1
|
Sharkey RJ, Bacon C, Peterson Z, Rootes-Murdy K, Salvador R, Pomarol-Clotet E, Karuk A, Homan P, Ji E, Omlor W, Homan S, Georgiadis F, Kaiser S, Kirschner M, Ehrlich S, Dannlowski U, Grotegerd D, Goltermann J, Meinert S, Kircher T, Stein F, Brosch K, Krug A, Nenadic I, Sim K, Spalletta G, Banaj N, Sponheim SR, Demro C, Ramsay IS, King M, Quidé Y, Green MJ, Nguyen D, Preda A, Calhoun V, Turner J, van Erp T, Nickl-Jockschat T. Differences in the neural correlates of schizophrenia with positive and negative formal thought disorder in patients with schizophrenia in the ENIGMA dataset. Mol Psychiatry 2024; 29:3086-3096. [PMID: 38671214 PMCID: PMC11449795 DOI: 10.1038/s41380-024-02563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Formal thought disorder (FTD) is a clinical key factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, the relationship between FTD symptom dimensions and patterns of regional brain volume loss in schizophrenia remains to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles by enrolling a large multi-site cohort acquired by the ENIGMA Schizophrenia Working Group (752 schizophrenia patients and 1256 controls), to unravel the neuroanatomy of FTD in schizophrenia and using virtual histology tools on implicated brain regions to investigate the cellular basis. Based on the findings of previous clinical and neuroimaging studies, we decided to separately explore positive, negative and total formal thought disorder. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but positive and negative FTD demonstrated a dissociation: negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD also showed associations with microglial cell types. These results provide an important step towards linking FTD to brain structural changes and their cellular underpinnings, providing an avenue for a better mechanistic understanding of this syndrome.
Collapse
Affiliation(s)
- Rachel J Sharkey
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Chelsea Bacon
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Zeru Peterson
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | | | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM ISCIII, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM ISCIII, Barcelona, Spain
| | - Andriana Karuk
- FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM ISCIII, Barcelona, Spain
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich, 8008, Switzerland
| | - Ellen Ji
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich, 8008, Switzerland
| | - Wolfgang Omlor
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich, 8008, Switzerland
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich, 8008, Switzerland
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich, 8008, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
| | | | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Melissa Jane Green
- School of Psychiatry, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Dana Nguyen
- Department of Pediatric Neurology, University of California Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Pediatric Neurology, University of California Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GE, USA
| | - Jessica Turner
- Department of Psychiatry and Behavioral Medicine, Ohio State University, Columbus, OH, USA
| | - Theo van Erp
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, USA
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
2
|
Nickl-Jockschat T, Sharkey R, Bacon C, Peterson Z, Rootes-Murdy K, Salvador R, Pomarol E, Karuk A, Homan P, Ji E, Omlor W, Homan S, Georgiadis F, Kaiser S, Kirschner M, Ehrlich S, Dannlowski U, Grotegerd D, Goltermann J, Meinert S, Kircher T, Stein F, Brosch K, Krug A, Nenadic I, Sim K, Piras F, Banaj N, Sponheim S, Demro C, Ramsay I, King M, Quidé Y, Green M, Nguyen D, Preda A, Calhoun V, Turner J, van Erp T, Spalletta G. Neural Correlates of Positive and Negative Formal Thought Disorder in Individuals with Schizophrenia: An ENIGMA Schizophrenia Working Group Study. RESEARCH SQUARE 2023:rs.3.rs-3179362. [PMID: 37841855 PMCID: PMC10571603 DOI: 10.21203/rs.3.rs-3179362/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster
| | | | | | | | | | | | | | | | - Igor Nenadic
- Philipps University Marburg / Marburg University Hospital
| | | | | | | | | | | | | | | | | | | | | | | | - Vince Calhoun
- Georgia Institute of Technology, Emory University and Georgia State University
| | | | | | | |
Collapse
|
3
|
Sharkey RJ, Bacon C, Peterson Z, Rootes-Murdy K, Salvador R, Pomarol-Clotet E, Karuk A, Homan P, Ji E, Omlor W, Homan S, Georgiadis F, Kaiser S, Kirschner M, Ehrlich S, Dannlowski U, Grotegerd D, Goltermann J, Meinert S, Kircher T, Stein F, Brosch K, Krug A, Nenadić I, Sim K, Spalletta G, Piras F, Banaj N, Sponheim SR, Demro C, Ramsay IS, King M, Quidé Y, Green MJ, Nguyen D, Preda A, Calhoun VD, Turner JA, van Erp TGM, Nickl-Jockschat T. Neural Correlates of Positive and Negative Formal Thought Disorder in Individuals with Schizophrenia: An ENIGMA Schizophrenia Working Group Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.06.23291034. [PMID: 37333179 PMCID: PMC10274967 DOI: 10.1101/2023.06.06.23291034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.
Collapse
|
4
|
Vyas NS, Burke L, Netherwood S, Caviston P, Simic M, Buchsbaum MS. Neurocognitive profile of adolescents with early-onset schizophrenia and their unaffected siblings. World J Biol Psychiatry 2022; 23:677-688. [PMID: 34989324 DOI: 10.1080/15622975.2021.2023758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND We investigated the neurocognitive profiles of Early-Onset Schizophrenia (EOS; onset before age 18) and paired unaffected siblings and the little-studied effect of age-of-onset and duration of illness on cognitive performance. METHODS 31 EOS probands, and 31 of their siblings, had four cognitive domains assessed: (a) Memory: California Verbal Learning Test, and the Wechsler Memory Scale-Revised; (b) Working memory: Digit Span; (c) Attention: Degraded-Stimulus Continuous Performance Test, Span of Apprehension (SPAN), and Trail Making Test (TMT) part A; (d) Executive function: Wisconsin card sorting task, and TMT part B. Diagnosis was confirmed using the structured clinical interview for DSM-IV. RESULTS While EOS showed a generalised neurocognitive deficit (0.25-0.50 effect size) compared with siblings, across all cognitive domains, significantly greater patient deficits were observed with, working memory, attention, and executive function and minimal differences for digit span forward, block design and false alarms on the SPAN-12 confirmed by repeated measures MANOVA. Patients with earlier onset (12-15) showed greater deficits on false alarm and digits backward scores. Siblings showed individual cognitive task profiles similar to patients, confirming familial effects. EOS showed much more variable scores than siblings with more individual tasks showing 2 SD deficits than siblings. Long duration patients had greater z-score variability across tasks. CONCLUSIONS Duration of illness was a more important characteristic in patients with onset 16 and over than in younger onset patients with comparable durations. Both the similarity of sibling pair profiles and greater patient variability across task provide further support for neurobiological heterogeneity in schizophrenia.
Collapse
Affiliation(s)
- Nora S Vyas
- Department of Psychology, Kingston University London, Kingston-upon-Thames, UK.,Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Lisa Burke
- South London and Maudsley NHS Foundation Trust, Child and Adolescent Mental Health Services, Southwark, UK
| | | | - Paul Caviston
- North East London NHS Foundation Trust, Child and Adolescent Mental Health Services, Essex, UK
| | - Mima Simic
- South London and Maudsley NHS Foundation Trust, CAMHS National and Specialist Services, London, UK
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology Emeritus, University of California, San Diego, San Diego, CA, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, CA, USA
| |
Collapse
|
5
|
Regional and Sex-Specific Alterations in the Visual Cortex of Individuals With Psychosis Spectrum Disorders. Biol Psychiatry 2022; 92:396-406. [PMID: 35688762 DOI: 10.1016/j.biopsych.2022.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Impairments of the visual system are implicated in psychotic disorders. However, studies exploring visual cortex (VC) morphology in this population are limited. Using data from the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium, we examined VC structure in psychosis probands and their first-degree relatives (RELs), sex differences in VC measures, and their relationships with cognitive and peripheral inflammatory markers. METHODS Cortical thickness, surface area, and volume of the primary (Brodmann area 17/V1) and secondary (Brodmann area 18/V2) visual areas and the middle temporal (V5/MT) region were quantified using FreeSurfer version 6.0 in psychosis probands (n = 530), first-degree RELs (n = 544), and healthy control subjects (n = 323). Familiality estimates were determined for probands and RELs. General cognition, response inhibition, and emotion recognition functions were assessed. Systemic inflammation was measured in a subset of participants. RESULTS Psychosis probands demonstrated significant area, thickness, and volume reductions in V1, V2, and MT, and their first-degree RELs demonstrated area and volume reductions in MT compared with control subjects. There was a higher degree of familiality for VC area than thickness. Area and volume reductions in V1 and V2 were sex dependent, affecting only female probands in a regionally specific manner. Reductions in some VC regions were correlated with poor general cognition, worse response inhibition, and increased C-reactive protein levels. CONCLUSIONS The visual cortex is a site of significant pathology in psychotic disorders, with distinct patterns of area and thickness changes, sex-specific and regional effects, potential contributions to cognitive impairments, and association with C-reactive protein levels.
Collapse
|
6
|
Fan L, Yu M, Pinkham A, Zhu Y, Tang X, Wang X, Zhang X, Ma J, Zhang J, Zhang X, Dai Z. Aberrant large-scale brain modules in deficit and non-deficit schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110461. [PMID: 34688810 DOI: 10.1016/j.pnpbp.2021.110461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Schizophrenia is a heterogenous psychiatric disease, and deficit schizophrenia (DS) is a clinical subgroup with primary and enduring negative symptoms. Although previous neuroimaging studies have identified functional connectome alterations in schizophrenia, the modular organizations in DS and nondeficit schizophrenia (NDS) remain poorly understood. Therefore, this study aimed to investigate the modular-level alterations in DS patients compared with the NDS and healthy control (HC) groups. METHODS A previously collected dataset was re-analyzed, in which 74 chronic male schizophrenia patients (33 DS and 41 NDS) and 40 HC underwent resting-state functional magnetic resonance imaging with eyes closed in a Siemens 3 T scanner (scanning duration = 8 min). Modular- (intramodule and intermodule connectivity) and nodal- [normalized within-module degree (Zi) and participation coefficient (PCi)] level graph theory properties were computed and compared among the three groups. Receiver operating characteristic curve (ROC) analyses were performed to examine the classification ability of these measures, and partial correlations were conducted between network measures and symptom severity. Validation analyses on head motion, network sparsity, and parcellation scheme were also performed. RESULTS Both schizophrenia subgroups showed decreased intramodule connectivity in salience network (SN), somatosensory-motor network (SMN), and visual network (VN), and increased intermodule connectivity in SMN-default mode network (DMN) and SMN-frontoparietal network (FPN). Compared with NDS patients, DS patients showed weaker intramodule connectivity in SN and stronger intermodule connectivity in SMN-FPN and SMN-VN. At the nodal level, the schizophrenia-related alterations were distributed in SN, SMN, VN, and DMN, and 7 DS-specific nodal alterations were identified. Intramodule connectivity of SN, intermodule connectivity of SMN-VN, and Zi of left precuneus successfully distinguished the three groups. Partial correlational analyses revealed that these measures were related to negative symptoms, general psychiatric symptoms, and neurocognitive function. CONCLUSION Our findings suggest that functional connectomes, especially SN, SMN, and VN, may capture the distinct and common disruptions of DS and NDS. These findings may help to understand the neuropathology of negative symptoms of schizophrenia and inform targets for treating different schizophrenia subtypes.
Collapse
Affiliation(s)
- Linlin Fan
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Miao Yu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, Jiangsu, China
| | - Amy Pinkham
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Yiyi Zhu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Xiaowei Tang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Junji Ma
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinbo Zhang
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Prasad K, Rubin J, Mitra A, Lewis M, Theis N, Muldoon B, Iyengar S, Cape J. Structural covariance networks in schizophrenia: A systematic review Part I. Schizophr Res 2022; 240:1-21. [PMID: 34906884 PMCID: PMC8917984 DOI: 10.1016/j.schres.2021.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Schizophrenia is proposed as a disorder of dysconnectivity. However, examination of complexities of dysconnectivity has been challenging. Structural covariance networks (SCN) provide important insights into the nature of dysconnectivity. This systematic review examines the SCN studies that employed statistical approaches to elucidate covariation of regional morphometric variations. METHODS A systematic search of literature was conducted for peer-reviewed publications using different keywords and keyword combinations for schizophrenia. Fifty-two studies met the criteria. RESULTS Early SCN studies began using correlational structure of selected regions. Over the last 3 decades, methodological approaches have grown increasingly sophisticated from examining selected brain regions using correlation tests on small sample sizes to recent approaches that use advanced statistical methods to examine covariance structure of whole-brain parcellations on larger samples. Although the results are not fully consistent across all studies, a pattern of fronto-temporal, fronto-parietal and fronto-thalamic covariation is reported. Attempts to associate SCN alterations with functional connectivity, to differentiate between disease-related and neurodevelopment-related morphometric changes, and to develop "causality-based" models are being reported. Clinical correlation with outcome, psychotic symptoms, neurocognitive and social cognitive performance are also reported. CONCLUSIONS Application of advanced statistical methods are beginning to provide insights into interesting patterns of regional covariance including correlations with clinical and cognitive data. Although these findings appear similar to morphometric studies, SCNs have the advantage of highlighting topology of these regions and their relationship to the disease and associated variables. Further studies are needed to investigate neurobiological underpinnings of shared covariance, and causal links to clinical domains.
Collapse
Affiliation(s)
- Konasale Prasad
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America; University of Pittsburgh Swanson School of Engineering, 3700 O'Hara St, Pittsburgh, PA 15213, United States of America; VA Pittsburgh Healthcare System, University Dr C, Pittsburgh, PA 15240, United States of America.
| | - Jonathan Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh PA 15260
| | - Anirban Mitra
- Department of Statistics, University of Pittsburgh, 1826 Wesley W. Posvar Hall, Pittsburgh PA 15260
| | - Madison Lewis
- University of Pittsburgh Swanson School of Engineering, 3700 O’Hara St, Pittsburgh PA 15213
| | - Nicholas Theis
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O’Hara St, Pittsburgh PA 15213
| | - Brendan Muldoon
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O’Hara St, Pittsburgh PA 15213
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, 1826 Wesley W. Posvar Hall, Pittsburgh PA 15260
| | - Joshua Cape
- Department of Statistics, University of Pittsburgh, 1826 Wesley W. Posvar Hall, Pittsburgh PA 15260
| |
Collapse
|
8
|
Cortical thickness across the cingulate gyrus in schizophrenia and its association to illness duration and memory performance. Eur Arch Psychiatry Clin Neurosci 2022; 272:1241-1251. [PMID: 34997853 PMCID: PMC9508009 DOI: 10.1007/s00406-021-01369-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/29/2021] [Indexed: 11/05/2022]
Abstract
Schizophrenia has been associated with structural brain abnormalities and cognitive deficits that partly change during the course of illness. In the present study, cortical thickness in five subregions of the cingulate gyrus was assessed in 44 patients with schizophrenia-spectrum disorder and 47 control persons and related to illness duration and memory capacities. In the patients group, cortical thickness was increased in the posterior part of the cingulate gyrus and related to illness duration whereas cortical thickness was decreased in anterior parts unrelated to illness duration. In contrast, cortical thickness was related to episodic and working memory performance only in the anterior but not posterior parts of the cingulate gyrus. Our finding of a posterior cingulate increase may point to either increased parietal communication that is accompanied by augmented neural plasticity or to effects of altered neurodegenerative processes in schizophrenia.
Collapse
|
9
|
van Haren N, Cahn W, Hulshoff Pol H, Kahn R. Schizophrenia as a progressive brain disease. Eur Psychiatry 2020; 23:245-54. [DOI: 10.1016/j.eurpsy.2007.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/11/2007] [Accepted: 10/18/2007] [Indexed: 01/06/2023] Open
Abstract
AbstractThere is convincing evidence that schizophrenia is characterized by abnormalities in brain volume. At the Department of Psychiatry of the University Medical Centre Utrecht, Netherlands, we have been carrying out neuroimaging studies in schizophrenia since 1995. We focused our research on three main questions. First, are brain volume abnormalities static or progressive in nature? Secondly, can brain volume abnormalities in schizophrenia be explained (in part) by genetic influences? Finally, what environmental factors are associated with the brain volume abnormalities in schizophrenia?Based on our findings we suggest that schizophrenia is a progressive brain disease. We showed different age-related trajectories of brain tissue loss suggesting that brain maturation that occurs in the third and fourth decade of life is abnormal in schizophrenia. Moreover, brain volume has been shown to be a useful phenotype for studying schizophrenia. Brain volume is highly heritable and twin and family studies show that unaffected relatives show abnormalities that are similar, but usually present to a lesser extent, to those found in the patients. However, also environmental factors play a role. Medication intake is indeed a confounding factor when interpreting brain volume (change) abnormalities, while independent of antipsychotic medication intake brain volume abnormalities appear influenced by the outcome of the illness.In conclusion, schizophrenia can be considered as a progressive brain disease with brain volume abnormalities that are for a large part influenced by genetic factors. Whether the progressive volume change is also mediated by genes awaits the results of longitudinal twin analyses. One of the main challenges for the coming years, however, will be the search for gene-by-environment interactions on the progressive brain changes in schizophrenia.
Collapse
|
10
|
Identification of changes in grey matter volume using an evolutionary approach: an MRI study of schizophrenia. MULTIMEDIA SYSTEMS 2020. [DOI: 10.1007/s00530-020-00649-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Zhao J, Tang C, Nie J. Functional Parcellation of Individual Cerebral Cortex Based on Functional MRI. Neuroinformatics 2019; 18:295-306. [PMID: 31802355 DOI: 10.1007/s12021-019-09445-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human brain atlas assists us to enhance our scientific understanding of brain structure and function. The typical anatomical atlases are mainly based on brain morphometry which cannot ensure the consistency of structure and function, and are also hard to cover individual functional differences especially in cerebral cortex. Thus, in recent years, functional atlases for individuals have captured great attention, since they are essential not only for identifying the unique functional organization of individual brains, but also to explore individual variations in behaviors. In this study, a novel approach was proposed to accurately parcellate the whole cerebral cortex at the individual level using resting-state functional magnetic resonance image (rs-fMRI). To examine the functional homogeneity in parcellation, a new evaluation criterion, similarity of cluster (SC) coefficient, was proposed. The parcellation results demonstrated the high consistency between two resting-state sessions (Dice >0.72). The most consistent parcellation appeared in the frontal cortex and the least consistent parcellation appeared in the occipital cortex. The functional homogeneity of subregions was high in frontal cortex and insula whereas low in precentral gyrus. According to SC value, the optimal clustering number was about 1600 per hemisphere. Identification accuracy was 100% between two rs-fMRI sessions, and it was also above 0.97 for rest-task and task-task sessions.
Collapse
Affiliation(s)
- Jiajia Zhao
- School of Psychology, Center for Studies of Psychological Application, Institute of Cognitive Neuroscience, South China Normal University, Guangzhou, 510631, China
| | - Chao Tang
- School of Psychology, Center for Studies of Psychological Application, Institute of Cognitive Neuroscience, South China Normal University, Guangzhou, 510631, China
| | - Jingxin Nie
- School of Psychology, Center for Studies of Psychological Application, Institute of Cognitive Neuroscience, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization. Schizophr Res 2019; 212:186-195. [PMID: 31395487 DOI: 10.1016/j.schres.2019.07.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/16/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The recent deep learning-based studies on the classification of schizophrenia (SCZ) using MRI data rely on manual extraction of feature vector, which destroys the 3D structure of MRI data. In order to both identify SCZ and find relevant biomarkers, preserving the 3D structure in classification pipeline is critical. OBJECTIVES The present study investigated whether the proposed 3D convolutional neural network (CNN) model produces higher accuracy compared to the support vector machine (SVM) and other 3D-CNN models in distinguishing individuals with SCZ spectrum disorders (SSDs) from healthy controls. We sought to construct saliency map using class saliency visualization (CSV) method. METHODS Task-based fMRI data were obtained from 103 patients with SSDs and 41 normal controls. To preserve spatial locality, we used 3D activation map as input for the 3D convolutional autoencoder (3D-CAE)-based CNN model. Data on 62 patients with SSDs were used for unsupervised pretraining with 3D-CAE. Data on the remaining 41 patients and 41 normal controls were processed for training and testing with CNN. The performance of our model was analyzed and compared with SVM and other 3D-CNN models. The learned CNN model was visualized using CSV method. RESULTS Using task-based fMRI data, our model achieved 84.15%∼84.43% classification accuracies, outperforming SVM and other 3D-CNN models. The inferior and middle temporal lobes were identified as key regions for classification. CONCLUSIONS Our findings suggest that the proposed 3D-CAE-based CNN can classify patients with SSDs and controls with higher accuracy compared to other models. Visualization of salient regions provides important clinical information.
Collapse
|
13
|
Wojtalik JA, Smith MJ, Keshavan MS, Eack SM. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia. Schizophr Bull 2017; 43:1329-1347. [PMID: 28204755 PMCID: PMC5737663 DOI: 10.1093/schbul/sbx008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement.
Collapse
Affiliation(s)
- Jessica A Wojtalik
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; School of Social Work, University of Pittsburgh, 2117 Cathedral of Learning, Pittsburgh, PA 15260, US; tel: 412-624-6304, e-mail:
| | - Matthew J Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
14
|
FDG-PET scans in patients with Kraepelinian and non-Kraepelinian schizophrenia. Eur Arch Psychiatry Clin Neurosci 2016; 266:481-94. [PMID: 26370275 DOI: 10.1007/s00406-015-0633-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/11/2015] [Indexed: 01/01/2023]
Abstract
We recruited 14 unmedicated patients with Kraepelinian schizophrenia (12 men and 2 women; mean age = 47 years old), 27 non-Kraepelinian patients (21 men and 6 women; mean age = 36.4 years old) and a group of 56 age- and sex-matched healthy volunteers. FDG positron emission tomography and MRI scans were coregistered for both voxel-by-voxel statistical mapping and stereotaxic regions of interest analysis. While both Kraepelinian and non-Kraepelinian patients showed equally lower uptake than healthy volunteers in the frontal lobe, the temporal lobes (Brodmann areas 20 and 21) showed significantly greater decreases in Kraepelinian than in non-Kraepelinian patients. Kraepelinian patients had lower FDG uptake in parietal regions 39 and 40, especially in the right hemisphere, while non-Kraepelinian patients had similar reductions in the left. Only non-Kraepelinian patients had lower caudate FDG uptake than healthy volunteers. While both patient groups had lower uptake than healthy volunteers in the medial dorsal nucleus of the thalamus, Kraepelinian patients alone had higher uptake in the ventral nuclei of the thalamus. Kraepelinian patients also showed higher metabolic rates in white matter. Our results are consistent with other studies indicating that Kraepelinian schizophrenia is a subgroup of schizophrenia, characterized by temporal and right parietal deficits and normal rather than reduced caudate uptake. It suggests that Kraepelinian schizophrenia may be more primarily characterized by FDG uptake decreased in both the frontal and temporal lobes, while non-Kraepelinian schizophrenia may have deficits more limited to the frontal lobe. This is consistent with some neuropsychological and prognosis reports of disordered sensory information processing in Kraepelinian schizophrenia in addition to deficits in frontal lobe executive functions shared with the non-Kraepelinian subtype.
Collapse
|
15
|
Bakker G, Caan MWA, Schluter RS, Bloemen OJN, da Silva-Alves F, de Koning MB, Boot E, Vingerhoets WAM, Nieman DH, de Haan L, Booij J, van Amelsvoort TAMJ. Distinct white-matter aberrations in 22q11.2 deletion syndrome and patients at ultra-high risk for psychosis. Psychol Med 2016; 46:2299-2311. [PMID: 27193339 DOI: 10.1017/s0033291716000970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Patients with a deletion at chromosome 22q11.2 (22q11DS) have 30% lifetime risk of developing a psychosis. People fulfilling clinical criteria for ultra-high risk (UHR) for psychosis have 30% risk of developing a psychosis within 2 years. Both high-risk groups show white-matter (WM) abnormalities in microstructure and volume compared to healthy controls (HC), which have been related to psychotic symptoms. Comparisons of WM pathology between these two groups may specify WM markers related to genetic and clinical risk factors. METHOD Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) were assessed using diffusion tensor magnetic resonance imaging (MRI), and WM volume with structural MRI, in 23 UHR patients, 21 22q11DS patients, and 33 HC. RESULTS Compared to UHR patients 22q11DS patients had (1) lower AD and RD in corpus callosum (CC), cortical fasciculi, and anterior thalamic radiation (ATR), (2) higher FA in CC and ATR, and (3) lower occipital and superior temporal gyrus WM volume. Compared to HC, 22q11DS patients had (1) lower AD and RD throughout cortical fasciculi and (2) higher FA in ATR, CC and inferior fronto-occipital fasciculus. Compared to HC, UHR patients had (1) higher mean MD, RD, and AD in CC, ATR and cortical fasciculi, (2) no differences in FA. CONCLUSIONS UHR and 22q11DS patients share a susceptibility for developing psychosis yet were characterized by distinct patterns of WM alterations relative to HC. While UHR patients were typified by signs suggestive of aberrant myelination, 22q11DS subjects showed signs suggestive of lower axonal integrity.
Collapse
Affiliation(s)
- G Bakker
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - M W A Caan
- Department of Radiology,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - R S Schluter
- Department of Radiology,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - O J N Bloemen
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - F da Silva-Alves
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - M B de Koning
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - E Boot
- Department of Nuclear Medicine,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - W A M Vingerhoets
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - D H Nieman
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - L de Haan
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - J Booij
- Department of Nuclear Medicine,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | | |
Collapse
|
16
|
Balevich EC, Haznedar MM, Wang E, Newmark RE, Bloom R, Schneiderman JS, Aronowitz J, Tang CY, Chu KW, Byne W, Buchsbaum MS, Hazlett EA. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia. Psychiatry Res 2015; 231:244-51. [PMID: 25637358 PMCID: PMC4363270 DOI: 10.1016/j.pscychresns.2014.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/07/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
The corpus callosum has been implicated as a region of dysfunctional connectivity in schizophrenia, but the association between age and callosal pathology is unclear. Magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) were performed on adults (n=34) and adolescents (n=17) with schizophrenia and adult (n=33) and adolescent (n=15) age- and sex-matched healthy controls. The corpus callosum was manually traced on each participant׳s MRI, and the DTI scan was co-registered to the MRI. The corpus callosum was divided into five anteroposterior segments. Area and anisotropy were calculated for each segment. Both patient groups demonstrated reduced callosal anisotropy; however, the adolescents exhibited reductions mostly in anterior regions while the reductions were more prominent in posterior regions of the adults. The adolescent patients showed greater decreases in absolute area as compared with the adult patients, particularly in the anterior segments. However, the adults showed greater reductions when area was considered relative to whole brain white matter volume. Our results suggest that the initial stages of the illness are characterized by deficiencies in frontal connections, and the chronic phase is characterized by deficits in the posterior corpus callosum; or, alternatively, adolescent-onset schizophrenia may represent a different or more severe form of the illness.
Collapse
Affiliation(s)
- Emily C. Balevich
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - M. Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Outpatient Psychiatry Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Eugene Wang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randall E. Newmark
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Bloom
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jason S. Schneiderman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan Aronowitz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cheuk Y. Tang
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - King-Wai Chu
- Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - William Byne
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Outpatient Psychiatry Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA,Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Monte S. Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego School of Medicine, 92093, USA
| | - Erin A. Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA,Address correspondence to: Erin A. Hazlett, Ph.D, Tel.: (718) 584-9000 x3701, Fax: (718) 364-3576,
| |
Collapse
|
17
|
Lyu H, Hu M, Eyler LT, Jin H, Wang J, Ou J, Guo X, He Z, Liu F, Zhao J, Guo W. Regional white matter abnormalities in drug-naive, first-episode schizophrenia patients and their healthy unaffected siblings. Aust N Z J Psychiatry 2015; 49:246-54. [PMID: 25318995 DOI: 10.1177/0004867414554268] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Shared neuropathological features between schizophrenia patients and their siblings may represent intermediate phenotypes of schizophrenia and can be used to investigate genetic susceptibility to the illness. This study aimed to discover regional white matter abnormalities in first-episode schizophrenia (FES) patients and their unaffected siblings compared to healthy subjects in the Chinese Han population using optimized Voxel-Based Morphometry (VBM). METHOD A total of 51 drug-naive, FES patients, 45 of their unaffected siblings and 59 healthy comparisons were studied with magnetic resonance imaging (MRI). RESULTS FES patients exhibited significant regional white matter deficits in the left inferior frontal gyrus and left joint of external capsule and internal capsule compared with healthy subjects (corrected FDR, p<0.005). The sibling group also showed significant white matter deficits in these two regions compared with the healthy comparison group (uncorrected, p<0.001). White matter deficits with a less stringent threshold for significance in the left cerebellum anterior lobe, left middle frontal gyrus, left hippocampus, right anterior cingulate and right internal capsule were observed in patients compared to their siblings. CONCLUSIONS Our findings extend those from previous VBM analyses showing that FES patients and their unaffected siblings may share white matter deficits in the left inferior frontal gyrus and the left joint of external capsule and internal capsule. These regional white matter deficits may be related to genetic factors related to schizophrenia susceptibility.
Collapse
Affiliation(s)
- Hailong Lyu
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, PR China
| | - Maorong Hu
- Mental Health Center of Jiangxi Province, Nanchang, PR China
| | - Lisa T Eyler
- Department of Psychiatry, UC San Diego, La Jolla, USA VA San Diego Healthcare System, Psychiatric Service, La Jolla, USA
| | - Hua Jin
- Department of Psychiatry, UC San Diego, La Jolla, USA VA San Diego Healthcare System, Psychiatric Service, La Jolla, USA
| | - Juan Wang
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, PR China
| | - Jianjun Ou
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, PR China
| | - Xiaofeng Guo
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, PR China
| | - Zhong He
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fang Liu
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, PR China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, PR China
| | - Wenbin Guo
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
18
|
Yang C, Wu S, Lu W, Bai Y, Gao H. Brain differences in first-episode schizophrenia treated with quetiapine: a deformation-based morphometric study. Psychopharmacology (Berl) 2015; 232:369-77. [PMID: 25080851 DOI: 10.1007/s00213-014-3670-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 06/24/2014] [Indexed: 02/02/2023]
Abstract
RATIONALE With the development of various imaging techniques, the deformation-based morphometry (DBM) method provides an objective automatic examination of the whole brain. OBJECTIVES This study aims to assess the abnormalities in the brains of first-episode schizophrenia (FES) patients treated with quetiapine using another advanced nonrigid registration method, hierarchical attribute matching mechanism for elastic registration, through the application of DBM in the entire brain. METHODS Thirty FES patients and 30 normal controls were grouped by age and handedness and subjected to magnetic resonance imaging examination. The patients had relatively short durations of untreated psychosis (DUP; 6.4 ± 5.2 months), and only a single antipsychotic drug, quetiapine (dosage, 200 ± 75 mg), was used for treatment. Statistically significant changes in regional volume were analyzed via DBM. In addition, a voxel-wise analysis of correlations between the duration of treatment or dosage and volume was also performed. RESULTS Compared with control subjects, FES patients showed contracted regions located in Brodmann area (BA) 42 and BA 19. By contrast, expanded regions were observed in BA 38, BA 21, BA 6 and 8, and left cerebellum. A negative correlation was observed between dosage and volume in the hippocampus, while a positive correlation was found in the caudate. Meanwhile, a negative correlation was observed between duration of treatment and volume in BA 38. CONCLUSION Both regional volume reductions and increases were detected in the brains of FES patients treated with quetiapine compared with healthy control subjects. Such differences may be partially relevant to dosage and treatment duration in clinic.
Collapse
Affiliation(s)
- Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100022, China
| | | | | | | | | |
Collapse
|
19
|
Li G, Wang L, Shi F, Lyall AE, Ahn M, Peng Z, Zhu H, Lin W, Gilmore JH, Shen D. Cortical thickness and surface area in neonates at high risk for schizophrenia. Brain Struct Funct 2014; 221:447-61. [PMID: 25362539 DOI: 10.1007/s00429-014-0917-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 10/15/2014] [Indexed: 11/27/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly smaller cortical surface area in the right pars triangularis (before FDR correction), compared with control neonates. This preliminary study provides the first evidence that early development of cortical thickness and surface area might be abnormal in the neonates at genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA. .,Radiology and BRIC, UNC-CH School of Medicine, MRI Building, CB #7513 106 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Amanda E Lyall
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Mihye Ahn
- Department of Biostatistics and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Ziwen Peng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Hongtu Zhu
- Department of Biostatistics and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA. .,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea. .,Radiology and BRIC, UNC-CH School of Medicine, MRI Building, CB #7513 106 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
20
|
Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW, Sonntag KC, Woo TUW. Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014; 28:53-69. [PMID: 24702465 PMCID: PMC4196521 DOI: 10.3109/01677063.2014.882918] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
Disrupted synchronized oscillatory firing of pyramidal neuronal networks in the cerebral cortex in the gamma frequency band (i.e., 30-100 Hz) mediates many of the cognitive deficits and symptoms of schizophrenia. In fact, the density of dendritic spines and the average somal area of pyramidal neurons in layer 3 of the cerebral cortex, which mediate both long-range (associational) and local (intrinsic) corticocortical connections, are decreased in subjects with this illness. To explore the molecular pathophysiology of pyramidal neuronal dysfunction, we extracted ribonucleic acid (RNA) from laser-captured pyramidal neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem brains from schizophrenia and normal control subjects. We then profiled the messenger RNA (mRNA) expression of these neurons, using microarray technology. We identified 1331 mRNAs that were differentially expressed in schizophrenia, including genes that belong to the transforming growth factor beta (TGF-β) and the bone morphogenetic proteins (BMPs) signaling pathways. Disturbances of these signaling mechanisms may in part contribute to the altered expression of other genes found to be differentially expressed in this study, such as those that regulate extracellular matrix (ECM), apoptosis, and cytoskeletal and synaptic plasticity. In addition, we identified 10 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of their predicted gene targets revealed signaling pathways and gene networks that were found by microarray to be dysregulated, raising an interesting possibility that dysfunction of pyramidal neurons in schizophrenia may in part be mediated by a concerted dysregulation of gene network functions as a result of the altered expression of a relatively small number of miRNAs. Taken together, findings of this study provide a neurobiological framework within which specific hypotheses about the molecular mechanisms of pyramidal cell dysfunction in schizophrenia can be formulated.
Collapse
Affiliation(s)
- Charmaine Y. Pietersen
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Susie S. Kim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Maribel P. Lim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Tracey L. Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martha E. Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert W. McCarley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, Massachusetts, USA
| | - Kai-C. Sonntag
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Hazlett EA, Lamade RV, Graff FS, McClure MM, Kolaitis JC, Goldstein KE, Siever LJ, Godbold JH, Moshier E. Visual-spatial working memory performance and temporal gray matter volume predict schizotypal personality disorder group membership. Schizophr Res 2014; 152:350-7. [PMID: 24398009 DOI: 10.1016/j.schres.2013.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Prior work shows individuals with schizotypal personality disorder (SPD) evince temporal lobe volume abnormalities similar to schizophrenia but sparing of prefrontal cortex, which may mitigate psychosis and the severe neurocognitive impairments observed in schizophrenia. This study examined the extent to which frontal-temporal gray matter volume and neurocognitive performance predict: (1) SPD group membership in a demographically-balanced sample of 51 patients and 37 healthy controls; and (2) symptom severity in SPD. METHODS Dimensional gray-matter volume (left frontal-temporal regions (Brodmann area (BA) 10, 21, 22)) and neurocognitive performance on key memory tasks (California Verbal Learning Test (CVLT), Dot Test, Paced Auditory Serial Addition Test (PASAT)), all salient to schizophrenia-spectrum disorders were examined in a multi-variable model. RESULTS Middle temporal gyrus (BA21) volume and spatial-working memory (Dot Test) performance were significant predictors of SPD group membership likelihood, with poorer working-memory performance indicating increased probability of SPD membership. Combining across regional volumes or cognitive measures resulted in fair-to-good discrimination of group membership, but including neurocognitive and non-collinear regional volume measures together resulted in a receiver-operating-characteristic (ROC) curve with improved diagnostic discrimination. Larger BA10 volume in dorsolateral prefrontal cortex (DLPFC) significantly predicted less symptom severity in SPD. CONCLUSIONS These findings suggest that temporal lobe volume and spatial-working memory performance are promising biological/phenotype markers for likelihood of SPD classification, while greater DLPFC volume may serve as a protective factor.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States; Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States.
| | - Raina V Lamade
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - Fiona S Graff
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - Margaret M McClure
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - Jeanine C Kolaitis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Larry J Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Outpatient Psychiatry, James J. Peter Veterans Affairs Medical Center, Psychiatry, Bronx, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - James H Godbold
- Department of Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Erin Moshier
- Department of Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
Associations between brain morphology and outcome in schizophrenia in a general population sample. Eur Psychiatry 2013; 29:456-62. [PMID: 24342739 DOI: 10.1016/j.eurpsy.2013.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 10/13/2013] [Accepted: 10/24/2013] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To analyse associations between brain morphology and longitudinal and cross-sectional measures of outcomes in schizophrenia in a general population sample. METHODS The sample was the Northern Finland 1966 Birth Cohort. In 1999-2001, structural brain MRI and measures of clinical and functional outcomes were analysed for 54 individuals with schizophrenia around the age of 34. Sex, total grey matter, duration of illness and the use of antipsychotic medication were used as covariates. RESULTS After controlling for multiple covariates, increased density of the left limbic area was associated with less hospitalisations and increased total white matter volume with being in remission. Higher density of left frontal grey matter was associated with not being on a disability pension and higher density of the left frontal lobe and left limbic area were related to better functioning. Higher density of the left limbic area was associated with better longitudinal course of illness. CONCLUSIONS This study, based on unselected general population data, long follow-up and an extensive database, confirms findings of previous studies, that morphological abnormalities in several brain structures are associated with outcome. The difference in brain morphology in patients with good and poor outcomes may reflect separable aetiologies and developmental trajectories in schizophrenia.
Collapse
|
23
|
de Lacy N, King BH. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol 2013; 9:555-87. [PMID: 23537488 DOI: 10.1146/annurev-clinpsy-050212-185627] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia and autism have been linked since their earliest descriptions. Both are disorders of cerebral specialization originating in the embryonic period. Genetic, molecular, and cytologic research highlights a variety of shared contributory mechanisms that may lead to patterns of abnormal connectivity arising from altered development and topology. Overt behavioral pathology likely emerges during or after neurosensitive periods in which resource demands overwhelm system resources and the individual's ability to compensate using interregional activation fails. We are at the threshold of being able to chart autism and schizophrenia from the inside out. In so doing, the door is opened to the consideration of new therapeutics that are developed based upon molecular, synaptic, and systems targets common to both disorders.
Collapse
Affiliation(s)
- Nina de Lacy
- University of Washington and Seattle Children's Hospital, Seattle, Washington 98195, USA
| | | |
Collapse
|
24
|
Brent BK, Thermenos HW, Keshavan MS, Seidman LJ. Gray Matter Alterations in Schizophrenia High-Risk Youth and Early-Onset Schizophrenia: A Review of Structural MRI Findings. Child Adolesc Psychiatr Clin N Am 2013; 22:689-714. [PMID: 24012081 PMCID: PMC3767930 DOI: 10.1016/j.chc.2013.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the literature on structural magnetic resonance imaging findings in pediatric and young adult populations at clinical or genetic high-risk for schizophrenia and early-onset schizophrenia. The implications of this research are discussed for understanding the pathophysiology of schizophrenia and for early intervention strategies. The evidence linking brain structural changes in prepsychosis development and early-onset schizophrenia with disruptions of normal neurodevelopmental processes during childhood or adolescence is described. Future directions are outlined for research to address knowledge gaps regarding the neurobiological basis of brain structural abnormalities in schizophrenia and to improve the usefulness of these abnormalities for preventative interventions.
Collapse
Affiliation(s)
- Benjamin K Brent
- Harvard Medical School, Boston, MA 02115, USA; Division of Public Psychiatry, Massachusetts Mental Health Center, 75 Fenwood Road, Boston, MA 02115, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
25
|
Atluri G, Padmanabhan K, Fang G, Steinbach M, Petrella JR, Lim K, MacDonald A, Samatova NF, Doraiswamy PM, Kumar V. Complex biomarker discovery in neuroimaging data: Finding a needle in a haystack. Neuroimage Clin 2013; 3:123-31. [PMID: 24179856 PMCID: PMC3791294 DOI: 10.1016/j.nicl.2013.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 12/17/2022]
Abstract
Neuropsychiatric disorders such as schizophrenia, bipolar disorder and Alzheimer's disease are major public health problems. However, despite decades of research, we currently have no validated prognostic or diagnostic tests that can be applied at an individual patient level. Many neuropsychiatric diseases are due to a combination of alterations that occur in a human brain rather than the result of localized lesions. While there is hope that newer imaging technologies such as functional and anatomic connectivity MRI or molecular imaging may offer breakthroughs, the single biomarkers that are discovered using these datasets are limited by their inability to capture the heterogeneity and complexity of most multifactorial brain disorders. Recently, complex biomarkers have been explored to address this limitation using neuroimaging data. In this manuscript we consider the nature of complex biomarkers being investigated in the recent literature and present techniques to find such biomarkers that have been developed in related areas of data mining, statistics, machine learning and bioinformatics.
Collapse
Affiliation(s)
- Gowtham Atluri
- Department of Computer Science and Engineering, University of Minnesota — Twin Cities, USA
| | | | - Gang Fang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, USA
| | - Michael Steinbach
- Department of Computer Science and Engineering, University of Minnesota — Twin Cities, USA
| | | | - Kelvin Lim
- Department of Psychiatry, University of Minnesota — Twin Cities, USA
| | - Angus MacDonald
- Department of Psychology, University of Minnesota — Twin Cities, USA
| | | | - P. Murali Doraiswamy
- Department of Psychiatry and the Duke Institute for Brain Sciences, Duke University, USA
| | - Vipin Kumar
- Department of Computer Science and Engineering, University of Minnesota — Twin Cities, USA
| |
Collapse
|
26
|
Zugman A, Gadelha A, Assunção I, Sato J, Ota VK, Rocha DL, Mari JJ, Belangero SI, Bressan RA, Brietzke E, Jackowski AP. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia. Schizophr Res 2013; 148:81-6. [PMID: 23721966 DOI: 10.1016/j.schres.2013.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). METHODOLOGY Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. RESULTS Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. CONCLUSIONS The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses.
Collapse
Affiliation(s)
- André Zugman
- Interdiciplinary Laboratory in Clinical Neuroscience (LiNC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Uematsu M, Matsuzaki N, Brown EC, Kojima K, Asano E. Human occipital cortices differentially exert saccadic suppression: Intracranial recording in children. Neuroimage 2013; 83:224-36. [PMID: 23792979 DOI: 10.1016/j.neuroimage.2013.06.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 04/27/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022] Open
Abstract
By repeating saccades unconsciously, humans explore the surrounding world every day. Saccades inevitably move external visual images across the retina at high velocity; nonetheless, healthy humans don't perceive transient blurring of the visual scene during saccades. This perceptual stability is referred to as saccadic suppression. Functional suppression is believed to take place transiently in the visual systems, but it remains unknown how commonly or differentially the human occipital lobe activities are suppressed at the large-scale cortical network level. We determined the spatial-temporal dynamics of intracranially-recorded gamma activity at 80-150 Hz around spontaneous saccades under no-task conditions during wakefulness and those in darkness during REM sleep. Regardless of wakefulness or REM sleep, a small degree of attenuation of gamma activity was noted in the occipital regions during saccades, most extensively in the polar and least in the medial portions. Longer saccades were associated with more intense gamma-attenuation. Gamma-attenuation was subsequently followed by gamma-augmentation most extensively involving the medial and least involving the polar occipital region. Such gamma-augmentation was more intense during wakefulness and temporally locked to the offset of saccades. The polarities of initial peaks of perisaccadic event-related potentials (ERPs) were frequently positive in the medial and negative in the polar occipital regions. The present study, for the first time, provided the electrophysiological evidence that human occipital cortices differentially exert perisaccadic modulation. Transiently suppressed sensitivity of the primary visual cortex in the polar region may be an important neural basis for saccadic suppression. Presence of occipital gamma-attenuation even during REM sleep suggests that saccadic suppression might be exerted even without external visual inputs. The primary visual cortex in the medial region, compared to the polar region, may be more sensitive to an upcoming visual scene provided at the offset of each saccade.
Collapse
Affiliation(s)
- Mitsugu Uematsu
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Tohoku University, Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | |
Collapse
|
28
|
Gamma activity modulated by picture and auditory naming tasks: intracranial recording in patients with focal epilepsy. Clin Neurophysiol 2013; 124:1737-44. [PMID: 23688918 DOI: 10.1016/j.clinph.2013.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/27/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We measured the spatial, temporal and developmental patterns of gamma activity augmented by picture- and auditory-naming tasks and determined the clinical significance of naming-related gamma-augmentation. METHODS We studied 56 epileptic patients (age: 4-56 years) who underwent extraoperative electrocorticography. The picture-naming task consisted of naming of a visually-presented object; the auditory-naming task consisted of answering an auditorily-presented sentence question. RESULTS Naming-related gamma-augmentation at 50-120 Hz involved the modality-specific sensory cortices during stimulus presentation and inferior-Rolandic regions during responses. Gamma-augmentation in the bilateral occipital and inferior/medial-temporal regions was more intense in the picture-naming than auditory-naming task, whereas that in the bilateral superior-temporal, left middle-temporal, left inferior-parietal, and left frontal regions was more intense in the auditory-naming task. Patients above 10 years old, compared to those younger, showed more extensive gamma-augmentation in the left dorsolateral-premotor region. Resection of sites showing naming-related gamma-augmentation in the left hemisphere assumed to contain essential language function was associated with increased risk of post-operative language deficits requiring speech therapy (p < 0.05). CONCLUSIONS Measurement of gamma-augmentation elicited by either naming task was useful to predict postoperative language deficits. SIGNIFICANCE A smaller degree of frontal engagement in the picture-naming task can be explained by no requirement of syntactic processing or less working memory load. More extensive gamma-augmentation in the left dorsolateral-premotor region in older individuals may suggest more proficient processing by the mature brain.
Collapse
|
29
|
Hu M, Li J, Eyler L, Guo X, Wei Q, Tang J, Liu F, He Z, Li L, Jin H, Liu Z, Wang J, Liu F, Chen H, Zhao J. Decreased left middle temporal gyrus volume in antipsychotic drug-naive, first-episode schizophrenia patients and their healthy unaffected siblings. Schizophr Res 2013; 144:37-42. [PMID: 23360727 DOI: 10.1016/j.schres.2012.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/06/2012] [Accepted: 12/19/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND The shared neuropathological characteristics of patients with schizophrenia and their siblings might represent intermediate phenotypes that could be used to investigate genetic susceptibility to the illness. We sought to discover gray matter volume differences in patients with schizophrenia and their unaffected siblings with voxel-based morphometry (VBM). METHODS We recruited antipsychotic drug-naive, first-episode schizophrenia (FES) patients, their unaffected siblings and age-, sex- and handedness-matched healthy controls. We used VBM to investigate differences in gray matter volume among the 3 groups. RESULTS There were significant gray matter volumetric differences among the 3 groups in bilateral hippocampal and parahippocampal gyri, bilateral middle temporal gyri, and superior temporal gyri (FDR p<0.05). Patients had significant regional gray matter reduction in all regions listed above compared with healthy volunteers, and their gray matter volume in the right hippocampus and parahippocampus was also lower than the sibling group. The sibling group had significantly lower volumes compared to healthy individuals only in the left middle temporal gyrus, and volume of this region was not different between siblings and patients. CONCLUSIONS Our findings confirm and extend previous VBM analyses in schizophrenia and it indicate that schizophrenia may be characterized by an abnormal development of cerebral lateralization. Furthermore, these data argue that patients and their unaffected siblings might share decreases in the gray matter volume of the left middle temporal gyrus, and this regional reduction might be a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Maorong Hu
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Núñez D, Rauch J, Herwig K, Rupp A, Andermann M, Weisbrod M, Resch F, Oelkers-Ax R. Evidence for a magnocellular disadvantage in early-onset schizophrenic patients: a source analysis of the N80 visual-evoked component. Schizophr Res 2013; 144:16-23. [PMID: 23305611 DOI: 10.1016/j.schres.2012.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 11/09/2012] [Accepted: 12/04/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND Visual impairments in schizophrenia have been suggested to be partly caused by early processing deficits of the magnocellular (M) pathway. This might include disturbed interactions between the M and parvocellular (P) pathways and especially impaired M priming, which can disturb highlighting of relevant information. Such disorders may result from neurodevelopmental irregularities, which are assumed to be substantially involved in schizophrenia. This study sought to test the hypothesis that M priming is impaired in schizophrenia. In order to elucidate this neurodevelopmental aspect, we investigated patients with different ages of schizophrenia onset. This provided a useful design to integrate visual information processing in a neurodevelopmental model of schizophrenia. METHOD Nine stimulus conditions were used to investigate the M- and P-pathways and their interaction in a pattern reversal VEP paradigm. N80 generators were analyzed using source localization (Brain Electrical Source Analysis software: BESA). Forty schizophrenia patients (early-onset=19; adult-onset=21) were compared with age- and gender-matched healthy controls (early-onset controls=19; adult-onset controls=21). Hypotheses were tested using a bootstrap resampling procedure. RESULTS The N80 component was represented by a single dipole located in the occipital visual cortex. The bootstrap analysis yielded significant differences between early-onset schizophrenia patients and controls. We found lower amplitudes in response to mixed M-P conditions and normal amplitudes in response to isolated P- and M-biased stimulation. Concerning the latencies, significant differences were found between adult-onset subjects and their controls, with prolonged latencies for schizophrenia patients. CONCLUSIONS The early VEP component N80 evoked by mixed M-P conditions is assumed to be a correlate of M priming and showed reduced amplitude in early-onset schizophrenic patients but not in adult-onset patients. These findings point towards an M priming deficit in early-onset patients and are compatible with a neurodevelopmental hypothesis of schizophrenia, probably reflecting asynchronies in brain maturational abnormalities occurring at different ages of illness onset.
Collapse
Affiliation(s)
- D Núñez
- Faculty of Psychology, Universidad de Talca, Chile; Psychiatry Department, Centre for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Association between polymorphisms in the genes for tumor suppressor protein p53 and its regulator NAD(P)H: quinone oxidoreductase 1 (NQO1) and schizophrenia in a Syrian study cohort. Arch Med Res 2013; 44:121-6. [PMID: 23360829 DOI: 10.1016/j.arcmed.2012.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/14/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS The contribution of genetic factors to the susceptibility for developing schizophrenia is well established. Several hypotheses have been developed in an attempt to identify the pathophysiological mechanisms in schizophrenia, with several findings implicating an important role for apoptosis. A limited number of studies investigated the effects of polymorphisms in apoptotic genes on the susceptibility to schizophrenia in different ethnic groups, with none involving an Arab population. The aim of the present study was to investigate the association between multiple polymorphisms in genes for the central apoptotic protein p53 and its regulator NQO1 and the susceptibility for developing schizophrenia in an Arab population from Syria. METHODS The studied polymorphisms included exon 4 G>C Arg72Pro (rs1042522), IVS3 16 bp Del/Ins (rs17878362), and MspI IVS6+62A>G (rs1625895) of the TP53 gene, and C609T of the NQO1 gene. The study cohort consisted of 90 patients and 144 healthy controls. Association with each of the four polymorphisms was tested under numerous genetic models. The four polymorphisms were genotyped simultaneously using a quadruplex Tetra-Primer ARMS-PCR method described earlier. The combined effects of polymorphisms in NQO1 and TP53 genes were examined. RESULTS No statistically significant association was found for any of the four polymorphisms. CONCLUSIONS Our results do not support an association between the studied polymorphisms and schizophrenia in the Syrian population.
Collapse
|
32
|
Nenadic I, Gaser C, Sauer H. Heterogeneity of brain structural variation and the structural imaging endophenotypes in schizophrenia. Neuropsychobiology 2012; 66:44-9. [PMID: 22797276 DOI: 10.1159/000338547] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 03/29/2012] [Indexed: 11/19/2022]
Abstract
Schizophrenia is often assumed to comprise a group of biologically distinct disorders, yet it has been difficult to dissect subgroups using biological markers. We review recent brain imaging morphometry studies addressing the issue of heterogeneity within the diagnostic category of schizophrenia. Studies of subgroups of schizophrenia patients have mostly used either symptom structure or clinical course for the delineation of potentially meaningful subgroups. Studies defining subgroups according to outcome, i.e. good versus poor outcome (or 'non-Kraepelinian' vs. 'Kraepelinian', respectively) have shown that while these two subgroups might overlap in the extent (and possibly also strength) of prefrontal deficits, they differ in temporal and occipital areas, where poor-outcome patients show stronger deficits. More recent studies have investigated subgroups of schizophrenia based on factor analysis of psychopathology. They have demonstrated a complex pattern of regional changes, where the typical three subgroups might overlap in prefrontal changes, but show divergence in structural deficits in other areas such as the thalamus, hippocampus, or cerebellum. Altogether, these studies demonstrate that brain structure per se is not a uniform endophenotype, but rather a combination of regional deficits highly heterogeneous in both meeting endophenotype criteria as well as in their distribution within the disease category.
Collapse
Affiliation(s)
- Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | | | | |
Collapse
|
33
|
Clinical significance and developmental changes of auditory-language-related gamma activity. Clin Neurophysiol 2012; 124:857-69. [PMID: 23141882 DOI: 10.1016/j.clinph.2012.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/20/2012] [Accepted: 09/22/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We determined the clinical impact and developmental changes of auditory-language-related augmentation of gamma activity at 50-120 Hz recorded on electrocorticography (ECoG). METHODS We analyzed data from 77 epileptic patients ranging 4-56 years in age. We determined the effects of seizure-onset zone, electrode location, and patient-age upon gamma-augmentation elicited by an auditory-naming task. RESULTS Gamma-augmentation was less frequently elicited within seizure-onset sites compared to other sites. Regardless of age, gamma-augmentation most often involved the 80-100 Hz frequency band. Gamma-augmentation initially involved bilateral superior-temporal regions, followed by left-side dominant involvement in the middle-temporal, medial-temporal, inferior-frontal, dorsolateral-premotor, and medial-frontal regions and concluded with bilateral inferior-Rolandic involvement. Compared to younger patients, those older than 10 years had a larger proportion of left dorsolateral-premotor and right inferior-frontal sites showing gamma-augmentation. The incidence of a post-operative language deficit requiring speech therapy was predicted by the number of resected sites with gamma-augmentation in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions of the left hemisphere assumed to contain essential language function (r(2) = 0.59; p = 0.001; odds ratio = 6.04 [95% confidence-interval: 2.26-16.15]). CONCLUSIONS Auditory-language-related gamma-augmentation can provide additional information useful to localize the primary language areas. SIGNIFICANCE These results derived from a large sample of patients support the utility of auditory-language-related gamma-augmentation in presurgical evaluation.
Collapse
|
34
|
Hazlett EA, Collazo T, Zelmanova Y, Entis JJ, Chu KW, Goldstein KE, Roussos P, Haznedar MM, Koenigsberg HW, New AS, Buchsbaum MS, Hershowitz JP, Siever LJ, Byne W. Anterior limb of the internal capsule in schizotypal personality disorder: fiber-tract counting, volume, and anisotropy. Schizophr Res 2012; 141:119-27. [PMID: 22995934 PMCID: PMC3742803 DOI: 10.1016/j.schres.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023]
Abstract
Mounting evidence suggests that white matter abnormalities and altered subcortical-cortical connectivity may be central to the pathology of schizophrenia (SZ). The anterior limb of the internal capsule (ALIC) is an important thalamo-frontal white-matter tract shown to have volume reductions in SZ and to a lesser degree in schizotypal personality disorder (SPD). While fractional anisotropy (FA) and connectivity abnormalities in the ALIC have been reported in SZ, they have not been examined in SPD. In the current study, magnetic resonance (MRI) and diffusion tensor imaging (DTI) were obtained in age- and sex-matched individuals with SPD (n=33) and healthy controls (HCs; n=38). The ALIC was traced bilaterally on five equally spaced dorsal-to-ventral axial slices from each participant's MRI scan and co-registered to DTI for the calculation of FA. Tractography was used to examine tracts between the ALIC and two key Brodmann areas (BAs; BA10, BA45) within the dorsolateral prefrontal cortex (DLPFC). Compared with HCs, the SPD participants exhibited (a) smaller relative volume at the mid-ventral ALIC slice level but not the other levels; (b) normal FA within the ALIC; (c) fewer relative number of tracts between the most-dorsal ALIC levels and BA10 but not BA45 and (d) fewer dorsal ALIC-DLPFC tracts were associated with greater symptom severity in SPD. In contrast to prior SZ studies that report lower FA, individuals with SPD show sparing. Our findings are consistent with a pattern of milder thalamo-frontal dysconnectivity in SPD than schizophrenia.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guo W, Liu F, Liu Z, Gao K, Xiao C, Chen H, Zhao J. Right lateralized white matter abnormalities in first-episode, drug-naive paranoid schizophrenia. Neurosci Lett 2012; 531:5-9. [PMID: 23022507 DOI: 10.1016/j.neulet.2012.09.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 11/25/2022]
Abstract
Numerous studies in first-episode schizophrenia suggest the involvement of white matter (WM) abnormalities in multiple regions underlying the pathogenesis of this condition. However, there has never been a neuroimaging study in patients with first-episode, drug-naive paranoid schizophrenia by using tract-based spatial statistics (TBSS) method. Here, we used diffusion tensor imaging (DTI) with TBSS method to investigate the brain WM integrity in patients with first-episode, drug-naive paranoid schizophrenia. Twenty patients with first-episode, drug-naive paranoid schizophrenia and 26 healthy subjects matched with age, gender, and education level were scanned with DTI. An automated TBSS approach was employed to analyze the data. Voxel-wise statistics revealed that patients with paranoid schizophrenia had decreased fractional anisotropy (FA) values in the right superior longitudinal fasciculus (SLF) II, the right fornix, the right internal capsule, and the right external capsule compared to healthy subjects. Patients did not have increased FA values in any brain regions compared to healthy subjects. There was no correlation between the FA values in any brain regions and patient demographics and the severity of illness. Our findings suggest right-sided alterations of WM integrity in the WM tracts of cortical and subcortical regions may play an important role in the pathogenesis of paranoid schizophrenia.
Collapse
Affiliation(s)
- Wenbin Guo
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Reser DH, Burman KJ, Yu HH, Chaplin TA, Richardson KE, Worthy KH, Rosa MGP. Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: a retrograde tracing study in marmoset monkeys. ACTA ACUST UNITED AC 2012; 23:1901-22. [PMID: 22735155 DOI: 10.1093/cercor/bhs177] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans.
Collapse
Affiliation(s)
- David H Reser
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Kuswanto CN, Teh I, Lee TS, Sim K. Diffusion tensor imaging findings of white matter changes in first episode schizophrenia: a systematic review. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2012; 10:13-24. [PMID: 23429992 PMCID: PMC3569158 DOI: 10.9758/cpn.2012.10.1.13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
Earlier structural magnetic resonance imaging in schizophrenia have noted smaller white matter volumes in diverse brain regions and recent diffusion tensor imaging (DTI) studies have allowed better elucidation of changes in brain white matter integrity within the illness. As white matter abnormalities have been reported to occur early in the course of schizophrenia, we systematically review extant DTI studies of anomalies of white matter integrity in first episode schizophrenia (FES) up till October 2011. Overall, disruptions of white matter integrity were found in the cortical, subcortical brain regions and white matter associative and commissural tracts, suggesting that changes of cortical-subcortical white matter integrity were found at an early stage of the disorder. These changes in white matter integrity were correlated with specific cognitive deficits (verbal and spatial working memory) as well as psychopathology (positive more than negative symptoms) in patients with FES. The correlation of these white matter integrity changes with cognitive and phenomenological factors may shed light on neurobiological substrates underlying these clinical manifestations. Future studies need to validate these findings in larger samples of subjects and in different populations as well as chart the progress of these cerebral white matter changes over time so as to better appreciate their trajectory with illness course, treatment and chronicity.
Collapse
|
38
|
Yang C, Wu S, Lu W, Bai Y, Gao H. WITHDRAWN: Anatomic differences in first episode schizophrenia: a deformation-based morphometry MRI Study. Compr Psychiatry 2011:S0010-440X(11)00189-1. [PMID: 22036008 DOI: 10.1016/j.comppsych.2011.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/04/2011] [Accepted: 09/14/2011] [Indexed: 10/15/2022] Open
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | | | | | | | | |
Collapse
|
39
|
Walterfang M, Velakoulis D, Whitford TJ, Pantelis C. Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 2011; 11:971-87. [PMID: 21721915 DOI: 10.1586/ern.11.76] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although historically gray matter changes have been the focus of neuropathological and neuroradiological studies in schizophrenia, in recent years an increasing body of research has implicated white matter structures and its constituent components (axons, their myelin sheaths and supporting oligodendrocytes). This article summarizes this body of literature, examining neuropathological, neurogenetic and neuroradiological evidence for white matter pathology in schizophrenia. We then look at the possible role that antipsychotic medication may play in these studies, examining both its role as a potential confounder in studies examining neuronal density and brain volume, but also the possible role that these medications may play in promoting myelination through their effects on oligodendrocytes. Finally, the role of potential novel therapies is discussed.
Collapse
Affiliation(s)
- Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
40
|
Goodman M, Hazlett EA, Avedon JB, Siever DR, Chu KW, New AS. Anterior cingulate volume reduction in adolescents with borderline personality disorder and co-morbid major depression. J Psychiatr Res 2011; 45:803-7. [PMID: 21145068 DOI: 10.1016/j.jpsychires.2010.11.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/09/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
Borderline Personality Disorder (BPD) is a serious illness characterized by emotional dysregulation, impulsivity, and impaired interpersonal relationships. Prior work shows the anterior cingulate gyrus (ACG)-a region primarily involved in assessing the salience of emotional information and regulating emotional responses--is smaller in adults with BPD. We tested the hypothesis that, similar to adults, adolescents with BPD would have reduced Brodmann area (BA)-24 volume. Thirteen adolescent inpatients with co-morbid BPD and Major Depressive Disorder (MDD) and 13 matched healthy controls received 3T-MRI scans. Using a cytoarchitecturally-derived approach measuring gray and white matter volume, we observed a Group × Cingulate BA (25,24,31,23,29) × Matter (gray, white) type interaction indicating the BPD/MDD adolescents had smaller BA24 volume in gray but not white matter. Greater number of suicide attempts and BPD symptom severity measured by the Diagnostic Interview for BPD-revised (DIB-R) total score but not depressive symptoms measured by the Beck Depression Inventory (BDI) was associated with smaller BA24 volume. Our preliminary findings suggest that BPD-related abnormalities in BA24 volume may occur early in the developmental course of BPD with MDD. Future studies examining samples of MDD patients with and without BPD co-morbidity will be needed to clarify whether BA24 volume reductions are specific to BPD.
Collapse
Affiliation(s)
- Marianne Goodman
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10468,USA.
| | | | | | | | | | | |
Collapse
|
41
|
Mann SL, Hazlett EA, Byne W, Hof PR, Buchsbaum MS, Cohen BH, Goldstein KE, Haznedar MM, Mitsis EM, Siever LJ, Chu KW. Anterior and posterior cingulate cortex volume in healthy adults: effects of aging and gender differences. Brain Res 2011; 1401:18-29. [PMID: 21669408 DOI: 10.1016/j.brainres.2011.05.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/02/2011] [Accepted: 05/20/2011] [Indexed: 01/29/2023]
Abstract
The cingulate cortex frequently shows gray matter loss with age as well as gender differences in structure and function, but little is known about whether individual cingulate Brodmann areas show gender-specific patterns of age-related volume decline. This study examined age-related changes, gender differences, and the interaction of age and gender in the relative volume of cingulate gray matter in areas 25, 24, 31, 23, and 29, over seven decades of adulthood. Participants included healthy, age-matched men and women, aged 20-87 (n=70). Main findings were as follows: (1) The whole cingulate showed significant age-related volume declines (averaging 5.54% decline between decades, 20s-80s). Each of the five cingulate areas also showed a significant decline with age, and individual areas showed different patterns of decline across the decades: Smaller volume with age was most evident in area 31, followed by 25 and 24. (2) Women had relatively larger cingulate gray matter volume than men overall and in area 24. (3) Men and women showed different patterns of age-related volume decline in area 31, at midlife and late in life. By delineating normal gender differences and age-related morphometric changes in the cingulate cortex over seven decades of adulthood, this study improves the baseline for comparison with structural irregularities in the cingulate cortex associated with psychopathology. The Brodmann area-based approach also facilitates comparisons across studies that aim to draw inferences between age- and gender-related structural differences in the cingulate gyrus and corresponding differences in cingulate function.
Collapse
Affiliation(s)
- Sarah L Mann
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu L, Li Q, Sapolsky R, Liao M, Mehta K, Bhargava A, Pasricha PJ. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression- and anxiety-like behavior as adults. PLoS One 2011; 6:e19498. [PMID: 21589865 PMCID: PMC3093391 DOI: 10.1371/journal.pone.0019498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/05/2011] [Indexed: 12/27/2022] Open
Abstract
AIMS A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia) and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them. METHODS Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured. RESULTS Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated rats CONCLUSIONS The present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders.
Collapse
Affiliation(s)
- Liansheng Liu
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
| | - Qian Li
- Department of Pharmacology and Toxicology, University of Kansas, Kansas City, Kansas, United States of America
| | - Robert Sapolsky
- Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, California, United States of America
| | - Min Liao
- Department of Surgery, University of California San Francisco, San Francisco, United States of America
| | - Kshama Mehta
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
| | - Aditi Bhargava
- Department of Surgery, University of California San Francisco, San Francisco, United States of America
| | - Pankaj J. Pasricha
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Longitudinal imaging studies in schizophrenia: the relationship between brain morphology and outcome measures. ACTA ACUST UNITED AC 2011. [DOI: 10.1017/s1121189x00001123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractImaging studies have tried to identify morphological outcome measures of schizophrenia in the last two decades. In particular, longitudinal studies have reported a correlation between larger ventricles, decreased prefrontal volumes and worse outcome. This would potentially allow to isolate subtypes of schizophrenia patients with a worse prognosis and more evident biological impairments, ultimately helping in designing specific rehabilitation interventions.
Collapse
|
44
|
Molina V, Papiol S, Sanz J, Rosa A, Arias B, Fatjó-Vilas M, Calama J, Hernández AI, Bécker J, Fañanás L. Convergent evidence of the contribution of TP53 genetic variation (Pro72Arg) to metabolic activity and white matter volume in the frontal lobe in schizophrenia patients. Neuroimage 2011; 56:45-51. [PMID: 21296169 DOI: 10.1016/j.neuroimage.2011.01.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/13/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022] Open
Abstract
Abnormalities in white matter (WM) volumes and integrity in schizophrenia, together with post-mortem studies showing reduced expression of oligodendrocyte/myelination genes and apoptotic processes taking place in oligodendrocytes, suggest the interest of major regulators of apoptosis as candidate genes for some features related to myelin integrity in schizophrenia. Protein p53, encoded by TP53 gene, has a central role in the control of apoptosis and is involved in oligodendrocyte development. TP53 gene polymorphisms may account for variability in WM features, metabolic activity and biochemical markers of neuronal integrity and membrane turnover. Pro72Arg and Ins16bp polymorphisms at TP53 gene were analyzed in 20 DSM-IV schizophrenia patients. T1/T2-weighted sequences of these patients were acquired using a 1.5T Philips Gyroscan system. Scans were transformed into Talairach space and segmented into gray matter (GM), WM and cerebrospinal fluid (CSF) using Statistical Parametric Mapping under a ROI approach. Likewise dorsolateral prefrontal cortex (DLPFC) metabolic activity was measured using a procedure based on MRI/PET image fusion. In 13 of these patients proton magnetic resonance spectroscopy was used to examine N-acetylaspartate (NAA), creatine (Cr) and choline (Cho) levels in dorsolateral-medial prefrontal cortex (DLMPFC). MRI data were adjusted for age and brain volume using regression parameters from a healthy control group (n=45). Patients Pro/Arg heterozygous (Pro72Arg polymorphism) showed a generalized deficit in whole-brain WM that was especially prominent in frontal lobe and a lower metabolic activity in the DLPFC as compared to Pro/Pro homozygous. Pro/Arg subjects also showed decreased NAA/Cho and increased Cho/Cr ratios in right DLMPFC. TP53 genetic variability influences WM volumes in frontal lobes and it seems to modulate the metabolic activity in this region. Our results suggest that TP53 might influence aspects of myelin and white matter integrity which may account for some of the frontal dysfunction features commonly described in these patients.
Collapse
Affiliation(s)
- Vicente Molina
- Department of Psychiatry, Hospital Clínico de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Horga G, Bernacer J, Dusi N, Entis J, Chu K, Hazlett EA, Mehmet Haznedar M, Kemether E, Byne W, Buchsbaum MS. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2011; 261:467-76. [PMID: 21431919 PMCID: PMC3182327 DOI: 10.1007/s00406-011-0202-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 02/15/2011] [Indexed: 11/25/2022]
Abstract
Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule.
Collapse
Affiliation(s)
- Guillermo Horga
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
- Schizophrenia Clinic Program, Department of Psychiatry, Hospital Clínic Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Javier Bernacer
- Laboratory of Functional Neuromorphology, Clinica Universitaria, Universidad de Navarra, Avda. Pío XII 36, 31008 Pamplona, Spain
| | - Nicola Dusi
- Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, University of Verona, Policlinico Giambattista Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Jonathan Entis
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
| | - Kingwai Chu
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
| | - Erin A. Hazlett
- Department of Psychiatry, James J Peters VA Medical Center, 130 West Kingsbridge Road, 10468 Bronx, NY USA
| | - M. Mehmet Haznedar
- Department of Psychiatry, James J Peters VA Medical Center, 130 West Kingsbridge Road, 10468 Bronx, NY USA
| | - Eileen Kemether
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, 10029 New York, NY USA
| | - William Byne
- Department of Psychiatry, James J Peters VA Medical Center, 130 West Kingsbridge Road, 10468 Bronx, NY USA
| | - Monte S. Buchsbaum
- Departments of Psychiatry and Radiology, NeuroPET Center, University of California, 11388 Sorrento Valley Road, Suite #100, 92121 San Diego, CA USA
| |
Collapse
|
46
|
Goldstein KE, Hazlett EA, Savage KR, Berlin HA, Hamilton HK, Zelmanova Y, Look AE, Koenigsberg HW, Mitsis EM, Tang CY, McNamara M, Siever LJ, Cohen BH, New AS. Dorso- and ventro-lateral prefrontal volume and spatial working memory in schizotypal personality disorder. Behav Brain Res 2010; 218:335-40. [PMID: 21115066 DOI: 10.1016/j.bbr.2010.11.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 11/18/2022]
Abstract
Schizotypal personality disorder (SPD) individuals and borderline personality disorder (BPD) individuals have been reported to show neuropsychological impairments and abnormalities in brain structure. However, relationships between neuropsychological function and brain structure in these groups are not well understood. This study compared visual-spatial working memory (SWM) and its associations with dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) gray matter volume in 18 unmedicated SPD patients with no BPD traits, 18 unmedicated BPD patients with no SPD traits, and 16 healthy controls (HC). Results showed impaired SWM in SPD but not BPD, compared with HC. Moreover, among the HC group, but not SPD patients, better SWM performance was associated with larger VLPFC (BA44/45) gray matter volume (Fisher's Z p-values <0.05). Findings suggest spatial working memory impairments may be a core neuropsychological deficit specific to SPD patients and highlight the role of VLPFC subcomponents in normal and dysfunctional memory performance.
Collapse
Affiliation(s)
- Kim E Goldstein
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Molina V, Hernández JA, Sanz J, Paniagua JC, Hernández AI, Martín C, Matías J, Calama J, Bote B. Subcortical and cortical gray matter differences between Kraepelinian and non-Kraepelinian schizophrenia patients identified using voxel-based morphometry. Psychiatry Res 2010; 184:16-22. [PMID: 20832256 DOI: 10.1016/j.pscychresns.2010.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/31/2010] [Accepted: 06/10/2010] [Indexed: 11/26/2022]
Abstract
The long-term outcome of schizophrenia patients may differ depending on their brain structure. This would be reflected in significant structural differences between poor-outcome (i.e., Kraepelinian) and non-Kraepelinian patients. To assess this possibility, we have evaluated the degree of deviation in brain structure in Kraepelinian patients with respect to controls and non-Kraepelinian schizophrenia patients. We used voxel-brain morphometry (VBM) to assess the differences in gray matter volume across the brain in the Kraepelinian group with respect to the healthy controls and non-Kraepelinian patients. Twenty-six Kraepelinian and 18 non-Kraepelinian schizophrenia patients and 41 healthy controls were included. With respect to the healthy controls, the Kraepelinian patients showed a very significant decrease in gray matter in the frontal, occipital, and limbic cortices, and, at a subcortical level, bilaterally in the striatum and thalamus. In comparison with the non-Kraepelinian patients, the Kraepelinian individuals continued to show a similar subcortical decrease. Thus, Kraepelinian patients may be characterized by a distinct pattern of brain abnormalities, in particular, in subcortical regions.
Collapse
Affiliation(s)
- Vicente Molina
- Servicio de Psiquiatría, Hospital Universitario de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
18F-fallypride binding potential in patients with schizophrenia compared to healthy controls. Schizophr Res 2010; 122:43-52. [PMID: 20655709 PMCID: PMC3278159 DOI: 10.1016/j.schres.2010.03.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Molecular imaging of dopaminergic parameters has contributed to the dopamine hypothesis of schizophrenia, expanding our understanding of pathophysiology, clinical phenomenology and treatment. Our aim in this study was to compare (18)F-fallypride binding potential BP(ND) in a group of patients with schizophrenia-spectrum illness vs. controls, with a particular focus on the cortex and thalamus. METHODS We acquired (18)F-fallypride positron emission tomography images on 33 patients with schizophrenia spectrum disorder (28 with schizophrenia; 5 with schizoaffective disorder) and 18 normal controls. Twenty-four patients were absolutely neuroleptic naïve and nine were previously medicated, although only four had a lifetime neuroleptic exposure of greater than two weeks. Parametric images of (18)F-fallypride BP(ND) were calculated to compare binding across subjects. RESULTS Decreased BP(ND) was observed in the medial dorsal nucleus of the thalamus, prefrontal cortex, lateral temporal lobe and primary auditory cortex. These findings were most marked in subjects who had never previously received medication. CONCLUSIONS The regions with decreased BP(ND) tend to match brain regions previously reported to show alterations in metabolic activity and blood flow and areas associated with the symptoms of schizophrenia.
Collapse
|
49
|
|
50
|
Chan WY, Yang GL, Chia MY, Lau IY, Sitoh YY, Nowinski WL, Sim K. White matter abnormalities in first-episode schizophrenia: a combined structural MRI and DTI study. Schizophr Res 2010; 119:52-60. [PMID: 20056394 DOI: 10.1016/j.schres.2009.12.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 11/25/2009] [Accepted: 12/14/2009] [Indexed: 01/01/2023]
Abstract
This study examined white matter volume change and integrity jointly in patients with first-episode schizophrenia using an empirically derived region of interest approach and novel Diffusion Tensor Imaging (DTI) geometric indices. Structural images from 103 individuals comprising of 39 patients with first-episode schizophrenia and 64 healthy controls were examined for regions of white matter volume change using voxel-based morphometry (VBM). These regions were then further interrogated for group differences employing geometric indices in addition to fractional anisotropy (FA).VBM analyses revealed that patients with first-episode schizophrenia had lower white matter volume in the right temporal-occipital region (p<0.005) corresponding to the inferior longitudinal fasciculus. Further analyses of diffusion anisotropy in the right temporal-occipital region revealed lower planar anisotropy, and higher linear anisotropy (p=0.012) in patients. FA in the implicated region was also found to be correlated with severity of delusions (r=0.47, p=0.004).We confirmed previous findings of lower white matter volume in the region of inferior longitudinal fasciculus. The presence of changes in geometric diffusion indices in the implicated white matter region suggested that pathophysiological processes which underlie cerebral white matter volume reduction may not be reflected by changes in FA. Further research is needed to better understand the nature of these white matter changes and its progression in schizophrenia over time.
Collapse
Affiliation(s)
- Wai-Yen Chan
- Research Division, Institute of Mental Health, Singapore
| | | | | | | | | | | | | |
Collapse
|