1
|
Li X, Xu F, Zhang P, Mao L, Guo Y, Li H, Xie Y, Li Y, Liao Y, Chen J, Wu D, Zhang D. Overexpression of PRDM16 attenuates acute kidney injury progression: genetic and pharmacological approaches. MedComm (Beijing) 2024; 5:e737. [PMID: 39309696 PMCID: PMC11416085 DOI: 10.1002/mco2.737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
Acute kidney injury (AKI) presents as a condition marked by a sudden and rapid decrease in kidney function over a short timeframe, resulting from diverse causes. As a transcription factor, PR domain-containing 16 (PRDM16), has recently been implicated in brown fat biogenesis and heart diseases. Our recent works indicated that PRDM16 could suppress the occurrence of renal interstitial fibrosis in diabetic kidney disorder. Nonetheless, the effect and regulatory mechanism of PRDM16 in AKI remain elusive. Our study demonstrated that PRDM16 inhibited apoptosis induced by ischemic/reperfusion (I/R) in BUMPT (Boston University mouse kidney proximal tubular) cells and HK-2(Human Kidney-2) cells. Mechanistically, PRDM16 not only bound to the promoter region of S100 Calcium Binding Protein A6 (S100A6)and upregulated its expression but also interacted with its amino acids 945-949, 957-960, and 981-984 to suppress the p38MAPK and JNK axes via inhibition of PKC-η activity and mitochondrial reactive oxygen species (ROS) production. Furthermore, cisplatin- and I/R-stimulated AKI progression were ameliorated in PRDM16 proximal-tubule-specific knockin mice, whereas exacerbated in PRDM16 knockout proximal-tubule-specific mice). Moreover, we observed that formononetin ameliorated I/R- and cisplatin-triggered AKI progression in mice. Taken together, these findings reveal a novel self-protective mechanism in AKI, whereby PRDM16 regulates the S100A6/PKC-η/ROS/p38MAPK and JNK pathways to inhibit AKI progression.
Collapse
Affiliation(s)
- Xiaozhou Li
- Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Emergency Medicine and Difficult Diseases Institute,Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fang Xu
- Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Emergency Medicine and Difficult Diseases Institute,Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Pan Zhang
- Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Emergency Medicine and Difficult Diseases Institute,Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Epidemiology and Health StatisticsXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Liufeng Mao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Yong Guo
- Department of Organ Procurement OrganizationThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Huiling Li
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuxing Xie
- Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Emergency Medicine and Difficult Diseases Institute,Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yijian Li
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yingjun Liao
- Department of AnesthesiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Junxiang Chen
- Department of NephrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences,Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Dongshan Zhang
- Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Emergency Medicine and Difficult Diseases Institute,Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NephrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Bathina S, Colleluori G, Villareal DT, Aguirre L, Chen R, Armamento-Villareal R. A PRDM16-driven signal regulates body composition in testosterone-treated hypogonadal men. Front Endocrinol (Lausanne) 2024; 15:1426175. [PMID: 39286266 PMCID: PMC11402695 DOI: 10.3389/fendo.2024.1426175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background Testosterone (T) therapy increases lean mass and reduces total body and truncal fat mass in hypogonadal men. However, the underlying molecular mechanisms for the reciprocal changes in fat and lean mass in humans are not entirely clear. Methods Secondary analysis of specimens obtained from a single-arm, open-label clinical trial on pharmacogenetics of response to T therapy in men with late-onset hypogonadism, conducted between 2011 and 2016 involving 105 men (40-74 years old), who were given intramuscular T cypionate 200 mg every 2 weeks for 18 months. Subcutaneous fat (SCF), peripheral blood mononuclear cells (PBMC) and serum were obtained from the participants at different time points of the study. We measured transcription factors for adipogenesis and myogenesis in the SCF, and PBMC, respectively, by real-time quantitative PCR at baseline and 6 months. Serum levels of FOLLISTATIN, PAX7, MYOSTATIN, ADIPSIN, and PRDM16 were measured by ELISA. Results As expected, there was a significant increase in T and estradiol levels after 6 months of T therapy. There was also a reduction in fat mass and an increase in lean mass after 6 months of T therapy. Gene-protein studies showed a significant reduction in the expression of the adipogenic markers PPARγ in SCF and ADIPSIN levels in the serum, together with a concomitant significant increase in the expression of myogenic markers, MYOD in PBMC and PAX7 and FOLLISTATIN levels in the serum after 6 months of T therapy compared to baseline. Interestingly, there was a significant increase in the adipo-myogenic switch, PRDM16, expression in SCF and PBMC, and in circulating protein levels in the serum after 6 months of T therapy, which is likely from increased estradiol. Conclusion Our study supports that molecular shift from the adipogenic to the myogenic pathway in men with hypogonadism treated with T could be mediated directly or indirectly by enhanced PRDM16 activity, in turn a result from increased estradiol level. This might have led to the reduction in body fat and increase in lean mass commonly seen in hypogonadal men treated with T.
Collapse
Affiliation(s)
- Siresha Bathina
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Georgia Colleluori
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
| | - Dennis T. Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Lina Aguirre
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Medicine, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Rui Chen
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| |
Collapse
|
3
|
Shi Q, Song G, Song L, Wang Y, Ma J, Zhang L, Yuan E. Unravelling the function of prdm16 in human tumours: A comparative analysis of haematologic and solid tumours. Biomed Pharmacother 2024; 178:117281. [PMID: 39137651 DOI: 10.1016/j.biopha.2024.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Extensive research has shown that PR domain 16 (PRDM16) plays a critical role in adipose tissue metabolism, including processes such as browning and thermogenesis of adipocytes, beigeing of adipocytes, and adipogenic differentiation of myoblasts. These functions have been associated with diseases such as obesity and diabetes. Additionally, PRDM16 has been correlated with various other conditions, including migraines, heterochromatin abnormalities, metabolic syndrome, cardiomyopathy, sarcopenia, nonsyndromic cleft lip, and essential hypertension, among others. However, there is currently no systematic or comprehensive conclusion regarding the mechanism of PRDM16 in human tumours, including haematologic and solid tumours. The aim of this review is to provide an overview of the research progress on PRDM16 in haematologic and solid tumours by incorporating recent literature findings. Furthermore, we explore the prospects of PRDM16 in the precise diagnosis and treatment of human haematologic and solid tumours.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Guangyong Song
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Liying Song
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Yu Wang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Jun Ma
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Linlin Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Enwu Yuan
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
4
|
Barreyro L, Sampson AM, Hueneman K, Choi K, Christie S, Ramesh V, Wyder M, Wang D, Pujato M, Greis KD, Huang G, Starczynowski DT. Dysregulated innate immune signaling cooperates with RUNX1 mutations to transform an MDS-like disease to AML. iScience 2024; 27:109809. [PMID: 38784013 PMCID: PMC11112336 DOI: 10.1016/j.isci.2024.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulated innate immune signaling is linked to preleukemic conditions and myeloid malignancies. However, it is unknown whether sustained innate immune signaling contributes to malignant transformation. Here we show that cell-intrinsic innate immune signaling driven by miR-146a deletion (miR-146aKO), a commonly deleted gene in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), cooperates with mutant RUNX1 (RUNX1mut) to initially induce marrow failure and features of MDS. However, miR-146aKO hematopoietic stem and/or progenitor cells (HSPCs) expressing RUNX1mut eventually progress to a fatal AML. miR-146aKO HSPCs exhaust during serial transplantation, while expression of RUNX1mut restored their hematopoietic cell function. Thus, HSPCs exhibiting dysregulated innate immune signaling require a second hit to develop AML. Inhibiting the dysregulated innate immune pathways with a TRAF6-UBE2N inhibitor suppressed leukemic miR-146aKO/RUNX1mut HSPCs, highlighting the necessity of TRAF6-dependent cell-intrinsic innate immune signaling in initiating and maintaining AML. These findings underscore the critical role of dysregulated cell-intrinsic innate immune signaling in driving preleukemic cells toward AML progression.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Avery M. Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Dehua Wang
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Mario Pujato
- Life Sciences Computational Services, LLC, Huntingdon Valley, PA, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
- Department of Pathology & Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Guru Murthy GS, Zhang T, Bolon YT, Spellman S, Dong J, Auer P, Saber W. Proteomics to predict relapse in patients with myelodysplastic neoplasms undergoing allogeneic hematopoietic cell transplantation. Biomark Res 2024; 12:10. [PMID: 38273355 PMCID: PMC10809608 DOI: 10.1186/s40364-023-00550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Disease relapse remains a major barrier to success after allogeneic hematopoietic cell transplantation (allo-HCT) in myelodysplastic neoplasms (MDS). While certain high risk genomic alterations are associated with increased risk of relapse, there is a lack of clinically applicable tools to analyze the downstream cellular events that are associated with relapse. We hypothesized that unique proteomic signatures in MDS patients undergoing allo-HCT could serve as a tool to understand this aspect and predict relapse. Using the Center for International Blood and Marrow Transplant Research (CIBMTR) database, we identified 52 MDS patients who underwent allo-HCT and analyzed their proteomic profile from pretransplant blood samples in a matched case-control design. Twenty-six patients without disease relapse after allo-HCT (controls) were matched with 26 patients who experienced relapse (cases). Proteomics assessment was conducted using the Slow Off-rate Modified Aptamers (SOMAmer) based assay. In gene set enrichment analysis, we noted that expression in the hallmark complement, and hallmark allograft rejection pathways were statistically enriched among patients who had disease relapse post-transplant. In addition, correlation analyses showed that methylation array probes in cis- and transcription regulatory elements of immune pathway genes were modulated and differentially sensitize the immune response. These findings suggest that proteomic analysis could serve as a novel tool for prediction of relapse after allo-HCT in MDS.
Collapse
Affiliation(s)
| | - Tao Zhang
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota, USA
| | - Yung-Tsi Bolon
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota, USA
| | - Stephen Spellman
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota, USA
| | - Jing Dong
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul Auer
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wael Saber
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Kramer RJ, Fatahian AN, Chan A, Mortenson J, Osher J, Sun B, Parker LE, Rosamilia MB, Potter KB, Moore K, Atkins SL, Rosenfeld JA, Birjiniuk A, Jones E, Howard TS, Kim JJ, Scott DA, Lalani S, Rouzbehani OMT, Kaplan S, Hathaway MA, Cohen JL, Asaki SY, Martinez HR, Boudina S, Landstrom AP. PRDM16 Deletion Is Associated With Sex-dependent Cardiomyopathy and Cardiac Mortality: A Translational, Multi-Institutional Cohort Study. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:390-400. [PMID: 37395136 PMCID: PMC10528350 DOI: 10.1161/circgen.122.003912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 05/10/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND 1p36 deletion syndrome can predispose to pediatric-onset cardiomyopathy. Deletion breakpoints are variable and may delete the transcription factor PRDM16. Early studies suggest that deletion of PRDM16 may underlie cardiomyopathy in patients with 1p36 deletion; however, the prognostic impact of PRDM16 loss is unknown. METHODS This retrospective cohort included subjects with 1p36 deletion syndrome from 4 hospitals. Prevalence of cardiomyopathy and freedom from death, cardiac transplantation, or ventricular assist device were analyzed. A systematic review cohort was derived for further analysis. A cardiac-specific Prdm16 knockout mouse (Prdm16 conditional knockout) was generated. Echocardiography was performed at 4 and 6 to 7 months. Histology staining and qPCR were performed at 7 months to assess fibrosis. RESULTS The retrospective cohort included 71 patients. Among individuals with PRDM16 deleted, 34.5% developed cardiomyopathy versus 7.7% of individuals with PRDM16 not deleted (P=0.1). In the combined retrospective and systematic review cohort (n=134), PRDM16 deletion-associated cardiomyopathy risk was recapitulated and significant (29.1% versus 10.8%, P=0.03). PRDM16 deletion was associated with increased risk of death, cardiac transplant, or ventricular assist device (P=0.04). Among those PRDM16 deleted, 34.5% of females developed cardiomyopathy versus 16.7% of their male counterparts (P=0.2). We find sex-specific differences in the incidence and the severity of contractile dysfunction and fibrosis in female Prdm16 conditional knockout mice. Further, female Prdm16 conditional knockout mice demonstrate significantly elevated risk of mortality (P=0.0003). CONCLUSIONS PRDM16 deletion is associated with a significantly increased risk of cardiomyopathy and cardiac mortality. Prdm16 conditional knockout mice develop cardiomyopathy in a sex-biased way. Patients with PRDM16 deletion should be assessed for cardiac disease.
Collapse
Affiliation(s)
- Ryan J. Kramer
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Amir Nima Fatahian
- Dept of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Alice Chan
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Jeffery Mortenson
- Dept of Pediatrics, Division of Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Jennifer Osher
- Dept of Pediatrics, Division of Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Bo Sun
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Lauren E. Parker
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Michael B. Rosamilia
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Kyra B. Potter
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Kaila Moore
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Sage L. Atkins
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
| | - Jill A. Rosenfeld
- Baylor Genetic Laboratories, Baylor College of Medicine, Houston, TX
- Dept of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| | - Alona Birjiniuk
- Dept of Pediatrics, Division of Pediatric Cardiology, Northwestern Feinberg School of Medicine, Chicago, IL
| | - Edward Jones
- Dept of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine, Houston, TX
| | - Taylor S. Howard
- Dept of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine, Houston, TX
| | - Jeffrey J. Kim
- Dept of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine, Houston, TX
| | - Daryl A. Scott
- Dept of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| | - Seema Lalani
- Dept of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| | - Omid MT. Rouzbehani
- Dept of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Samantha Kaplan
- Medical Center Library & Archives, Duke University School of Medicine, Durham, NC
| | - Marissa A. Hathaway
- Dept of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Jennifer L. Cohen
- Dept of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC
| | - S. Yukiko Asaki
- Dept of Pediatrics, Division of Pediatric Cardiology, University of Utah, Salt Lake City, UT
| | - Hugo R. Martinez
- Dept of Pediatrics, Division of Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Sihem Boudina
- Dept of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Andrew P. Landstrom
- Dept of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC
- Dept of Cell Biology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
7
|
Thompson M, Sakabe M, Verba M, Hao J, Meadows SM, Lu QR, Xin M. PRDM16 regulates arterial development and vascular integrity. Front Physiol 2023; 14:1165379. [PMID: 37324380 PMCID: PMC10267475 DOI: 10.3389/fphys.2023.1165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Proper vascular formation is regulated by multiple signaling pathways. The vascular endothelial growth factor (VEGF) signaling promotes endothelial proliferation. Notch and its downstream targets act to lead endothelial cells toward an arterial fate through regulation of arterial gene expression. However, the mechanisms of how endothelial cells (ECs) in the artery maintain their arterial characteristics remain unclear. Here, we show that PRDM16 (positive regulatory domain-containing protein 16), a zinc finger transcription factor, is expressed in arterial ECs, but not venous ECs in developing embryos and neonatal retinas. Endothelial-specific deletion of Prdm16 induced ectopic venous marker expression in the arterial ECs and reduced vascular smooth muscle cell (vSMC) recruitment around arteries. Whole-genome transcriptome analysis using isolated brain ECs show that the expression of Angpt2 (encoding ANGIOPOIETIN2, which inhibits vSMC recruitment) is upregulated in the Prdm16 knockout ECs. Conversely, forced expression of PRDM16 in venous ECs is sufficient to induce arterial gene expression and repress the ANGPT2 level. Together, these results reveal an arterial cell-autonomous function for PRDM16 in suppressing venous characteristics in arterial ECs.
Collapse
Affiliation(s)
- Michael Thompson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Masahide Sakabe
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Verba
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Stryder M. Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Q. Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
Umeda M, Ma J, Huang BJ, Hagiwara K, Westover T, Abdelhamed S, Barajas JM, Thomas ME, Walsh MP, Song G, Tian L, Liu Y, Chen X, Kolekar P, Tran Q, Foy SG, Maciaszek JL, Kleist AB, Leonti AR, Ju B, Easton J, Wu H, Valentine V, Valentine MB, Liu YC, Ries RE, Smith JL, Parganas E, Iacobucci I, Hiltenbrand R, Miller J, Myers JR, Rampersaud E, Rahbarinia D, Rusch M, Wu G, Inaba H, Wang YC, Alonzo TA, Downing JR, Mullighan CG, Pounds S, Babu MM, Zhang J, Rubnitz JE, Meshinchi S, Ma X, Klco JM. Integrated Genomic Analysis Identifies UBTF Tandem Duplications as a Recurrent Lesion in Pediatric Acute Myeloid Leukemia. Blood Cancer Discov 2022; 3:194-207. [PMID: 35176137 PMCID: PMC9780084 DOI: 10.1158/2643-3230.bcd-21-0160] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Benjamin J. Huang
- Department of Pediatrics, University of California, Benioff Children's Hospital, San Francisco, California
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Juan M. Barajas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael P. Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott G. Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie L. Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew B. Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bengsheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Evan Parganas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jonathan Miller
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jason R. Myers
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Todd A. Alonzo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James R. Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - M. Madan Babu
- Department of Structural Biology and the Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
9
|
Schnoeder TM, Schwarzer A, Jayavelu AK, Hsu CJ, Kirkpatrick J, Döhner K, Perner F, Eifert T, Huber N, Arreba-Tutusaus P, Dolnik A, Assi SA, Nafria M, Jiang L, Dai YT, Chen Z, Chen SJ, Kellaway SG, Ptasinska A, Ng ES, Stanley EG, Elefanty AG, Buschbeck M, Bierhoff H, Brodt S, Matziolis G, Fischer KD, Hochhaus A, Chen CW, Heidenreich O, Mann M, Lane SW, Bullinger L, Ori A, von Eyss B, Bonifer C, Heidel FH. PLCG1 is required for AML1-ETO leukemia stem cell self-renewal. Blood 2022; 139:1080-1097. [PMID: 34695195 PMCID: PMC8854675 DOI: 10.1182/blood.2021012778] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.
Collapse
MESH Headings
- Animals
- Cell Self Renewal
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Proteome
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Transcriptome
- Translocation, Genetic
Collapse
Affiliation(s)
- Tina M Schnoeder
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Adrian Schwarzer
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, and
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Chen-Jen Hsu
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Florian Perner
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA
| | - Theresa Eifert
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nicolas Huber
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Patricia Arreba-Tutusaus
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Anna Dolnik
- Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Monica Nafria
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lu Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ting Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sophie G Kellaway
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne Parkville, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | | | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, Jena, Germany
| | - Steffen Brodt
- University Hospital Jena, Orthopaedic Department at Campus Eisenberg, Eisenberg, Germany
| | - Georg Matziolis
- University Hospital Jena, Orthopaedic Department at Campus Eisenberg, Eisenberg, Germany
| | - Klaus-Dieter Fischer
- Institute for Cell Biology and Biochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Hochhaus
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, Germany
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands; and
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Steven W Lane
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lars Bullinger
- Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Florian H Heidel
- Innere Medizin C, Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
- Leibniz Institute on Aging, Fritz-Lipmann Institute (FLI), Jena, Germany
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, Germany
| |
Collapse
|
10
|
Genome-wide DNA Methylation Analysis in Pediatric Acute Myeloid Leukemia. Blood Adv 2022; 6:3207-3219. [PMID: 35008106 PMCID: PMC9198913 DOI: 10.1182/bloodadvances.2021005381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
FLT3-ITD and high PRDM16 expression induced methylation changes at STAT5 and AP-1 binding sites in pediatric AML. Hypomethylated regions in PRDM16-highly expressed AMLs were correlated with enhanced chromatin accessibilities at multiple genomic regions.
We investigated genome-wide DNA methylation patterns in 64 pediatric patients with acute myeloid leukemia (AML). Based on unsupervised clustering with the 567 most variably methylated cytosine guanine dinucleotide (CpG) sites, patients were categorized into 4 clusters associated with genetic alterations. Clusters 1 and 3 were characterized by the presence of known favorable prognostic factors, such as RUNX1-RUNX1T1 fusion and KMT2A rearrangement with low MECOM expression, and biallelic CEBPA mutations (all 8 patients), respectively. Clusters 2 and 4 comprised patients exhibiting molecular features associated with adverse outcomes, namely internal tandem duplication of FLT3 (FLT3-ITD), partial tandem duplication of KMT2A, and high PRDM16 expression. Depending on the methylation values of the 1243 CpG sites that were significantly different between FLT3-ITD+ and FLT3-ITD− AML, patients were categorized into 3 clusters: A, B, and C. The STAT5-binding motif was most frequently found close to the 1243 CpG sites. All 8 patients with FLT3-ITD in cluster A harbored high PRDM16 expression and experienced adverse events, whereas only 1 of 7 patients with FLT3-ITD in the other clusters experienced adverse events. PRDM16 expression levels were also related to DNA methylation patterns, which were drastically changed at the cutoff value of PRDM16/ABL1 = 0.10. The assay for transposase-accessible chromatin sequencing of AMLs supported enhanced chromatin accessibility around genomic regions, such as HOXB cluster genes, SCHIP1, and PRDM16, which were associated with DNA methylation changes in AMLs with FLT3-ITD and high PRDM16 expression. Our results suggest that DNA methylation levels at specific CpG sites are useful to support genetic alterations and gene expression patterns of patients with pediatric AML.
Collapse
|
11
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
12
|
Choudhury SR, Dutta S, Bhaduri U, Rao MRS. LncRNA Hmrhl regulates expression of cancer related genes in chronic myelogenous leukemia through chromatin association. NAR Cancer 2021; 3:zcab042. [PMID: 34734184 PMCID: PMC8559160 DOI: 10.1093/narcan/zcab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA has emerged as a key regulator of myriad gene functions. One such lncRNA mrhl, reported by our group, was found to have important role in spermatogenesis and embryonic development in mouse. Recently, its human homolog, Hmrhl was shown to have differential expression in several type of cancers. In the present study, we further characterize molecular features of Hmrhl and gain insight into its functional role in leukemia by gene silencing and transcriptome-based studies. Results indicate its high expression in CML patient samples as well as in K562 cell line. Silencing experiments suggest role of Hmrhl in cell proliferation, migration & invasion. RNA-seq and ChiRP-seq data analysis further revealed its association with important biological processes, including perturbed expression of crucial TFs and cancer-related genes. Among them ZIC1, PDGRFβ and TP53 were identified as regulatory targets, with high possibility of triplex formation by Hmrhl at their promoter site. Further, overexpression of PDGRFβ in Hmrhl silenced cells resulted in rescue effect of cancer associated cellular phenotypes. In addition, we also found TAL-1 to be a potential regulator of Hmrhl expression in K562 cells. Thus, we hypothesize that Hmrhl lncRNA may play a significant role in the pathobiology of CML.
Collapse
Affiliation(s)
- Subhendu Roy Choudhury
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, India
| | - Sangeeta Dutta
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, India
| | - Utsa Bhaduri
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, India
| | | |
Collapse
|
13
|
Transcription analysis of a histones modifiers panel coupled with critical tumor suppressor genes displayed frequent changes in patients with AML.: mRNA levels of histones modifiers and TSGs in AML. Curr Res Transl Med 2021; 69:103311. [PMID: 34455155 DOI: 10.1016/j.retram.2021.103311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic alterations could cause leukemia through the activation of normally silent loci or silencing of normally active loci. We herein aimed to compare the expression patterns of a histone modifiers panel consisted of SUV39H1, PRDM16, UHRF2, KDM2B, and KDM3C between acute myeloid leukemia(AML) cells and normal cells and to assess the correlation of these genes with the expression of vital tumor suppressor genes, including p16INK4A and p53. Bone marrow or peripheral blood samples of 50 AML patients at diagnosis and also 18 subjects with a normal hematopoietic system as a control group were obtained after informed consent. Then, qRT-PCR was performed to determine the expression levels of the aforementioned genes. We found a broad alteration in the expression signature of five out of seven studied genes in AML patients as compared with the control group. UHRF2 and p53 were remarkably downregulated in AML patients (P<0.001), while SUV39H1, PRDM16, and KDM3C were significantly overexpressed (P<0.01). Based on the Spearman rank correlation, SUV39H1 and KDM2B negatively regulated both p16INK4A and p53 expression. Taken together, our findings provided preliminary evidence regarding the pervasive mRNA perturbation of histone modifiers and their plausible influences on critical tumor suppressor genes. Future studies in this area would be required to assist in establishing these results in the clinical practice of AML patients.
Collapse
|
14
|
Simonetti G, Angeli D, Petracci E, Fonzi E, Vedovato S, Sperotto A, Padella A, Ghetti M, Ferrari A, Robustelli V, Di Liddo R, Conconi MT, Papayannidis C, Cerchione C, Rondoni M, Astolfi A, Ottaviani E, Martinelli G, Gottardi M. Adrenomedullin Expression Characterizes Leukemia Stem Cells and Associates With an Inflammatory Signature in Acute Myeloid Leukemia. Front Oncol 2021; 11:684396. [PMID: 34150648 PMCID: PMC8208888 DOI: 10.3389/fonc.2021.684396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Adrenomedullin (ADM) is a hypotensive and vasodilator peptide belonging to the calcitonin gene-related peptide family. It is secreted in vitro by endothelial cells and vascular smooth muscle cells, and is significantly upregulated by a number of stimuli. Moreover, ADM participates in the regulation of hematopoietic compartment, solid tumors and leukemias, such as acute myeloid leukemia (AML). To better characterize ADM involvement in AML pathogenesis, we investigated its expression during human hematopoiesis and in leukemic subsets, based on a morphological, cytogenetic and molecular characterization and in T cells from AML patients. In hematopoietic stem/progenitor cells and T lymphocytes from healthy subjects, ADM transcript was barely detectable. It was expressed at low levels by megakaryocytes and erythroblasts, while higher levels were measured in neutrophils, monocytes and plasma cells. Moreover, cells populating the hematopoietic niche, including mesenchymal stem cells, showed to express ADM. ADM was overexpressed in AML cells versus normal CD34+ cells and in the subset of leukemia compared with hematopoietic stem cells. In parallel, we detected a significant variation of ADM expression among cytogenetic subgroups, measuring the highest levels in inv(16)/t(16;16) or complex karyotype AML. According to the mutational status of AML-related genes, the analysis showed a lower expression of ADM in FLT3-ITD, NPM1-mutated AML and FLT3-ITD/NPM1-mutated cases compared with wild-type ones. Moreover, ADM expression had a negative impact on overall survival within the favorable risk class, while showing a potential positive impact within the subgroup receiving a not-intensive treatment. The expression of 135 genes involved in leukemogenesis, regulation of cell proliferation, ferroptosis, protection from apoptosis, HIF-1α signaling, JAK-STAT pathway, immune and inflammatory responses was correlated with ADM levels in the bone marrow cells of at least two AML cohorts. Moreover, ADM was upregulated in CD4+ T and CD8+ T cells from AML patients compared with healthy controls and some ADM co-expressed genes participate in a signature of immune tolerance that characterizes CD4+ T cells from leukemic patients. Overall, our study shows that ADM expression in AML associates with a stem cell phenotype, inflammatory signatures and genes related to immunosuppression, all factors that contribute to therapy resistance and disease relapse.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Susanna Vedovato
- Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy
| | - Alessandra Sperotto
- Hematology and Transplant Center Unit, Dipartimento di Area Medica (DAME), Udine University Hospital, Udine, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Robustelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michela Rondoni
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, Ravenna, Italy
| | - Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Emanuela Ottaviani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV, IRCCS, Padua, Italy
| |
Collapse
|
15
|
Lemarié M, Bottardi S, Mavoungou L, Pak H, Milot E. IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling. PLoS Genet 2021; 17:e1009478. [PMID: 33770102 PMCID: PMC8026084 DOI: 10.1371/journal.pgen.1009478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/07/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor IKAROS binds and represses multiple NOTCH target genes. For their induction upon NOTCH signaling, IKAROS is removed and replaced by NOTCH Intracellular Domain (NICD)-associated proteins. However, IKAROS remains associated to other NOTCH activated genes upon signaling and induction. Whether IKAROS could participate to the induction of this second group of NOTCH activated genes is unknown. We analyzed the combined effect of IKAROS abrogation and NOTCH signaling on the expression of NOTCH activated genes in erythroid cells. In IKAROS-deleted cells, we observed that many of these genes were either overexpressed or no longer responsive to NOTCH signaling. IKAROS is then required for the organization of bivalent chromatin and poised transcription of NOTCH activated genes belonging to either of the aforementioned groups. Furthermore, we show that IKAROS-dependent poised organization of the NOTCH target Cdkn1a is also required for its adequate induction upon genotoxic insults. These results highlight the critical role played by IKAROS in establishing bivalent chromatin and transcriptional poised state at target genes for their activation by NOTCH or other stress signals. NOTCH1 deregulation can favor hematological malignancies. In addition to RBP-Jκ/NICD/MAML1, other regulators are required for the measured activation of NOTCH target genes. IKAROS is a known repressor of many NOTCH targets. Since it can also favor transcriptional activation and control gene expression levels, we questioned whether IKAROS could participate to the activation of specific NOTCH target genes. We are reporting that upon NOTCH induction, the absence of IKAROS impairs the measured activation of two groups of NOTCH target genes: (i) those overexpressed and characterized by an additive effect imposed by the absence of IKAROS and NOTCH induction; and (ii) those ‘desensitized’ and no more activated by NOTCH. At genes of both groups, IKAROS controls the timely recruitment of the chromatin remodelers CHD4 and BRG1. IKAROS then influences the activation of these genes through the organization of chromatin and poised transcription or through transcriptional elongation control. The importance of the IKAROS controlled and measured activation of genes is not limited to NOTCH signaling as it also characterizes Cdkn1a expression upon genotoxic stress. Thus, these results provide a new perspective on the importance of IKAROS for the adequate cellular response to stress, whether imposed by NOTCH or genotoxic insults.
Collapse
Affiliation(s)
- Maud Lemarié
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Helen Pak
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
16
|
He L, Jones J, He W, Bjork BC, Wen J, Dai Q. PRDM16 regulates a temporal transcriptional program to promote progression of cortical neural progenitors. Development 2021; 148:dev.194670. [PMID: 33597191 PMCID: PMC7990860 DOI: 10.1242/dev.194670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Radial glia (RG) in the neocortex sequentially generate distinct subtypes of projection neurons, accounting for the diversity and complex assembly of cortical neural circuits. Mechanisms that drive the rapid and precise temporal progression of RG are beginning to be elucidated. Here, we reveal that the RG-specific transcriptional regulator PRDM16 promotes the transition of early to late phase of neurogenesis in the mouse neocortex. Loss of Prdm16 delays the timely progression of RG, leading to defective cortical laminar organization. Our genomic analyses demonstrate that PRDM16 regulates a subset of genes that are dynamically expressed between early and late neurogenesis. We show that PRDM16 suppresses target gene expression through limiting chromatin accessibility of permissive enhancers. We further confirm that crucial target genes regulated by PRDM16 are neuronal specification genes, cell cycle regulators and molecules required for neuronal migration. These findings provide evidence to support the finding that neural progenitors temporally shift the gene expression program to achieve neural cell diversity.
Collapse
Affiliation(s)
- Li He
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Jennifer Jones
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Weiguo He
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Bryan C Bjork
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, 2601 Canberra, Australia
| | - Qi Dai
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
17
|
Abstract
Purpose of Review The well-established crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for the homeostasis and hematopoietic regeneration in response to blood formation emergencies. Past decade has witnessed that the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells can regenerate and/or repair the damaged cells. Mitochondria have recently emerged as a potential regulator of HSC fate. This review intends to discuss recent advances in the understanding of the mitochondrial dynamics, specifically focused on the role of mitochondrial transfer, in the maintenance of HSC activity with clear implications in stem cell transplantation and regenerative medicine. Recent Findings HSC are highly heterogeneous in their mitochondrial metabolism, and the quiescence and potency of HSC depend on the status of mitochondrial dynamics and the clearance of damaged mitochondria. Recent evidence has shown that in stress response, BM stromal cells transfer healthy mitochondria to HSC, facilitate HSC bioenergetics shift towards oxidative phosphorylation, and subsequently stimulate leukocyte expansion. Furthermore, metabolic rewiring following mitochondria transfer from HSPC to BM stromal cells likely to repair the damaged BM niche and accelerate limiting HSC transplantation post myeloablative conditioning.
Collapse
|
18
|
Domingo-Relloso A, Huan T, Haack K, Riffo-Campos AL, Levy D, Fallin MD, Terry MB, Zhang Y, Rhoades DA, Herreros-Martinez M, Garcia-Esquinas E, Cole SA, Tellez-Plaza M, Navas-Acien A. DNA methylation and cancer incidence: lymphatic-hematopoietic versus solid cancers in the Strong Heart Study. Clin Epigenetics 2021; 13:43. [PMID: 33632303 PMCID: PMC7908806 DOI: 10.1186/s13148-021-01030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epigenetic alterations may contribute to early detection of cancer. We evaluated the association of blood DNA methylation with lymphatic-hematopoietic cancers and, for comparison, with solid cancers. We also evaluated the predictive ability of DNA methylation for lymphatic-hematopoietic cancers. METHODS Blood DNA methylation was measured using the Illumina Infinium methylationEPIC array in 2324 Strong Heart Study participants (41.4% men, mean age 56 years). 788,368 CpG sites were available for differential DNA methylation analysis for lymphatic-hematopoietic, solid and overall cancers using elastic-net and Cox regression models. We conducted replication in an independent population: the Framingham Heart Study. We also analyzed differential variability and conducted bioinformatic analyses to assess for potential biological mechanisms. RESULTS Over a follow-up of up to 28 years (mean 15), we identified 41 lymphatic-hematopoietic and 394 solid cancer cases. A total of 126 CpGs for lymphatic-hematopoietic cancers, 396 for solid cancers, and 414 for overall cancers were selected as predictors by the elastic-net model. For lymphatic-hematopoietic cancers, the predictive ability (C index) increased from 0.58 to 0.87 when adding these 126 CpGs to the risk factor model in the discovery set. The association was replicated with hazard ratios in the same direction in 28 CpGs in the Framingham Heart Study. When considering the association of variability, rather than mean differences, we found 432 differentially variable regions for lymphatic-hematopoietic cancers. CONCLUSIONS This study suggests that differential methylation and differential variability in blood DNA methylation are associated with lymphatic-hematopoietic cancer risk. DNA methylation data may contribute to early detection of lymphatic-hematopoietic cancers.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Melchor Fernandez Almagro Street, 5, Madrid, Spain.
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain.
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Dorothy A Rhoades
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | | | - Esther Garcia-Esquinas
- Universidad Autonoma de Madrid, Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Melchor Fernandez Almagro Street, 5, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
19
|
Mathkar PP, Chen X, Sulovari A, Li D. Characterization of Hepatitis B Virus Integrations Identified in Hepatocellular Carcinoma Genomes. Viruses 2021; 13:v13020245. [PMID: 33557409 PMCID: PMC7915589 DOI: 10.3390/v13020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. Almost half of HCC cases are associated with hepatitis B virus (HBV) infections, which often lead to HBV sequence integrations in the human genome. Accurate identification of HBV integration sites at a single nucleotide resolution is critical for developing a better understanding of the cancer genome landscape and of the disease itself. Here, we performed further analyses and characterization of HBV integrations identified by our recently reported VIcaller platform in recurrent or known HCC genes (such as TERT, MLL4, and CCNE1) as well as non-recurrent cancer-related genes (such as CSMD2, NKD2, and RHOU). Our pathway enrichment analysis revealed multiple pathways involving the alcohol dehydrogenase 4 gene, such as the metabolism pathways of retinol, tyrosine, and fatty acid. Further analysis of the HBV integration sites revealed distinct patterns involving the integration upper breakpoints, integrated genome lengths, and integration allele fractions between tumor and normal tissues. Our analysis also implies that the VIcaller method has diagnostic potential through discovering novel clonal integrations in cancer-related genes. In conclusion, although VIcaller is a hypothesis free virome-wide approach, it can still be applied to accurately identify genome-wide integration events of a specific candidate virus and their integration allele fractions.
Collapse
Affiliation(s)
- Pranav P. Mathkar
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
| | - Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (X.C.); (D.L.)
| | - Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Cajal Neuroscience Inc., Seattle, WA 98102, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence: (X.C.); (D.L.)
| |
Collapse
|
20
|
Racaud-Sultan C, Vergnolle N. GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior. Cells 2021; 10:cells10020225. [PMID: 33498808 PMCID: PMC7911451 DOI: 10.3390/cells10020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients.
Collapse
|
21
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
22
|
Prdm16 is a critical regulator of adult long-term hematopoietic stem cell quiescence. Proc Natl Acad Sci U S A 2020; 117:31945-31953. [PMID: 33268499 DOI: 10.1073/pnas.2017626117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regulation of quiescence is critical for the maintenance of adult hematopoietic stem cells (HSCs). Disruption of transcription factor gene Prdm16 during mouse embryonic development has been shown to cause a severe loss of fetal liver HSCs; however, the underlying mechanisms and the function of Prdm16 in adult HSCs remain unclear. To investigate the role of Prdm16 in adult HSCs, we generated a novel conditional knockout mouse model and deleted Prdm16 in adult mouse hematopoietic system using the IFN-inducible Mx1-Cre Our results show that Prdm16 deletion in the adult mouse hematopoietic system has a less severe effect on HSCs, causing a gradual decline of adult HSC numbers and a concomitant increase in the multipotent progenitor (MPP) compartment. Prdm16 deletion in the hematopoietic system following transplantation produced the same phenotype, indicating that the defect is intrinsic to adult HSCs. This HSC loss was also exacerbated by stress induced by 5-fluorouracil injections. Annexin V staining showed no difference in apoptosis between wild-type and knockout adult HSCs. In contrast, Bromodeoxyuridine analysis revealed that loss of Prdm16 significantly increased cycling of long-term HSCs (LT-HSCs) with the majority of the cells found in the S to G2/M phase. Consistently, RNA sequencing analysis of mouse LT-HSCs with and without Prdm16 deletion showed that Prdm16 loss induced a significant decrease in the expression of several known cell cycle regulators of HSCs, among which Cdkn1a and Egr1 were identified as direct targets of Prdm16 Our results suggest that Prdm16 preserves the function of adult LT-HSCs by promoting their quiescence.
Collapse
|
23
|
Dao FT, Chen WM, Long LY, Li LD, Yang L, Wang J, Liu YR, Jiang H, Zhang XH, Jiang Q, Qin YZ. High PRDM16 expression predicts poor outcomes in adult acute myeloid leukemia patients with intermediate cytogenetic risk: a comprehensive cohort study from a single Chinese center. Leuk Lymphoma 2020; 62:185-193. [PMID: 32902355 DOI: 10.1080/10428194.2020.1817436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia with intermediate cytogenetic risk (ICR-AML) needs to be stratified and abnormal gene expression might be prognostic. PR/SET domain 16 (PRDM16) transcript levels were assessed in 267 consecutive adult ICR-AML patients at diagnosis by real-time quantitative PCR. 38.2% patients had PRDM16 transcript levels higher than the upper limit of normal bone marrow samples. Through ROC curve analysis and comparison of relapse-free survival (RFS), the optimal cutoff value of PRDM16 transcript levels was identified to group patients into high expression (PRDM16-H, 21.3%) and low expression (PRDM16-L). PRDM16-H was significantly associated with lower 4-year RFS and overall survival (OS) rates in the entire cohort, patients with normal karyotypes, FLT3-ITD (-) and NPM1 mutation (+)/FLT3-ITD (-) patients (all p < .05). Multivariate analysis showed that PRDM16-H was an independent adverse prognostic factor for RFS and OS in the entire cohort. Therefore, high PRDM16 expression at diagnosis predicts poor outcomes in adult ICR-AML patients.
Collapse
Affiliation(s)
- Feng-Ting Dao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ling-Yu Long
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ling-Di Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lu Yang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
24
|
Cypris O, Eipel M, Franzen J, Rösseler C, Tharmapalan V, Kuo CC, Vieri M, Nikolić M, Kirschner M, Brümmendorf TH, Zenke M, Lampert A, Beier F, Wagner W. PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. Clin Epigenetics 2020; 12:125. [PMID: 32819411 PMCID: PMC7439574 DOI: 10.1186/s13148-020-00914-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. RESULTS In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. CONCLUSION Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Monika Eipel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Corinna Rösseler
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Vithurithra Tharmapalan
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
25
|
Ye B, Yang L, Qian G, Liu B, Zhu X, Zhu P, Ma J, Xie W, Li H, Lu T, Wang Y, Wang S, Du Y, Wang Z, Jiang J, Li J, Fan D, Meng S, Wu J, Tian Y, Fan Z. The chromatin remodeler SRCAP promotes self-renewal of intestinal stem cells. EMBO J 2020; 39:e103786. [PMID: 32449550 DOI: 10.15252/embj.2019103786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) exhibit self-renewal and differentiation features under homeostatic conditions, but the mechanisms controlling Lgr5 + ISC self-renewal remain elusive. Here, we show that the chromatin remodeler SRCAP is highly expressed in mouse intestinal epithelium and ISCs. Srcap deletion impairs both self-renewal of ISCs and intestinal epithelial regeneration. Mechanistically, SRCAP recruits the transcriptional regulator REST to the Prdm16 promoter and induces expression of this transcription factor. By activating PPARδ expression, Prdm16 in turn initiates PPARδ signaling, which sustains ISC stemness. Rest or Prdm16 deficiency abrogates the self-renewal capacity of ISCs as well as intestinal epithelial regeneration. Collectively, these data show that the SRCAP-REST-Prdm16-PPARδ axis is required for self-renewal maintenance of Lgr5 + ISCs.
Collapse
Affiliation(s)
- Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guomin Qian
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Ma
- MOE Key Laboratory of Bioinformatics, Center for Stem Cell Biology and Regenerative Medicine, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- MOE Key Laboratory of Bioinformatics, Center for Stem Cell Biology and Regenerative Medicine, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianku Lu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Jiang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Genome Tagging Project (GTP) Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Genome Tagging Project (GTP) Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shu Meng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
27
|
Stine RR, Sakers AP, TeSlaa T, Kissig M, Stine ZE, Kwon CW, Cheng L, Lim HW, Kaestner KH, Rabinowitz JD, Seale P. PRDM16 Maintains Homeostasis of the Intestinal Epithelium by Controlling Region-Specific Metabolism. Cell Stem Cell 2019; 25:830-845.e8. [PMID: 31564549 DOI: 10.1016/j.stem.2019.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/10/2019] [Accepted: 08/28/2019] [Indexed: 01/18/2023]
Abstract
Metabolic pathways dynamically regulate tissue development and maintenance. However, the mechanisms that govern the metabolic adaptation of stem or progenitor cells to their local niche are poorly understood. Here, we define the transcription factor PRDM16 as a region-specific regulator of intestinal metabolism and epithelial renewal. PRDM16 is selectively expressed in the upper intestine, with enrichment in crypt-resident progenitor cells. Acute Prdm16 deletion in mice triggered progenitor apoptosis, leading to diminished epithelial differentiation and severe intestinal atrophy. Genomic and metabolic analyses showed that PRDM16 transcriptionally controls fatty acid oxidation (FAO) in crypts. Expression of this PRDM16-driven FAO program was highest in the upper small intestine and declined distally. Accordingly, deletion of Prdm16 or inhibition of FAO selectively impaired the development and maintenance of upper intestinal enteroids, and these effects were rescued by acetate treatment. Collectively, these data reveal that regionally specified metabolic programs regulate intestinal maintenance.
Collapse
Affiliation(s)
- Rachel R Stine
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Alexander P Sakers
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara TeSlaa
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Megan Kissig
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Chan Wook Kwon
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
PRDM16s transforms megakaryocyte-erythroid progenitors into myeloid leukemia-initiating cells. Blood 2019; 134:614-625. [PMID: 31270104 DOI: 10.1182/blood.2018888255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Oncogenic mutations confer on cells the ability to propagate indefinitely, but whether oncogenes alter the cell fate of these cells is unknown. Here, we show that the transcriptional regulator PRDM16s causes oncogenic fate conversion by transforming cells fated to form platelets and erythrocytes into myeloid leukemia stem cells (LSCs). Prdm16s expression in megakaryocyte-erythroid progenitors (MEPs), which normally lack the potential to generate granulomonocytic cells, caused AML by converting MEPs into LSCs. Prdm16s blocked megakaryocytic/erythroid potential by interacting with super enhancers and activating myeloid master regulators, including PU.1. A CRISPR dropout screen confirmed that PU.1 is required for Prdm16s-induced leukemia. Ablating PU.1 attenuated leukemogenesis and reinstated the megakaryocytic/erythroid potential of leukemic MEPs in mouse models and human AML with PRDM16 rearrangement. Thus, oncogenic PRDM16 s expression gives MEPs an LSC fate by activating myeloid gene regulatory networks.
Collapse
|