A, Krier J, Fieg E, Pallais JC, McConkie-Rosell A, McDonald M, Freedman SF, Rivière JB, Lafond-Lapalme J, Simpson BN, Hopkin RJ, Trimouille A, Van-Gils J, Begtrup A, McWalter K, Delphine H, Keren B, Genevieve D, Argilli E, Sherr EH, Severino M, Rouleau GA, Yam PT, Charron F, Srour M. De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Collosum, Axon, Cardiac, Ocular, and Genital Defects. Am J Hum Genet 2019; 105:854-868. [PMID: 31585109 DOI: 10.1016/j.ajhg.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).
Collapse
Affiliation(s)
- Andrea Accogli
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Dipartimento di Neuroscienze, Reabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, 16132 Genova Italy
| | - Sara Calabretta
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Judith St-Onge
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | | | | | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | | | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Joël Lafond-Lapalme
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Aurélien Trimouille
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | - Julien Van-Gils
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | | | | | - Heron Delphine
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - David Genevieve
- Département de Genetique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement, Université Montpellier, Unité Inserm U1183, Centre Hospitalier Universitaire Montpellier, 34000 Montpellier, France
| | - Emanuela Argilli
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Mariasavina Severino
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada; Department of Medicine, University of Montreal, H3C 3J7, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, H4A 3J1, Montreal, QC, Canada.
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada.
| |
Collapse
|
36
|
Comer JD, Alvarez S, Butler SJ, Kaltschmidt JA. Commissural axon guidance in the developing spinal cord: from Cajal to the present day. Neural Dev 2019; 14:9. [PMID: 31514748 PMCID: PMC6739980 DOI: 10.1186/s13064-019-0133-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
During neuronal development, the formation of neural circuits requires developing axons to traverse a diverse cellular and molecular environment to establish synaptic contacts with the appropriate postsynaptic partners. Essential to this process is the ability of developing axons to navigate guidance molecules presented by specialized populations of cells. These cells partition the distance traveled by growing axons into shorter intervals by serving as intermediate targets, orchestrating the arrival and departure of axons by providing attractive and repulsive guidance cues. The floor plate in the central nervous system (CNS) is a critical intermediate target during neuronal development, required for the extension of commissural axons across the ventral midline. In this review, we begin by giving a historical overview of the ventral commissure and the evolutionary purpose of decussation. We then review the axon guidance studies that have revealed a diverse assortment of midline guidance cues, as well as genetic and molecular regulatory mechanisms required for coordinating the commissural axon response to these cues. Finally, we examine the contribution of dysfunctional axon guidance to neurological diseases.
Collapse
Affiliation(s)
- J D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - S Alvarez
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - S J Butler
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - J A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
37
|
Quintá HR, Barrantes FJ. Damage and repair of the axolemmal membrane: From neural development to axonal trauma and restoration. CURRENT TOPICS IN MEMBRANES 2019; 84:169-185. [DOI: 10.1016/bs.ctm.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Bierhals T, Korenke GC, Baethmann M, Marín LL, Staudt M, Kutsche K. Novel DCC variants in congenital mirror movements and evaluation of disease-associated missense variants. Eur J Med Genet 2018; 61:329-334. [DOI: 10.1016/j.ejmg.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022]
|
39
|
Reply to “Movement-related neural processing in people with congenital mirror movements beyond the (cortical) surface”. Clin Neurophysiol 2018; 129:709-710. [DOI: 10.1016/j.clinph.2017.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022]
|
40
|
Marsh APL, Edwards TJ, Galea C, Cooper HM, Engle EC, Jamuar SS, Méneret A, Moutard ML, Nava C, Rastetter A, Robinson G, Rouleau G, Roze E, Spencer-Smith M, Trouillard O, Billette de Villemeur T, Walsh CA, Yu TW, Heron D, Sherr EH, Richards LJ, Depienne C, Leventer RJ, Lockhart PJ. DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 2017; 39:23-39. [PMID: 29068161 DOI: 10.1002/humu.23361] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).
Collapse
Affiliation(s)
- Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Australia
| | - Charles Galea
- Drug Delivery, Disposition and Dynamics (D4), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Elizabeth C Engle
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
| | - Saumya S Jamuar
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Paediatrics, KK Women's and Children's Hospital, Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Aurélie Méneret
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Moutard
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de référence "Neurogénétique", Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Rastetter
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Gail Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University Health Center, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Emmanuel Roze
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Megan Spencer-Smith
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Oriane Trouillard
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,INSERM U1141, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | - Delphine Heron
- UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elliott H Sherr
- Department of Neurology, UCSF Benioff Children's Hospital, San Francisco, California
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, Australia
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|