1
|
Cheng X, Shao P, Wang X, Jiang J, Chen J, Zhu J, Zhu W, Li Y, Zhang J, Chen J, Huang Z. Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411711. [PMID: 39739231 DOI: 10.1002/advs.202411711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 01/02/2025]
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models. Depletion of MDSCs significantly reduces fibrosis, highlighting their key role in the fibrotic process. Mechanistically, MDSC-derived mCCL6 activates fibroblasts via the CCR1-MAPK signaling, and interventions targeting this axis, including neutralizing antibodies, a CCR1 antagonist, or fibroblast-specific Ccr1 knockout mice reduce fibrosis. In CD patients with stenosis, human CCL15, analogous to mCCL6, is found to be elevated in MDSCs and activated fibroblasts. Additionally, CXCR2 and CCR2 ligands are identified as key mediators of MDSC recruitment in intestinal fibrosis. Blocking MDSC recruitment with CXCR2 and CCR2 antagonists alleviates intestinal fibrosis. These findings suggest that strategies targeting MDSC recruitment and mCCL6/hCCL15 signaling could offer therapeutic benefits for intestinal fibrosis.
Collapse
Affiliation(s)
- Xiaohui Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Pingwen Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - XinTong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiahui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- NJU Xishan Institute of Applied Biotechnology, Xishan District, Wuxi, Jiangsu, 214101, China
| |
Collapse
|
2
|
Sigalov AB. TREM-1 and TREM-2 as therapeutic targets: clinical challenges and perspectives. Front Immunol 2024; 15:1498993. [PMID: 39737196 PMCID: PMC11682994 DOI: 10.3389/fimmu.2024.1498993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
TREM-1 and TREM-2 as Therapeutic Targets: Clinical Challenges and Perspectives.
Collapse
|
3
|
Zhu S, Chen X, Sun L, Li X, Chen Y, Li L, Suo X, Xu C, Ji M, Wang J, Wang H, Zhang L, Meng X, Huang C, Li J. N6-Methyladenosine modification of circDcbld2 in Kupffer cells promotes hepatic fibrosis via targeting miR-144-3p/Et-1 axis. Acta Pharm Sin B 2024. [DOI: 10.1016/j.apsb.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Xu L, Yang J, Cao X, Chen J, Liu Z, Cai L, Yu Y, Huang H. Sequential system based on ferritin delivery system and cell therapy for modulating the pathological microenvironment and promoting recovery. Int J Pharm 2024; 664:124607. [PMID: 39159856 DOI: 10.1016/j.ijpharm.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The vicious crosstalk among capillarization of hepatic sinusoidal endothelial cells (LSECs), activation of hepatic stellate cells (aHSCs), and hepatocyte damage poses a significant impediment to the successful treatment of liver fibrosis. In this study, we propose a sequential combination therapy aimed at disrupting the malignant crosstalk and reshaping the benign microenvironment while repairing damaged hepatocytes to achieve effective treatment of liver fibrosis. Firstly, H-subunit apoferrin (Ferritin) was adopted to load platycodonin D (PLD) and MnO2, forming ferritin@MnO2/PLD (FMP) nanoparticles, which exploited the high affinity of ferritin for the highly expressed transferrin receptor 1 (TfR1) to achieve the precise targeted delivery of FMP in the liver. Upon PLD intervention, restoration of the fenestration pores in capillarized LSECs was facilitated by modulating the phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT) and Kruppel Like Factor 2 (KLF2) signaling pathways both in vitro and in vivo, enabling efficient entry of FMP into the Disse space. Subsequently, FMP NPs effectively inhibited HSC activation by modulating the TLR2/TLR4/NF-κB-p65 signaling pathway. Moreover, FMP NPs efficiently scavenged reactive oxygen species (ROS) and mitigated the expression of inflammatory mediators, thereby reshaping the microenvironment to support hepatocyte repair. Finally, administration of bone marrow mesenchymal stem cells (BMMSCs) was employed to promote the regeneration and functional recovery of damaged hepatocytes. In conclusion, the combined sequential therapy involving FMP and BMMSCs effectively attenuated liver fibrosis induced by CCl4 administration, resulting in significant amelioration of the fibrotic condition. The therapeutic strategy outlined in this study underscores the significance of disrupting the deleterious cellular interactions and remodeling the microenvironment, thereby presenting a promising avenue for clinical intervention in liver fibrosis.
Collapse
Affiliation(s)
- Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie Yang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Haimen People's Hospital, Nantong 226100, China
| | - Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiayi Chen
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Liangliang Cai
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong 226001, China.
| | - Yanyan Yu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Vinolo E, Maillefer M, Jolly L, Colné N, Meiffren G, Carrasco K, Derive M. The potential of targeting TREM-1 in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:301-330. [PMID: 39521605 DOI: 10.1016/bs.apha.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Innate immune dysfunction is a hallmark of the pathogenesis of Inflammatory Bowel Disease, both in Crohn's disease and ulcerative colitis. Despite considerable efforts in research to better understand the pathophysiology of IBD and for the development of new therapeutic modalities for IBD patients, there is no therapy specifically targeting the dysregulations of the innate immune response available today in that field. TREM-1 is exclusively expressed by innate immune cells and is an immune amplifier. Its engagement following the primary activation of Pattern Recognition Receptors, including Toll-Like Receptors, triggers the development of a dysregulated and sustained innate immune response, promoting the perpetuation of the inflammatory response in the mucosa of IBD patients, microscopic mucosal tissue alterations, impaired autophagy, impaired epithelial barrier integrity and function, ulcerations, and mucosal damages. In patients, TREM-1 activation is associated with the active status of the disease as well as with severity. Blocking TREM-1 in experimental colitis attenuates the dysregulated innate immune response leading to improved clinical signs. Anti-TREM-1 approaches have the potential of controlling the pathogenic dysregulation of the immune response in IBD by targeting an upstream amplification loop of the activation of innate immunity.
Collapse
|
6
|
Yan T, Yan N, Xia Y, Sawaswong V, Zhu X, Dias HB, Aibara D, Takahashi S, Hamada K, Saito Y, Li G, Liu H, Yan H, Velenosi TJ, Krausz KW, Huang J, Kimura S, Rotman Y, Qu A, Hao H, Gonzalez FJ. Hepatocyte-specific CCAAT/enhancer binding protein α restricts liver fibrosis progression. J Clin Invest 2024; 134:e166731. [PMID: 38557493 PMCID: PMC10977981 DOI: 10.1172/jci166731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Tingting Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Nana Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Yangliu Xia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vorthon Sawaswong
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Henrique Bregolin Dias
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daisuke Aibara
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keisuke Hamada
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshifumi Saito
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Hui Liu
- Department of Pathology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Thomas J. Velenosi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristopher W. Krausz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Frank J. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Giraud J, Chalopin D, Ramel E, Boyer T, Zouine A, Derieppe MA, Larmonier N, Adotevi O, Le Bail B, Blanc JF, Laurent C, Chiche L, Derive M, Nikolski M, Saleh M. THBS1 + myeloid cells expand in SLD hepatocellular carcinoma and contribute to immunosuppression and unfavorable prognosis through TREM1. Cell Rep 2024; 43:113773. [PMID: 38350444 DOI: 10.1016/j.celrep.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an inflammation-associated cancer arising from viral or non-viral etiologies including steatotic liver diseases (SLDs). Expansion of immunosuppressive myeloid cells is a hallmark of inflammation and cancer, but their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. Here, we present a high-resolution atlas of innate immune cells from patients with HCC that unravels an SLD-associated contexture characterized by influx of inflammatory and immunosuppressive myeloid cells, including a discrete population of THBS1+ regulatory myeloid (Mreg) cells expressing monocyte- and neutrophil-affiliated genes. THBS1+ Mreg cells expand in SLD-associated HCC, populate fibrotic lesions, and are associated with poor prognosis. THBS1+ Mreg cells are CD163+ but distinguished from macrophages by high expression of triggering receptor expressed on myeloid cells 1 (TREM1), which contributes to their immunosuppressive activity and promotes HCC tumor growth in vivo. Our data support myeloid subset-targeted immunotherapies to treat HCC.
Collapse
Affiliation(s)
- Julie Giraud
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Domitille Chalopin
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Eloïse Ramel
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Thomas Boyer
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Atika Zouine
- Bordeaux University, CNRS UMS3427, INSERM US05, Flow Cytometry Facility, TransBioMed Core, 33000 Bordeaux, France
| | | | - Nicolas Larmonier
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Olivier Adotevi
- Université Bourgogne Franche-Comté, INSERM, UMR1098, 25000 Besançon, France
| | - Brigitte Le Bail
- Bordeaux University Hospital, Division of Pathology, Pellegrin Hospital, 33000 Bordeaux, France
| | - Jean-Frédéric Blanc
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Christophe Laurent
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Laurence Chiche
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | | | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Maya Saleh
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; Institut National de la Recherche Scientifique (INRS), Armand Frappier Health & Biotechnology (AFSB) Research Center, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
8
|
Ding F, Liu Y, Li J, Wei X, Zhao J, Liu X, Zhang L. TC14012 enhances the anti-fibrosis effects of UC-MSCs on the liver by reducing collagen accumulation and ameliorating inflammation. Stem Cell Res Ther 2024; 15:44. [PMID: 38360740 PMCID: PMC10870604 DOI: 10.1186/s13287-024-03648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are attracting attention as a promising cell-based therapy for the treatment of liver fibrosis or cirrhosis. However, the strategies and potential mechanisms of MSCs therapy need further investigation. The CXCL12/CXCR4/CXCR7 chemokine axis is well known to regulate cell migration and is involved in the regulation of liver fibrosis. This study aims to treat MSCs with a CXCR7-specific agonist to evaluate its therapeutic effects on hepatic fibrosis and potential mechanisms. METHODS TC14012, a potent agonist of CXCR7, has been used to pretreat human umbilical cord-derived MSCs (UC-MSCs) and assess its effect on proliferation, apoptosis, migration, immunoregulation, and gene regulatory network. Then, CCl4-induced liver fibrosis mice models were used to evaluate the therapeutic effect and mechanism of TC14012-treated UC-MSCs for treating hepatic fibrosis. RESULTS TC14012 increased CXCR7 expression in UC-MSCs. Notably, co-culture of liver sinusoidal endothelial cells (LSEC) with TC14012-pretreated UC-MSCs increased CXCR7 expression in LSEC. Additionally, TC14012 promoted cell migration and mediated the immunoregulation of UC-MSCs. Compared to UC-MSCs without TC14012 pretreatment, UC-MSCs treated with TC14012 ameliorated live fibrosis by restoring CXCR7 expression, reducing collagen fibril accumulation, inhibiting hepatic stellate cells activation, and attenuating the inflammatory response. CONCLUSION This study suggests that TC14012 pretreatment can enhance the therapeutic effects of UC-MSCs on liver fibrosis, mainly by promoting the migration and immunoregulation of MSCs.
Collapse
Affiliation(s)
- Fan Ding
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuting Liu
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jia Li
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiao Wei
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiangdong Zhao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xiaojing Liu
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Liqiang Zhang
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
9
|
Duan B, Liu Y, Li X, Han M, Yu H, Hong H, Zhang L, Xing L, Jiang H. An Autologous Macrophage-Based Phenotypic Transformation-Collagen Degradation System Treating Advanced Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306899. [PMID: 38064164 PMCID: PMC10870050 DOI: 10.1002/advs.202306899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/24/2023] [Indexed: 02/17/2024]
Abstract
In advanced liver fibrosis (LF), macrophages maintain the inflammatory environment in the liver and accelerate LF deterioration by secreting proinflammatory cytokines. However, there is still no effective strategy to regulate macrophages because of the difficulty and complexity of macrophage inflammatory phenotypic modulation and the insufficient therapeutic efficacy caused by the extracellular matrix (ECM) barrier. Here, AC73 and siUSP1 dual drug-loaded lipid nanoparticle is designed to carry milk fat globule epidermal growth factor 8 (MFG-E8) (named MUA/Y) to effectively inhibit macrophage proinflammatory signals and degrade the ECM barrier. MFG-E8 is released in response to the high reactive oxygen species (ROS) environment in LF, transforming macrophages from a proinflammatory (M1) to an anti-inflammatory (M2) phenotype and inducing macrophages to phagocytose collagen. Collagen ablation increases AC73 and siUSP1 accumulation in hepatic stellate cells (HSCs) and inhibits HSCs overactivation. Interestingly, complete resolution of liver inflammation, significant collagen degradation, and HSCs deactivation are observed in methionine choline deficiency (MCD) and CCl4 models after tail vein injection of MUA/Y. Overall, this work reveals a macrophage-focused regulatory treatment strategy to eliminate LF progression at the source, providing a new perspective for the clinical treatment of advanced LF.
Collapse
Affiliation(s)
- Bo‐Wen Duan
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Yan‐Jun Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Xue‐Na Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Meng‐Meng Han
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Hao‐Yuan Yu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - He‐Yuan Hong
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Ling‐Feng Zhang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Lei Xing
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Hu‐Lin Jiang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Druggability of BiopharmaceuticalsChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesChina Pharmaceutical UniversityNanjing210009China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and ExcipientsChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
10
|
Qi D, Lu M, Xu P, Yao X, Chen Y, Gan L, Li Y, Cui Y, Tong X, Liu S, Zhao J, Liu N, Ye X. Transcription factor ETV4 promotes the development of hepatocellular carcinoma by driving hepatic TNF-α signaling. Cancer Commun (Lond) 2023; 43:1354-1372. [PMID: 37670477 PMCID: PMC10693303 DOI: 10.1002/cac2.12482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Hepatic inflammation is the major risk factor of hepatocellular carcinoma (HCC). However, the underlying mechanism by which hepatic inflammation progresses to HCC is poorly understood. This study was designed to investigate the role of ETS translocation variant 4 (ETV4) in linking hepatic inflammation to HCC. METHODS Quantitative real-time PCR and immunoblotting were used to detect the expression of ETV4 in HCC tissues and cell lines. RNA sequencing and luciferase reporter assays were performed to identify the target genes of ETV4. Hepatocyte-specific ETV4-knockout (ETV4fl/fl, alb-cre ) and transgenic (ETV4Hep-TG ) mice and diethylnitrosamine-carbon tetrachloride (DEN-CCL4 ) treatment experiments were applied to investigate the function of ETV4 in vivo. The Cancer Genome Atlas (TCGA) database mining and pathological analysis were carried out to determine the correlation of ETV4 with tumor necrosis factor-alpha (TNF-α) and mitogen-activated protein kinase 11 (MAPK11). RESULTS We revealed that ETV4 was highly expressed in HCC. High levels of ETV4 predicted a poor survival rate of HCC patients. Then we identified ETV4 as a transcription activator of TNF-α and MAPK11. ETV4 was positively correlated with TNF-α and MAPK11 in HCC patients. As expected, an increase in hepatic TNF-α secretion and macrophage accumulation were observed in the livers of ETV4Hep-TG mice. The protein levels of TNF-α, MAPK11, and CD68 were significantly higher in the livers of ETV4Hep-TG mice compared with wild type mice but lower in ETV4fl/fl, alb-cre mice compared with ETV4fl/fl mice as treated with DEN-CCL4 , indicating that ETV4 functioned as a driver of TNF-α/MAPK11 expression and macrophage accumulation during hepatic inflammation. Hepatocyte-specific knockout of ETV4 significantly prevented development of DEN-CCL4 -induced HCC, while transgenic expression of ETV4 promoted growth of HCC. CONCLUSIONS ETV4 promoted hepatic inflammation and HCC by activating transcription of TNF-α and MAPK11. Both the ETV4/TNF-α and ETV4/MAPK11 axes represented two potential therapeutic targets for highly associated hepatic inflammation and HCC. ETV4+TNF-α were potential prognostic markers for HCC patients.
Collapse
Affiliation(s)
- Dandan Qi
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Min Lu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Pengfei Xu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Xinli Yao
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yongchen Chen
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Lipeng Gan
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yong Li
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yahua Cui
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Xiaomei Tong
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Shuhong Liu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Jingmin Zhao
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Ningning Liu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
11
|
Manfredi GF, Celsa C, John C, Jones C, Acuti N, Scheiner B, Fulgenzi CAM, Korolewicz J, Pinter M, Gennari A, Mauri FA, Pirisi M, Minisini R, Vincenzi F, Burlone M, Rigamonti C, Donadon M, Cabibbo G, D’Alessio A, Pinato DJ. Mechanisms of Resistance to Immunotherapy in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1955-1971. [PMID: 37941812 PMCID: PMC10629523 DOI: 10.2147/jhc.s291553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Systemic treatment for advanced hepatocellular carcinoma (HCC) has been revolutionized over the last few years following the approval of immune checkpoint inhibitors (ICI). Despite the promising survival extension seen with ICI combination regimens, responses are not universally seen and the optimal partner for programmed cell death 1 pathway inhibitors remains to be identified. Even fewer encouraging results have been demonstrated with ICI used for monotherapy. Several mechanisms of resistance have been described so far, involving characteristics of cancer cells (intrinsic mechanisms) and of the surrounding tumor microenvironment (extrinsic mechanisms). Factors related to therapy may also contribute to the development of resistance. Increasing research efforts are being dedicated to the discovery of novel approaches and targets to overcome resistance, some of which may be introduced into clinic in the future. Herein we describe a selection of resistance mechanisms that have been involved in impairing response to ICI and propose potential therapeutic approaches to overcome resistance.
Collapse
Affiliation(s)
- Giulia Francesca Manfredi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Ciro Celsa
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Section of Gastroenterology & Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
- Department of Surgical, Oncological and Oral Sciences (Di.chir.on.s.), University of Palermo, Palermo, Italy
| | - Chloe John
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Charlotte Jones
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicole Acuti
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Angela Maria Fulgenzi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - James Korolewicz
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco A Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Mario Pirisi
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Michela Burlone
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Matteo Donadon
- Department of Health Science, Università Del Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Giuseppe Cabibbo
- Section of Gastroenterology & Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Antonio D’Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - David James Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
12
|
Ajith A, Mamouni K, Horuzsko DD, Musa A, Dzutsev AK, Fang JR, Chadli A, Zhu X, Lebedyeva I, Trinchieri G, Horuzsko A. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance. J Clin Invest 2023; 133:e167951. [PMID: 37651197 PMCID: PMC10617775 DOI: 10.1172/jci167951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most solid tumors. We examined whether loss of TREM1 signaling can abrogate the immunosuppressive TME and enhance cancer immunity. To investigate the therapeutic potential of TREM1 in cancer, we used mice deficient in Trem1 and developed a novel small molecule TREM1 inhibitor, VJDT. We demonstrated that genetic or pharmacological TREM1 silencing significantly delayed tumor growth in murine melanoma (B16F10) and fibrosarcoma (MCA205) models. Single-cell RNA-Seq combined with functional assays during TREM1 deficiency revealed decreased immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs) accompanied by expansion in cytotoxic CD8+ T cells and increased PD-1 expression. Furthermore, TREM1 inhibition enhanced the antitumorigenic effect of anti-PD-1 treatment, in part, by limiting MDSC frequency and abrogating T cell exhaustion. In patient-derived melanoma xenograft tumors, treatment with VJDT downregulated key oncogenic signaling pathways involved in cell proliferation, migration, and survival. Our work highlights the role of TREM1 in cancer progression, both intrinsically expressed in cancer cells and extrinsically in the TME. Thus, targeting TREM1 to modify an immunosuppressive TME and improve efficacy of immune checkpoint therapy represents what we believe to be a promising therapeutic approach to cancer.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kenza Mamouni
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel D. Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Abu Musa
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer R. Fang
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
13
|
Abstract
Triggering receptors expressed on myeloid cells (TREMs) encompass a family of cell-surface receptors chiefly expressed by granulocytes, monocytes and tissue macrophages. These receptors have been implicated in inflammation, neurodegenerative diseases, bone remodelling, metabolic syndrome, atherosclerosis and cancer. Here, I review the structure, ligands, signalling modes and functions of TREMs in humans and mice and discuss the challenges that remain in understanding TREM biology.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
14
|
Yue C, Wang W, Gao S, Ye J, Zhang T, Xing Z, Xie Y, Qian H, Zhou X, Li S, Yu A, Wang L, Wang J, Hua C. Agomir miRNA-150-5p alleviates pristane-induced lupus by suppressing myeloid dendritic cells activation and inflammation via TREM-1 axis. Inflamm Res 2023:10.1007/s00011-023-01754-8. [PMID: 37326693 DOI: 10.1007/s00011-023-01754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Triggering receptors expressed on myeloid cells-1 (TREM-1) has been shown to participate in inflammatory autoimmune diseases. Nevertheless, the detailed underlying mechanisms and therapeutic benefits by targeting TREM-1 remain elusive, especially in myeloid dendritic cells (mDCs) and systemic lupus erythematosus (SLE). Disorders of epigenetic processes including non-coding RNAs give rise to SLE, resulting in complicated syndromes. Here, we aim to address this issue and explore the miRNA to inhibit the activation of mDCs and alleviate the progress of SLE by targeting TREM-1 signal axis. METHODS Bioinformatics methods were used to analyze the differentially expressed genes (DEGs) between patients with SLE and healthy individuals by four mRNA microarray datasets from Gene Expression Omnibus (GEO). Then we identified the expression of TREM-1 and its soluble form (sTREM-1) in clinical samples by ELISA, quantitative real-time PCR and Western blot. Phenotypic and functional changes of mDCs elicited by TREM-1 agonist were determined. Three databases of miRNAs target prediction and a dual-luciferase reporter assay were used to screen and verify miRNAs that can directly inhibit TREM-1 expression in vitro. Moreover, pristane-induced lupus mice were injected with miR-150-5p agomir to evaluate the effects of miR-150-5p on mDCs in lymphatic organs and disease activity in vivo. RESULTS We screened TREM-1 as one of the hub genes closely correlated with the progression of SLE and identified sTREM-1 in serum as a valuable diagnostic biomarker for SLE. Moreover, activation of TREM-1 by its agonist promoted activation and chemotaxis of mDCs and increased the production of inflammatory cytokines and chemokines, showing higher expression of IL-6, TNF-α, and MCP-1. We showed that lupus mice displayed a unique miRNA signature in spleen, among which miR-150 was the most significantly expressed miRNA that targeting TREM-1 compared with wild type group. Transfection of miRNA-150-5p mimics directly suppressed the expression of TREM-1 by binding to its 3' UTR. Our in vivo experiments first indicated that administration of miR-150-5p agomir effectively ameliorated lupus symptoms. Intriguingly, miR-150 inhibited the over activation of mDCs through TREM-1 signal pathway in lymphatic organs and renal tissues. CONCLUSIONS TREM-1 represents a potentially novel therapeutic target and we identify miR-150-5p as one of the mechanisms to alleviate lupus disease, which is attributable for inhibiting mDCs activation through TREM-1 signaling pathway.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Yuanyuan Xie
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Hengrong Qian
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Xueyin Zhou
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Shuting Li
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Anni Yu
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Jianguang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
15
|
Mao Y, Yu J, Da J, Yu F, Zha Y. Acteoside alleviates UUO-induced inflammation and fibrosis by regulating the HMGN1/TLR4/TREM1 signaling pathway. PeerJ 2023; 11:e14765. [PMID: 36691481 PMCID: PMC9864189 DOI: 10.7717/peerj.14765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Acteoside (Act), a phenylethanoid compound that was first isolated from mullein, has been widely used for the investigation of anti-inflammatory and anti-fibrotic effect. However, the mechanism of Act against unilateral ureteral obstruction (UUO)-mediated renal injury is largely unknown. Therefore, this study aimed to explore the effects of Act on UUO rats and possible mechanisms. METHODS A total of 20 Sprague-Dawley (SD) rats were divided randomly into three groups (n ≥ 6): (i) sham-operated group (Sham); (ii) UUO group (UUO+Saline); and (iii) UUO + Act 40 mg/kg/day, (UUO+Act); Continuous gavage administration for 2 weeks postoperatively, while the rats in Sham and UUO+saline groups were given equal amounts of saline. All rats were sacrificed after 14 days, the urine and blood samples were collected for biochemical analysis, the renal tissues were collected for pathological staining and immunohistochemistry. Correlations between individual proteins were analyzed by Pearson correlation analysis. RESULTS The results of renal function indexes and histopathological staining showed that Act could improve renal function by reducing serum creatinine, blood urea nitrogen and urine protein at the same time, Act could alleviate renal inflammation and fibrosis. In addition, the results of immunohistochemistry showed that Act could reduce the expression of inflammation and kidney injury-related proteins F4/80, Mcp-1, KIM-1 proteins, as well as the expression of fibrosis-related protein α-SMA and β-catenin. More importantly, Act can also reduce the expression of HMGN1, TLR4 and TREM-1 proteins. CONCLUSION These data demonstrate that Act can ameliorate UUO-induced renal inflammation and fibrosis in rats probably through triggering HMGN1/TLR4/TREM-1 pathway.
Collapse
Affiliation(s)
- Yan Mao
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jiali Yu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jingjing Da
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Fuxun Yu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yan Zha
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
16
|
Qinggan Huoxue Recipe Protects against Experimental Alcoholic Liver Fibrosis through CXCL16 Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5642713. [PMID: 36636609 PMCID: PMC9831707 DOI: 10.1155/2023/5642713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
Background Qinggan Huoxue recipe (QGHXR), a traditional Chinese medicinal formula, has a protective effect against liver fibrosis. However, the underlying mechanisms remain unclear. Objective This study investigated the antifibrotic role of QGHXR and its underlying mechanisms. Methods The composition of QGHXR was determined using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Female C57BL/6J mice were fed either a Lieber-DeCarli liquid diet or pair-fed control diet and intraperitoneally injected with CCl4 for 8 weeks (n = 8). In week 5, the mice were administered 100, 200, and 400 mg/kg QGHXR via oral gavage daily for 4 weeks. Results UPLC-MS result showed that QGHXR contained 45 compounds including salvianolic acid A, scutellarin, baicalin, rutin, and chai saponin D. QGHXR alleviated pathological alterations in the liver. The alanine aminotransferase (ALT) level was reduced to 44.88 ± 4.39 U/L, aspartate aminotransferase (AST) to 76.25 ± 4.17 U/L, alkaline phosphatase (ALP) to 60.75 ± 5.41 U/L, and acetaldehyde to 38.54 ± 1.01 U/L compared with that of the control group (ALT 72.38 ± 5.19 U/L, AST 119.63 ± 9.82 U/L, and ALP 98.63 ± 6.71 U/L and acetaldehyde 64.86 ± 4.70 U/L). QGHXR inhibited lipid overproduction and fibrotic gene expression. The serum concentration of chemokine C-X-C ligand 16 (CXCL16) was reduced to 62.83 ± 6.80 pg/ml compared with that of the control group (130.91 ± 13.72 pg/mL). QGHXR downregulated CXCL16 mRNA and protein expressions. Pharmacological CXCL16 treatment reversed the QGHXR-induced protective effects in ethanol plus CCl4 fed mice. QGHXR reduced CXCL16 levels (91.97 ± 5.86 pg/ml) in LPS-stimulated RAW264.7 cells compared with that of the control group (148.68 ± 8.62 pg/ml) and inhibited toll-like receptor 4 and nuclear factor-kappa B phosphorylation. Conclusions This study demonstrated that QGHXR mitigates experimental alcoholic liver fibrosis by CXCL16 inhibition, and may be considered a potential therapeutic agent for treating liver fibrosis.
Collapse
|
17
|
Tian D, Pan Y, Zhao Y, Wang H, Tian Y, Yang L, Shi W, Zhang C, Zhu Y, Zhang Y, Wang S, Zhang D. TCRαβ +NK1.1 -CD4 -CD8 - double-negative T cells inhibit central and peripheral inflammation and ameliorate ischemic stroke in mice. Theranostics 2023; 13:896-909. [PMID: 36793857 PMCID: PMC9925325 DOI: 10.7150/thno.80307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Excessive immune activation leads to secondary injury and impedes injured brain recovery after ischemic stroke. However, few effective methods are currently used for equilibrating immune balance. CD3+NK1.1-TCRβ+CD4-CD8- double-negative T (DNT) cells which do not express NK cell surface markers are unique regulatory cells that maintain homeostasis in several immune-related diseases. However, the therapeutic potential and regulatory mechanism of DNT cells in ischemic stroke are still unknown. Methods: Mouse ischemic stroke is induced by occlusion of the distal branches of the middle cerebral artery (dMCAO). DNT cells were adoptively transferred intravenously into ischemic stroke mice. Neural recovery was evaluated by TTC staining and behavioral analysis. Using immunofluorescence, flow cytometry, and RNA sequencing, the immune regulatory function of DNT cells was investigated at different time points post ischemic stroke. Results: Adoptive transfer of DNT cells significantly reduces infarct volume and improves sensorimotor function after ischemic stroke. DNT cells suppress peripheral Trem1+ myeloid cell differentiation during the acute phase. Furthermore, they infiltrate the ischemic tissue via CCR5 and equilibrate the local immune balance during the subacute phase. During the chronic phase, DNT cells enhance Treg cell recruitment through CCL5, eventually developing an immune homeostatic milieu for neuronal recovery. Conclusions: DNT cell treatment renders the comprehensive anti-inflammatory roles in specific phases of ischemic stroke. Our study suggests that the adoptive transfer of regulatory DNT cells may be a potential cell-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Dan Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Yuhualei Pan
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yushang Zhao
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Huan Wang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yue Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Wen Shi
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
TREM-1 exacerbates bleomycin-induced pulmonary fibrosis by aggravating alveolar epithelial cell senescence in mice. Int Immunopharmacol 2022; 113:109339. [DOI: 10.1016/j.intimp.2022.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
19
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
|
20
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
21
|
Yadav P, Trehanpati N, Maiwall R, Sehgal R, Singh R, Islam M, Jagdish RK, Vijayaraghavan R, Maheshwari D, Bhat S, Kale P, Kumar A, Baweja S, Kumar G, Ramakrishna G, Sarin SK. Soluble factors and suppressive monocytes can predict early development of sepsis in acute-on-chronic liver failure. Hepatol Commun 2022; 6:2105-2120. [PMID: 35502507 PMCID: PMC9315131 DOI: 10.1002/hep4.1949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 01/08/2023] Open
Abstract
Patients with acute-on-chronic liver failure (ACLF) have a high probability of developing systemic inflammation and sepsis due to immune dysregulation. Fifty-nine patients with ACLF (12 without and 19 with systemic inflammation, and 28 with sepsis) were serially monitored for clinical and immunological changes at baseline, 6 hours, 24 hours, day 3, and day 7 following hospitalization. Ten healthy controls were also included. At all time points, soluble plasma factors and monocyte functions were studied. Patients with ACLF and systemic inflammation showed higher interleukin (IL)-6, vascular endothelial growth factor-a, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1β than patients with no systemic inflammation. Patients with ACLF with sepsis had raised (p < 0.001) levels of IL-1Ra, IL-18, and triggering receptor expressed on myeloid cells 1 (TREM1) compared to patients with ACLF-systemic inflammation. Five of the 19 (26.3%) patients with systemic inflammation developed sepsis within 48-72 hours with a rapid rise in plasma levels of IL-1Ra (1203-35,000 pg/ml), IL-18 (48-114 pg/ml), and TREM1 (1273-4865 pg/ml). Monocytes of patients with ACLF with systemic inflammation and sepsis showed reduced human leukocyte antigen-DR but increased programmed death ligand 1 (PD-L1) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3) (p < 0.04) expression with increased ETosis by monocytes at baseline and until day 7. Conclusion: High and rising levels of plasma IL-1Ra, IL-18, TREM1 soluble factors, and increased suppressive monocytes (PDL1+ve , TIM3+ve ) at baseline can stratify patients with ACLF at high risk of developing sepsis within 48-72 hours of hospitalization.
Collapse
Affiliation(s)
- Pushpa Yadav
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Nirupama Trehanpati
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Rakhi Maiwall
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Rashi Sehgal
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Ravinder Singh
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Mojahidul Islam
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Rakesh Kumar Jagdish
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Rajan Vijayaraghavan
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Deepanshu Maheshwari
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Sadam Bhat
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Pratibha Kale
- 80402Department of MicrobiologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Anupam Kumar
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Sukriti Baweja
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Guresh Kumar
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Gayatri Ramakrishna
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Shiv K Sarin
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| |
Collapse
|
22
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
23
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
24
|
Borjas T, Jacob A, Yen H, Patel V, Coppa G, Aziz M, Wang P. Inhibition of the Interaction of TREM-1 and eCIRP Attenuates Inflammation and Improves Survival in Hepatic Ischemia/Reperfusion. Shock 2022; 57:246-255. [PMID: 34864782 PMCID: PMC8758526 DOI: 10.1097/shk.0000000000001894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Triggering receptor expressed on myeloid cells-1 (TREM-1) has important implications in sepsis and inflammation and is a novel receptor for extracellular cold-inducible RNA-binding protein (eCIRP). We hypothesize that the inhibition of TREM-1 via its interaction with eCIRP by novel peptide inhibitor M3 or knockout gene will attenuate the inflammation and injury associated with severe hepatic ischemia/reperfusion (I/R). METHODS Wild-type (WT) C57BL/6 and TREM-1-/- mice underwent 60 min of 70% hepatic ischemia, with 24 h of reperfusion. Additionally, WT mice underwent hepatic I/R and were treated with M3 (10 mg/kg body weight) or vehicle (normal saline) at the start of reperfusion. Blood and ischemic liver tissues were collected, and analysis was performed using enzymatic assays, enzyme-linked immunosorbent assay, reverse-transcription quantitative polymerase chain reaction, and pathohistology techniques. For survival surgery, mice additionally underwent resection of non-ischemic lobes of the liver and survival was monitored for 10 days. RESULTS There was an increase in serum levels of tissue markers including aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase as well as cytokine levels (IL-6) and histological scoring of hematoxylin and eosin sections in WT I/R mice. These markers decreased substantially in TREM-1-/- mice. Additionally, neutrophil infiltration markers and markers of local inflammation (myeloperoxidase, macrophage inflammatory protein-2, cyclooxygenase-2) were attenuated in TREM-1-/- mice. Similarly, we show a significant decrease in injury and inflammation markers with M3 treatment. Additionally, we demonstrate decreased apoptosis with TREM-1 inhibition. Finally, M3 treatment improved the survival rate from 42% to 75% after hepatic I/R. CONCLUSION TREM-1 is an important eCIRP receptor in the inflammatory response of hepatic I/R, and deficiency of TREM-1 via knockout gene or peptide inhibition attenuated liver injury and inflammation, and improved survival. Inhibition of the TREM-1 and eCIRP interaction in hepatic I/R may have important therapeutic potential.
Collapse
Affiliation(s)
- Timothy Borjas
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Asha Jacob
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - HaoTing Yen
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Vihas Patel
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Gene Coppa
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Monowar Aziz
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Ping Wang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| |
Collapse
|
25
|
Deng Q, Yang S, Sun L, Dong K, Li Y, Wu S, Huang R. Salmonella effector SpvB aggravates dysregulation of systemic iron metabolism via modulating the hepcidin-ferroportin axis. Gut Microbes 2022; 13:1-18. [PMID: 33475464 PMCID: PMC7833757 DOI: 10.1080/19490976.2020.1849996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Iron withholding, an essential component of nutritional immunity, plays a fundamental role in host resistance to Salmonella infection. Our previous study showed that SpvB, an important pSLT-encoded cytotoxic effector, facilitated Salmonella pathogenesis within macrophages via perturbing cellular iron metabolism. However, the underlying mechanisms of SpvB in Salmonella-relevant disorders of systemic iron metabolism have not yet been identified. Here, we demonstrated that SpvB facilitated Salmonella to scavenge iron from the host by modulating the hepcidin-ferroportin axis, a key regulator of systemic iron metabolism. We observed that SpvB enhanced hepatic hepcidin synthesis in a STAT3-dependent manner, but not the BMP/SMAD pathway. This subsequently resulted in a reduction of the unique cellular iron exporter ferroportin, which facilitated hypoferremia and hepatic iron accumulation and ultimately countered the limitation of iron availability, thereby improving the chances of Salmonella survival and replication. Moreover, SpvB promoted the production of proinflammatory molecules associated with the infiltration of inflammatory cells via highly upregulating TREM-1 signaling. Our data supported a role of TREM-1 in SpvB-related dysregulation of host iron metabolism and suggested that targeting TREM-1 might provide a potential therapeutic strategy to prevent or alleviate Salmonella pathogenesis.
Collapse
Affiliation(s)
- Qifeng Deng
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,CONTACT Shuyan Wu Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| | - Sidi Yang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,Rui Huang Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| | - Lanqing Sun
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Kedi Dong
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,CONTACT Shuyan Wu Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| | - Rui Huang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,Rui Huang Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
26
|
Song M, Yang C. MiRNAs in liver fibrosis: new targets and opportunities for therapy. Microrna 2022:363-372. [DOI: 10.1016/b978-0-323-89774-7.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Ramavath NN, Gadipudi LL, Provera A, Gigliotti LC, Boggio E, Bozzola C, Albano E, Dianzani U, Sutti S. Inducible T-Cell Costimulator Mediates Lymphocyte/Macrophage Interactions During Liver Repair. Front Immunol 2021; 12:786680. [PMID: 34925367 PMCID: PMC8678521 DOI: 10.3389/fimmu.2021.786680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
The liver capacity to recover from acute liver injury is a critical factor in the development of acute liver failure (ALF) caused by viral infections, ischemia/reperfusion or drug toxicity. Liver healing requires the switching of pro-inflammatory monocyte-derived macrophages(MoMFs) to a reparative phenotype. However, the mechanisms involved are still incompletely characterized. In this study we investigated the contribution of T-lymphocyte/macrophage interaction through the co-stimulatory molecule Inducible T-cell co-stimulator (ICOS; CD278) and its ligand (ICOSL; CD275) in modulating liver repair. The role of ICOS/ICOSL dyad was investigated during the recovery from acute liver damage induced by a single dose of carbon tetrachloride (CCl4). Flow cytometry of non-parenchymal liver cells obtained from CCl4-treated wild-type mice revealed that the recovery from acute liver injury associated with a specific up-regulation of ICOS in CD8+ T-lymphocytes and with an increase in ICOSL expression involving CD11bhigh/F4-80+ hepatic MoMFs. Although ICOS deficiency did not influence the severity of liver damage and the evolution of inflammation, CCl4-treated ICOS knockout (ICOS-/-) mice showed delayed clearance of liver necrosis and increased mortality. These animals were also characterized by a significant reduction of hepatic reparative MoMFs due to an increased rate of cell apoptosis. An impaired liver healing and loss of reparative MoMFs was similarly evident in ICOSL-deficient mice or following CD8+ T-cells ablation in wild-type mice. The loss of reparative MoMFs was prevented by supplementing CCl4-treated ICOS-/- mice with recombinant ICOS (ICOS-Fc) which also stimulated full recovery from liver injury. These data demonstrated that CD8+ T-lymphocytes play a key role in supporting the survival of reparative MoMFs during liver healing trough ICOS/ICOSL-mediated signaling. These observations open the possibility of targeting ICOS/ICOSL dyad as a novel tool for promoting efficient healing following acute liver injury.
Collapse
Affiliation(s)
- Naresh Naik Ramavath
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Laila Lavanya Gadipudi
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Luca C Gigliotti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Cristina Bozzola
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
28
|
A detrimental role of NLRP6 in host iron metabolism during Salmonella infection. Redox Biol 2021; 49:102217. [PMID: 34942528 PMCID: PMC8695358 DOI: 10.1016/j.redox.2021.102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Maintaining host iron homeostasis is an essential component of nutritional immunity responsible for sequestrating iron from pathogens and controlling infection. Nucleotide-oligomerization domain-like receptors (NLRs) contribute to cytoplasmic sensing and antimicrobial response orchestration. However, it remains unknown whether and how NLRs may regulate host iron metabolism, an important component of nutritional immunity. Here, we demonstrated that NLRP6, a member of the NLR family, has an unconventional role in regulating host iron metabolism that perturbs host resistance to bacterial infection. NLRP6 deficiency is advantageous for maintaining cellular iron homeostasis in both macrophages and enterocytes through increasing the unique iron exporter ferroportin-mediated iron efflux in a nuclear factor erythroid-derived 2–related factor 2 (NRF2)-dependent manner. Additional studies uncovered a novel mechanism underlying NRF2 regulation and operating through NLRP6/AKT interaction and that causes a decrease in AKT phosphorylation, which in turn reduces NRF2 nuclear translocation. In the absence of NLRP6, increased AKT activation promotes NRF2/KEAP1 dissociation via increasing mTOR-mediated p62 phosphorylation and downregulates KEAP1 transcription by promoting FOXO3A phosphorylation. Together, our observations provide new insights into the mechanism of nutritional immunity by revealing a novel function of NLRP6 in regulating iron metabolism, and suggest NLRP6 as a therapeutic target for limiting bacterial iron acquisition.
Collapse
|
29
|
Wu Y, Huang S, Xiao S, He J, Lu F. Impact of Galectin-Receptor Interactions on Liver Pathology During the Erythrocytic Stage of Plasmodium berghei Malaria. Front Immunol 2021; 12:758052. [PMID: 34899708 PMCID: PMC8652201 DOI: 10.3389/fimmu.2021.758052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatopathy is frequently observed in patients with severe malaria but its pathogenesis remains unclear. Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses, and exhibit pivotal roles during Plasmodium spp. infection. Here, we analyzed the impact of blockage of galectin-receptor interactions by treatment with alpha (α)-lactose on liver immunopathology during the erythrocytic stage of malaria in mice infected with Plasmodium berghei ANKA (PbANKA). Our results found that compared with PbANKA-infected mice (malarial mice), blockage of galectin-receptor interactions led to decreased host survival rate and increased peripheral blood parasitemia; exacerbated liver pathology, increased numbers of CD68+ macrophages and apoptotic cells, and increased parasite burden in the livers on days 5 and 7 post infection (p.i.) as well as increased mRNA expression levels of galectin-9 (Gal-9) and its receptor, the T cell immunoglobulin domain and mucin domain protein 3 (Tim-3), interferon (IFN)α, IFNγ, and the triggering receptor expressed on myeloid cells (TREM)-1 in the livers or spleens of PbANKA-infected mice on day 7 p.i. Observed by transmission electron microscopy, the peritoneal macrophages isolated from malarial mice with α-lactose treatment had more pseudopodia than those from malarial mice. Measured by using quantitative real-time reverse transcription-polymerase chain reaction assay, the mRNA expression levels of Gal-9, IFNα, IFNβ, IFNγ, and TREM-1 were increased in the peritoneal macrophages isolated from malarial mice with α-lactose treatment in comparison of those from malarial mice. Furthermore, significant positive correlations existed between the mRNA levels of Gal-9 and Tim-3/IFNγ/TREM-1 in both the livers and the peritoneal macrophages, and between Gal-9 and Tim-3/TREM-1 in the spleens of malarial mice; significant positive correlations existed between the mRNA levels of Gal-9 and IFNγ in the livers and between Gal-9 and IFNα in the peritoneal macrophages from malarial mice treated with α-lactose. Our data suggest a potential role of galectin-receptor interactions in limiting liver inflammatory response and parasite proliferation by down-regulating the expressions of IFNα, IFNγ, and TREM-1 during PbANKA infection.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Siyu Xiao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Public Experimental Teaching Center, Sun Yat-sen University, Guangzhou, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
31
|
Cheng D, Chai J, Wang H, Fu L, Peng S, Ni X. Hepatic macrophages: Key players in the development and progression of liver fibrosis. Liver Int 2021; 41:2279-2294. [PMID: 33966318 DOI: 10.1111/liv.14940] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis is a common pathological process involving persistent liver injury with various etiologies and subsequent inflammatory responses that occur in chronic liver diseases. If left untreated, liver fibrosis can progress to liver cirrhosis, hepatocellular carcinoma and eventually, liver failure. Unfortunately, to date, there is no effective treatment for liver fibrosis, with the exception of liver transplantation. Although the pathophysiology of liver fibrosis is multifactorial and includes the activation of hepatic stellate cells, which are known to drive liver fibrogenesis, hepatic macrophages have emerged as central players in the development of liver fibrosis and regression. Hepatic macrophages, which consist of resident macrophages (Kupffer cells) and monocyte-derived macrophages, have been shown to play an intricate role in the initiation of inflammatory responses to liver injury, progression of fibrosis, and promotion of fibrosis resolution. These features have made hepatic macrophages uniquely attractive therapeutic targets in the fight against hepatic fibrosis. In this review, we synthesised the literature to highlight the functions and regulation of heterogeneity in hepatic macrophages. Furthermore, using the existing findings, we attempt to offer insights into the molecular mechanisms underlying the phenotypic switch from fibrogenic macrophages to restorative macrophages, the regulation of heterogeneity, and modes of action for hepatic macrophages. A better understanding of these mechanisms may guide the development of novel anti-fibrotic therapies (eg macrophage subset-targeted treatments) to combat liver fibrosis in the future.
Collapse
Affiliation(s)
- Da Cheng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jin Chai
- Cholestatic Liver Diseases Center, Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China.,International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
32
|
Zhang N, Zhao L, Liu D, Hu C, Wang Y, He T, Bi Y, He Y. Characterization of Urine-Derived Stem Cells from Patients with End-Stage Liver Diseases and Application to Induced Acute and Chronic Liver Injury of Nude Mice Model. Stem Cells Dev 2021; 30:1126-1138. [PMID: 34549601 DOI: 10.1089/scd.2021.0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Urine-derived stem cells (USCs) are adult stem cells isolated from urine with strong proliferative ability and differentiation potentials. Cell transplantation of USCs could partly repair liver injury. It has been reported that the proliferative ability of bone mesenchymal stem cells in patients with chronic liver failure is significantly lower than in patients without liver disease. The aim of this study was therefore to evaluate the biological characteristics of USCs from end-stage liver disease patients (LD-USCs, USCs from patients with liver disease) compared with those from normal healthy individuals (N-USCs, USCs from normal individuals), with a view to determining whether autologous USCs can be applied to the treatment of liver disease. In this study USCs were isolated from urine samples of male patients with end-stage liver disease. Adherent USCs exhibit a spindle- or rice grain-like morphology, and express CD24, CD29, CD73, CD90, and CD146 surface markers, but not CD31, CD34, CD45, and CD105. We observed no differences in cell morphology or cell surface marker profile between LD-USCs and N-USCs. LD-USCs exhibited similar proliferative, colony-forming, apoptotic, and migratory abilities to N-USCs. Both USCs demonstrated similar capacities for osteogenic, adipogenic, and chondrogenic differentiation. When USCs were transplanted into CCl4 treatment-induced acute and chronic liver fibrosis mouse models, we observed a decrease in liver index, recovery of alanine aminotransferase and aspartate aminotransferase levels, alleviation of liver tissue injury, and dramatic improvement of liver tissue structure. USC transplantation can effectively recover liver function and improve liver tissue damage in acute or chronic liver injury mouse models. According to the results, we concluded that the biological characteristics of LD-USCs are not affected by basic liver disease. This study provides further evidence of the stem cell characteristics and liver repair function of LD-USCs, which may serve as a theoretical and experimental foundation for autologous USC transplantation technology in the treatment of liver failure and end-stage liver diseases.
Collapse
Affiliation(s)
- Nannan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daijiang Liu
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing, China
| | - Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Wang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Luci C, Vieira E, Bourinet M, Rousseau D, Bonnafous S, Patouraux S, Lefevre L, Larbret F, Prod’homme V, Iannelli A, Tran A, Anty R, Bailly-Maitre B, Deckert M, Gual P. SYK-3BP2 Pathway Activity in Parenchymal and Myeloid Cells Is a Key Pathogenic Factor in Metabolic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2021; 13:173-191. [PMID: 34411785 PMCID: PMC8593618 DOI: 10.1016/j.jcmgh.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Spleen tyrosine kinase (SYK) signaling pathway regulates critical processes in innate immunity, but its role in parenchymal cells remains elusive in chronic liver diseases. We investigate the relative contribution of SYK and its substrate c-Abl Src homology 3 domain-binding protein-2 (3BP2) in both myeloid cells and hepatocytes in the onset of metabolic steatohepatitis. METHODS Hepatic SYK-3BP2 pathway was evaluated in mouse models of metabolic-associated fatty liver diseases (MAFLD) and in obese patients with biopsy-proven MAFLD (n = 33). Its role in liver complications was evaluated in Sh3bp2 KO and myeloid-specific Syk KO mice challenged with methionine and choline deficient diet and in homozygous Sh3bp2KI/KI mice with and without SYK expression in myeloid cells. RESULTS Here we report that hepatic expression of 3BP2 and SYK correlated with metabolic steatohepatitis severity in mice. 3BP2 deficiency and SYK deletion in myeloid cells mediated the same protective effects on liver inflammation, injury, and fibrosis priming upon diet-induced steatohepatitis. In primary hepatocytes, the targeting of 3BP2 or SYK strongly decreased the lipopolysaccharide-mediated inflammatory mediator expression and 3BP2-regulated SYK expression. In homozygous Sh3bp2KI/KI mice, the chronic inflammation mediated by the proteasome-resistant 3BP2 mutant promoted severe hepatitis and liver fibrosis with augmented liver SYK expression. In these mice, the deletion of SYK in myeloid cells was sufficient to prevent these liver lesions. The hepatic expression of SYK is also up-regulated with metabolic steatohepatitis and correlates with liver macrophages in biopsy-proven MAFLD patients. CONCLUSIONS Collectively, these data suggest an important role for the SYK-3BP2 pathway in the pathogenesis of chronic liver inflammatory diseases and highlight its targeting in hepatocytes and myeloid cells as a potential strategy to treat metabolic steatohepatitis.
Collapse
Affiliation(s)
- Carmelo Luci
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Elodie Vieira
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Manon Bourinet
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | | | | | | | - Lauren Lefevre
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | | | | | | | - Albert Tran
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Rodolphe Anty
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, Nice, France
| | | | - Marcel Deckert
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France,Marcel Deckert, PhD, Inserm UMR1065/C3M, Bâtiment Universitaire ARCHIMED, Team "Microenvironment, signaling and cancer", 151 route Saint Antoine de Ginestière, BP 2 3194, 06204 Nice, France.
| | - Philippe Gual
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France,Correspondence Address correspondence to: Philippe Gual, PhD, Inserm UMR1065/C3M, Bâtiment Universitaire ARCHIMED, Team "Chronic liver diseases associated with obesity and alcohol", 151 route Saint Antoine de Ginestière, BP 2 3194, 06204 Nice, France. fax: +33 4 89 06 42 60.
| |
Collapse
|
34
|
TREM-1 aggravates chronic obstructive pulmonary disease development via activation NLRP3 inflammasome-mediated pyroptosis. Inflamm Res 2021; 70:971-980. [PMID: 34374795 DOI: 10.1007/s00011-021-01490-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/24/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is a major cause of death globally. Inflammation plays a crucial role in COPD development. Pyroptosis, an inflammatory form of cell death, may involve in the pathogenesis of COPD. This study aims to explore the role and action mechanism of triggering receptor expressed on myeloid cells 1 (TREM-1) in COPD. METHODS Here, cigarette smoke stimulation was used to establish COPD model in mice. Cigarette smoke extract combined with lipopolysaccharide was used to stimulate RAW264.7 cells for COPD model in vitro. QRT-PCR and Western blot were performed to detect the expression of mRNA and proteins, respectively, in the lung tissues and cells. Concentration of cytokines was measured using ELISA. H&E staining was used to analyze the pathological changes in lung tissues. The number of infiltrated macrophage was examined using immunofluorescence. LP17 was used to silence the expression of TREM-1. RESULTS The results showed that TREM-1 was highly expressed in COPD. In vivo, inhibition of TREM-1 effectively improved the injury in lung tissues of COPD mouse, and reduced the infiltration of macrophages. Moreover, inhibition of TREM-1 in vivo and in vitro notably suppressed the activation of NLRP3 inflammasome and pyroptosis. Rescue experiment demonstrated that TREM-1 activated pyroptosis via regulating NLRP3 inflammasome. CONCLUSION Overall, our results proved that TREM-1 promoted the lung injury and inflammation in COPD mouse through activation of NLRP3 inflammasome-mediated pyroptosis. Our data indicated a novel mechanism of TREM-1 in COPD development, and maybe provide a novel therapeutic target for COPD treatment.
Collapse
|
35
|
He X, Hong W, Yang J, Lei H, Lu T, He C, Bi Z, Pan X, Liu Y, Dai L, Wang W, Huang C, Deng H, Wei X. Spontaneous apoptosis of cells in therapeutic stem cell preparation exert immunomodulatory effects through release of phosphatidylserine. Signal Transduct Target Ther 2021; 6:270. [PMID: 34262012 PMCID: PMC8280232 DOI: 10.1038/s41392-021-00688-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-mediated immunomodulation has been harnessed for the treatment of human diseases, but its underlying mechanism has not been fully understood. Dead cells, including apoptotic cells have immunomodulatory properties. It has been repeatedly reported that the proportion of nonviable MSCs in a MSC therapeutic preparation varied from 5~50% in the ongoing clinical trials. It is conceivable that the nonviable cells in a MSC therapeutic preparation may play a role in the therapeutic effects of MSCs. We found that the MSC therapeutic preparation in the present study had about 5% dead MSCs (DMSCs), characterized by apoptotic cells. Namely, 1 × 106 MSCs in the preparation contained about 5 × 104 DMSCs. We found that the treatment with even 5 × 104 DMSCs alone had the equal therapeutic effects as with 1 × 106 MSCs. This protective effect of the dead MSCs alone was confirmed in four mouse models, including concanavalin A (ConA)- and carbon tetrachloride (CCl4)-induced acute liver injury, LPS-induced lung injury and spinal cord injury. We also found that the infused MSCs died by apoptosis in vivo. Furthermore, the therapeutic effect was attributed to the elevated level of phosphatidylserine (PS) upon the injection of MSCs or DMSCs. The direct administration of PS liposomes (PSLs) mimic apoptotic cell fragments also exerted the protective effects as MSCs and DMSCs. The Mer tyrosine kinase (MerTK) deficiency or the knockout of chemokine receptor C-C motif chemokine receptor 2 (CCR2) reversed these protective effects of MSCs or DMSCs. These results revealed that DMSCs alone in the therapeutic stem cell preparation or the apoptotic cells induced in vivo may exert the same immunomodulatory property as the "living MSCs preparation" through releasing PS, which was further recognized by MerTK and participated in modulating immune cells.
Collapse
Affiliation(s)
- Xuemei He
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.488387.8Experimental Medicine Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan People’s Republic of China
| | - Weiqi Hong
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Jingyun Yang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Hong Lei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Tianqi Lu
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Cai He
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Zhenfei Bi
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xiangyu Pan
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Yu Liu
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Lunzhi Dai
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Wei Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Canhua Huang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Hongxin Deng
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
36
|
Chang ML, Lin YT, Kung HN, Hou YC, Liu JJ, Pan MH, Chen HL, Yu CH, Tsai PJ. A triterpenoid-enriched extract of bitter melon leaves alleviates hepatic fibrosis by inhibiting inflammatory responses in carbon tetrachloride-treated mice. Food Funct 2021; 12:7805-7815. [PMID: 34231603 DOI: 10.1039/d1fo00884f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a progression of chronic liver disease characterized by excess deposition of fibrillary collagen. The aim of this study was to investigate the protective effect of a triterpenoid-enriched extract (TEE) from bitter melon leaves against carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. Male ICR mice received TEE (100 or 150 mg kg-1) by daily oral gavage for one week before starting CCl4 administration and throughout the entire experimental period. After intraperitoneal injection of CCl4 for nine weeks, serum and liver tissues of the mice were collected for biochemical, histopathological and molecular analyses. Our results showed that TEE supplementation reduced CCl4-induced serum aspartate aminotransferase and alanine aminotransferase activities. Histopathological examinations revealed that CCl4 administration results in hepatic fibrosis, while TEE supplementation significantly suppressed hepatic necroinflammation and collagen deposition. In addition, TEE supplementation decreased α-smooth muscle actin (α-SMA)-positive staining and protein levels of α-SMA and transforming growth factor-β1. TEE-supplemented mice had lower mRNA expression levels of interleukin-6, tumor necrosis factor-α, and toll-like receptor 4. Moreover, TEE (150 mg kg-1) supplementation significantly reduced intrahepatic inflammatory Ly6C+ monocyte infiltration. We demonstrated that TEE could ameliorate hepatic fibrosis by regulating inflammatory cytokine secretion and α-SMA expression in the liver to reduce collagen accumulation.
Collapse
Affiliation(s)
- Mei-Ling Chang
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ajith A, Mulloy LL, Musa MA, Bravo-Egana V, Horuzsko DD, Gani I, Horuzsko A. Humanized Mouse Model as a Novel Approach in the Assessment of Human Allogeneic Responses in Organ Transplantation. Front Immunol 2021; 12:687715. [PMID: 34177940 PMCID: PMC8226140 DOI: 10.3389/fimmu.2021.687715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023] Open
Abstract
The outcome of organ transplantation is largely dictated by selection of a well-matched donor, which results in less chance of graft rejection. An allogeneic immune response is the main immunological barrier for successful organ transplantation. Donor and recipient human leukocyte antigen (HLA) mismatching diminishes outcomes after solid organ transplantation. The current evaluation of HLA incompatibility does not provide information on the immunogenicity of individual HLA mismatches and impact of non-HLA-related alloantigens, especially in vivo. Here we demonstrate a new method for analysis of alloimmune responsiveness between donor and recipient in vivo by introducing a humanized mouse model. Using molecular, cellular, and genomic analyses, we demonstrated that a recipient's personalized humanized mouse provided the most sensitive assessment of allogeneic responsiveness to potential donors. In our study, HLA typing provided a better recipient-donor match for one donor among two related donors. In contrast, assessment of an allogeneic response by mixed lymphocyte reaction (MLR) was indistinguishable between these donors. We determined that, in the recipient's humanized mouse model, the donor selected by HLA typing induced the strongest allogeneic response with markedly increased allograft rejection markers, including activated cytotoxic Granzyme B-expressing CD8+ T cells. Moreover, the same donor induced stronger upregulation of genes involved in the allograft rejection pathway as determined by transcriptome analysis of isolated human CD45+cells. Thus, the humanized mouse model determined the lowest degree of recipient-donor alloimmune response, allowing for better selection of donor and minimized immunological risk of allograft rejection in organ transplantation. In addition, this approach could be used to evaluate the level of alloresponse in allogeneic cell-based therapies that include cell products derived from pluripotent embryonic stem cells or adult stem cells, both undifferentiated and differentiated, all of which will produce allogeneic immune responses.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Laura L. Mulloy
- Nephrology Division, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Md. Abu Musa
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Valia Bravo-Egana
- Histocompatibility and Immunology Laboratory, Department of Surgery, Medical College of Georgia, Augusta University Medical Center, Augusta, GA, United States
| | - Daniel David Horuzsko
- Program of Osteopathic Medicine, Philadelphia College of Osteopathic Medicine South Georgia, Moultrie, GA, United States
| | - Imran Gani
- Nephrology Division, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Anatolij Horuzsko
- Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
38
|
Zhang H, Chen T, Ren J, Xia Y, Onuma A, Wang Y, He J, Wu J, Wang H, Hamad A, Shen C, Zhang J, Asara JM, Behbehani GK, Wen H, Deng M, Tsung A, Huang H. Pre-operative exercise therapy triggers anti-inflammatory trained immunity of Kupffer cells through metabolic reprogramming. Nat Metab 2021; 3:843-858. [PMID: 34127858 PMCID: PMC8462058 DOI: 10.1038/s42255-021-00402-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Pre-operative exercise therapy improves outcomes for many patients who undergo surgery. Despite the well-known effects on tolerance to systemic perturbation, the mechanisms by which pre-operative exercise protects the organ that is operated on from inflammatory injury are unclear. Here, we show that four-week aerobic pre-operative exercise significantly attenuates liver injury and inflammation from ischaemia and reperfusion in mice. Remarkably, these beneficial effects last for seven more days after completing pre-operative exercising. We find that exercise specifically drives Kupffer cells toward an anti-inflammatory phenotype with trained immunity via metabolic reprogramming. Mechanistically, exercise-induced HMGB1 release enhances itaconate metabolism in the tricarboxylic acid cycle that impacts Kupffer cells in an NRF2-dependent manner. Therefore, these metabolites and cellular/molecular targets can be investigated as potential exercise-mimicking pharmaceutical candidates to protect against liver injury during surgery.
Collapse
Affiliation(s)
- Hongji Zhang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tianmeng Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jinghua Ren
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yujia Xia
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amblessed Onuma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yu Wang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jiayi He
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Han Wang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmad Hamad
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chengli Shen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jinxiang Zhang
- Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - John M Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Meihong Deng
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Allan Tsung
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Hai Huang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
39
|
LR12 Promotes Liver Repair by Improving the Resolution of Inflammation and Liver Regeneration in Mice with Thioacetamide- (TAA-) Induced Acute Liver Failure. Mediators Inflamm 2021; 2021:2327721. [PMID: 34135689 PMCID: PMC8179768 DOI: 10.1155/2021/2327721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells-1 (TREM-1) controls the mobilization of inflammatory cells in response to injury and consequently enhances liver damage. LR12 is a TREM-1 inhibitory peptide. However, the role of LR12 in acute liver failure (ALF) has remained elusive. This study was aimed at indicating whether LR12 could promote liver repair in mice with thioacetamide- (TAA-) induced ALF. Methods BALB/c mice were intraperitoneally injected with TAA, followed by intravenous injection of LR12. Damage and regeneration of the liver were assessed. LO2 cells and macrophages were used to assess the therapeutic effects of LR12. Results Mice treated with TAA for 24 h developed ALF, while liver inflammation was alleviated after LR12 treatment. Moreover, LR12 promoted hepatocyte regeneration in mice with TAA-induced ALF. In vitro, the supernatant from TAA+LR12-treated macrophages promoted the proliferation of LO2 cells. Cytokine protein microarray analysis suggested that LR12 promoted the secretion of C-C chemokine ligand 20 (CCL20) from macrophages. Besides, neutralization of CCL20 blocked the effects of LR12, thus inhibited the proliferation of LO2 cells in vitro, aggregated the liver inflammation, and restrained hepatocyte regeneration in ALF mice in vivo. Furthermore, we also found that LR12 activated the p38 mitogen-activated protein kinase (MAPK) pathway in hepatocytes through promoting the secretion of CCL20 from macrophages. Conclusions LR12 could improve the resolution of inflammation and liver regeneration in mice with TAA-induced ALF by promoting the secretion of CCL20 from macrophages and activating the p38 MAPK pathway. Therefore, LR12 could be an attractive therapeutic target for the treatment of ALF.
Collapse
|
40
|
Yang G, Li S, Jin J, Xuan Y, Ding L, Huang M, Liu J, Wang B, Lan T. Protective effects of Longhu Rendan on chronic liver injury and fibrosis in mice. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
41
|
Park WB, Kim S, Shim S, Yoo HS. Identification of Dendritic Cell Maturation, TLR, and TREM1 Signaling Pathways in the Brucella canis Infected Canine Macrophage Cells, DH82, Through Transcriptomic Analysis. Front Vet Sci 2021; 8:619759. [PMID: 33829052 PMCID: PMC8020338 DOI: 10.3389/fvets.2021.619759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Research has been undertaken to understand the host immune response to Brucella canis infection because of the importance of the disease in the public health field and the clinical field. However, the previous mechanisms governing this infection have not been elucidated. Therefore, in vitro models, which mimic the in vivo infection route using a canine epithelial cell line, D17, and a canine macrophage, DH82, were established to determine these mechanisms by performing an analysis of the transcriptomes in the cells. In this study, a coculture model was constructed by using the D17 cell line and DH82 cell line in a transwell plate. Also, a single cell line culture system using DH82 was performed. After the stimulation of the cells in the two different systems infected with B. canis, the gene expression in the macrophages of the two different systems was analyzed by using RNA-sequencing (RNA-seq), and a transcriptomic analysis was performed by using the Ingenuity Pathway Analysis (IPA). Gene expression patterns were analyzed in the DH82 cell line at 2, 12, and 24 h after the stimulation with B. canis. Changes in the upregulated or downregulated genes showing 2-fold or higher were identified at each time point by comparing with the non-stimulated group. Differentially expressed genes (DEGs) between the two culture models were identified by using the IPA program. Generally, the number of genes expressed in the single cell line culture was higher than the number of genes expressed in the coculture model for all-time points. The expression levels of those genes were higher in the single cell line culture (p < 0.05). This analysis indicated that the immune response-related pathways, especially, the dendritic cell maturation, Triggering receptor expression on myeloid cells 1 (TREM1) signaling, and Toll-like receptor (TLR) signaling pathway, were significantly induced in both the culture systems with higher p-values and z-scores. An increase in the expression level of genes related to the pathways was observed over time. All pathways are commonly associated with a manifestation of pro-inflammatory cytokines and early immune responses. However, the Peroxisome proliferator-activation receptor (PPAR) signaling and Liver X Receptor/Retinoid X Receptor (LXR/RXR) signaling associated with lipid metabolism were reduced. These results indicate that early immune responses might be highly activated in B. canis infection. Therefore, these results might suggest clues to reveal the early immune response of the canine to B. canis infection, particularly TLR signaling.
Collapse
Affiliation(s)
- Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
| | - Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Sayed EA, Badr G, Hassan KAH, Waly H, Ozdemir B, Mahmoud MH, Alamery S. Induction of liver fibrosis by CCl4 mediates pathological alterations in the spleen and lymph nodes: The potential therapeutic role of propolis. Saudi J Biol Sci 2021; 28:1272-1282. [PMID: 33613057 PMCID: PMC7878719 DOI: 10.1016/j.sjbs.2020.11.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
In an animal models, carbon tetrachloride (CCl4) is a carcinogenic agent that causes liver fibrosis. The current study aims to investigate whether induction in liver-fibrosis by CCl4 in the mouse model could promote the initiation of fibrosis in lymph node and spleen due to sustained increase of inflammatory signals and also aimed to clarify the protective therapeutic effects of propolis. The male mice (BALB/c) were categorized into three experimental sets and each group involved 15 mice. Control group falls into first group; group-II and group-III were injected with CCl4 to induce liver-fibrosis and oral supplementation with propolis was provided in group-III for 4-weeks. A major improvement with hepatic collagen and α-smooth muscle actin (α-SMA) production was aligned with the activation of liver fibrosis from CCl4. Mice treated with CCl4 exhibited collagen deposition towards liver sections, pathological alterations in spleen and lymph node architectures, and a significantly increase the circulation of both T&B cells in secondary lymphoid organs. Mechanically, the secondary lymphoid organs treated with CCl4 in mice exposed a positive growth in α-SMA and collagen expression, increased in proinflammatory cytokine levels and a significant increase in TGF-β, NO and ROS levels. A manifest intensification in the expression of Nrf2, COX-2, and eNOS and upregulation of ASK1 and P38 phosphorylation. Interestingly, addition of propolis-treated CCl4 mice, substantially suppressed deposition of liver collagen, repealed inflammatory signals and resorted CCl4-mediated alterations in signaling cascades, thereby repairing the architectures of the secondary lymphoid organs. Our findings revealed benefits of propolis against fibrotic complications and enhancing secondary lymphoid organ architecture.
Collapse
Affiliation(s)
- Eman A. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Hanan Waly
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Betul Ozdemir
- Department of Cardiology, Faculty Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Wu X, Cai B, Lu W, Fu Y, Wei B, Niu Q, Su Z, Li Y, Wang L. HBV upregulated triggering receptor expressed on myeloid cells-1 (TREM-1) expression on monocytes participated in disease progression through NF-Kb pathway. Clin Immunol 2020; 223:108650. [PMID: 33316373 DOI: 10.1016/j.clim.2020.108650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) signal is related to the continuous amplification of inflammatory pathway. However, it is not clear whether and how HBV can regulated the expression of TREM-1 on monocyte participated in the progression of liver disease. Here, we showed that the expression of TREM-1 on monocyte subsets were increased significantly in HBV related liver cirrhosis group compared with chronic infected group and healthy control group. HBsAg and HBeAg could up-regulated TREM-1 on monocyte by NF-KB pathway, and at least last for 72 h. Increased TREM-1 on monocyte might associated with high level of inflammatory cytokine (TNF-a, IL-1β and IL-6) and the activation of LX-2 cells. Bioinformatics analysis showed that the high expression of TREM-1 was related to the poor prognosis of hepatocellular carcinoma (HCC). The level of TREM-1 might help to predict the progression of HBV infected liver disease and treat target to prevent fibrosis progression.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bei Cai
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wang Lu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Fu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Wei
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Niu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zhenzhen Su
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yamei Li
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lanlan Wang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
44
|
Sun H, Feng J, Tang L. Function of TREM1 and TREM2 in Liver-Related Diseases. Cells 2020; 9:2626. [PMID: 33297569 PMCID: PMC7762355 DOI: 10.3390/cells9122626] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
TREM1 and TREM2 are members of the triggering receptors expressed on myeloid cells (TREM) family. Both TREM1 and TREM2 are immunoglobulin superfamily receptors. Their main function is to identify foreign antigens and toxic substances, thereby adjusting the inflammatory response. In the liver, TREM1 and TREM2 are expressed on non-parenchymal cells, such as liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, and cells which infiltrate the liver in response to injury including monocyte-derived macrophages and neutrophils. The function of TREM1 and TREM2 in inflammatory response depends on Toll-like receptor 4. TREM1 mainly augments inflammation during acute inflammation, while TREM2 mainly inhibits chronic inflammation to protect the liver from pathological changes. Chronic inflammation often induces metabolic abnormalities, fibrosis, and tumorigenesis. The above physiological changes lead to liver-related diseases, such as liver injury, nonalcoholic steatohepatitis, hepatic fibrosis, and hepatocellular carcinoma. Here, we review the function of TREM1 and TREM2 in different liver diseases based on inflammation, providing a more comprehensive perspective for the treatment of liver-related diseases.
Collapse
Affiliation(s)
- Huifang Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| |
Collapse
|
45
|
Xuan J, Zhu D, Cheng Z, Qiu Y, Shao M, Yang Y, Zhai Q, Wang F, Qin F. Crocin inhibits the activation of mouse hepatic stellate cells via the lnc-LFAR1/MTF-1/GDNF pathway. Cell Cycle 2020; 19:3480-3490. [PMID: 33295246 PMCID: PMC7781632 DOI: 10.1080/15384101.2020.1848064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/20/2023] Open
Abstract
Crocin is the main monomer of saffron, which is a momentous component of traditional Chinese medicine Lang Qing A Ta. Here, we tried to probe into the role of crocin in liver fibrosis. Hematoxylin-eosin staining and Sirius Red staining were used to observe the pathological changes of liver tissues. After hepatic stellate cells (HSCs) were isolated from liver tissues, lnc-LFAR1, MTF-1, GDNF, and α-SMA expressions were detected by qRT-PCR and western blot. Immunohistochemistry and immunofluorescence were used to detect α-SMA expression. Chromatin immunoprecipitation was used to analyze the binding of MTF-1 to the GDNF promoter. Moreover, the dual-luciferase reporter gene, RNA pull-down, and RNA immunoprecipitation were used to clarify the interaction between MTF-1 and GDNF, lnc-LFAR1 and MTF-1. The degree of liver fibrosis was more severe in the mice from the liver fibrosis model, while the liver fibrosis was alleviated by the injection of crocin. lnc-LFAR1, GDNF, and α-SMA were up-regulated, and MTF-1 was down-regulated in liver fibrosis tissues and cells, while these trends were reversed after the injection of crocin. Besides, lnc-LFAR1 negatively regulated MTF-1 expression, and positively regulated GDNF and α-SMA expressions, and MTF-1 was enriched in the promoter region of GDNF. Furthermore, the cellular direct interactions between MTF-1 and GDNF, lnc-LFAR1 and MTF-1 were verified. In vivo experiments confirmed the relief of crocin on liver fibrosis. Our research expounded that crocin restrained the activation of HSCs through the lnc-LFAR1/MTF-1/GDNF axis, thereby ameliorating liver fibrosis.
Collapse
Affiliation(s)
- Ji Xuan
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Dongmei Zhu
- Department of Nursing, Jinling Hospital, Nanjing, China
| | - Zhengyuan Cheng
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Yuping Qiu
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Mei Shao
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Ya Yang
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Qi Zhai
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Feng Qin
- Jinling Hospital, Nanjing, China
| |
Collapse
|
46
|
The Gut Microbiota: How Does It Influence the Development and Progression of Liver Diseases. Biomedicines 2020; 8:biomedicines8110501. [PMID: 33207562 PMCID: PMC7697996 DOI: 10.3390/biomedicines8110501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The gut–liver axis plays important roles in both the maintenance of a healthy liver and the pathogenesis of liver diseases, where the gut microbiota acts as a major determinant of this relationship. Gut bacteria-derived metabolites and cellular components are key molecules that affect the function of the liver and modulate the pathology of liver diseases. Accumulating evidence showed that gut microbiota produces a myriad of molecules, including lipopolysaccharide, lipoteichoic acid, peptidoglycan, and DNA, as well as short-chain fatty acids, bile acids, trimethylamine, and indole derivatives. The translocation of these components to the liver exerts beneficial or pathogenic effects by interacting with liver immune cells. This is a bidirectional relationship. Therefore, the existence of crosstalk between the gut and liver and its implications on host health and diseases are essential for the etiology and treatment of diseases. Several mechanisms have been proposed for the pathogenesis of liver diseases, but still, the mechanisms behind the pathogenic role of gut-derived components on liver pathogenesis remain elusive and not understandable. This review discusses the current progress on the gut microbiota and its components in terms of the progression of liver diseases, and in turn, how liver diseases indirectly affect the intestinal function and induce intestinal inflammation. Moreover, this paper highlights the current therapeutic and preventive strategies used to restore the gut microbiota composition and improve host health.
Collapse
|
47
|
Hu C, He Y, Fang S, Tian N, Gong M, Xu X, Zhao L, Wang Y, He T, Zhang Y, Bi Y. Urine-derived stem cells accelerate the recovery of injured mouse hepatic tissue. Am J Transl Res 2020; 12:5131-5150. [PMID: 33042410 PMCID: PMC7540109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Urine-derived stem cells (USCs) are autologous stem cells that exhibit self-renewal ability and multi-lineage differentiation potential. These characteristics make USCs an ideal cell source for hepatocellular transplantation. Here, we investigated the biological characteristics of USCs and their potential use for the treatment of chronic liver injury. We characterized the cell-surface marker profile of USCs by flow cytometry and determined the osteogenic, adipogenic, and hepatic differentiation capacities of USCs using histology. We established a chronic liver-injury model by intraperitoneally injecting carbon tetrachloride into nude mice. USCs were then transplanted via tail vein injection. To determine liver function and histopathology following chronic liver injury, we calculated the liver index, measured serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and performed histological staining. USCs were small, adherent cells expressing mesenchymal but not hematopoietic stem-cell markers. Some induced USCs underwent osteogenic and adipogenic differentiation. When co-cultured with hepatic progenitor cells, about 10% of USCs underwent hepatic differentiation. The ALT and AST levels of the USC-transplanted group were lower than that of the chronic liver-injury model group, and there were no significant differences between the two USC-transplanted groups. However, hepatocyte degeneration and liver fibrosis substantially improved in the hypoxia-pretreated USC-transplanted group compared with the normoxia USC-transplanted group. Taken together, USCs display desirable proliferation and differentiation characteristics, and USC transplantation partially improves abnormal liver function and pathology associated with chronic liver injury. Furthermore, hypoxia pretreatment promotes cell proliferation, migration, and colony formation by inducing autophagy, leading to USC-elicited liver tissue recovery following injury in vivo.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Shuyu Fang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Na Tian
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Mengjia Gong
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Xiaohui Xu
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Yi Wang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, Illinois, USA
| | - Yuanyuan Zhang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Wake Forest Institute for Regenerative Medicine, Wake Forest UniversityWinston-Salem, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| |
Collapse
|
48
|
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, Kudo M, Gao M, Liu T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol 2020; 11:568032. [PMID: 33013406 PMCID: PMC7498642 DOI: 10.3389/fphar.2020.568032] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Centella asiatica (also known as Centella asiatica (L.) Urb. or Gotu kola) is a traditional Chinese medicine with extensive medicinal value, which is commonly used in Southeast Asian countries. This study aimed to summarize the effects of C. asiatica and its main components on neurological diseases, endocrine diseases, skin diseases, cardiovascular diseases, gastrointestinal diseases, immune diseases, and gynecological diseases, as well as potential molecular mechanisms, to study the pathological mechanism of these diseases based on the changes at the molecular level. The results showed that C. asiatica and its triterpenoids had extensive beneficial effects on neurological and skin diseases, which were confirmed through clinical studies. They exhibited anti-inflammatory, anti-oxidative stress, anti-apoptotic effects, and improvement in mitochondrial function. However, further clinical studies are urgently required due to the low level of evidence and lack of patients.
Collapse
Affiliation(s)
- Boju Sun
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - You Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Chengfei Zhang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, China
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Tonghua Liu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
49
|
Abstract
Chronic liver injury due to viral hepatitis, alcohol abuse, and metabolic disorders is a worldwide health concern. Insufficient treatment of chronic liver injury leads to fibrosis, causing liver dysfunction and carcinogenesis. Most cases of hepatocellular carcinoma (HCC) develop in the fibrotic liver. Pathological features of liver fibrosis include extracellular matrix (ECM) accumulation, mesenchymal cell activation, immune deregulation, and angiogenesis, all of which contribute to the precancerous environment, supporting tumor development. Among liver cells, hepatic stellate cells (HSCs) and macrophages play critical roles in fibrosis and HCC. These two cell types interplay and remodel the ECM and immune microenvironment in the fibrotic liver. Once HCC develops, HCC-derived factors influence HSCs and macrophages to switch to protumorigenic cell populations, cancer-associated fibroblasts and tumor-associated macrophages, respectively. This review aims to summarize currently available data on the roles of HSCs and macrophages in liver fibrosis and HCC, with a focus on their interaction.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
50
|
Matsuda M, Seki E. The liver fibrosis niche: Novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food Chem Toxicol 2020; 143:111556. [PMID: 32640349 DOI: 10.1016/j.fct.2020.111556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is a hepatic wound-healing response caused by chronic liver diseases that include viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis, and cholestatic liver disease. Liver fibrosis eventually progresses to cirrhosis that is histologically characterized by an abnormal liver architecture that includes distortion of liver parenchyma, formation of regenerative nodules, and a massive accumulation of extracellular matrix (ECM). Despite intensive investigations into the underlying mechanisms of liver fibrosis, developments of anti-fibrotic therapies for liver fibrosis are still unsatisfactory. Recent novel experimental approaches, such as single-cell RNA sequencing and proteomics, have revealed the heterogeneity of ECM-producing cells (mesenchymal cells) and ECM-regulating cells (immune cells and endothelial cells). These approaches have accelerated the identification of fibrosis-specific subpopulations among these cell types. The ECM also consists of heterogenous components. Their production, degradation, deposition, and remodeling are dynamically regulated in liver fibrosis, further affecting the functions of cells responsible for fibrosis. These cellular and ECM elements cooperatively form a unique microenvironment: a fibrotic niche. Understanding the complex interplay between these elements could lead to a better understanding of underlying fibrosis mechanisms and to the development of effective therapies.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ekihiro Seki
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|