1
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2024:10.1038/s41380-024-02758-4. [PMID: 39333385 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Moningka H, Mason L. Misperceiving Momentum: Computational Mechanisms of Biased Striatal Reward Prediction Errors in Bipolar Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100330. [PMID: 39132577 PMCID: PMC11313182 DOI: 10.1016/j.bpsgos.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Dysregulated reward processing and mood instability are core features of bipolar disorder that have largely been considered separately, with contradictory findings. We sought to test a mechanistic account that emphasizes an excessive tendency in bipolar disorder to enter recursive cycles in which reward perception is biased by signals that the environment may be changing for the better or worse. Methods Participants completed a probabilistic reward task with functional magnetic resonance imaging. Using an influential computational model, we ascertained whether participants with bipolar disorder (n = 21) showed greater striatal tracking of momentum-biased reward prediction errors (RPEs) than matched control participants (n = 21). We conducted psychophysiological interaction analyses to quantify the degree to which each group modulated functional connectivity between the ventral striatum and left anterior insula in response to fluctuations in momentum. Results In participants with bipolar disorder, but not control participants, the momentum-biased RPE model accounted for significant additional variance in striatal activity beyond a standard model of veridical RPEs. Compared with control participants, participants with bipolar disorder exhibited lower insular-striatal functional connectivity modulated by momentum-biased RPEs, an effect that was more pronounced as a function of current manic symptoms. Conclusions Consistent with existing theory, we found evidence that bipolar disorder is associated with a tendency for momentum to excessively bias striatal tracking of RPEs. We identified impaired insular-striatal connectivity as a possible locus for this propensity. We argue that computational psychiatric approaches that examine momentary shifts in reward and mood dynamics have strong potential for yielding new mechanistic insights and intervention targets.
Collapse
Affiliation(s)
- Hestia Moningka
- Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
- Wellcome Trust Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Liam Mason
- Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Xiao Q, Zhang G, Zhong Y. Abnormal functional connectivity of the intrinsic networks in adolescent bipolar I versus bipolar II disorder. Psychiatry Res Neuroimaging 2024; 340:111802. [PMID: 38428239 DOI: 10.1016/j.pscychresns.2024.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/07/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND The symptoms of pediatric bipolar disorder (PBD)-I and PBD-II differ, but accurate identification at an early stage is difficult and may prevent effective treatment of this disorder. Therefore, it is urgent to elucidate a biological marker based on objective imaging indicators to help distinguish the two. Therefore, this research aims to compare the functional connectivity between PBD-I patient and PBD-II patient in different brain networks. METHODS Our study enrolled 31 PBD-I and 23 PBD-II patients from 12 to 17 years of age. They were analyzed by resting state-functional connectivity through Independent component analysis (ICA). RESULTS We found differences between PBD-I and PBD-II in functional connectivity of the default network, frontoparietal network, salience network and limbic system. In addition, the clinical features, cognitive functions are associated with the functional connectivity of the intrinsic networks in PBD-I and PBD-II separately. CONCLUSION This research is the first to find differences in functional connectivity between PBD-I and PBD-II, suggesting that abnormality of the functional connectivity within large networks may be biomarkers that help differentiate PBD-I from PBD-II in the future.
Collapse
Affiliation(s)
- Qian Xiao
- Mental Health Centre of Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Gui Zhang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing 210097, China.
| |
Collapse
|
4
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Soehner AM, Wallace ML, Edmiston K, Chase HW, Lockovich J, Aslam H, Stiffler R, Graur S, Skeba A, Bebko G, Benjamin OE, Wang Y, Phillips ML. Neurobehavioral Reward and Sleep-Circadian Profiles Predict Present and Next-Year Mania/Hypomania Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1251-1261. [PMID: 37230386 PMCID: PMC10665544 DOI: 10.1016/j.bpsc.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Heightened reward sensitivity/impulsivity, related neural activity, and sleep-circadian disruption are important risk factors for bipolar spectrum disorders, the defining feature of which is mania/hypomania. Our goal was to identify neurobehavioral profiles based on reward and sleep-circadian features and examine their specificity to mania/hypomania versus depression vulnerability. METHODS At baseline, a transdiagnostic sample of 324 adults (18-25 years) completed trait measures of reward sensitivity (Behavioral Activation Scale), impulsivity (UPPS-P-Negative Urgency), and a functional magnetic resonance imaging card-guessing reward task (left ventrolateral prefrontal activity to reward expectancy, a neural correlate of reward motivation and impulsivity, was extracted). At baseline, 6-month follow-up, and 12-month follow-up, the Mood Spectrum Self-Report Measure - Lifetime Version assessed lifetime predisposition to subthreshold-syndromal mania/hypomania, depression, and sleep-circadian disturbances (insomnia, sleepiness, reduced sleep need, rhythm disruption). Mixture models derived profiles from baseline reward, impulsivity, and sleep-circadian variables. RESULTS Three profiles were identified: 1) healthy (no reward or sleep-circadian disruption; n = 162); 2) moderate-risk (moderate reward and sleep-circadian disruption; n = 109); and 3) high-risk (high impulsivity and sleep-circadian disruption; n = 53). At baseline, the high-risk group had significantly higher mania/hypomania scores than the other groups but did not differ from the moderate-risk group in depression scores. Over the follow-up period, the high-risk and moderate-risk groups exhibited elevated mania/hypomania scores, whereas depression scores increased at a faster rate in the healthy group than in the other groups. CONCLUSIONS Cross-sectional and next-year predisposition to mania/hypomania is associated with a combination of heightened reward sensitivity and impulsivity, related reward circuitry activity, and sleep-circadian disturbances. These measures can be used to detect mania/hypomania risk and provide targets to guide and monitor interventions.
Collapse
Affiliation(s)
- Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Meredith L Wallace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kale Edmiston
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeannette Lockovich
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alex Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Osasumwen E Benjamin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yiming Wang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Cao Y, Lizano P, Deng G, Sun H, Zhou X, Xie H, Zhan Y, Mu J, Long X, Xiao H, Liu S, Gong Q, Qiu C, Jia Z. Brain-derived subgroups of bipolar II depression associate with inflammation and choroid plexus morphology. Psychiatry Clin Neurosci 2023; 77:613-621. [PMID: 37585287 DOI: 10.1111/pcn.13585] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
AIM Elevated inflammation and larger choroid plexus (ChP) volume has been previously identified in mood disorders. Connections between inflammation, ChP, and clinical symptoms in bipolar II depression (BDII-D) are unclear. Data-driven clustering based on neuroanatomical phenotypes may help to elucidate neurobiological associations in BDII-D. METHODS Inflammatory cytokines, clinical symptoms, and neuroanatomical features were assessed in 150 BDII-D patients. Sixty-eight cortical surface area (SA) and 19 subcortical volumes were extracted using FreeSurfer. The ChP volume was segmented manually using 3D Slicer. Regularized canonical correlation analysis was used to identify significantly correlated components between cortical SA and subcortical volumes (excluding the ChP), followed by k-means clustering to define brain-derived subgroups of BDII-D. Low-grade inflammation was derived by averaging the standardized z scores of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), which were computed to create a composite z-value score. Partial Pearson correlations followed by multiple comparison correction were conducted to explore associations between inflammation, clinical symptoms, and ChP volume. RESULTS Subgroup I demonstrated smaller subcortical volume and cortical SA, higher inflammation, and larger ChP volume compared with subgroup II. Greater ChP volume was associated with a higher low-grade inflammation (mean r = 0.289, q = 0.003), CRP (mean r = 0.249, q = 0.007), IL-6 (left r = 0.200, q = 0.03), and TNF-α (right r = 0.226, q = 0.01), while greater IL-1β was significantly associated with severe depressive symptoms in BDII-D (r = 0.218, q = 0.045). CONCLUSIONS Neuroanatomically-derived subgroups of BDII-D differed in their inflammation levels and ChP volume. These findings suggest an important role of elevated peripheral inflammation and larger ChP in BDII-D.
Collapse
Grants
- 81971595 National Natural Science Foundation of China
- 82271947 National Natural Science Foundation of China
- 2020HXFH005 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022HXFH029 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- ZYJC21083 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022YFS0345 Department of Science and Technology of Sichuan Provincial Government
- 2022NSFSC0047 Key Program of Natural Science Foundation of Sichuan Province
- 2020HXFH005 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022HXFH029 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- ZYJC21083 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022YFS0345 the Department of Science and Technology of Sichuan Provincial Government
- 2022NSFSC0047 the Key Program of Natural Science Foundation of Sichuan Province
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huan Sun
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yaru Zhan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Pouchon A, Vinckier F, Dondé C, Gueguen MC, Polosan M, Bastin J. Reward and punishment learning deficits among bipolar disorder subtypes. J Affect Disord 2023; 340:694-702. [PMID: 37591352 DOI: 10.1016/j.jad.2023.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Reward sensitivity is an essential dimension related to mood fluctuations in bipolar disorder (BD), but there is currently a debate around hypersensitivity or hyposensitivity hypotheses to reward in BD during remission, probably related to a heterogeneous population within the BD spectrum and a lack of reward bias evaluation. Here, we examine reward maximization vs. punishment avoidance learning within the BD spectrum during remission. METHODS Patients with BD-I (n = 45), BD-II (n = 34) and matched (n = 30) healthy controls (HC) were included. They performed an instrumental learning task designed to dissociate reward-based from punishment-based reinforcement learning. Computational modeling was used to identify the mechanisms underlying reinforcement learning performances. RESULTS Behavioral results showed a significant reward learning deficit across BD subtypes compared to HC, captured at the computational level by a lower sensitivity to rewards compared to punishments in both BD subtypes. Computational modeling also revealed a higher choice randomness in BD-II compared to BD-I that reflected a tendency of BD-I to perform better during punishment avoidance learning than BD-II. LIMITATIONS Our patients were not naive to antipsychotic treatment and were not euthymic (but in syndromic remission) according to the International Society for Bipolar Disorder definition. CONCLUSIONS Our results are consistent with the reward hyposensitivity theory in BD. Computational modeling suggests distinct underlying mechanisms that produce similar observable behaviors, making it a useful tool for distinguishing how symptoms interact in BD versus other disorders. In the long run, a better understanding of these processes could contribute to better prevention and management of BD.
Collapse
Affiliation(s)
- Arnaud Pouchon
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France; Department of Psychiatry, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Fabien Vinckier
- Motivation, Brain & Behavior (MBB) lab, Institut du Cerveau (ICM), Hôpital Pitié-Salpêtrière, F-75013 Paris, France; Université Paris Cité, F-75006 Paris, France; Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Clément Dondé
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France; Department of Psychiatry, CHU Grenoble Alpes, 38000 Grenoble, France; Department of Psychiatry, CH Alpes-Isère, 38000 Saint-Egrève, France
| | - Maëlle Cm Gueguen
- Department of Psychiatry, University Behavioral Health Care & the Brain Health Institute, Rutgers University-New Brunswick, Piscataway, USA; Laureate Institute for Brain Research, Tulsa, OK 74136 USA
| | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France; Department of Psychiatry, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
8
|
Phillips ML. Building a neurobiological framework to elucidate neural mechanisms, aid early risk detection, and develop new treatments for Bipolar Disorder. Psychiatry Res 2023; 329:115521. [PMID: 37797440 PMCID: PMC10841719 DOI: 10.1016/j.psychres.2023.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
This article describes the progress that my colleagues and I have made over the last two decades in building a clinical neuroscience research program in Bipolar Disorder (BD). Here, we have focused on key research themes to ultimately help with early risk detection and the development of better treatments for individuals with BD. We have described the main areas that we are pursuing, namely, understanding the underlying neural mechanisms of BD and BD risk, differentiating BD and BD risk from depressive disorder risk, and the development of new treatments for individuals with BD. We conclude with a summary of future directions in our research that include examination of the molecular and metabolic abnormalities associated with neural network abnormalities underlying mania/hypomania risk, testing neural risk markers in independent samples stratified according to familial risk for BD, and the study of early infant and child neurodevelopmental processes that confer risk for affective disorders, including BD, in order to elucidate early neural risk markers.
Collapse
Affiliation(s)
- M L Phillips
- Department of Psychiatry, University of Pittsburgh, USA.
| |
Collapse
|
9
|
Stange JP, Li J, Xu EP, Ye Z, Zapetis SL, Phanord CS, Wu J, Sellery P, Keefe K, Forbes E, Mermelstein RJ, Trull TJ, Langenecker SA. Autonomic complexity dynamically indexes affect regulation in everyday life. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:847-866. [PMID: 37410429 PMCID: PMC10592626 DOI: 10.1037/abn0000849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Affect regulation often is disrupted in depression. Understanding biomarkers of affect regulation in ecologically valid contexts is critical for identifying moments when interventions can be delivered to improve regulation and may have utility for identifying which individuals are vulnerable to psychopathology. Autonomic complexity, which includes linear and nonlinear indices of heart rate variability, has been proposed as a novel marker of neurovisceral integration. However, it is not clear how autonomic complexity tracks with regulation in everyday life, and whether low complexity serves as a marker of related psychopathology. To measure regulation phenotypes with diminished influence of current symptoms, 37 young adults with remitted major depressive disorder (rMDD) and 28 healthy comparisons (HCs) completed ambulatory assessments of autonomic complexity and affect regulation across one week in everyday life. Multilevel models indicated that in HCs, but not rMDD, autonomic complexity fluctuated in response to regulation cues, increasing in response to reappraisal and distraction and decreasing in response to negative affect. Higher complexity across the week predicted greater everyday regulation success, whereas greater variability of complexity predicted lower (and less variable) negative affect, rumination, and mind-wandering. Results suggest that ambulatory assessment of autonomic complexity can passively index dynamic aspects of real-world affect and regulation, and that dynamic physiological reactivity to regulation is restricted in rMDD. These results demonstrate how intensive sampling of dynamic, nonlinear regulatory processes can advance our understanding of potential mechanisms underlying psychopathology. Such measurements might inform how to test interventions to enhance neurovisceral complexity and affect regulation success in real time. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Jonathan P. Stange
- Department of Psychology, University of Southern California
- Department of Psychiatry and Behavioral Sciences, University of Southern California
| | - Jiani Li
- Department of Psychology, University of Southern California
| | - Ellie P. Xu
- Department of Psychology, University of Southern California
| | - Zihua Ye
- Department of Psychology, University of Illinois at Urbana-Champaign
| | | | | | - Jenny Wu
- Department of Psychology, University of Massachusetts Boston
| | - Pia Sellery
- Department of Psychology, University of Colorado at Boulder
| | - Kaley Keefe
- Department of Psychology, University of Southern California
| | - Erika Forbes
- Department of Psychiatry, University of Pittsburgh
| | | | | | | |
Collapse
|
10
|
Wu YK, Su YA, Zhu LL, Li JT, Li Q, Dai YR, Lin JY, Li K, Si TM. Intrinsic functional connectivity correlates of cognitive deficits involving sustained attention and executive function in bipolar disorder. BMC Psychiatry 2023; 23:584. [PMID: 37568112 PMCID: PMC10416380 DOI: 10.1186/s12888-023-05083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The neural correlate of cognitive deficits in bipolar disorder (BD) is an issue that warrants further investigation. However, relatively few studies have examined the intrinsic functional connectivity (FC) underlying cognitive deficits involving sustained attention and executive function at both the region and network levels, as well as the different relationships between connectivity patterns and cognitive performance, in BD patients and healthy controls (HCs). METHODS Patients with BD (n = 59) and HCs (n = 52) underwent structural and resting-state functional magnetic resonance imaging and completed the Wisconsin Card Sorting Test (WCST), the continuous performance test and a clinical assessment. A seed-based approach was used to evaluate the intrinsic FC alterations in three core neurocognitive networks (the default mode network [DMN], the central executive network [CEN] and the salience network [SN]). Finally, we examined the relationship between FC and cognitive performance by using linear regression analyses. RESULTS Decreased FC was observed within the DMN, in the DMN-SN and DMN-CEN and increased FC was observed in the SN-CEN in BD. The alteration direction of regional FC was consistent with that of FC at the brain network level. Decreased FC between the left posterior cingulate cortex and right anterior cingulate cortex was associated with longer WCST completion time in BD patients (but not in HCs). CONCLUSIONS These findings emphasize the dominant role of the DMN in the psychopathology of BD and provide evidence that cognitive deficits in BD may be associated with aberrant FC between the anterior and posterior DMN.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Qian Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - You-Ran Dai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jing-Yu Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ke Li
- PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
11
|
Liu H, Gao W, Cao W, Meng Q, Xu L, Kuang L, Guo Y, Cui D, Qiu J, Jiao Q, Su L, Lu G. Immediate visual reproduction negatively correlates with brain entropy of parahippocampal gyrus and inferior occipital gyrus in bipolar II disorder adolescents. BMC Psychiatry 2023; 23:515. [PMID: 37464363 DOI: 10.1186/s12888-023-05012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Brain entropy reveals complexity and irregularity of brain, and it has been proven to reflect brain complexity alteration in disease states. Previous studies found that bipolar disorder adolescents showed cognitive impairment. The relationship between complexity of brain neural activity and cognition of bipolar II disorder (BD-II) adolescents remains unclear. METHODS Nineteen BD-II patients (14.63 ±1.57 years old) and seventeen age-gender matched healthy controls (HCs) (14.18 ± 1.51 years old) were enlisted. Entropy values of all voxels of the brain in resting-state functional MRI data were calculated and differences of them between BD-II and HC groups were evaluated. After that, correlation analyses were performed between entropy values of brain regions showing significant entropy differences and clinical indices in BD-II adolescents. RESULTS Significant differences were found in scores of immediate visual reproduction subtest (VR-I, p = 0.003) and Stroop color-word test (SCWT-1, p = 0.015; SCWT-2, p = 0.004; SCWT-3, p = 0.003) between the two groups. Compared with HCs, BD-II adolescents showed significant increased brain entropy in right parahippocampal gyrus and right inferior occipital gyrus. Besides, significant negative correlations between brain entropy values of right parahippocampal gyrus, right inferior occipital gyrus and immediate visual reproduction subtest scores were observed in BD-II adolescents. CONCLUSIONS The findings of the present study suggested that the disrupted function of corticolimbic system is related with cognitive abnormality of BD-II adolescents. And from the perspective temporal dynamics of brain system, the current study, brain entropy may provide available evidences for understanding the underlying neural mechanism in BD-II adolescents.
Collapse
Affiliation(s)
- Haiqin Liu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Weijia Gao
- Department of Child Psychology, The Children' s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weifang Cao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Qingmin Meng
- Department of interventional radiology, Taian Central Hospital, Tai'an, China
| | - Longchun Xu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Liangfeng Kuang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yongxin Guo
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.
| | - Linyan Su
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Lechner S, Northoff G. Temporal imprecision and phase instability in schizophrenia resting state EEG. Asian J Psychiatr 2023; 86:103654. [PMID: 37307700 DOI: 10.1016/j.ajp.2023.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Schizophrenia is characterized by temporal imprecision and irregularities on neuronal, psychological cognitive, and behavioral levels which are usually tested during task-related activity. This leaves open whether analogous temporal imprecision and irregularities can already be observed in the brain's spontaneous activity as measured during the resting state; this is the goal of our study. Building on recent task-related data, we, using EEG, aimed to investigate the temporal precision and regularity of phase coherence over time in healthy, schizophrenia, and bipolar disorder participants. To this end, we developed a novel methodology, nominal frequency phase stability (NFPS), that allows to measure stability over phase angles in selected frequencies. By applying sample entropy quantification to the time-series of the nominal frequency phase angle time series, we found increased irregularities in theta activity over a frontocentral electrode in schizophrenia but not in bipolar disorder. We therefore assume that temporal imprecision and irregularity already occur in the brain's spontaneous activity in schizophrenia.
Collapse
Affiliation(s)
- Stephan Lechner
- University of Ottawa, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, 145 Carling Avenue, Rm. 6435, Ottawa K1Z 7K4 ON, Canada; Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, 1010 Vienna, Austria; Vienna Doctoral School Cognition, Behavior and Neuroscience, University of Vienna, 1030 Vienna, Austria.
| | - Georg Northoff
- University of Ottawa, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, 145 Carling Avenue, Rm. 6435, Ottawa K1Z 7K4 ON, Canada; Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Roger Guindon Hall 451 Smyth Road, Ottawa K1H 8M5 ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou 310013, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou 310013, China.
| |
Collapse
|
13
|
Mesbah R, Koenders MA, van der Wee NJA, Giltay EJ, van Hemert AM, de Leeuw M. Association Between the Fronto-Limbic Network and Cognitive and Emotional Functioning in Individuals With Bipolar Disorder: A Systematic Review and Meta-analysis. JAMA Psychiatry 2023; 80:432-440. [PMID: 36988918 PMCID: PMC10061312 DOI: 10.1001/jamapsychiatry.2023.0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 03/30/2023]
Abstract
Importance Individuals with bipolar disorder (BD) experience cognitive and emotional dysfunctions. Various brain circuits are implicated in BD but have not been investigated in a meta-analysis of functional magnetic resonance imaging (fMRI) studies. Objective To investigate the brain functioning of individuals with BD compared with healthy control individuals in the domains of emotion processing, reward processing, and working memory. Data Sources All fMRI experiments on BD published before March 2020, as identified in a literature search of PubMed, Embase, Web of Science, Cochrane Library, PsycInfo, Emcare, Academic Search Premier, and ScienceDirect. The literature search was conducted on February 21, 2017, and March 2, 2020, and data were analyzed from January 2021 to January 2022. Study Selection fMRI experiments comparing adult individuals with BD and healthy control individuals were selected if they reported whole-brain results, including a task assessing at least 1 of the domains. In total, 2320 studies were screened, and 253 full-text articles were evaluated. Data Extraction and Synthesis A total of 49 studies were included after selection procedure. Coordinates reporting significant activation differences between individuals with BD and healthy control individuals were extracted. Differences in brain region activity were tested using the activation likelihood estimation method. Main Outcomes and Measures A whole-brain meta-analysis evaluated whether reported differences in brain activation in response to stimuli in 3 cognitive domains between individuals with BD and healthy control individuals were different. Results The study population included 999 individuals with BD (551 [55.2%] female) and 1027 healthy control individuals (532 [51.8%] female). Compared with healthy control individuals, individuals with BD showed amygdala and hippocampal hyperactivity and hypoactivation in the inferior frontal gyrus during emotion processing (20 studies; 324 individuals with BD and 369 healthy control individuals), hyperactivation in the orbitofrontal cortex during reward processing (9 studies; 195 individuals with BD and 213 healthy control individuals), and hyperactivation in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex during working memory (20 studies; 530 individuals with BD and 417 healthy control individuals). Limbic hyperactivation was only found during euthymia in the emotion and reward processing domains; abnormalities in frontal cortex activity were also found in individuals with BD with mania and depression. Conclusions and Relevance This systematic review and meta-analysis revealed evidence for activity disturbances in key brain areas involved in cognitive and emotion processing in individuals with BD. Most of the regions are part of the fronto-limbic network. The results suggest that aberrations in the fronto-limbic network, present in both euthymic and symptomatic individuals, may be underlying cognitive and emotional dysfunctions in BD.
Collapse
Affiliation(s)
- Rahele Mesbah
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Psychiatric Institute, Department of Mood Disorders, PsyQ Kralingen, Rotterdam, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Manja A. Koenders
- Psychiatric Institute, Department of Mood Disorders, PsyQ Kralingen, Rotterdam, the Netherlands
- Institute of Psychology, Faculty of Social Sciences, Leiden University, Leiden, the Netherlands
| | - Nic J. A. van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Erik J. Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert M. van Hemert
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - Max de Leeuw
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
- Psychiatric Institute, GGZ Rivierduinen, Bipolar Disorder Outpatient Clinic, Leiden, the Netherlands
| |
Collapse
|
14
|
Chan CC, Alter S, Hazlett EA, Shafritz KM, Yehuda R, Goodman M, Haznedar MM, Szeszko PR. Neural correlates of impulsivity in bipolar disorder: A systematic review and clinical implications. Neurosci Biobehav Rev 2023; 147:105109. [PMID: 36813146 PMCID: PMC11073484 DOI: 10.1016/j.neubiorev.2023.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Impulsivity is a common feature of bipolar disorder (BD) with ramifications for functional impairment and premature mortality. This PRISMA-guided systematic review aims to integrate findings on the neurocircuitry associated with impulsivity in BD. We searched for functional neuroimaging studies that examined rapid-response impulsivity and choice impulsivity using the Go/No-Go Task, Stop-Signal Task, and Delay Discounting Task. Findings from 33 studies were synthesized with an emphasis on the effect of mood state of the sample and affective salience of the task. Results suggest trait-like brain activation abnormalities in regions implicated in impulsivity that persist across mood states. During rapid-response inhibition, BD exhibit under-activation of key frontal, insular, parietal, cingulate, and thalamic regions, but over-activation of these regions when the task involves emotional stimuli. Delay discounting tasks with functional neuroimaging in BD are lacking, but hyperactivity of orbitofrontal and striatal regions associated with reward hypersensitivity may be related to difficulty delaying gratification. We propose a working model of neurocircuitry dysfunction underlying behavioral impulsivity in BD. Clinical implications and future directions are discussed.
Collapse
Affiliation(s)
- Chi C Chan
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sharon Alter
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Erin A Hazlett
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, USA; Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Marianne Goodman
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
15
|
Sankar A, Shen X, Colic L, Goldman DA, Villa LM, Kim JA, Pittman B, Scheinost D, Constable RT, Blumberg HP. Predicting depressed and elevated mood symptomatology in bipolar disorder using brain functional connectomes. Psychol Med 2023; 53:1-10. [PMID: 36891769 PMCID: PMC10491744 DOI: 10.1017/s003329172300003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The study is aimed to identify brain functional connectomes predictive of depressed and elevated mood symptomatology in individuals with bipolar disorder (BD) using the machine learning approach Connectome-based Predictive Modeling (CPM). METHODS Functional magnetic resonance imaging data were obtained from 81 adults with BD while they performed an emotion processing task. CPM with 5000 permutations of leave-one-out cross-validation was applied to identify functional connectomes predictive of depressed and elevated mood symptom scores on the Hamilton Depression and Young Mania rating scales. The predictive ability of the identified connectomes was tested in an independent sample of 43 adults with BD. RESULTS CPM predicted the severity of depressed [concordance between actual and predicted values (r = 0.23, pperm (permutation test) = 0.031) and elevated (r = 0.27, pperm = 0.01) mood. Functional connectivity of left dorsolateral prefrontal cortex and supplementary motor area nodes, with inter- and intra-hemispheric connections to other anterior and posterior cortical, limbic, motor, and cerebellar regions, predicted depressed mood severity. Connectivity of left fusiform and right visual association area nodes with inter- and intra-hemispheric connections to the motor, insular, limbic, and posterior cortices predicted elevated mood severity. These networks were predictive of mood symptomatology in the independent sample (r ⩾ 0.45, p = 0.002). CONCLUSIONS This study identified distributed functional connectomes predictive of depressed and elevated mood severity in BD. Connectomes subserving emotional, cognitive, and psychomotor control predicted depressed mood severity, while those subserving emotional and social perceptual functions predicted elevated mood severity. Identification of these connectome networks may help inform the development of targeted treatments for mood symptoms.
Collapse
Affiliation(s)
- Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Danielle A. Goldman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Luca M. Villa
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jihoon A. Kim
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Chatterjee I, Chatterjee S. Investigating the symptomatic and morphological changes in the brain based on pre and post-treatment: A critical review from clinical to neuroimaging studies on schizophrenia. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
17
|
Li R, Shen F, Sun X, Zou T, Li L, Wang X, Deng C, Duan X, He Z, Yang M, Li Z, Chen H. Dissociable salience and default mode network modulation in generalized anxiety disorder: a connectome-wide association study. Cereb Cortex 2023; 33:6354-6365. [PMID: 36627243 DOI: 10.1093/cercor/bhac509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Generalized anxiety disorder (GAD) is a common anxiety disorder experiencing psychological and somatic symptoms. Here, we explored the link between the individual variation in functional connectome and anxiety symptoms, especially psychological and somatic dimensions, which remains unknown. In a sample of 118 GAD patients and matched 85 healthy controls (HCs), we used multivariate distance-based matrix regression to examine the relationship between resting-state functional connectivity (FC) and the severity of anxiety. We identified multiple hub regions belonging to salience network (SN) and default mode network (DMN) where dysconnectivity associated with anxiety symptoms (P < 0.05, false discovery rate [FDR]-corrected). Follow-up analyses revealed that patient's psychological anxiety was dominated by the hyper-connectivity within DMN, whereas the somatic anxiety could be modulated by hyper-connectivity within SN and DMN. Moreover, hypo-connectivity between SN and DMN were related to both anxiety dimensions. Furthermore, GAD patients showed significant network-level FC changes compared with HCs (P < 0.01, FDR-corrected). Finally, we found the connectivity of DMN could predict the individual psychological symptom in an independent GAD sample. Together, our work emphasizes the potential dissociable roles of SN and DMN in the pathophysiology of GAD's anxiety symptoms, which may be crucial in providing a promising neuroimaging biomarker for novel personalized treatment strategies.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Fei Shen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xiyue Sun
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| |
Collapse
|
18
|
Millman ZB, Hwang M, Sydnor VJ, Reid BE, Goldenberg JE, Talero JN, Bouix S, Shenton ME, Öngür D, Shinn AK. Auditory hallucinations, childhood sexual abuse, and limbic gray matter volume in a transdiagnostic sample of people with psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:118. [PMID: 36585407 PMCID: PMC9803640 DOI: 10.1038/s41537-022-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Childhood sexual abuse (CSA) is a potentially unique risk factor for auditory hallucinations (AH), but few studies have examined the moderating effects of sex or the association of CSA with limbic gray matter volume (GMV) in transdiagnostic samples of people with psychotic disorders. Here we found that people with psychotic disorders reported higher levels of all surveyed maltreatment types (e.g., physical abuse) than healthy controls, but people with psychotic disorders with AH (n = 41) reported greater CSA compared to both those without AH (n = 37; t = -2.21, p = .03) and controls (n = 37; t = -3.90, p < .001). Among people with psychosis, elevated CSA was most pronounced among females with AH (sex × AH status: F = 4.91, p = .009), held controlling for diagnosis, medications, and other maltreatment (F = 3.88, p = .02), and correlated with the current severity of AH (r = .26, p = .03) but not other symptoms (p's > .16). Greater CSA among patients related to larger GMV of the left amygdala accounting for AH status, diagnosis, medications, and other maltreatment (t = 2.12, p = .04). Among people with psychosis, females with AH may represent a unique subgroup with greater CSA. Prospective high-risk studies integrating multiple measures of maltreatment and brain structure/function may help elucidate the mechanisms linking CSA with amygdala alterations and AH.
Collapse
Affiliation(s)
- Zachary B Millman
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin E Reid
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua E Goldenberg
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Sylvain Bouix
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Ann K Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Zhang ZF, Bo QJ, Li F, Zhao L, Gao P, Wang Y, Liu R, Chen XY, Wang CY, Zhou Y. Altered frequency-specific/universal amplitude characteristics of spontaneous brain oscillations in patients with bipolar disorder. Neuroimage Clin 2022; 36:103207. [PMID: 36162237 PMCID: PMC9668601 DOI: 10.1016/j.nicl.2022.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
The human brain is a dynamic system with intrinsic oscillations in spontaneous neural activity. Whether the dynamic characteristics of these spontaneous oscillations are differentially altered across different frequency bands in patients with bipolar disorder (BD) remains unclear. This study recruited 65 patients with BD and 85 healthy controls (HCs). The entire frequency range of resting-state fMRI data was decomposed into four frequency intervals. Two-way repeated-measures ANCOVA was employed to detect frequency-specific/universal alterations in the dynamic oscillation amplitude in BD. The patients were then divided into two subgroups according to their mood states to explore whether these alterations were independent of their mood states. Finally, other window sizes, step sizes, and window types were tested to replicate all analyses. Frequency-specific abnormality of the dynamic oscillation amplitude was detected within the posterior medial parietal cortex (centered at the precuneus extending to the posterior cingulate cortex). This specific profile indicates decreased amplitudes in the lower frequency bands (slow-5/4) and no amplitude changes in the higher frequency bands (slow-3/2) compared with HCs. Frequency-universal abnormalities of the dynamic oscillation amplitude were also detectable, indicating increased amplitudes in the thalamus and left cerebellum anterior lobe but decreased amplitudes in the medial superior frontal gyrus. These alterations were independent of the patients' mood states and replicable across multiple analytic and parametric settings. In short, frequency-specific/universal amplitude characteristics of spontaneous oscillations were observed in patients with BD. These abnormal characteristics have important implications for specific functional changes in BD from multiple frequency and dynamic perspectives.
Collapse
Affiliation(s)
- Zhi-Fang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi-Jing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Peng Gao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiong-Ying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chuan-Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| |
Collapse
|
20
|
Li Z, Li D, He Y, Wang K, Ma X, Chen X. Cross-Disorder Analysis of Shared Genetic Components Between Cortical Structures and Major Psychiatric Disorders. Schizophr Bull 2022; 48:1145-1154. [PMID: 35265999 PMCID: PMC9434450 DOI: 10.1093/schbul/sbac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Although large-scale neuroimaging studies have demonstrated similar patterns of structural brain abnormalities across major psychiatric disorders, the underlying genetic etiology behind these similar cross-disorder patterns is not well understood. STUDY DESIGN We quantified the extent of shared genetic components between cortical structures and major psychiatric disorders (CS-MPD) by using genome-wide association study (GWAS) summary statistics of 70 cortical structures (surface area and thickness of the whole cortex and 34 cortical regions) and five major psychiatric disorders, consisting of attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). Cross-disorder analyses were then conducted to estimate the degree of similarity in CS-MPD shared genetic components among these disorders. STUDY RESULTS The CS-MPD shared genetic components have medium-to-strong positive correlations in ADHD, BD, MDD, and SCZ (r = 0.415 to r = 0.806) while ASD was significantly correlated with ADHD, BD, and SCZ (r = 0.388 to r = 0.403). These pairwise correlations of CS-MPD shared genetic components among disorders were significantly associated with corresponding cross-disorder similarities in cortical structural abnormalities (r = 0.668), accounting for 44% variance. In addition, one latent shared factor consisted primarily of BD, MDD, and SCZ, explaining 62.47% of the total variance in CS-MPD shared genetic components of all disorders. CONCLUSIONS The current results bridge the gap between shared cross-disorder heritability and shared structural brain abnormalities in major psychiatric disorders, providing important implications for a shared genetic basis of cortical structures in these disorders.
Collapse
Affiliation(s)
- Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, PR China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, PR China.,China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - David Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, PR China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, PR China.,China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Kangli Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, PR China
| | - Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, PR China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, PR China.,China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
21
|
Zhang Z, Bo Q, Li F, Zhao L, Wang Y, Liu R, Chen X, Wang C, Zhou Y. Altered effective connectivity among core brain networks in patients with bipolar disorder. J Psychiatr Res 2022; 152:296-304. [PMID: 35767917 DOI: 10.1016/j.jpsychires.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is increasingly being regarded as a dysconnection syndrome. Functional integration among the three core brain networks - executive control network (ECN), salience network (SN), and default mode network (DMN) - is abnormal in patients with BD; however, the causal relationship among the three networks in BD is largely unknown. It is also unclear whether patients with BD in different mood states show distinct effective connectivity patterns during rest. METHODS Resting-state fMRI data were collected from 65 patients with BD and 85 healthy controls. Spectral dynamic causal modeling was applied to investigate the effective connectivity difference of the three brain networks between all patients with BD and healthy controls and between patients who were in euthymic mood state (euthymic BD) and depressed mood state (depressed BD). RESULTS Compared with healthy controls, all patients with BD showed altered effective connectivity within and between the ECN and SN and from these two networks to the DMN. Compared with patients with depressed BD, patients with euthymic BD showed increased excitatory effects within the ECN and decreased inhibitory effects from the SN to the ECN and DMN. CONCLUSION These results further confirmed that patients with BD show abnormal functional integration within and among the three core brain networks, and exhibit similar and different effective connectivity patterns in different mood states. Abnormal effective connectivity has the potential to be a critical index for diagnosing BD and differentiating between BD patients with different mood states.
Collapse
Affiliation(s)
- Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Altered brain activation during reward anticipation in bipolar disorder. Transl Psychiatry 2022; 12:300. [PMID: 35902559 PMCID: PMC9334601 DOI: 10.1038/s41398-022-02075-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Although altered reward sensitivity has been observed in individuals with bipolar disorder (BD), the brain function findings related to reward processing remain unexplored and inconsistent. This meta-analysis aimed to identify brain activation alterations underlying reward anticipation in BD. A systematic literature research was conducted to identify fMRI studies of reward-relevant tasks performed by BD individuals. Using Anisotropic Effect Size Signed Differential Mapping, whole-brain and ROI of the ventral striatum (VS) coordinate-based meta-analyses were performed to explore brain regions showing anomalous activation in individuals with BD compared to healthy controls (HC), respectively. A total of 21 studies were identified in the meta-analysis, 15 of which were included in the whole-brain meta-analysis and 17 in the ROI meta-analysis. The whole-brain meta-analysis revealed hypoactivation in the bilateral angular gyrus and right inferior frontal gyrus during reward anticipation in individuals with BD compared to HC. No significant activation differences were observed in bilateral VS between two groups by whole-brain or ROI-based meta-analysis. Individuals with BD type I and individuals with euthymic BD showed altered activation in prefrontal, angular, fusiform, middle occipital gyrus, and striatum. Hypoactivation in the right angular gyrus was positively correlated with the illness duration of BD. The present study reveals the potential neural mechanism underlying impairment in reward anticipation in BD. Some clinical features such as clinical subtype, mood state, and duration of illness confound the underlying neurobiological abnormality reward anticipation in BD. These findings may have implications for identifying clinically relevant biomarkers to guide intervention strategies for BD.
Collapse
|
23
|
Wong KS, Chou T, Peters AT, Ellard KK, Nierenberg AA, Dougherty DD, Deckersbach T. Convergence between behavioral, neural, and self-report measures of cognitive control: The Frontal Systems Behavior Scale in bipolar disorder. J Psychiatr Res 2022; 150:317-323. [PMID: 35447525 DOI: 10.1016/j.jpsychires.2022.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
The Frontal Systems Behavior Scale (FrSBe) is a self-report measure that assesses difficulties with cognitive and emotional control such as apathetic behavior, lack of inhibitory control, and executive dysfunction. Previous neuroimaging studies highlight the involvement of the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and dorsolateral prefrontal cortex (DLPFC) in these processes. In this study, we investigated whether there was convergence across subjective and objective measures of apathy, disinhibition, and executive dysfunction. Specifically, we studied whether ACC, OFC, and DLPFC activation during a modified version of the Multi-Source Interference Task (MSIT), is associated with FrSBe apathy, disinhibition, and executive dysfunction scores, in healthy controls (HC) and individuals with Bipolar Disorder (BD), who commonly exhibit difficulties in these domains. Individuals with BD (n = 31) and HCs (n = 31) with no current or past psychiatric illness completed the FrSBe and the MSIT during fMRI scanning. We investigated task-specific changes in the ACC, DLPFC, and OFC and their correlations with FrSBe apathy, disinhibition, and executive dysfunction subscale scores, respectively. Individuals with BD and the HC group demonstrated greater ACC, DLPFC, and OFC activation during MSIT interference conditions compared with non-interference conditions. Furthermore, there was a significant negative correlation between OFC activation and disinhibition scores, which remained significant after accounting for medication load. Together, these results demonstrate the FrSBe disinhibition subscale, in particular, can be a self-report measure that converges with behavioral and neural markers of disinhibition in BD.
Collapse
Affiliation(s)
- Karianne Sretavan Wong
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Amy T Peters
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kristen K Ellard
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Andrew A Nierenberg
- Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
24
|
Claeys EHI, Mantingh T, Morrens M, Yalin N, Stokes PRA. Resting-state fMRI in depressive and (hypo)manic mood states in bipolar disorders: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110465. [PMID: 34736998 DOI: 10.1016/j.pnpbp.2021.110465] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Abnormalities in spontaneous brain activity, measured with resting-state functional magnetic resonance imaging (rs-fMRI), may be key biomarkers for bipolar disorders. This systematic review compares rs-fMRI findings in people experiencing a bipolar depressive or (hypo)manic episode to bipolar euthymia and/or healthy participants. METHODS Medline, Web of Science and Embase were searched up until April 2021. Studies without control group, or including minors, neurological co-morbidities or mixed episodes, were excluded. Qualitative synthesis was used to report results and risk of bias was assessed using the National Heart, Lung and Blood Institute tool for case-control studies. RESULTS Seventy-one studies were included (3167 bipolar depressed/706 (hypo)manic). In bipolar depression, studies demonstrated default-mode (DMN) and frontoparietal network (FPN) dysfunction, altered baseline activity in the precuneus, insula, striatum, cingulate, frontal and temporal cortex, and disturbed regional homogeneity in parietal, temporal and pericentral areas. Functional connectivity was altered in thalamocortical circuits and between the cingulate cortex and precuneus. In (hypo)mania, studies reported altered functional connectivity in the amygdala, frontal and cingulate cortex. Finally, rs-fMRI disturbances in the insula and putamen correlate with depressive symptoms, cerebellar resting-state alterations could evolve with disease progression and altered amygdala connectivity might mediate lithium effects. CONCLUSIONS Our results suggest DMN and FPN dysfunction in bipolar depression, whereas local rs-fMRI alterations might differentiate mood states. Future studies should consider controlling rs-fMRI findings for potential clinical confounding factors such as medication. Considerable heterogeneity of methodology between studies limits conclusions. Standardised clinical reporting and consistent analysis approaches would increase coherence in this promising field.
Collapse
Affiliation(s)
- Eva H I Claeys
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, S.033, Universiteitsplein 1, 2610 Antwerpen, Belgium; Department of Psychiatry, University Psychiatric Centre Duffel, Stationsstraat 22, 2570 Duffel, Belgium
| | - Tim Mantingh
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Manuel Morrens
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, S.033, Universiteitsplein 1, 2610 Antwerpen, Belgium; Department of Psychiatry, University Psychiatric Centre Duffel, Stationsstraat 22, 2570 Duffel, Belgium
| | - Nefize Yalin
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Paul R A Stokes
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Prisciandaro JJ, Mellick W, Squeglia LM, Hix S, Arnold L, Tolliver BK. Results from a randomized, double-blind, placebo-controlled, crossover, multimodal-MRI pilot study of gabapentin for co-occurring bipolar and cannabis use disorders. Addict Biol 2022; 27:e13085. [PMID: 34390300 PMCID: PMC9104469 DOI: 10.1111/adb.13085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023]
Abstract
Disrupted brain gamma-aminobutyric acid (GABA)/glutamate homeostasis is a promising target for pharmacological intervention in co-occurring bipolar disorder (BD) and cannabis use disorder (CUD). Gabapentin is a safe and well-tolerated medication, FDA-approved to treat other neurological diseases, that restores GABA/glutamate homeostasis, with treatment studies supporting efficacy in treating CUD, as well as anxiety and sleep disorders that are common to both BD and CUD. The present manuscript represents the primary report of a randomized, double-blind, placebo-controlled, crossover (1-week/condition), multimodal-MRI (proton-MR spectroscopy, functional MRI) pilot study of gabapentin (1200 mg/day) in BD + CUD (n = 22). Primary analyses revealed that (1) gabapentin was well tolerated and adherence and retention were high, (2) gabapentin increased dorsal anterior cingulate cortex (dACC) and right basal ganglia (rBG) glutamate levels and (3) gabapentin increased activation to visual cannabis cues in the posterior midcingulate cortex (pMCC, a region involved in response inhibition to rewarding stimuli). Exploratory evaluation of clinical outcomes further found that in participants taking gabapentin versus placebo, (1) elevations of dACC GABA levels were associated with lower manic/mixed and depressive symptoms and (2) elevations of rBG glutamate levels and pMCC activation to cannabis cues were associated with lower cannabis use. Though promising, the findings from this study should be interpreted with caution due to observed randomization order effects on dACC glutamate levels and identification of statistical moderators that differed by randomization order (i.e. cigarette-smoking status on rBG glutamate levels and pMCC cue activation). Nonetheless, they provide the necessary foundation for a more robustly designed (urn-randomized, parallel-group) future study of adjuvant gabapentin for BD + CUD.
Collapse
Affiliation(s)
- James J Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lindsay M Squeglia
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sara Hix
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren Arnold
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bryan K Tolliver
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
26
|
Li L, Li R, Shen F, Wang X, Zou T, Deng C, Wang C, Li J, Wang H, Huang X, Lu F, He Z, Chen H. Negative bias effects during audiovisual emotional processing in major depression disorder. Hum Brain Mapp 2021; 43:1449-1462. [PMID: 34888973 PMCID: PMC8837587 DOI: 10.1002/hbm.25735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Aberrant affective neural processing and negative emotional bias are trait‐marks of major depression disorders (MDDs). However, most research on biased emotional perception in depression has only focused on unimodal experimental stimuli, the neural basis of potentially biased emotional processing of multimodal inputs remains unclear. Here, we addressed this issue by implementing an audiovisual emotional task during functional MRI scanning sessions with 37 patients with MDD and 37 gender‐, age‐ and education‐matched healthy controls. Participants were asked to distinguish laughing and crying sounds while being exposed to faces with different emotional valences as background. We combined general linear model and psychophysiological interaction analyses to identify abnormal local functional activity and integrative processes during audiovisual emotional processing in MDD patients. At the local neural level, MDD patients showed increased bias activity in the ventromedial prefrontal cortex (vmPFC) while listening to negative auditory stimuli and concurrently processing visual facial expressions, along with decreased dorsolateral prefrontal cortex (dlPFC) activity in both the positive and negative visual facial conditions. At the network level, MDD exhibited significantly decreased connectivity in areas involved in automatic emotional processes and voluntary control systems during perception of negative stimuli, including the vmPFC, dlPFC, insula, as well as the subcortical regions of posterior cingulate cortex and striatum. These findings support a multimodal emotion dysregulation hypothesis for MDD by demonstrating that negative bias effects may be facilitated by the excessive ventral bottom‐up negative emotional influences along with incapability in dorsal prefrontal top‐down control system.
Collapse
Affiliation(s)
- Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Fei Shen
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jiyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xinju Huang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China.,Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
27
|
Hwang M, Roh YS, Talero J, Cohen BM, Baker JT, Brady RO, Öngür D, Shinn AK. Auditory hallucinations across the psychosis spectrum: Evidence of dysconnectivity involving cerebellar and temporal lobe regions. Neuroimage Clin 2021; 32:102893. [PMID: 34911197 PMCID: PMC8636859 DOI: 10.1016/j.nicl.2021.102893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Auditory hallucinations (AH) are typically associated with schizophrenia (SZ), but they are also prevalent in bipolar disorder (BD). Despite the large body of research on the neural correlates of AH in SZ, the pathophysiology underlying AH remains unclear. Few studies have examined the neural substrates associated with propensity for AH in BD. Investigating AH across the psychosis spectrum has the potential to inform about the neural signature associated with the trait of AH, irrespective of psychiatric diagnosis. METHODS We compared resting state functional magnetic resonance imaging data in psychosis patients with (n = 90 AH; 68 SZ, 22 BD) and without (n = 55 NAH; 16 SZ, 39 BD) lifetime AH. We performed region of interest (ROI)-to-ROI functional connectivity (FC) analysis using 91 cortical, 15 subcortical, and 26 cerebellar atlas-defined regions. The primary aim was to identify FC differences between patients with and without lifetime AH. We secondarily examined differences between AH and NAH within each diagnosis. RESULTS Compared to the NAH group, patients with AH showed higher FC between cerebellum and frontal (left precentral gyrus), temporal [right middle temporal gyrus (MTG), left inferior temporal gyrus (ITG), left temporal fusiform gyrus)], parietal (bilateral superior parietal lobules), and subcortical (left accumbens, left palldium) brain areas. AH also showed lower FC between temporal lobe regions (between right ITG and right MTG and bilateral superior temporal gyri) relative to NAH. CONCLUSIONS Our findings suggest that dysconnectivity involving the cerebellum and temporal lobe regions may be common neurofunctional elements associated with AH propensity across the psychosis spectrum. We also found dysconnectivity patterns that were unique to lifetime AH within SZ or bipolar psychosis, suggesting both common and distinct mechanisms underlying AH pathophysiology in these disorders.
Collapse
Affiliation(s)
- Melissa Hwang
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Youkyung S Roh
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Jessica Talero
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Bruce M Cohen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Justin T Baker
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Roscoe O Brady
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Ann K Shinn
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Hilland E, Johannessen C, Jonassen R, Alnæs D, Jørgensen KN, Barth C, Andreou D, Nerland S, Wortinger LA, Smelror RE, Wedervang-Resell K, Bohman H, Lundberg M, Westlye LT, Andreassen OA, Jönsson EG, Agartz I. Aberrant default mode connectivity in adolescents with early-onset psychosis: A resting state fMRI study. Neuroimage Clin 2021; 33:102881. [PMID: 34883402 PMCID: PMC8662331 DOI: 10.1016/j.nicl.2021.102881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Abnormal default mode network (DMN) connectivity has been found in schizophrenia and other psychotic disorders. However, there are limited studies on early onset psychosis (EOP), and their results show lack of agreement. Here, we investigated within-network DMN connectivity in EOP compared to healthy controls (HC), and its relationship to clinical characteristics. A sample of 68 adolescent patients with EOP (mean age 16.53 ± 1.12 [SD] years, females 66%) and 95 HC (mean age 16.24 ± 1.50 [SD], females 60%) from two Scandinavian cohorts underwent resting state functional magnetic resonance imaging (rsfMRI). A group independent component analysis (ICA) was performed to identify the DMN across all participants. Dual regression was used to estimate spatial maps reflecting each participant's DMN network, which were compared between EOP and HC using voxel-wise general linear models and permutation-based analyses. Subgroup analyses were performed within the patient group, to explore associations between diagnostic subcategories and current use of psychotropic medication in relation to connectivity strength. The analysis revealed significantly reduced DMN connectivity in EOP compared to HC in the posterior cingulate cortex, precuneus, fusiform cortex, putamen, pallidum, amygdala, and insula. The subgroup analysis in the EOP group showed strongest deviations for affective psychosis, followed by other psychotic disorders and schizophrenia. There was no association between DMN connectivity strength and the current use of psychotropic medication. In conclusion, the findings demonstrate weaker DMN connectivity in adolescent patients with EOP compared to healthy peers, and differential effects across diagnostic subcategories, which may inform our understanding of underlying disease mechanisms in EOP.
Collapse
Affiliation(s)
- Eva Hilland
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Faculty of Health Sciences, Oslo Metropolitan University, Norway.
| | - Cecilie Johannessen
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rune Jonassen
- Faculty of Health Sciences, Oslo Metropolitan University, Norway
| | - Dag Alnæs
- Bjørknes College, Oslo, Norway; Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil N Jørgensen
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Runar E Smelror
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Hannes Bohman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden; Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden; Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Lundberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden; Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden; Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
29
|
Wang X, Cheng B, Roberts N, Wang S, Luo Y, Tian F, Yue S. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Hum Brain Mapp 2021; 42:5458-5476. [PMID: 34431584 PMCID: PMC8519858 DOI: 10.1002/hbm.25618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Working memory (WM) impairments are common features of psychiatric disorders. A systematic meta-analysis was performed to determine common and disorder-specific brain fMRI response during performance of WM tasks in patients with SZ and patients with MDD relative to healthy controls (HC). Thirty-four published fMRI studies of WM in patients with SZ and 18 published fMRI studies of WM in patients with MDD, including relevant HC, were included in the meta-analysis. In both SZ and MDD there was common stronger fMRI response in right medial prefrontal cortex (MPFC) and bilateral anterior cingulate cortex (ACC), which are part of the default mode network (DMN). The effects were of greater magnitude in SZ than MDD, especially in prefrontal-temporal-cingulate-striatal-cerebellar regions. In addition, a disorder-specific weaker fMRI response was observed in right middle frontal gyrus (MFG) in MDD, relative to HC. For both SZ and MDD a significant correlation was observed between the severity of clinical symptoms and lateralized fMRI response relative to HC. These findings indicate that there may be common and distinct anomalies in brain function underlying deficits in WM in SZ and MDD, which may serve as a potential functional neuroimaging-based diagnostic biomarker with value in supporting clinical diagnosis, measuring illness severity and assessing the efficacy of treatments for SZ and MDD at the brain level.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Suping Yue
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
30
|
Mini-review: The anti-aging effects of lithium in bipolar disorder. Neurosci Lett 2021; 759:136051. [PMID: 34139318 DOI: 10.1016/j.neulet.2021.136051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The medical use of lithium has grown since its initial introduction in the 1800s as a treatment for gout. Today, the divalent cation remains as the pharmacological gold standard in treatment of bipolar disorder (BD) with strong mood stabilizing effects. Lithium has demonstrated efficacy in the treatment of acute affective episodes, in the reduction of affective episode recurrence, and in significantly decreasing the risk of suicide in patients. BD has been consistently associated with clinical signs of accelerated aging, including increased rates of age-related diseases such as cardiovascular diseases, malignancies, and diabetes mellitus. This clinical scenario parallels accelerated aging mechanisms observed on a molecular basis, with studies reporting shortened telomeres, increased oxidative stress, and accelerated epigenetic aging in patients with BD compared to controls. Lithium has proved useful as a potential agent in slowing down this accelerated aging process in BD, potentially reversing effects induced by the disorder. This mini-review summarizes findings of anti-aging mechanisms associated with lithium use and provides a discussion of the clinical implications and perspectives of this evolving field. Despite many promising results, more studies are warranted in order to elucidate the exact mechanism by which lithium may act as an anti-aging agent and the extent to which these mechanisms are relevant to its mood stabilizing properties in BD.
Collapse
|
31
|
Shonibare DO, Patel RR, Islam AH, Metcalfe AWS, Fiksenbaum L, Freeman N, MacIntosh BJ, Kennedy JL, Goldstein BI. Neurostructural phenotypes of CACNA1C rs1006737 in adolescents with bipolar disorder and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110071. [PMID: 32800865 DOI: 10.1016/j.pnpbp.2020.110071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/05/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Investigate the effects of CACNA1C rs1006737 on cortical and subcortical neurostructural phenotypes in Caucasian bipolar disorder (BD) and healthy control (HC) adolescents. METHODS Seventy-one adolescents (14-20 years; 38BD, 33HC) underwent 3-Tesla Magnetic Resonance Imaging (MRI). Region of interest (ROI) and vertex-wise analyses examined cortical volume, surface area (SA), and thickness, as well as subcortical volume. ROIs included the ventromedial prefrontal cortex (vmPFC), ventrolateral prefrontal cortex (vlPFC), anterior cingulate cortex (ACC), putamen, and amygdala. General linear models included main effects of diagnosis and rs1006737, and an interaction term, controlling for age, sex, and total intracranial volume. RESULTS Vertex-wise analysis found significant BD-by-rs1006737 interactions for prefrontal and occipital regions such that BD A-carriers were found to have greater SA relative to BD non-carriers, while HC A-carriers had reduced SA relative to HC non-carriers. ROI analysis found an interaction in the ACC such that BD A-carriers were found to have greater SA relative to BD non-carriers, while no significant difference was found in HCs. Main effects of rs1006737 were also found on ACC SA from ROI analysis, and occipital SA from vertex-wise analysis, such that A-carriers had larger SA relative to non-carriers in both of these regions. CONCLUSIONS The current study identified neurostructural intermediate phenotypes relevant to the impact of CACNA1C rs1006737 on adolescent BD. Further investigation is warranted into the neurofunctional and neurocognitive relevance of rs1006737 associations with BD-specific elevations in regional SA.
Collapse
Affiliation(s)
- Daniel O Shonibare
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Ronak R Patel
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Arron W S Metcalfe
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - James L Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Canada; Tanenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
32
|
Lois G, Schneider EE, Kaurin A, Wessa M. Altered neural responses to social fairness in bipolar disorder. NEUROIMAGE-CLINICAL 2021; 28:102487. [PMID: 33395978 PMCID: PMC7666350 DOI: 10.1016/j.nicl.2020.102487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022]
Abstract
Bipolar disorder is characterized by impaired processing of social fairness. BD patients exhibit increased rejection of moderate unfairness in Ultimatum Game. BD patients display decreased response to moderate unfairness in anterior insula. BD patients deactivate posterior and middle insula in response to unfairness. Trait impulsivity positively correlated with deactivations in posterior insula.
Bipolar Disorder (BD) has a debilitating impact on psychosocial functioning and social decision-making. Recent evidence using the Ultimatum Game (UG) has shown increased rejection of moderately unfair offers in BD, suggesting impaired processing of ambiguous social information related to fairness. The present study builds upon this finding to investigate the neural substrates of fairness processing in BD. During functional magnetic resonance imaging scanning, euthymic BD patients (n = 41) and matched healthy controls (HC; n = 41) accepted or rejected very unfair, moderately unfair, or fair offers in the UG. Acceptance rates of moderately unfair offers were significantly lower in BD patients. This aberrant behavior co-occurred with abnormal brain responses to moderately unfair offers. Compared to HC, BD patients exhibited hypoactivation of right anterior insula in response to moderately unfair offers suggesting impaired integration of affective and contextual information. BD patients also displayed stronger deactivation of posterior and middle insula in response to moderately unfair offers reflecting impaired processing of the contextual aspects of fairness. The level of impulsivity of BD patients positively correlated with the abnormal deactivation of posterior and middle insula. A separate analysis revealed increased activation of dorsal ACC and left ventrolateral PFC in response to rejected compared to accepted offers in BD patients. Taken together, our findings suggest impaired processing of ambiguous social information in euthymic BD patients which is associated with increased rejection of moderately unfair offers. This impairment may reflect a failure to integrate contextual information and may be related to increased trait impulsivity.
Collapse
Affiliation(s)
- Giannis Lois
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Johannes Gutenberg-University Mainz, Germany; Department of Microeconomics and Public Economics, School of Business and Economics, Maastricht University, The Netherlands.
| | - Eva E Schneider
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Johannes Gutenberg-University Mainz, Germany
| | - Aleksandra Kaurin
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Johannes Gutenberg-University Mainz, Germany; German Resilience Center, Mainz, Germany; Department of Psychology, University of Pittsburgh, USA
| | - Michèle Wessa
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Johannes Gutenberg-University Mainz, Germany; German Resilience Center, Mainz, Germany
| |
Collapse
|
33
|
Bergamelli E, Del Fabro L, Delvecchio G, D’Agostino A, Brambilla P. The Impact of Lithium on Brain Function in Bipolar Disorder: An Updated Review of Functional Magnetic Resonance Imaging Studies. CNS Drugs 2021; 35:1275-1287. [PMID: 34773217 PMCID: PMC9537229 DOI: 10.1007/s40263-021-00869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Lithium remains a gold standard treatment for bipolar disorder (BD), and functional magnetic resonance imaging (fMRI) studies have contributed to clarifying its impact on neural circuitries in affected individuals. However, the specific neurobiological mechanisms through which lithium exerts its effects on brain function are not fully understood. In this review, we aimed to summarize the results of recent fMRI studies evaluating the impact of lithium on brain functional activity and connectivity in patients diagnosed with BD. We performed a literature search of available sources found in the PubMed database reported in English since 2016, when the last available review on this topic was published. Five fMRI studies in resting-state condition and six studies performed during the execution of emotional tasks met the inclusion criteria. Overall, the available evidence supports normalizing effects of lithium on brain activity and connectivity. Most of these studies reported a normalization in prefrontal regions and interconnected areas involved in emotion regulation and processing, regardless of the task employed. Importantly, lithium treatment showed distinct patterns of activity/connectivity changes compared with other treatments. Finally, lithium modulation of neural circuitries was found to be associated with clinical improvement in BD. These results are consistent with the hypothesis that selective abnormalities in neural circuitries supporting emotion processing and regulation improve during lithium treatment in BD. However, the heterogeneity of the examined studies regarding study design, sample selection, and analysis methods might limit the generalizability of the findings and lead to difficulties in comparing the results. Therefore, in future studies, larger cohorts and homogeneous experimental tasks are needed to further corroborate these findings.
Collapse
Affiliation(s)
- Emilio Bergamelli
- grid.415093.a0000 0004 1793 3800Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Health Sciences, University of Milan, Milan, Italy
| | - Lorenzo Del Fabro
- grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy ,grid.414818.00000 0004 1757 8749Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Armando D’Agostino
- grid.415093.a0000 0004 1793 3800Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Health Sciences, University of Milan, Milan, Italy
| | - Paolo Brambilla
- grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy ,grid.414818.00000 0004 1757 8749Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
34
|
Seok D, Smyk N, Jaskir M, Cook P, Elliott M, Girelli T, Scott JC, Balderston N, Beer J, Stock J, Makhoul W, Gur RC, Davatzikos C, Shinohara R, Sheline Y. Dimensional connectomics of anxious misery, a human connectome study related to human disease: Overview of protocol and data quality. NEUROIMAGE-CLINICAL 2020; 28:102489. [PMID: 33395980 PMCID: PMC7708855 DOI: 10.1016/j.nicl.2020.102489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022]
Abstract
We present a new imaging study of 200 adults experiencing depression and anxiety. Quantitative measures of image quality indicate comparable quality to the HCP-YA. In addition, a comprehensive set of assessments measured patients’ symptom profiles. Data will be publicly available through the NIMH Data Archive starting fall 2020.
Disparate diagnostic categories from the Diagnostic and Statistical Manual of Mental Disorders (DSM), including generalized anxiety disorder, major depressive disorder and post-traumatic stress disorder, share common behavioral and phenomenological dysfunctions. While high levels of comorbidity and common features across these disorders suggest shared mechanisms, past research in psychopathology has largely proceeded based on the syndromal taxonomy established by the DSM rather than on a biologically-informed framework of neural, cognitive and behavioral dysfunctions. In line with the National Institute of Mental Health’s Research Domain Criteria (RDoC) framework, we present a Human Connectome Study Related to Human Disease that is intentionally designed to generate and test novel, biologically-motivated dimensions of psychopathology. The Dimensional Connectomics of Anxious Misery study is collecting neuroimaging, cognitive and behavioral data from a heterogeneous population of adults with varying degrees of depression, anxiety and trauma, as well as a set of healthy comparators (to date, n = 97 and n = 24, respectively). This sample constitutes a dataset uniquely situated to elucidate relationships between brain circuitry and dysfunctions of the Negative Valence construct of the RDoC framework. We present a comprehensive overview of the eligibility criteria, clinical procedures and neuroimaging methods of our project. After describing our protocol, we present group-level activation maps from task fMRI data and independent components maps from resting state data. Finally, using quantitative measures of neuroimaging data quality, we demonstrate excellent data quality relative to a subset of the Human Connectome Project of Young Adults (n = 97), as well as comparable profiles of cortical thickness from T1-weighted imaging and generalized fractional anisotropy from diffusion weighted imaging. This manuscript presents results from the first 121 participants of our full target 250 participant dataset, timed with the release of this data to the National Institute of Mental Health Data Archive in fall 2020, with the remaining half of the dataset to be released in 2021.
Collapse
Affiliation(s)
- Darsol Seok
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Nathan Smyk
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Marc Jaskir
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Philip Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Mark Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Tommaso Girelli
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Nicholas Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Joanne Beer
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, United States
| | - Janet Stock
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Russell Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, United States
| | - Yvette Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
35
|
Altered Functional Integration in the Salience and Default Mode Networks in Euthymic Pediatric Bipolar Disorder. Neural Plast 2020; 2020:5853701. [PMID: 33133177 PMCID: PMC7568799 DOI: 10.1155/2020/5853701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 11/18/2022] Open
Abstract
Accumulating studies demonstrate emotional and cognitive dysregulation in the euthymic period of pediatric bipolar disorder (PBD). However, the relative contribution of functional integration in human brain to disturbed emotion and cognitive function in the euthymic PBD patients remains unclear. In this study, 16 euthymic PBD patients and 16 healthy controls underwent resting-state functional magnetic resonance imaging. A data-driven functional connectivity analysis was used to investigate functional connectivity changes of the euthymic PBD. Compared with healthy controls, the euthymic PBD exhibited greater global functional connectivity density in the left anterior insula and lower global functional connectivity density in the right temporoparietal junction, the left angular gyrus, and the bilateral occipital lobule. A distant functional connectivity analysis demonstrated altered integration within the salience and default mode networks in euthymic PBD. Correlation analysis found that altered functional connectivity of the salience network was related to the reduced performance in the backward digit span test, and altered functional connectivity of the default mode network was related to the Young Mania Rating Scale in euthymic PBD patients. Our findings indicated that disturbed functional integration in salience and default mode networks might shed light on the physiopathology associated with emotional and cognitive dysregulation in PBD.
Collapse
|
36
|
Scalabrini A, Vai B, Poletti S, Damiani S, Mucci C, Colombo C, Zanardi R, Benedetti F, Northoff G. All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology 2020; 45:2058-2069. [PMID: 32740651 PMCID: PMC7547732 DOI: 10.1038/s41386-020-0785-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a psychiatric disorder characterized by abnormal resting state functional connectivity (rsFC) in various neural networks and especially in default-mode network (DMN). However, inconsistent findings, i.e., increased and decreased DMN rsFC, have been reported, which raise the question for the source of DMN changes in MDD. Testing whether the DMN abnormalities in MDD can be traced to either a local, i.e., intra-network, or a global, i.e., inter-network, source, we conducted a novel sequence of rsFC analyses, i.e., global FC, intra-network FC, and inter-network FC. Moreover, all analyses were conducted without global signal regression (non-GSR) and with GSR in order to identify the impact of specifically the global component of functional connectivity on within-network functional connectivity within specifically the DMN. In MDD our findings demonstrate (i) increased representation of global signal correlation (GSCORR) in DMN regions, as confirmed independently by degree of centrality (DC) and by an independent DMN template, (ii) increased within-network DMN rsFC, (iii) highly increased inter-network rsFC of both lower- and higher order non-DMN networks with DMN, (iv) high accuracy in classifying MDD vs. healthy subjects by using GSCORR as predictor. Further supporting the global, i.e., non-DMN source of within-network rsFC of the DMN, all results were obtained only when including the global signal, i.e., non-GSR, but not when conducting GSR. Together, we show for the first time increased global signal representation within rsFC of DMN as stemming from inter-network sources as distinguished from local sources, i.e., within- or intra-DMN.
Collapse
Affiliation(s)
- Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 33, 66100, Chieti (CH), Italy. .,Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Benedetta Vai
- grid.18887.3e0000000417581884Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.15496.3fDepartment of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Sara Poletti
- grid.18887.3e0000000417581884Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.15496.3fDepartment of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Stefano Damiani
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Science, University of Pavia, 27100 Pavia, Italy
| | - Clara Mucci
- grid.412451.70000 0001 2181 4941Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 33, 66100 Chieti (CH), Italy
| | - Cristina Colombo
- grid.15496.3fDepartment of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy ,grid.18887.3e0000000417581884Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.28046.380000 0001 2182 2255The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4 Canada
| | - Raffaella Zanardi
- grid.18887.3e0000000417581884Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.28046.380000 0001 2182 2255The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4 Canada
| | - Francesco Benedetti
- grid.18887.3e0000000417581884Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.15496.3fDepartment of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Georg Northoff
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada. .,Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K4, Canada. .,Mental Health Centre, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, 310013, Zhejiang Province, China. .,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou, 310013, Zhejiang Province, China.
| |
Collapse
|
37
|
Cattarinussi G, Delvecchio G, Prunas C, Brambilla P. Effects of pharmacological treatments on neuroimaging findings in first episode affective psychosis: A review of longitudinal studies. J Affect Disord 2020; 276:1046-1051. [PMID: 32763589 DOI: 10.1016/j.jad.2020.07.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Affective psychosis is a common mental disorder characterized by structural/functional brain abnormalities, which seem to occur also at the early stages of the disease. However, the role of psychotropic medications on brain structure and function in affective first episode psychosis (A-FEP) still remains uncertain. Therefore, with this review we aim to gain more robust understanding regarding the potential effect of pharmacological treatments on the brain in A-FEP patients also experiencing a first manic episode. METHODS A search on PuBMed and Web of Science of longitudinal structural and functional Magnetic Resonance Imaging (MRI) as well as Diffusion Tensor Imaging (DTI) studies, exploring the effect of medications on the brain in A-FEP, was conducted. We selected nine studies, three randomized or pseudo-randomized controlled trials and six observational studies. RESULTS Overall the studies showed that a) mood stabilizers (MS) have no effect on gray matter (GM) volumes and a protective role on white matter (WM) volumes, b) antipsychotics (AP) have an unclear effect on GM volumes and a less potent effect on WM volumes compared to MS and c) both MS and AP tend to normalize brain activation and connectivity. LIMITATIONS The small sample size, the observational design of the majority of the studies and the different methodological approaches limit the conclusion of this review. CONCLUSIONS Medications seem to have a minor role on structural changes occurring in A-FEP patients during the early stages of the disease, while their effect on brain activation and connectivity seems more pronounced, but far to be conclusive.
Collapse
Affiliation(s)
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
38
|
Person-based similarity in brain structure and functional connectivity in bipolar disorder. J Affect Disord 2020; 276:38-44. [PMID: 32697714 PMCID: PMC7568424 DOI: 10.1016/j.jad.2020.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bipolar disorder shows significant variability in clinical presentation. Here we adopt a personalized approach to quantify the brain structural and functional similarity of each individual patient to other patients and to healthy individuals. METHODS Brain morphometric and resting-state functional connectivity measures from two independent samples of patients with bipolar disorder and healthy individuals (total number of participants=215) were modeled as single vectors to generated individualized morphometric and connectivity profiles. These profiles were then used to compute a person-based similarity indices which quantified the similarity in neuroimaging profiles amongst patients and between patients and health individuals. RESULTS The morphometric and connectivity profiles of patients showed within-diagnosis similarity which was comparable to that observed in healthy individuals. They also showed minimal deviance from those of healthy individuals; the correlation between the profiles of patients and healthy individuals was high (range: 0.71-0.94, p<10-5). The degree of similarity between imaging profiles was associated with IQ (for cortical thickness) and age (functional integration) rather than clinical variables. Patients who were prescribed lithium, compared to those who were not, showed greater similarity to healthy individuals in terms of network integration (t = 2.2, p = 0.03). LIMITATIONS We focused on patients with Bipolar disorder, type I only. CONCLUSIONS High inter-individual similarity in neuroimaging profiles was observed amongst patients with bipolar disorder and between patients and healthy individuals. We infer that brain alterations associated with bipolar disorder may be nested within the normal biological diversity consistent with the high prevalence of mood symptoms in the general population.
Collapse
|
39
|
Gelo OCG, Lagetto G, Dinoi C, Belfiore E, Lombi E, Blasi S, Aria M, Ciavolino E. Which Methodological Practice(s) for Psychotherapy Science? A Systematic Review and a Proposal. Integr Psychol Behav Sci 2020; 54:215-248. [PMID: 31240561 DOI: 10.1007/s12124-019-09494-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three main methodological practices have been employed in psychotherapy science: the empirical-quantitative, empirical-qualitative, and theoretical one. Some scholars have argued for a monopoly of the empirical-quantitative methodological practice, sustained by scientific monism. This systematic review aims at exploring the contribution of each methodological practice to the field. Fifteen journals were searched from 2003 to 2013. A total of 9796 publications and 9915 studies met inclusion criteria and were coded for the methodological practice employed. Empirical-quantitative studies were the most published overall, over time, and in most of the journals considered. This overwhelming prevalence increased when considering the citation rates of the publications. We argue that these results are indicative of a quantitative monopoly, which in turn is due to a lack of critical thinking sustaining scientific monism. We call for disciplinary critical thinking and the consequent scientific pluralism valuing the plurality, diversity, and multiplicity of all the existing methodological practices.
Collapse
Affiliation(s)
- Omar Carlo Gioacchino Gelo
- Department of History, Social Sciences and Human Studies, Via di Valesio - Complesso Studium 2000, Ed. 5, 73100, Lecce, Italy. .,Faculty of Psychotherapy Science, Sigmund Freud University Vienna, Wien, Austria.
| | - Gloria Lagetto
- Department of History, Social Sciences and Human Studies, Via di Valesio - Complesso Studium 2000, Ed. 5, 73100, Lecce, Italy
| | - Chiara Dinoi
- Department of History, Social Sciences and Human Studies, Via di Valesio - Complesso Studium 2000, Ed. 5, 73100, Lecce, Italy
| | - Erika Belfiore
- Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Elisa Lombi
- Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Blasi
- Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, Naples, Italy
| | - Enrico Ciavolino
- Department of History, Social Sciences and Human Studies, Via di Valesio - Complesso Studium 2000, Ed. 5, 73100, Lecce, Italy
| |
Collapse
|
40
|
Casement MD, Goldstein TR, Merranko J, Gratzmiller SM, Franzen PL. Sleep and Parasympathetic Activity During Rest and Stress in Healthy Adolescents and Adolescents With Bipolar Disorder. Psychosom Med 2020; 81:782-790. [PMID: 31369483 PMCID: PMC6832846 DOI: 10.1097/psy.0000000000000737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Sleep disruption contributes to the pathophysiology of mental disorders, particularly bipolar illness, but the biobehavioral mechanisms of this relationship are insufficiently understood. This study evaluated sleep duration, timing, and variability as prospective predictors of parasympathetic nervous system activity during rest and social stress in adolescents with bipolar disorder, reflecting sleep-related interference in stress regulatory systems that may confer vulnerability to mood episodes. METHOD Participants were adolescents with bipolar disorder (n = 22) and healthy adolescents (n = 27). Sleep duration and timing were measured by actigraphy for 1 week before a laboratory social stress task, during which high-frequency heart rate variability (HF-HRV) was indexed using electrocardiography. Multilevel models were used to evaluate group, sleep characteristics, and their interactions as predictors of initial HF-HRV and change in HF-HRV during rest and stress. RESULTS Associations between group and changes in HF-HRV during stress were moderated by sleep duration mean (z = 2.24, p = .025) and variability (z = -2.78, p = .006). There were also main effects of mean sleep duration on initial HF-HRV during rest (z = -5.37, p < .001) and stress (z = -2.69, p = .007). Follow-up analyses indicated that, in bipolar adolescents during stress, shorter and longer sleep durations were associated with lower initial HF-HRV (z = -5.44, p < .001), and greater variability in sleep duration was associated with less change in HF-HRV (z = -2.18, p = .029). CONCLUSIONS Sleep durations that are relatively short or long, which are characteristic of mood episodes, are associated with parasympathetic vulnerability to social stress in adolescents with bipolar disorder. Obtaining regular sleep of moderate duration may favorably affect responses to stress in bipolar youth.
Collapse
Affiliation(s)
- Melynda D Casement
- From the Department of Psychology (Casement), University of Oregon, Eugene, Oregon; and Department of Psychiatry, University of Pittsburgh (Goldstein, Merranko, Gratzmiller, Franzen), Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
41
|
Wise T, Dolan RJ. Associations between aversive learning processes and transdiagnostic psychiatric symptoms in a general population sample. Nat Commun 2020; 11:4179. [PMID: 32826918 PMCID: PMC7443146 DOI: 10.1038/s41467-020-17977-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
Symptom expression in psychiatric conditions is often linked to altered threat perception, however how computational mechanisms that support aversive learning relate to specific psychiatric symptoms remains undetermined. We answer this question using an online game-based aversive learning task together with measures of common psychiatric symptoms in 400 subjects. We show that physiological symptoms of anxiety and a transdiagnostic compulsivity-related factor are associated with enhanced safety learning, as measured using a probabilistic computational model, while trait cognitive anxiety symptoms are associated with enhanced learning from danger. We use data-driven partial least squares regression to identify two separable components across behavioural and questionnaire data: one linking enhanced safety learning and lower estimated uncertainty to physiological anxiety, compulsivity, and impulsivity; the other linking enhanced threat learning and heightened uncertainty estimation to symptoms of depression and social anxiety. Our findings implicate aversive learning processes in the expression of psychiatric symptoms that transcend diagnostic boundaries.
Collapse
Affiliation(s)
- Toby Wise
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| |
Collapse
|
42
|
Neurophysiological correlates of cognitive control and approach motivation abnormalities in adolescent bipolar disorders. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:677-691. [PMID: 31098857 DOI: 10.3758/s13415-019-00719-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypersensitivity to reward-relevant stimuli is theorized to be a core etiological factor in bipolar disorders (BDs). However, little is known about the role of cognitive control dysregulation within reward contexts in BDs, particularly during adolescence. Using electroencephalography (EEG), we explored alterations in cognitive control processes and approach motivation in 99 adolescents with (n=53) and without (n=46) BD during reward striving (target anticipation) and reward attainment (feedback) phases of a monetary incentive delay (MID) task. Time-frequency analysis yielded frontal theta and frontal alpha asymmetry as indices of cognitive control and approach motivation, respectively. Multilevel mixed models examined group differences, as well as age, sex, and other effects, on frontal theta and frontal alpha asymmetry during both phases of the task and on performance accuracy and reaction times. Healthy adolescent girls exhibited lower frontal theta than both adolescent girls with BD and adolescent boys with and without BD during reward anticipation and feedback. Across groups, adolescent boys displayed greater relative left frontal alpha activity than adolescent girls during reward anticipation and feedback. Behaviorally, adolescents with BD exhibited faster responses on both positively and negatively motivated trials versus neutral trials, whereas healthy adolescents had faster responses only on positively motivated trials; adolescents with BD were less accurate in responding to neutral trials compared to healthy controls. These findings shed light on normative and BD-specific involvement of approach motivation and cognitive control during different stages of reward processing in adolescence and, further, provide evidence of adolescent sex differences in these processes.
Collapse
|
43
|
Disrupted dynamic local brain functional connectivity patterns in generalized anxiety disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109833. [PMID: 31812780 DOI: 10.1016/j.pnpbp.2019.109833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 01/14/2023]
Abstract
Previous studies have reported abnormalities in static brain activity and connectivity in patients with generalized anxiety disorder (GAD). However, the dynamic patterns of brain connectivity in patients with GAD have not been fully explored. In this study, we aimed to investigate the dynamic local brain functional connectivity in patients with GAD using dynamic regional phase synchrony (DRePS), a newly developed method for assessing intrinsic dynamic local functional connectivity. Seventy-four patients with GAD and 74 healthy controls (HCs) were enrolled and underwent resting-state functional magnetic resonance imaging. Compared to the HCs, patients with GAD exhibited decreased DRePS values in the bilateral caudate, left hippocampus, left anterior insula, left inferior frontal gyrus, and right fusiform gyrus extending to inferior temporal gyrus. The DRePS value of the left hippocampus was negatively correlated with the Hamilton Anxiety Rating Scale scores. Moreover, these abnormal DRePS patterns could be used to distinguish patients with GAD from HCs in an independent sample (18 patients with GAD and 21 HCs). Our findings provide further evidence on brain dysfunction in GAD from the perspective of the dynamic behaviour of local connections, suggesting that patients with GAD may have an insufficient brain adaptation. This study provides new insights into the neurocognitive mechanism of GAD and could potentially inform the diagnosis and treatment of this disease. Future studies on GAD could benefit from combining the DRePS method with task-related functional magnetic resonance imaging and non-invasive brain stimulation.
Collapse
|
44
|
Magioncalda P, Martino M, Conio B, Lee HC, Ku HL, Chen CJ, Inglese M, Amore M, Lane TJ, Northoff G. Intrinsic brain activity of subcortical-cortical sensorimotor system and psychomotor alterations in schizophrenia and bipolar disorder: A preliminary study. Schizophr Res 2020; 218:157-165. [PMID: 32029353 DOI: 10.1016/j.schres.2020.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Alterations in psychomotor dimension cut across different psychiatric disorders, such as schizophrenia (SCZ) and bipolar disorder (BD). This preliminary study aimed to investigate the organization of intrinsic brain activity in the subcortical-cortical sensorimotor system in SCZ (and BD) as characterized according to psychomotor dimension. METHOD In this resting-state functional magnetic resonance imaging (fMRI) study, functional connectivity (FC) between thalamus and sensorimotor network (SMN), along with FC from substantia nigra (SN) and raphe nuclei (RN) to basal ganglia (BG) and thalamic regions, were investigated by using an a-priori-driven and dimensional approach. This was done in two datasets: SCZ patients showing inhibited psychomotricity (n = 18) vs. controls (n = 19); SCZ patients showing excited psychomotricity (n = 20) vs. controls (n = 108). Data from a third dataset of BD in inhibited depressive or manic phases (reflecting inhibited or excited psychomotricity) were used as control. RESULTS SCZ patients suffering from psychomotor inhibition showed decreased thalamus-SMN FC toward around-zero values paralleled by a concomitant reduction of SN-BG/thalamus FC and RN-BG/thalamus FC (as BD patients in inhibited depression). By contrast, SCZ patients suffering from psychomotor excitation exhibited increased thalamus-SMN FC toward positive values paralleled by a concomitant reduction of RN-BG/thalamus FC (as BD patients in mania). CONCLUSIONS These findings suggest that patients exhibiting low or high levels of psychomotor activity show distinct patterns of thalamus-SMN coupling, which could be traced to specific deficit in SN- or RN-related connectivity. Notably, this was independent from the diagnosis of SCZ or BD, supporting an RDoC-like dimensional approach to psychomotricity.
Collapse
Affiliation(s)
- Paola Magioncalda
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan; Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Hsiao-Lun Ku
- Department of Psychiatry, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Chi-Jen Chen
- Department of Radiology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Matilde Inglese
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy.
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| | - Timothy J Lane
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan; Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Georg Northoff
- Mind Brain Imaging and Neuroethics Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
45
|
Kirschner M, Cathomas F, Manoliu A, Habermeyer B, Simon JJ, Seifritz E, Tobler PN, Kaiser S. Shared and dissociable features of apathy and reward system dysfunction in bipolar I disorder and schizophrenia. Psychol Med 2020; 50:936-947. [PMID: 30994080 DOI: 10.1017/s0033291719000801] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bipolar disorder I (BD-I) is defined by episodes of mania, depression and euthymic states. These episodes are among other symptoms characterized by altered reward processing and negative symptoms (NS), in particular apathy. However, the neural correlates of these deficits are not well understood. METHODS We first assessed the severity of NS in 25 euthymic BD-I patients compared with 25 healthy controls (HC) and 27 patients with schizophrenia (SZ). Then, we investigated ventral (VS) and dorsal striatal (DS) activation during reward anticipation in a Monetary Incentive Delayed Task and its association with NS. RESULTS In BD-I patients NS were clearly present and the severity of apathy was comparable to SZ patients. Apathy scores in the BD-I group but not in the SZ group correlated with sub-syndromal depression scores. At the neural level, we found significant VS and DS activation in BD-I patients and no group differences with HC or SZ patients. In contrast to patients with SZ, apathy did not correlate with striatal activation during reward anticipation. Explorative whole-brain analyses revealed reduced extra-striatal activation in BD-I patients compared with HC and an association between reduced activation of the inferior frontal gyrus and apathy. CONCLUSION This study found that in BD-I patients apathy is present to an extent comparable to SZ, but is more strongly related to sub-syndromal depressive symptoms. The findings support the view of different pathophysiological mechanisms underlying apathy in the two disorders and suggest that extra-striatal dysfunction may contribute to impaired reward processing and apathy in BD-I.
Collapse
Affiliation(s)
- Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032Zurich, Switzerland
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Flurin Cathomas
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032Zurich, Switzerland
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| | | | - Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, Heidelberg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, Heinrich-Heine-University Düsseldorf, Dusseldorf, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, 8057Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, 8057Zurich, Switzerland
| | - Philippe N Tobler
- Neuroscience Center Zurich, University of Zurich, 8057Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, 8057Zurich, Switzerland
- Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, 8006Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Chemin du Petit-Bel-Air, 1225 Chêne-Bourg, Switzerland
| |
Collapse
|
46
|
Matsuo K, Harada K, Fujita Y, Okamoto Y, Ota M, Narita H, Mwangi B, Gutierrez CA, Okada G, Takamura M, Yamagata H, Kusumi I, Kunugi H, Inoue T, Soares JC, Yamawaki S, Watanabe Y. Distinctive Neuroanatomical Substrates for Depression in Bipolar Disorder versus Major Depressive Disorder. Cereb Cortex 2020; 29:202-214. [PMID: 29202177 DOI: 10.1093/cercor/bhx319] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
No neuroanatomical substrates for distinguishing between depression of bipolar disorder (dBD) and major depressive disorder (dMDD) are currently known. The aim of the current multicenter study was to identify neuroanatomical patterns distinct to depressed patients with the two disorders. Further analysis was conducted on an independent sample to enable generalization of results. We directly compared MR images of these subjects using voxel-based morphometry (VBM) and a support vector machine (SVM) algorithm using 1531 participants. The VBM analysis showed significantly reduced gray matter volumes in the bilateral dorsolateral prefrontal (DLPFC) and anterior cingulate cortices (ACC) in patients with dBD compared with those with dMDD. Patients with the two disorders shared small gray matter volumes for the right ACC and left inferior frontal gyrus when compared with healthy subjects. Voxel signals in these regions during SVM analysis contributed to an accurate classification of the two diagnoses. The VBM and SVM results in the second cohort also supported these results. The current findings provide new evidence that gray matter volumes in the DLPFC and ACC are core regions in displaying shared and distinct neuroanatomical substrates and can shed light on elucidation of neural mechanism for depression within the bipolar/major depressive disorder continuum.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| | - Yusuke Fujita
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Hisashi Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Japan
| | - Benson Mwangi
- Department of Psychiatry, The University of Texas Health Science Center at Houston, TX, USA
| | - Carlos A Gutierrez
- Department of Psychiatry, The University of Texas Health Science Center at Houston, TX, USA
| | - Go Okada
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Japan.,Department of Psychiatry, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Jair C Soares
- Department of Psychiatry, The University of Texas Health Science Center at Houston, TX, USA
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| |
Collapse
|
47
|
Tian F, Diao W, Yang X, Wang X, Roberts N, Feng C, Jia Z. Failure of activation of striatum during the performance of executive function tasks in adult patients with bipolar disorder. Psychol Med 2020; 50:653-665. [PMID: 30935439 DOI: 10.1017/s0033291719000473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although numerous studies have used functional neuroimaging to identify executive dysfunction in patients with bipolar disorder (BD), the findings are not consistent. The aim of this meta-analysis is to identify the most reliable functional anomalies in BD patients during performance of Executive Function (EF) tasks. METHODS A web-based search was performed on publication databases to identify functional magnetic resonance imaging studies of BD patients performing EF tasks and a voxel-based meta-analytic method known as anisotropic Effect Size Signed Differential Mapping (ES-SDM) was used to identify brain regions which showed anomalous activity in BD patients compared with healthy controls (HC). RESULTS Twenty datasets consisting of 463 BD patients and 484 HC were included. Compared with HC, BD patients showed significant hypo-activation or failure of activation in the left striatum (p = 0.00007), supplementary motor area (BA 6, p = 0.00037), precentral gyrus (BA 6, p = 0.0014) and cerebellum (BA 37, p = 0.0019), and hyper-activation in the left gyrus rectus (BA 11, p ≈ 0) and right middle temporal gyrus (BA 22, p = 0.00031) during performance of EF tasks. Sensitivity and subgroup analyses showed that the anomaly of left striatum is consistent across studies and present in both euthymic and BD I patients. CONCLUSIONS Patients with BD consistently showed abnormal activation in the cortico-striatal system during performance of EF tasks compared with HC. Failure of activation of the striatum may be a reliable marker for impairment in performance of especially inhibition tasks by patients with BD.
Collapse
Affiliation(s)
- Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing400044, China
| | - Xiuli Wang
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Neil Roberts
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Can Feng
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Testo AA, Felicione JM, Ellard KK, Peters AT, Chou T, Gosai A, Hahn E, Shea C, Sylvia L, Nierenberg AA, Dougherty DD, Deckersbach T. Neural correlates of the ADHD self-report scale. J Affect Disord 2020; 263:141-146. [PMID: 31818770 DOI: 10.1016/j.jad.2019.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The ADHD Self Report Scale is a self-report measure that assesses attentional problems. We sought to validate the ASRS by establishing neural correlates using functional magnetic imaging in healthy controls and individuals with bipolar disorder (BD), who commonly exhibit attentional problems. METHODS ASRS questionnaires and functional MRI data in conjunction with the Multi-source Interference Task (MSIT) were collected from 36 healthy control and 36 BD participants. We investigated task specific changes in the dorsal anterior cingulate cortex (dACC, Brodmann area 32) and their correlations with ASRS subscale scores, inattention and hyperactivity, in both cohorts. RESULTS As hypothesized, the dACC showed significant increases in BOLD activation between the interference and noninterference conditions. For the ASRS scale as well as its Inattention and Hyperactivity subscales, there was a significant negative correlation with the dACC BOLD for the whole group. CONCLUSIONS The ASRS is sensitive to attentional difficulties in BD, suggesting that it is a valid tool for assessing attentional difficulties in patients with BD.
Collapse
Affiliation(s)
- Abigail A Testo
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Julia M Felicione
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Kristen K Ellard
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Amy T Peters
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Aishwarya Gosai
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Emily Hahn
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Conor Shea
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Louisa Sylvia
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Andrew A Nierenberg
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
49
|
Trotti RL, Parker DA, Sabatinelli D, Tamminga CA, Gershon ES, Keedy SK, Keshavan MS, Pearlson GD, Sweeney JA, McDowell JE, Clementz BA. Electrophysiological correlates of emotional scene processing in bipolar disorder. J Psychiatr Res 2020; 120:83-90. [PMID: 31634753 PMCID: PMC10499256 DOI: 10.1016/j.jpsychires.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Emotional dysfunction is a core feature of bipolar I disorder (BD). Behavioral data suggest that emotional processing may differ based on history of psychosis, but physiological studies frequently disregard this differentiating feature. Face processing studies indicate that emotion-related components of event-related potentials (ERPs) are abnormal in BD, but fMRI data using emotional scenes are mixed. The current study used ERPs to examine emotional scene perception in BD with and without a history of psychosis (BDP, BDNP). 386 participants from the PARDIP consortium (HC = 181, BDP = 130, BDNP = 75) viewed neutral, pleasant, and unpleasant scenes from the International Affective Picture System (IAPS) during continuous EEG recording. The early posterior negativity (EPN) and late positive potential (LPP) were examined for group and stimulus effects. Analyses were conducted for groups on and off medications to examine associations between medication status, psychosis, and ERP response. Group differences were found between HC and BD in emotional modulation of the EPN and between HC and BDP in the LPP to pleasant images. There was a significant interaction between psychosis history and anticonvulsant status in the EPN, but no other medication associations were found. The relationship between neural/self-reported emotional responses and clinical symptoms were examined with canonical correlations, but no significant associations were found. Results from this large well characterized sample indicate mild deviations in neural reactivity related to medication, mood, and psychosis history. However, processing of emotional scenes appears mostly intact in individuals with BD regardless of symptom severity.
Collapse
Affiliation(s)
- Rebekah L Trotti
- Department of Psychology and Neuroscience, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30606, USA
| | - David A Parker
- Department of Psychology and Neuroscience, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30606, USA
| | - Dean Sabatinelli
- Department of Psychology and Neuroscience, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30606, USA
| | - Carol A Tamminga
- University of Texas Southwestern Medical Center, 2201 Inwood Rd., NE5.110, Dallas, TX, 75390, USA
| | - Elliot S Gershon
- University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Sarah K Keedy
- University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | | | - Godfrey D Pearlson
- Institute of Living, Hartford Hospital, 200 Retreat Ave., Hartford, CT, 06106, USA
| | - John A Sweeney
- University of Texas Southwestern Medical Center, 2201 Inwood Rd., NE5.110, Dallas, TX, 75390, USA
| | - Jennifer E McDowell
- Department of Psychology and Neuroscience, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30606, USA
| | - Brett A Clementz
- Department of Psychology and Neuroscience, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30606, USA.
| |
Collapse
|
50
|
Effects of social exclusion and physical pain in chronic opioid maintenance treatment: fMRI correlates. Eur Neuropsychopharmacol 2019; 29:291-305. [PMID: 30497842 DOI: 10.1016/j.euroneuro.2018.11.1109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
Opioids interact with systems processing pain and social stimuli. Both systems are crucial for responding to strains of everyday life and both are linked to relapse risk in opioid-dependent patients. The investigation of those systems seems essential to better understand opioid addiction as a whole. 17 patients on opioid maintenance treatment (OMT) and 21 healthy individuals underwent a functional magnetic resonance imaging (fMRI) social ball-tossing (Cyberball) paradigm simulating social inclusion and exclusion. In addition, painful and non-painful temperature stimuli were applied, in order to test pain sensitivity. Patients on OMT showed reduced pain sensitivity. Subjective pain was higher after social exclusion compared to social inclusion trials. In comparison to healthy controls, OMT patients felt less included and more excluded during inclusion and control conditions, and equally excluded during the social exclusion condition. Feelings of exclusion during the inclusion trials were associated with higher scores on the childhood trauma questionnaire. Across all conditions, OMT patients demonstrated decreased fMRI activation in the bilateral superior and middle occipital and bilateral cunei, the lingual gyri, as well as in the left fusiform gyrus (whole brain FWE-corrected). Comparing social exclusion and inclusion conditions, healthy individuals showed significant activation in brain areas related to social feedback and emotion processing, such as the anterior cingulate cortex, the insula and fusiform gyrus, whereas OMT patients showed no difference across conditions. As negative social affect is a potential trigger for relapse, patients might benefit from therapeutic strategies that enhance social integration.
Collapse
|