1
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025:10.1038/s12276-024-01386-w. [PMID: 39774290 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Doyle AE, Bearden CE, Gur RE, Ledbetter DH, Martin CL, McCoy TH, Pasaniuc B, Perlis RH, Smoller JW, Davis LK. Advancing Mental Health Research Through Strategic Integration of Transdiagnostic Dimensions and Genomics. Biol Psychiatry 2024:S0006-3223(24)01664-0. [PMID: 39424167 DOI: 10.1016/j.biopsych.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Genome-wide studies are yielding a growing catalog of common and rare variants that confer risk for psychopathology. However, despite representing unprecedented progress, emerging data also indicate that the full promise of psychiatric genetics-including understanding pathophysiology and improving personalized care-will not be fully realized by targeting traditional dichotomous diagnostic categories. The current article provides reflections on themes that emerged from a 2021 National Institute of Mental Health-sponsored conference convened to address strategies for the evolving field of psychiatric genetics. As anticipated by the National Institute of Mental Health's Research Domain Criteria framework, multilevel investigations of dimensional and transdiagnostic phenotypes, particularly when integrated with biobanks and big data, will be critical to advancing knowledge. The path forward will also require more diverse representation in source studies. Additionally, progress will be catalyzed by a range of converging approaches, including capitalizing on computational methods, pursuing biological insights, working within a developmental framework, and engaging health care systems and patient communities.
Collapse
Affiliation(s)
- Alysa E Doyle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences & Psychology, University of California at Los Angeles, Los Angeles, California
| | - Raquel E Gur
- Departments of Psychiatry, Neurology and Radiology, Perelman School of Medicine, University of Pennsylvania, and the Lifespan Brain Institute of Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - David H Ledbetter
- Departments of Pediatrics and Psychiatry, University of Florida College of Medicine, Jacksonville, Florida
| | - Christa L Martin
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, Pennsylvania
| | - Thomas H McCoy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Pathology and Laboratory Medicine, and Human Genetics, University of California at Los Angeles, Los Angeles, California
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
Lefrere A, Godin O, Jamain S, Dansou Y, Samalin L, Alda M, Aouizerate B, Aubin V, Rey R, Contu M, Courtet P, Dubertret C, Haffen E, Januel D, Leboyer M, Llorca PM, Marlinge E, Manchia M, Neilson S, Olié E, Paribello P, Pinna M, Polosan M, Roux P, Schwan R, Tondo L, Walter M, Tzavara E, Auzias G, Deruelle C, Etain B, Belzeaux R. Refining Criteria for a Neurodevelopmental Subphenotype of Bipolar Disorders: A FondaMental Advanced Centers of Expertise for Bipolar Disorders Study. Biol Psychiatry 2024:S0006-3223(24)01654-8. [PMID: 39395474 DOI: 10.1016/j.biopsych.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is a complex and heterogeneous psychiatric disorder. It has been suggested that neurodevelopmental factors contribute to the etiology of BD, but a specific neurodevelopmental phenotype (NDP) of the disorder has not been identified. Our objective was to define and characterize an NDP in BD and validate its associations with clinical outcomes, polygenic risk scores, and treatment responses. METHODS We analyzed the FondaMental Advanced Centers of Expertise for Bipolar Disorders cohort of 4468 patients with BD, a validation cohort of 101 patients with BD, and 2 independent replication datasets of 274 and 89 patients with BD. Using factor analyses, we identified a set of criteria for defining NDP. Next, we developed a scoring system for NDP load and assessed its association with prognosis, neurological soft signs, polygenic risk scores for neurodevelopmental disorders, and responses to treatment using multiple regressions, adjusted for age and gender with bootstrap replications. RESULTS Our study established an NDP in BD consisting of 9 clinical features: advanced paternal age, advanced maternal age, childhood maltreatment, attention-deficit/hyperactivity disorder, early onset of BD, early onset of substance use disorders, early onset of anxiety disorders, early onset of eating disorders, and specific learning disorders. Patients with higher NDP load showed a worse prognosis and increased neurological soft signs. Notably, these individuals exhibited a poorer response to lithium treatment. Furthermore, a significant positive correlation was observed between NDP load and polygenic risk score for attention-deficit/hyperactivity disorder, suggesting potential overlapping genetic factors or pathophysiological mechanisms between BD and attention-deficit/hyperactivity disorder. CONCLUSIONS The proposed NDP constitutes a promising clinical tool for patient stratification in BD.
Collapse
Affiliation(s)
- Antoine Lefrere
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille University, Unité mixte de recherche (UMR) Centre National de la Recherche Scientifique, Marseille, France; Fondation Fondamental, Créteil, France
| | - Ophélia Godin
- Fondation Fondamental, Créteil, France; University Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Translational Neuro-Psychiatry, Assistance Publique-Hôpitaux de Paris, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT)
| | - Stéphane Jamain
- Fondation Fondamental, Créteil, France; University Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Translational Neuro-Psychiatry, Assistance Publique-Hôpitaux de Paris, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT)
| | | | - Ludovic Samalin
- Fondation Fondamental, Créteil, France; Department of Psychiatry, Centre Hospitalier Universitaire Clermont-Ferrand, University of Clermont Auvergne, Centre National de la Recherche Scientifique, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Bruno Aouizerate
- Fondation Fondamental, Créteil, France; Centre Hospitalier Charles Perrens, Laboratoire NutriNeuro, UMR Institut National de la Recherche Agronomique (1286), Université de Bordeaux, Bordeaux, France
| | - Valérie Aubin
- Fondation Fondamental, Créteil, France; Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco
| | - Romain Rey
- Fondation Fondamental, Créteil, France; Bipolar Disorder Expert Centre, Le Vinatier Hospital, University Lyon, Bron, France; University Lyon 1, Institut National de la Santé et de la Recherche Médicale U1028, Centre National de la Recherche Scientifique, UMR 5292, Villeurbanne, Lyon, France; Lyon Neuroscience Research Center, Psychiatric Disorders, Neuroscience Research and Clinical Research Team, Villeurbanne, Lyon, France
| | - Martina Contu
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Philippe Courtet
- Fondation Fondamental, Créteil, France; Centre Hospitalier Universitaire de Montpellier, Hôpital Lapeyronie, Psychiatric Emergency and Post Emergency Department, Pole Urgence, Montpellier, France; L'Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Caroline Dubertret
- Fondation Fondamental, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Hospitalo-Universitaire Assistance Publique-Hôpitaux de Paris Nord, Département Médico-Universitaire de Psychiatrie et d'Addictologie ESPRIT, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France; Université de Paris, Institut National de la Santé et de la Recherche Médicale UMR 1266, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Emmanuel Haffen
- Fondation Fondamental, Créteil, France; Service de Psychiatrie de l'Adulte, CIC-1431 Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Besançon, Laboratoire de Neurosciences, Université Franche Comté, Université Bourgogne Franche Comté, Besançon, France
| | - Dominique Januel
- Fondation Fondamental, Créteil, France; Unité de Recherche Clinique, Etablissement public de santé Ville-Evrard, Neuilly-sur-Marne, France
| | - Marion Leboyer
- Fondation Fondamental, Créteil, France; University Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Translational Neuro-Psychiatry, Assistance Publique-Hôpitaux de Paris, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT)
| | - Pierre-Michel Llorca
- Fondation Fondamental, Créteil, France; Department of Psychiatry, Centre Hospitalier Universitaire Clermont-Ferrand, University of Clermont Auvergne, Centre National de la Recherche Scientifique, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Emeline Marlinge
- Fondation Fondamental, Créteil, France; Le Groupe Hospitalier Universitaire Paris Nord, DMU Neurosciences, Hôpital Fernand Widal Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Samantha Neilson
- Institut de Neurosciences de la Timone, Aix-Marseille University, Unité mixte de recherche (UMR) Centre National de la Recherche Scientifique, Marseille, France
| | - Emilie Olié
- Fondation Fondamental, Créteil, France; Centre Hospitalier Universitaire de Montpellier, Hôpital Lapeyronie, Psychiatric Emergency and Post Emergency Department, Pole Urgence, Montpellier, France; L'Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | | | - Marco Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Lucio Bini Mood Disorder Centers, Cagliari, Italy
| | - Mircea Polosan
- Fondation Fondamental, Créteil, France; Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1216, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Paul Roux
- Fondation Fondamental, Créteil, France; Centre Hospitalier de Versailles, Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Le Chesnay, France; Université Paris-Saclay, Paris, France; Université de Versailles Saint-Quentin-En-Yvelines, Versailles, France; DisAP-DevPsy-CESP, Institut National de la Santé et de la Recherche Médicale UMR 1018, Villejuif, France
| | - Raymund Schwan
- Fondation Fondamental, Créteil, France; Université de Lorraine, Centre Psychothérapique de Nancy, Institut National de la Santé et de la Recherche Médicale U1254, Nancy, France
| | - Leonardo Tondo
- Lucio Bini Mood Disorder Centers, Cagliari, Italy; International Consortium for Mood & Psychotic Disorders Research, Mailman Research Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Michel Walter
- Fondation Fondamental, Créteil, France; Service Hospitalo-Universitaire de Psychiatrie Générale et de Réhabilitation Psycho Sociale 29G01 et 29G02, Centre Hospitalier Régional Univertsitaire de Brest, Hôpital de Bohars, Brest, France
| | - Eleni Tzavara
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France; Université Paris Cité, Paris, France; Centre National de la Recherche Scientifique, UMR 8002, Paris, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, Aix-Marseille University, Unité mixte de recherche (UMR) Centre National de la Recherche Scientifique, Marseille, France
| | - Christine Deruelle
- Institut de Neurosciences de la Timone, Aix-Marseille University, Unité mixte de recherche (UMR) Centre National de la Recherche Scientifique, Marseille, France
| | - Bruno Etain
- Fondation Fondamental, Créteil, France; University Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Translational Neuro-Psychiatry, Assistance Publique-Hôpitaux de Paris, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT)
| | - Raoul Belzeaux
- Fondation Fondamental, Créteil, France; Centre Hospitalier Universitaire de Montpellier, Hôpital Lapeyronie, Psychiatric Emergency and Post Emergency Department, Pole Urgence, Montpellier, France; L'Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France.
| |
Collapse
|
4
|
Jensen M, Smolen C, Tyryshkina A, Pizzo L, Banerjee D, Oetjens M, Shimelis H, Taylor CM, Pounraja VK, Song H, Rohan L, Huber E, El Khattabi L, van de Laar I, Tadros R, Bezzina C, van Slegtenhorst M, Kammeraad J, Prontera P, Caberg JH, Fraser H, Banka S, Van Dijck A, Schwartz C, Voorhoeve E, Callier P, Mosca-Boidron AL, Marle N, Lefebvre M, Pope K, Snell P, Boys A, Lockhart PJ, Ashfaq M, McCready E, Nowacyzk M, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Bruccheri MG, Mandarà GML, Mari F, Privitera F, Longo I, Curró A, Renieri A, Keren B, Charles P, Cuinat S, Nizon M, Pichon O, Bénéteau C, Stoeva R, Martin-Coignard D, Blesson S, Le Caignec C, Mercier S, Vincent M, Martin C, Mannik K, Reymond A, Faivre L, Sistermans E, Kooy RF, Amor DJ, Romano C, Andrieux J, Girirajan S. Genetic modifiers and ascertainment drive variable expressivity of complex disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312158. [PMID: 39252907 PMCID: PMC11383473 DOI: 10.1101/2024.08.27.24312158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Cora M. Taylor
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Hyebin Song
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rafik Tadros
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Connie Bezzina
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janneke Kammeraad
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Harry Fraser
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddhartha Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Central Manchester University Hospitals, NHS Foundation Trust Manchester Academic Health Sciences Centre, Manchester, UK
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Els Voorhoeve
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Patrick Callier
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Nathalie Marle
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Amber Boys
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Myla Ashfaq
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Nowacyzk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Teresa Mattina
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | | | - Francesca Mari
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Longo
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Curró
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Renieri
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | - Perrine Charles
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | | | | | | | | | - Radka Stoeva
- CHU Nantes, Medical Genetics Department, Nantes, France
| | | | - Sophia Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France
- Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Sandra Mercier
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Marie Vincent
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Christa Martin
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Katrin Mannik
- Institute of Genomics, University of Tartu, Estonia
- Health2030 Genome Center, Fondation Campus Biotech, Geneva, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Laurence Faivre
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J. Amor
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Joris Andrieux
- Institut de Genetique Medicale, Hopital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Gur RC, Bearden CE, Jacquemont S, Swillen A, van Amelsvoort T, van den Bree M, Vorstman J, Sebat J, Ruparel K, Gallagher RS, McClellan E, White L, Crowley TB, Giunta V, Kushan L, O'Hora K, Verbesselt J, Vandensande A, Vingerhoets C, van Haelst M, Hall J, Harwood J, Chawner SJRA, Patel N, Palad K, Hong O, Guevara J, Martin CO, Jizi K, Bélanger AM, Scherer SW, Bassett AS, McDonald-McGinn DM, Gur RE. Neurocognitive profiles of 22q11.2 and 16p11.2 deletions and duplications. Mol Psychiatry 2024:10.1038/s41380-024-02661-y. [PMID: 39048645 DOI: 10.1038/s41380-024-02661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders. Microdeletions and duplications are associated with neurocognitive deficits, yet few studies compared these groups using the same measures to address confounding measurement differences. We report a prospective international collaboration applying the same computerized neurocognitive assessment, the Penn Computerized Neurocognitive Battery (CNB), administered in a multi-site study on rare genomic disorders: 22q11.2 deletions (n = 492); 22q11.2 duplications (n = 106); 16p11.2 deletion (n = 117); and 16p11.2 duplications (n = 46). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and psychomotor speed. Accuracy and speed for each domain were included as dependent measures in a mixed-model repeated measures analysis. Locus (22q11.2, 16p11.2) and Copy number (deletion/duplication) were grouping factors and Measure (accuracy, speed) and neurocognitive domain were repeated measures factors, with Sex and Site as covariates. We also examined correlation with IQ. We found a significant Locus × Copy number × Domain × Measure interaction (p = 0.0004). 22q11.2 deletions were associated with greater performance accuracy deficits than 22q11.2 duplications, while 16p11.2 duplications were associated with greater specific deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed compared to deletions. Performance profiles differed among the groups with particularly poor memory performance of the 22q11.2 deletion group while the 16p11.2 duplication group had greatest deficits in complex cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. Deletions and duplications of 22q11.2 and 16p11.2 have differential effects on accuracy and speed of neurocognition indicating locus specificity of performance profiles. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome, and can only be established in large-scale international consortia using the same neurocognitive assessment. Future studies could aim to link performance profiles to clinical features and brain function.
Collapse
Affiliation(s)
- Ruben C Gur
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Sebastien Jacquemont
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
- Sainte Justine Hospital Research Center, Montreal, QC, Canada
| | - Ann Swillen
- Centre for Human Genetics, University Hospital Gasthuisberg and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Therese van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Marianne van den Bree
- Centre for Neuropsychiatric Genetics and Genomics Division of Psychological Medicine and Clinical Neurosciences Cardiff, Cardiff, UK
| | - Jacob Vorstman
- Department of Psychiatry, Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kosha Ruparel
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Sean Gallagher
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily McClellan
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren White
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Terrence Blaine Crowley
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania; 22q and You Center, Clinical Genetics Center, and Section of Genetic Counseling, CHOP, Philadelphia, PA, USA
| | - Victoria Giunta
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania; 22q and You Center, Clinical Genetics Center, and Section of Genetic Counseling, CHOP, Philadelphia, PA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Kathleen O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Jente Verbesselt
- Centre for Human Genetics, University Hospital Gasthuisberg and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ans Vandensande
- Centre for Human Genetics, University Hospital Gasthuisberg and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Mieke van Haelst
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jessica Hall
- Centre for Neuropsychiatric Genetics and Genomics Division of Psychological Medicine and Clinical Neurosciences Cardiff, Cardiff, UK
| | - Janet Harwood
- Centre for Neuropsychiatric Genetics and Genomics Division of Psychological Medicine and Clinical Neurosciences Cardiff, Cardiff, UK
| | - Samuel J R A Chawner
- Centre for Neuropsychiatric Genetics and Genomics Division of Psychological Medicine and Clinical Neurosciences Cardiff, Cardiff, UK
| | - Nishi Patel
- Department of Psychiatry, Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katrina Palad
- Department of Psychiatry, Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Oanh Hong
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - James Guevara
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Khadije Jizi
- Sainte Justine Hospital Research Center, Montreal, QC, Canada
| | | | - Stephen W Scherer
- Department of Psychiatry, Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne S Bassett
- Dalglish Family 22q Clinic and Toronto General Hospital Research Institute, University Health Network; Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania; 22q and You Center, Clinical Genetics Center, and Section of Genetic Counseling, CHOP, Philadelphia, PA, USA
- Department of Human Biology and Medical Genetics, Sapienza University, Rome, Italy
| | - Raquel E Gur
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Paik KE, Mooneyham GC. Concurrent Developmental Regression and Neurocognitive Decline in a Child With De Novo CHD8 Gene Mutation. Pediatr Neurol 2024; 154:1-3. [PMID: 38428335 DOI: 10.1016/j.pediatrneurol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder. Unique ASD subtypes have been proposed based on specific genotype-phenotype combinations. The ASD subtype associated with various chromodomain helicase DNA-binding protein 8 (CHD8) mutations has been associated with an incidence of autistic regression greater than that of all-cause ASD, but the mean age of onset of this subtype remains unknown. METHODS Here we describe a patient with a known de novo CHD8 gene mutation (heterozygous c.2565del) who experienced a profound developmental regression and neurocognitive decline at age 13 years following periods of acute viral illness. RESULTS The patient developed treatment-refractory catatonia and self-injurious behaviors leading to marked facial disfigurement. Unfortunately, interventions with immunomodulatory medications, psychotropic medications, and electroconvulsive therapy did not lead to sustained symptom improvement or a full return to baseline. CONCLUSIONS Our case demonstrates a clinical scenario in which a devastating developmental regression and neurocognitive decline occurred with profound accentuation of previously identified autistic features at an age atypical for autistic regression, following sequential viral infections, thereby raising the question of whether immune dysregulation may be a contributing factor. Regression in patients with monogenic mutations in the CHD8 gene warrants further study to elucidate the mechanisms of illness and the anticipated developmental trajectory.
Collapse
Affiliation(s)
- Kyung Eun Paik
- Department of Psychiatry & Behavioral Sciences, Duke University Hospital, Durham, North Carolina; Department of Child & Adolescent Psychiatry, Kennedy Krieger Institute & The Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - GenaLynne C Mooneyham
- Department of Psychiatry & Department of Pediatrics, Duke University School of Medicine, Duke Children's Hospital, Durham, North Carolina; National Institute of Mental Health, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
8
|
Gur R, Bearden C, Jacquemont S, Jizi K, Amelsvoort van T, van den Bree M, Vorstman J, Sebat J, Ruparel K, Gallagher R, Swillen A, McClellan E, White L, Crowley T, Giunta V, Kushan L, O'Hora K, Verbesselt J, Vandensande A, Vingerhoets C, van Haelst M, Hall J, Harwood J, Chawner S, Patel N, Palad K, Hong O, Guevara J, Martin CO, Bélanger AM, Scherer S, Bassett A, McDonald-McGinn D, Gur R. Neurocognitive Profiles of 22q11.2 and 16p11.2 Deletions and Duplications. RESEARCH SQUARE 2023:rs.3.rs-3393845. [PMID: 38234766 PMCID: PMC10793509 DOI: 10.21203/rs.3.rs-3393845/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are among the most common rare genetic disorders associated with significant risk for neuropsychiatric disorders across the lifespan. Microdeletions and duplications in these loci are associated with neurocognitive deficits, yet there are few studies comparing these groups using the same measures. We address this gap in a prospective international collaboration applying the same computerized neurocognitive assessment. The Penn Computerized Neurocognitive Battery (CNB) was administered in a multi-site study on rare genomic disorders: 22q11.2 deletion (n = 397); 22q11.2 duplication (n = 77); 16p11.2 deletion (n = 94); and 16p11.2 duplication (n = 26). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and sensori-motor speed. Accuracy and speed for each neurocognitive domain were included as dependent measures in a mixed-model repeated measures analysis, with locus (22q11.2, 16p11.2) and copy number (deletion/duplication) as grouping factors and neurocognitive domain as a repeated measures factor, with age and sex as covariates. We also examined correlation with IQ and site effects. We found that 22q11.2 deletions were associated with greater deficits in overall performance accuracy than 22q11.2 duplications, while 16p11.2 duplications were associated with greater deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed. Performance profiles differed among the groups with particularly poor performance of 16p11.2 duplication on non-verbal reasoning and social cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. No site effects were observed. Deletions and duplications of 22q11.2 and 16p11.2 have varied effects on neurocognition indicating locus specificity, with performance profiles differing among the groups. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome. Future studies could aim to link performance profiles to clinical features and brain function.
Collapse
|
9
|
Detera-Wadleigh SD, Kassem L, Besancon E, Lopes F, Akula N, Sung H, Blattner M, Sheridan L, Lacbawan LN, Garcia J, Gordovez F, Hosey K, Donner C, Salvini C, Schulze T, Chen DTW, England B, Cross J, Jiang X, Corona W, Russ J, Mallon B, Dutra A, Pak E, Steiner J, Malik N, de Guzman T, Horato N, Mallmann MB, Mendes V, Dűck AL, Nardi AE, McMahon FJ. A resource of induced pluripotent stem cell (iPSC) lines including clinical, genomic, and cellular data from genetically isolated families with mood and psychotic disorders. Transl Psychiatry 2023; 13:397. [PMID: 38104115 PMCID: PMC10725500 DOI: 10.1038/s41398-023-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Genome-wide (GWAS) and copy number variant (CNV) association studies have reproducibly identified numerous risk alleles associated with bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ), but biological characterization of these alleles lags gene discovery, owing to the inaccessibility of live human brain cells and inadequate animal models for human psychiatric conditions. Human-derived induced pluripotent stem cells (iPSCs) provide a renewable cellular reagent that can be differentiated into living, disease-relevant cells and 3D brain organoids carrying the full complement of genetic variants present in the donor germline. Experimental studies of iPSC-derived cells allow functional characterization of risk alleles, establishment of causal relationships between genes and neurobiology, and screening for novel therapeutics. Here we report the creation and availability of an iPSC resource comprising clinical, genomic, and cellular data obtained from genetically isolated families with BD and related conditions. Results from the first 324 study participants, 61 of whom have validated pluripotent clones, show enrichment of rare single nucleotide variants and CNVs overlapping many known risk genes and pathogenic CNVs. This growing iPSC resource is available to scientists pursuing functional genomic studies of BD and related conditions.
Collapse
Affiliation(s)
- Sevilla D Detera-Wadleigh
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| | - Layla Kassem
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| | - Emily Besancon
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Fabiana Lopes
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Nirmala Akula
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Heejong Sung
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Meghan Blattner
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Laura Sheridan
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Ley Nadine Lacbawan
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Joshua Garcia
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Francis Gordovez
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Katherine Hosey
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Cassandra Donner
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Claudio Salvini
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Thomas Schulze
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Institute of Psychiatric Phenomics and Genomics, LMU Munich, 80336, München, Germany
- Department of Psychiatry and Behavioral Sciences, Upstate University Hospital, Syracuse, NY, 13210, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - David T W Chen
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Bryce England
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Joanna Cross
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Xueying Jiang
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Winston Corona
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Jill Russ
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Barbara Mallon
- Center for Scientific Review, Neurotechnology and Vision Branch, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Evgenia Pak
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joe Steiner
- Neurotherapeutics Development Unit, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nasir Malik
- Neurotherapeutics Development Unit, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa de Guzman
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Natia Horato
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Mariana B Mallmann
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Victoria Mendes
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Amanda L Dűck
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Antonio E Nardi
- Laboratorio de Panico e Respiracao, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 22410-003, Brazil
| | - Francis J McMahon
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Mudassir BU, Alotaibi MA, Kizilbash N, Alruwaili D, Alruwaili A, Alenezi M, Agha Z. Genome-wide CNV analysis uncovers novel pathogenic regions in cohort of five multiplex families with neurodevelopmental disorders. Heliyon 2023; 9:e19718. [PMID: 37810058 PMCID: PMC10558996 DOI: 10.1016/j.heliyon.2023.e19718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Structural reorganization of chromosomes by genomic duplications and/or deletions are known as copy number variations (CNVs). Pathogenic and disease susceptible CNVs alter gene dosage and its phenotypic expression that often leads to human genetic diseases including Neurological disorders. CNVs affecting same common genes in multiple neurodevelopmental disorders can better explain the shared clinical and genetic aetiology across brain diseases. Our study presents the novel copy number variations in a cohort of five multiplex consanguineous families with intellectual disability, microcephaly, ASD, epilepsy, and neurological syndromic features. Cytoscan HD microarray suite has revealed genome wide deletions, duplications and LOH regions which are co-segregating in the family members for the rare neurodevelopmental syndromic phenotypes. This study identifies 1q21.1 microduplication, 16p11.2 microduplication, Xp11.22 microduplication, 4p12 microdeletion and Xq21.1 microdeletion that significantly contribute to primary disease onset and its progression for the first time in Pakistani families. Our study has potential impact on the understanding of pathogenic genetic predisposition for appearance of complex and heterogeneous neurodevelopmental disorders with otherwise unexplained syndromic features. Identification of altered gene dosage across the genome is helpful in improved diagnosis, better disease management in day-to-day life activities of patients with cognitive impairment and genetic counselling of families where consanguinity is a tradition. Our study will contribute to expand the knowledge of genotype-phenotype expression and future gateways in therapeutics and precision medicine research will be open in Pakistan.
Collapse
Affiliation(s)
- Behjat Ul Mudassir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Nadeem Kizilbash
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Daliyah Alruwaili
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Anwar Alruwaili
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Modhi Alenezi
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Zehra Agha
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|