1
|
Cheng Y, Cai H, Liu S, Yang Y, Pan S, Zhang Y, Mo F, Yu Y, Zhu J. Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2025; 97:148-156. [PMID: 39103010 DOI: 10.1016/j.biopsych.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia. METHODS To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia. RESULTS The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks. CONCLUSIONS Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Siyu Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Shan Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqi Zhang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Fan Mo
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
2
|
Ostojic D, Lalousis PA, Donohoe G, Morris DW. The challenges of using machine learning models in psychiatric research and clinical practice. Eur Neuropsychopharmacol 2024; 88:53-65. [PMID: 39232341 DOI: 10.1016/j.euroneuro.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
To understand the complex nature of heterogeneous psychiatric disorders, scientists and clinicians are required to employ a wide range of clinical, endophenotypic, neuroimaging, genomic, and environmental data to understand the biological mechanisms of psychiatric illness before this knowledge is applied into clinical setting. Machine learning (ML) is an automated process that can detect patterns from large multidimensional datasets and can supersede conventional statistical methods as it can detect both linear and non-linear relationships. Due to this advantage, ML has potential to enhance our understanding, improve diagnosis, prognosis and treatment of psychiatric disorders. The current review provides an in-depth examination of, and offers practical guidance for, the challenges encountered in the application of ML models in psychiatric research and clinical practice. These challenges include the curse of dimensionality, data quality, the 'black box' problem, hyperparameter tuning, external validation, class imbalance, and data representativeness. These challenges are particularly critical in the context of psychiatry as it is expected that researchers will encounter them during the stages of ML model development and deployment. We detail practical solutions and best practices to effectively mitigate the outlined challenges. These recommendations have the potential to improve reliability and interpretability of ML models in psychiatry.
Collapse
Affiliation(s)
- Dijana Ostojic
- School of Biological and Chemical Sciences and School of Psychology, Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Gary Donohoe
- School of Biological and Chemical Sciences and School of Psychology, Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Derek W Morris
- School of Biological and Chemical Sciences and School of Psychology, Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland.
| |
Collapse
|
3
|
Li Z, Huang C, Zhao X, Gao Y, Tian S. Abnormal postcentral gyrus voxel-mirrored homotopic connectivity as a biomarker of mild cognitive impairment: A resting-state fMRI and support vector machine analysis. Exp Gerontol 2024; 195:112547. [PMID: 39168359 DOI: 10.1016/j.exger.2024.112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND While patients affected by mild cognitive impairment (MCI) exhibit characteristic voxel-mirrored homotopic connectivity (VMHC) alterations, the ability of such VMHC abnormalities to predict the diagnosis of MCI in these patients remains uncertain. As such, this study was performed to evaluate the potential role of VMHC abnormalities in the diagnosis of MCI. METHODS MCI patients and healthy controls (HCs) were enrolled and subjected to resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing. VMHC and support vector machine (SVM) techniques were then used to examine the collected imaging data. RESULTS Totally, 53 MCI patients and 68 healthy controls were recruited. Compared to HCs, MCI patients presented with an increase in postcentral gyrus VMHC. SVM classification demonstrated the ability of postcentral gyrus VMHC values to classify HCs and MCI patients with accuracy, sensitivity, and specificity values of 63.64 %, 71.69 %, and 89.71 %, respectively. CONCLUSION VMHC abnormalities in the postcentral gyrus may be mechanistically involved in the pathophysiological progression of MCI patients, and these abnormal VMHC patterns may also offer utility as a neuroimaging biomarker for MCI patient diagnosis.
Collapse
Affiliation(s)
- Ziruo Li
- Department of General Practice, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan 430064, Hubei, China
| | - Chunyan Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xingfu Zhao
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi 214151, Jiangsu, China
| | - Yujun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, Hubei, China.
| | - Shenglan Tian
- Department of General Practice, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan 430064, Hubei, China.
| |
Collapse
|
4
|
Wen J, Antoniades M, Yang Z, Hwang G, Skampardoni I, Wang R, Davatzikos C. Dimensional Neuroimaging Endophenotypes: Neurobiological Representations of Disease Heterogeneity Through Machine Learning. Biol Psychiatry 2024; 96:564-584. [PMID: 38718880 PMCID: PMC11374488 DOI: 10.1016/j.biopsych.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes with different brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal magnetic resonance imaging to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, and multiple sclerosis, as well as their potential in a transdiagnostic framework, where neuroanatomical and neurobiological commonalities were assessed across diagnostic boundaries. Subsequently, we summarize relevant machine learning methodologies and their clinical interpretability. We discuss the potential clinical implications of the current findings and envision future research avenues. Finally, we discuss an emerging paradigm called dimensional neuroimaging endophenotypes. Dimensional neuroimaging endophenotypes dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into low-dimensional yet informative, quantitative brain phenotypic representations, serving as robust intermediate phenotypes (i.e., endophenotypes), presumably reflecting the interplay of underlying genetic, lifestyle, and environmental processes associated with disease etiology.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science, University of Southern California, Los Angeles, California.
| | - Mathilde Antoniades
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gyujoon Hwang
- Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rongguang Wang
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Wen J, Tian YE, Skampardoni I, Yang Z, Cui Y, Anagnostakis F, Mamourian E, Zhao B, Toga AW, Zalesky A, Davatzikos C. The genetic architecture of biological age in nine human organ systems. NATURE AGING 2024; 4:1290-1307. [PMID: 38942983 PMCID: PMC11446180 DOI: 10.1038/s43587-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/30/2024] [Indexed: 06/30/2024]
Abstract
Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA.
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye LT, Richard G, Fernandez-Cabello S, Parker N, Andreassen OA, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin CP, Tsai SJ, Rodrigue AL, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León MÁ, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul AS, Uslu O, Burhanoglu BB, Uyar Demir A, Rootes-Murdy K, Calhoun VD, Sim K, Green M, Quidé Y, Chung YC, Kim WS, Sponheim SR, Demro C, Ramsay IS, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park MTM, Kirschner M, Georgiadis F, Kaiser S, Van Rheenen TE, Rossell SL, Hughes M, Woods W, Carruthers SP, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen DD, Preda A, Thomopoulos SI, Jahanshad N, Cui LB, Yao D, Thompson PM, Turner JA, van Erp TGM, Cheng W, Feng J. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nat Commun 2024; 15:5996. [PMID: 39013848 PMCID: PMC11252381 DOI: 10.1038/s41467-024-50267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
Collapse
Affiliation(s)
- Yuchao Jiang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Xiao Chang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Jie Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Magdeburg, Germany
| | - Kiyotaka Nemoto
- Department of Psychiatry, Division of Clinical Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Genevieve Richard
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sara Fernandez-Cabello
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Nadine Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapie and Center for Brain, Behavior and Metabolism, Lübeck University, Lübeck, Germany
- Institute for Transnational Psychiatry and Otto Creutzfeldt Center for Behavioral and Cognitive Neuroscience, University of Münster, Münster, Germany
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
- Chinese Institute for Brain Research, Beijing, PR China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, PR China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Enpeng Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Amanda L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Andriana Karuk
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - María Ángeles Garcia-León
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Ali Saffet Gonul
- Ege University School of Medicine Department of Psychiatry, SoCAT Lab, Izmir, Turkey
| | - Ozgul Uslu
- Ege University Institute of Health Sciences Department of Neuroscience, Izmir, Turkey
| | | | - Aslihan Uyar Demir
- Ege University School of Medicine Department of Psychiatry, SoCAT Lab, Izmir, Turkey
| | - Kelly Rootes-Murdy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Melissa Green
- School of Clinical Medicine, University of New South Wales, SYD, Australia
| | - Yann Quidé
- School of Psychology, University of New South Wales, SYD, Australia
| | - Young Chul Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Scott R Sponheim
- Minneapolis VA Medical Center, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Felice Iasevoli
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Min Tae M Park
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, TO, Canada
- Centre for Addiction and Mental Health, TO, Canada
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, MEL, Australia
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Susan L Rossell
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Matthew Hughes
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - William Woods
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Sean P Carruthers
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Philip Sumner
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Elysha Ringin
- National Institute of Mental Health, Klecany, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - David Tomecek
- National Institute of Mental Health, Klecany, Czech Republic
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Philipp Homan
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Wolfgang Omlor
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Giacomo Cecere
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Dana D Nguyen
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Long-Biao Cui
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, PR China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica A Turner
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine Hall, room 109, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, USA
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- School of Data Science, Fudan University, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
7
|
Wen J, Tian YE, Skampardoni I, Yang Z, Cui Y, Anagnostakis F, Mamourian E, Zhao B, Toga AW, Zaleskey A, Davatzikos C. The Genetic Architecture of Biological Age in Nine Human Organ Systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.08.23291168. [PMID: 37398441 PMCID: PMC10312870 DOI: 10.1101/2023.06.08.23291168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Understanding the genetic basis of biological aging in multi-organ systems is vital for elucidating age-related disease mechanisms and identifying therapeutic interventions. This study characterized the genetic architecture of the biological age gap (BAG) across nine human organ systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 genomic loci-BAG pairs (P-value<5×10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal systems. We observed BAG-organ specificity and inter-organ connections. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system while exerting pleiotropic effects on traits linked to multiple organ systems. A gene-drug-disease network confirmed the involvement of the metabolic BAG-associated genes in drugs targeting various metabolic disorders. Genetic correlation analyses supported Cheverud's Conjecture1 - the genetic correlation between BAGs mirrors their phenotypic correlation. A causal network revealed potential causal effects linking chronic diseases (e.g., Alzheimer's disease), body weight, and sleep duration to the BAG of multiple organ systems. Our findings shed light on promising therapeutic interventions to enhance human organ health within a complex multi-organ network, including lifestyle modifications and potential drug repositioning strategies for treating chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Filippos Anagnostakis
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Andrew Zaleskey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
8
|
Andrés-Camazón P, Diaz-Caneja CM, Ballem R, Chen J, Calhoun VD, Iraji A. Neurobiology-based Cognitive Biotypes Using Multi-scale Intrinsic Connectivity Networks in Psychotic Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.14.24307341. [PMID: 38798576 PMCID: PMC11118619 DOI: 10.1101/2024.05.14.24307341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective Understanding the neurobiology of cognitive dysfunction in psychotic disorders remains elusive, as does developing effective interventions. Limited knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. This study aimed to identify subgroups of patients with psychosis with distinct patterns of functional brain alterations related to cognition (cognitive biotypes). Methods B-SNIP consortium data (2,270 participants including participants with psychotic disorders, relatives, and controls) was analyzed. Researchers used reference-informed independent component analysis and the NeuroMark 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain functional network connectivity (FNC). FNC features associated with cognitive performance were identified through multivariate joint analysis. K-means clustering identified subgroups of patients based on these features in a discovery set. Subgroups were further evaluated in a replication set and in relatives. Results Two biotypes with different functional brain alteration patterns were identified. Biotype 1 exhibited brain-wide alterations, involving hypoconnectivity in cerebellar-subcortical and somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical networks and hypoconnectivity in somatomotor-high cognitive processing networks, and better preserved cognitive performance. Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets, and in relatives. 70.12% of relatives belonged to the same biotype as their affected family members. Conclusions These findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns shared with their relatives. Patient stratification based on these biotypes instead of traditional diagnosis may help to optimize future research and clinical trials addressing cognitive dysfunction in psychotic disorders.
Collapse
Affiliation(s)
- Pablo Andrés-Camazón
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Covadonga Martínez Diaz-Caneja
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ram Ballem
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| |
Collapse
|
9
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
10
|
Wen J, Antoniades M, Yang Z, Hwang G, Skampardoni I, Wang R, Davatzikos C. Dimensional Neuroimaging Endophenotypes: Neurobiological Representations of Disease Heterogeneity Through Machine Learning. ARXIV 2024:arXiv:2401.09517v1. [PMID: 38313197 PMCID: PMC10836087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes that present significant differences in various brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal MRI to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, multiple sclerosis, as well as their potential in transdiagnostic settings. Subsequently, we summarize relevant machine learning methodologies and discuss an emerging paradigm which we call dimensional neuroimaging endophenotype (DNE). DNE dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into a low-dimensional yet informative, quantitative brain phenotypic representation, serving as a robust intermediate phenotype (i.e., endophenotype) largely reflecting underlying genetics and etiology. Finally, we discuss the potential clinical implications of the current findings and envision future research avenues.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Mathilde Antoniades
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyujoon Hwang
- Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Watertown Plank Rd, Milwaukee, WI, USA
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rongguang Wang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Fu CHY, Antoniades M, Erus G, Garcia JA, Fan Y, Arnone D, Arnott SR, Chen T, Choi KS, Fatt CC, Frey BN, Frokjaer VG, Ganz M, Godlewska BR, Hassel S, Ho K, McIntosh AM, Qin K, Rotzinger S, Sacchet MD, Savitz J, Shou H, Singh A, Stolicyn A, Strigo I, Strother SC, Tosun D, Victor TA, Wei D, Wise T, Zahn R, Anderson IM, Craighead WE, Deakin JFW, Dunlop BW, Elliott R, Gong Q, Gotlib IH, Harmer CJ, Kennedy SH, Knudsen GM, Mayberg HS, Paulus MP, Qiu J, Trivedi MH, Whalley HC, Yan CG, Young AH, Davatzikos C. Neuroanatomical dimensions in medication-free individuals with major depressive disorder and treatment response to SSRI antidepressant medications or placebo. NATURE. MENTAL HEALTH 2024; 2:164-176. [PMID: 38948238 PMCID: PMC11211072 DOI: 10.1038/s44220-023-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/17/2023] [Indexed: 07/02/2024]
Abstract
Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (β = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.
Collapse
Affiliation(s)
- Cynthia H. Y. Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jose A. Garcia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | | | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cherise Chin Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario Canada
- Mood Disorders Treatment and Research Centre and Women’s Health Concerns Clinic, St Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Vibe G. Frokjaer
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Beata R. Godlewska
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Keith Ho
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
| | - Andrew M. McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | | | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Irina Strigo
- Department of Psychiatry, University of California San Francisco, San Francisco, USA
| | - Stephen C. Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | | | - Dongtao Wei
- School of Psychology, Southwest University, Chongqing, China
| | - Toby Wise
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Roland Zahn
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - W. Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
- Department of Psychology, Emory University, Atlanta, GA USA
| | - J. F. William Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA USA
| | | | - Sidney H. Kennedy
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Gitte M. Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Madhukar H. Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Heather C. Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Allan H. Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
12
|
Bhattarai P, Taha A, Soni B, Thakuri DS, Ritter E, Chand GB. Predicting cognitive dysfunction and regional hubs using Braak staging amyloid-beta biomarkers and machine learning. Brain Inform 2023; 10:33. [PMID: 38043122 PMCID: PMC10694120 DOI: 10.1186/s40708-023-00213-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Mild cognitive impairment (MCI) is a transitional stage between normal aging and early Alzheimer's disease (AD). The presence of extracellular amyloid-beta (Aβ) in Braak regions suggests a connection with cognitive dysfunction in MCI/AD. Investigating the multivariate predictive relationships between regional Aβ biomarkers and cognitive function can aid in the early detection and prevention of AD. We introduced machine learning approaches to estimate cognitive dysfunction from regional Aβ biomarkers and identify the Aβ-related dominant brain regions involved with cognitive impairment. We employed Aβ biomarkers and cognitive measurements from the same individuals to train support vector regression (SVR) and artificial neural network (ANN) models and predict cognitive performance solely based on Aβ biomarkers on the test set. To identify Aβ-related dominant brain regions involved in cognitive prediction, we built the local interpretable model-agnostic explanations (LIME) model. We found elevated Aβ in MCI compared to controls and a stronger correlation between Aβ and cognition, particularly in Braak stages III-IV and V-VII (p < 0.05) biomarkers. Both SVR and ANN, especially ANN, showed strong predictive relationships between regional Aβ biomarkers and cognitive impairment (p < 0.05). LIME integrated with ANN showed that the parahippocampal gyrus, inferior temporal gyrus, and hippocampus were the most decisive Braak regions for predicting cognitive decline. Consistent with previous findings, this new approach suggests relationships between Aβ biomarkers and cognitive impairment. The proposed analytical framework can estimate cognitive impairment from Braak staging Aβ biomarkers and delineate the dominant brain regions collectively involved in AD pathophysiology.
Collapse
Affiliation(s)
- Puskar Bhattarai
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ahmed Taha
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhavin Soni
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deepa S Thakuri
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Erin Ritter
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering, St. Louis, MO, USA
| | - Ganesh B Chand
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Imaging Core, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
- Institute of Clinical and Translational Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Emsley R. Antipsychotics and structural brain changes: could treatment adherence explain the discrepant findings? Ther Adv Psychopharmacol 2023; 13:20451253231195258. [PMID: 37701891 PMCID: PMC10493054 DOI: 10.1177/20451253231195258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023] Open
Abstract
Progressive structural brain changes are well documented in schizophrenia and have been linked to both illness progression and the extent of antipsychotic treatment exposure. Literature reporting longitudinal changes in brain structure in individuals with schizophrenia is selectively reviewed to assess the roles of illness, antipsychotic treatment, adherence and other factors in the genesis of these changes. This narrative review considers literature investigating longitudinal changes in brain structure in individuals with schizophrenia. The review focusses on structural changes in the cortex, basal ganglia and white matter. It also examines effects of medication non-adherence and relapse on the clinical course of the illness and on structural brain changes. Studies investigating structural magnetic resonance imaging changes in patients treated with long-acting injectable antipsychotics are reviewed. Temporal changes in brain structure in schizophrenia can be divided into those that are associated with antipsychotic treatment and those that are not. Changes associated with treatment include increases in basal ganglia and white matter volumes. Relapse episodes may be a critical factor in illness progression and brain volume reductions. Medication adherence may be an important factor that could explain the findings that brain volume reductions are associated with poor treatment response, higher intensity of antipsychotic treatment exposure and more time spent in relapse. Improved adherence via long-acting injectable antipsychotics and adherence focussed psychosocial interventions could maximize protective effects of antipsychotics against illness progression.
Collapse
Affiliation(s)
- Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Tygerberg Campus, Cape Town 8000, South Africa
| |
Collapse
|
14
|
Abstract
Despite monumental advances in molecular technology to generate genome sequence data at scale, there is still a considerable proportion of heritability in most complex diseases that remains unexplained. Because many of the discoveries have been single-nucleotide variants with small to moderate effects on disease, the functional implication of many of the variants is still unknown and, thus, we have limited new drug targets and therapeutics. We, and many others, posit that one primary factor that has limited our ability to identify novel drug targets from genome-wide association studies may be due to gene interactions (epistasis), gene-environment interactions, network/pathway effects, or multiomic relationships. We propose that many of these complex models explain much of the underlying genetic architecture of complex disease. In this review, we discuss the evidence from multiple research avenues, ranging from pairs of alleles to multiomic integration studies and pharmacogenomics, that supports the need for further investigation of gene interactions (or epistasis) in genetic and genomic studies of human disease. Our goal is to catalog the mounting evidence for epistasis in genetic studies and the connections between genetic interactions and human health and disease that could enable precision medicine of the future.
Collapse
Affiliation(s)
- Pankhuri Singhal
- Genetics and Epigenetics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shefali Setia Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
- Penn Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
du Plessis S, Chand GB, Erus G, Phahladira L, Luckhoff HK, Smit R, Asmal L, Wolf DH, Davatzikos C, Emsley R. Two Neuroanatomical Signatures in Schizophrenia: Expression Strengths Over the First 2 Years of Treatment and Their Relationships to Neurodevelopmental Compromise and Antipsychotic Treatment. Schizophr Bull 2023; 49:1067-1077. [PMID: 37043772 PMCID: PMC10318886 DOI: 10.1093/schbul/sbad040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND HYPOTHESIS Two machine learning derived neuroanatomical signatures were recently described. Signature 1 is associated with widespread grey matter volume reductions and signature 2 with larger basal ganglia and internal capsule volumes. We hypothesized that they represent the neurodevelopmental and treatment-responsive components of schizophrenia respectively. STUDY DESIGN We assessed the expression strength trajectories of these signatures and evaluated their relationships with indicators of neurodevelopmental compromise and with antipsychotic treatment effects in 83 previously minimally treated individuals with a first episode of a schizophrenia spectrum disorder who received standardized treatment and underwent comprehensive clinical, cognitive and neuroimaging assessments over 24 months. Ninety-six matched healthy case-controls were included. STUDY RESULTS Linear mixed effect repeated measures models indicated that the patients had stronger expression of signature 1 than controls that remained stable over time and was not related to treatment. Stronger signature 1 expression showed trend associations with lower educational attainment, poorer sensory integration, and worse cognitive performance for working memory, verbal learning and reasoning and problem solving. The most striking finding was that signature 2 expression was similar for patients and controls at baseline but increased significantly with treatment in the patients. Greater increase in signature 2 expression was associated with larger reductions in PANSS total score and increases in BMI and not associated with neurodevelopmental indices. CONCLUSIONS These findings provide supporting evidence for two distinct neuroanatomical signatures representing the neurodevelopmental and treatment-responsive components of schizophrenia.
Collapse
Affiliation(s)
- Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Ganesh B Chand
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Radiology and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lebogang Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Hilmar K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Retha Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Laila Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| |
Collapse
|
16
|
Palaniyappan L. Clusters of psychosis: compensation as a contributor to the heterogeneity of schizophrenia. J Psychiatry Neurosci 2023; 48:E325-E329. [PMID: 37643803 PMCID: PMC10473036 DOI: 10.1503/jpn.230120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Affiliation(s)
- Lena Palaniyappan
- From the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. and the Robarts Research Institute & Lawson Health Research Institute, London, Ont.
| |
Collapse
|
17
|
Dwyer DB, Chand GB, Pigoni A, Khuntia A, Wen J, Antoniades M, Hwang G, Erus G, Doshi J, Srinivasan D, Varol E, Kahn RS, Schnack HG, Meisenzahl E, Wood SJ, Zhuo C, Sotiras A, Shinohara RT, Shou H, Fan Y, Schaulfelberger M, Rosa P, Lalousis PA, Upthegrove R, Kaczkurkin AN, Moore TM, Nelson B, Gur RE, Gur RC, Ritchie MD, Satterthwaite TD, Murray RM, Di Forti M, Ciufolini S, Zanetti MV, Wolf DH, Pantelis C, Crespo-Facorro B, Busatto GF, Davatzikos C, Koutsouleris N, Dazzan P. Psychosis brain subtypes validated in first-episode cohorts and related to illness remission: results from the PHENOM consortium. Mol Psychiatry 2023; 28:2008-2017. [PMID: 37147389 PMCID: PMC10575777 DOI: 10.1038/s41380-023-02069-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/15/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.
Collapse
Affiliation(s)
- Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia.
- Orygen, Melbourne, VIC, Australia.
| | - Ganesh B Chand
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Adyasha Khuntia
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| | - Junhao Wen
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyujoon Hwang
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erdem Varol
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hugo G Schnack
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva Meisenzahl
- LVR-Klinikum Düsseldorf, Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
- University of Birmingham, Edgbaston, UK
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital; Department of Psychiatry, Tianjin Medical University, Tianjin, China
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pedro Rosa
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paris A Lalousis
- Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, UK
| | - Rachel Upthegrove
- Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, UK
- Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Marta Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Simone Ciufolini
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Marcus V Zanetti
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Benedicto Crespo-Facorro
- Mental Health Service, Hospital Universitario Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
- Department of Psychiatry, Universidad de Sevilla, Seville, Spain
| | - Geraldo F Busatto
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
- Max-Planck Institute of Psychiatry, Munich, Germany.
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Paola Dazzan
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| |
Collapse
|
18
|
McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry 2023; 28:1902-1918. [PMID: 36690793 PMCID: PMC10575791 DOI: 10.1038/s41380-023-01949-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK.
| | - Richard S E Keefe
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| |
Collapse
|
19
|
Schizophrenie: Neuroanatomische Anomalien auch in
Normalbevölkerung zu finden. FORTSCHRITTE DER NEUROLOGIE · PSYCHIATRIE 2023. [DOI: 10.1055/a-1899-6639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Translationale Neurowissenschaften haben das Ziel, Mechanismen neurologischer und
psychiatrischer Erkrankungen zu identifizieren, um dieses Wissen in
therapeutische Maßnahmen zu übersetzen. In vielen
Domänen gibt es dabei noch viel zu lernen. Die folgende Studie
unternimmt den Versuch, anhand eines großen Datensatzes Unterschiede
zwischen schizophren erkrankten Personen und Nicht-Erkrankten zu
identifizieren.
Collapse
|
20
|
Gagnon A, Descoteaux M, Bocti C, Takser L. Better characterization of attention and hyperactivity/impulsivity in children with ADHD: The key to understanding the underlying white matter microstructure. Psychiatry Res Neuroimaging 2022; 327:111568. [PMID: 36434901 DOI: 10.1016/j.pscychresns.2022.111568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The apparent increase in the prevalence of the attention deficit hyperactivity disorder (ADHD) diagnosis raises many questions regarding the variability of the subjective diagnostic method. This comprehensive review reports findings in studies assessing white matter (WM) bundles in diffusion MRI and symptom severity in children with ADHD. These studies suggested the involvement of the connections between the frontal, parietal, and basal ganglia regions. This review discusses the limitations surrounding diffusion tensor imaging (DTI) and suggests novel imaging techniques allowing for a more reliable representation of the underlying biology. We propose a more inclusive approach to studying ADHD that includes known endophenotypes within the ADHD diagnosis. Aligned with the Research Domain Criteria Initiative, we also propose to investigate attentional capabilities and impulsive behaviours outside of the borders of the diagnosis. We support the existing hypothesis that ADHD originates from a developmental error and propose that it could lead to an accumulation in time of abnormalities in WM microstructure and pathways. Finally, state-of-the-art diffusion processing and novel artificial intelligence approaches would be beneficial to fully understand the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Anthony Gagnon
- Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), University of Sherbrooke, Sherbrooke, Quebec, Canada; Imeka Solutions Inc, Sherbrooke, QC, Canada
| | - Christian Bocti
- Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada; Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Larissa Takser
- Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
21
|
Gao Y, Zhao X, Huang J, Wang S, Chen X, Li M, Sun F, Wang G, Zhong Y. Abnormal regional homogeneity in right caudate as a potential neuroimaging biomarker for mild cognitive impairment: A resting-state fMRI study and support vector machine analysis. Front Aging Neurosci 2022; 14:979183. [PMID: 36118689 PMCID: PMC9475111 DOI: 10.3389/fnagi.2022.979183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Mild cognitive impairment (MCI) is a heterogeneous syndrome characterized by cognitive impairment on neurocognitive tests but accompanied by relatively intact daily activities. Due to high variation and no objective methods for diagnosing and treating MCI, guidance on neuroimaging is needed. The study has explored the neuroimaging biomarkers using the support vector machine (SVM) method to predict MCI. Methods In total, 53 patients with MCI and 68 healthy controls were involved in scanning resting-state functional magnetic resonance imaging (rs-fMRI). Neurocognitive testing and Structured Clinical Interview, such as Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) test, Activity of Daily Living (ADL) Scale, Hachinski Ischemic Score (HIS), Clinical Dementia Rating (CDR), Montreal Cognitive Assessment (MoCA), and Hamilton Rating Scale for Depression (HRSD), were utilized to assess participants' cognitive state. Neuroimaging data were analyzed with the regional homogeneity (ReHo) and SVM methods. Results Compared with healthy comparisons (HCs), ReHo of patients with MCI was decreased in the right caudate. In addition, the SVM classification achieved an overall accuracy of 68.6%, sensitivity of 62.26%, and specificity of 58.82%. Conclusion The results suggest that abnormal neural activity in the right cerebrum may play a vital role in the pathophysiological process of MCI. Moreover, the ReHo in the right caudate may serve as a neuroimaging biomarker for MCI, which can provide objective guidance on diagnosing and managing MCI in the future.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinfu Zhao
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - JiChao Huang
- Affiliated Shuyang Hospital, Nanjing University of Chinese Medicine, Suqian, China
| | - Sanwang Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Chen
- Department of Psychiatry, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mingzhe Li
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Fengjiao Sun
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Gaohua Wang
| | - Yi Zhong
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- NHC Key Laboratory of Mental Health, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
- Yi Zhong
| |
Collapse
|