1
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
2
|
Liu Q, Zhang Y. A Comparative Study on Cognitive Assessment in Cerebellar and Supratentorial Stroke. Brain Sci 2024; 14:676. [PMID: 39061417 PMCID: PMC11274804 DOI: 10.3390/brainsci14070676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
This study aims to understand the cognitive profiles of cerebellar infarction patients and compare them to those with supratentorial infarctions, particularly frontal infarctions. This current study also aims to find reliable assessment tools for detecting cognitive impairment in cerebellar infarction patients. A total of fifty cerebellar infarction patients, sixty supratentorial infarction patients, and thirty-nine healthy controls were recruited. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Addenbrooke's Cognitive Examination III (ACE-III), and Cerebellar Cognitive Affective Syndrome scale (CCAS-s) were used to assess global cognitive function. An extensive neuropsychological assessment battery was also tested to evaluate the characteristics of each cognitive domain. To assess the features of cognitive function, a comprehensive neuropsychological evaluation tool was also utilized. The cerebral infarction patients demonstrated cognitive impairment comparable to those with frontal infarcts, notably characterized by disturbance in attention and executive function. However, the degree of cognitive impairment was comparatively milder in cerebellar infarction patients. Furthermore, the patients in the cerebellar group had worse scores in the ACE-III and CCAS-s compared to healthy controls. The two assessments also demonstrated a significant area under the curve values, indicating their effectiveness in distinguishing cognitive impairment in cerebellar infarctions. In conclusion, cognitive impairment in a cerebellar infarction resembles frontal lobe dysfunction but is generally mild. It can be accurately assessed using the ACE-III and CCAS-s scales.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
3
|
Chenain L, Riad R, Fraisse N, Jubin C, Morgado G, Youssov K, Lunven M, Bachoud-Levi AC. Graph methods to infer spatial disturbances: Application to Huntington's Disease's speech. Cortex 2024; 176:144-160. [PMID: 38795650 DOI: 10.1016/j.cortex.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE Huntington's Disease (HD) is an inherited neurodegenerative disease caused by the mutation of the Htt gene, impacting all aspects of living and functioning. Among cognitive disabilities, spatial capacities are impaired, but their monitoring remains scarce as limited by lengthy experts' assessments. Language offers an alternative medium to evaluate patients' performance in HD. Yet, its capacities to assess HD's spatial abilities are unknown. Here, we aimed to bring proof-of-concept that HD's spatial deficits can be assessed through speech. METHODS We developed the Spatial Description Model to graphically represent spatial relations described during the Cookie Theft Picture (CTP) task. We increased the sensitivity of our model by using only sentences with spatial terms, unlike previous studies in Alzheimer's disease. 78 carriers of the mutant Htt, including 56 manifest and 22 premanifest individuals, as well as 25 healthy controls were included from the BIOHD & (NCT01412125) & Repair-HD (NCT03119246) cohorts. The convergence and divergence of the model were validated using the SelfCog battery. RESULTS Our Spatial Description Model was the only one among the four assessed approaches, revealing that individuals with manifest HD expressed fewer spatial relations and engaged in less spatial exploration compared to healthy controls. Their graphs correlated with both visuospatial and language SelfCog performances, but not with motor, executive nor memory functions. CONCLUSIONS We provide the proof-of-concept using our Spatial Description Model that language can grasp HD patient's spatial disturbances. By adding spatial capabilities to the panel of functions tested by the language, it paves the way for eventual remote clinical application.
Collapse
Affiliation(s)
- Lucie Chenain
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; ALMAnaCH, INRIA, 75012 Paris, France; Learning Planet Institute, Université de Paris, 75004 Paris, France
| | - Rachid Riad
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France
| | - Nicolas Fraisse
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
| | - Cécilia Jubin
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
| | - Graça Morgado
- Inserm, Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Katia Youssov
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France; Inserm, Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Marine Lunven
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France.
| | - Anne-Catherine Bachoud-Levi
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France; Inserm, Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
4
|
Lupo M, Olivito G, Angelini L, Funghi G, Pignatelli F, Siciliano L, Leggio M, Clausi S. Does the cerebellar sequential theory explain spoken language impairments? A literature review. CLINICAL LINGUISTICS & PHONETICS 2021; 35:296-309. [PMID: 32290716 DOI: 10.1080/02699206.2020.1745285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/01/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
During the past decades, converging evidence from clinical, neuroimaging and neuroanatomical studies has demonstrated the key role of the cerebellum in the processing of non-motor aspects of language. Although more is known about the way in which the cerebellum participates in the mechanisms involved in written language, there is ambiguous information on its role in other aspects of language, such as in non-motor aspects of spoken language. Thus, to contribute additional insight into this important issue, in the present work, we review several original scientific papers focusing on the most frequent non-motor spoken language impairments evidenced in patients affected by cerebellar pathology, namely, verbal working memory, grammar processing and verbal fluency impairments. Starting from the collected data, we provide a common interpretation of the spoken language disorders in cerebellar patients, suggesting that sequential processing could be the main mechanism by which the cerebellum participates in these abilities. Indeed, according to the cerebellar sequential theory, spoken language impairments could be due to altered cerebellar function to supervise, synchronize and coordinate the activity of different functional modules, affecting the correct optimization of linguistic processing.
Collapse
Affiliation(s)
- M Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - L Angelini
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Funghi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - F Pignatelli
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - L Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - M Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - S Clausi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG. The Role of the Cerebellum in Huntington's Disease: a Systematic Review. THE CEREBELLUM 2020; 20:254-265. [PMID: 33029762 DOI: 10.1007/s12311-020-01198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a rare neurological disorder characterized by progressive motor, cognitive, and psychiatric disturbances. Although striatum degeneration might justify most of the motor symptoms, there is an emerging evidence of involvement of extra-striatal structures, such as the cerebellum. To elucidate the cerebellar involvement and its afferences with motor, psychiatric, and cognitive symptoms in HD. A systematic search in the literature was performed in MEDLINE, LILACS, and Google Scholar databases. The research was broadened to include the screening of reference lists of review articles for additional studies. Studies available in the English language, dating from 1993 through May 2020, were included. Clinical presentation of patients with HD may not be considered as the result of an isolated primary striatal dysfunction. There is evidence that cerebellar involvement is an early event in HD and may occur independently of striatal degeneration. Also, the loss of the compensation role of the cerebellum in HD may be an explanation for the clinical onset of HD. Although more studies are needed to elucidate this association, the current literature supports that the cerebellum may integrate the natural history of neurodegeneration in HD.
Collapse
Affiliation(s)
- Gustavo L Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil.
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alex T Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
| | - Nayra S C Lima
- Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
6
|
Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 2018; 141:248-270. [PMID: 29206893 PMCID: PMC5837248 DOI: 10.1093/brain/awx317] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 01/19/2023] Open
Abstract
Cerebellar cognitive affective syndrome (CCAS; Schmahmann's syndrome) is characterized by deficits in executive function, linguistic processing, spatial cognition, and affect regulation. Diagnosis currently relies on detailed neuropsychological testing. The aim of this study was to develop an office or bedside cognitive screen to help identify CCAS in cerebellar patients. Secondary objectives were to evaluate whether available brief tests of mental function detect cognitive impairment in cerebellar patients, whether cognitive performance is different in patients with isolated cerebellar lesions versus complex cerebrocerebellar pathology, and whether there are cognitive deficits that should raise red flags about extra-cerebellar pathology. Comprehensive standard neuropsychological tests, experimental measures and clinical rating scales were administered to 77 patients with cerebellar disease-36 isolated cerebellar degeneration or injury, and 41 complex cerebrocerebellar pathology-and to healthy matched controls. Tests that differentiated patients from controls were used to develop a screening instrument that includes the cardinal elements of CCAS. We validated this new scale in a new cohort of 39 cerebellar patients and 55 healthy controls. We confirm the defining features of CCAS using neuropsychological measures. Deficits in executive function were most pronounced for working memory, mental flexibility, and abstract reasoning. Language deficits included verb for noun generation and phonemic > semantic fluency. Visual spatial function was degraded in performance and interpretation of visual stimuli. Neuropsychiatric features included impairments in attentional control, emotional control, psychosis spectrum disorders and social skill set. From these results, we derived a 10-item scale providing total raw score, cut-offs for each test, and pass/fail criteria that determined 'possible' (one test failed), 'probable' (two tests failed), and 'definite' CCAS (three tests failed). When applied to the exploratory cohort, and administered to the validation cohort, the CCAS/Schmahmann scale identified sensitivity and selectivity, respectively as possible exploratory cohort: 85%/74%, validation cohort: 95%/78%; probable exploratory cohort: 58%/94%, validation cohort: 82%/93%; and definite exploratory cohort: 48%/100%, validation cohort: 46%/100%. In patients in the exploratory cohort, Mini-Mental State Examination and Montreal Cognitive Assessment scores were within normal range. Complex cerebrocerebellar disease patients were impaired on similarities in comparison to isolated cerebellar disease. Inability to recall words from multiple choice occurred only in patients with extra-cerebellar disease. The CCAS/Schmahmann syndrome scale is useful for expedited clinical assessment of CCAS in patients with cerebellar disorders.awx317media15678692096001.
Collapse
Affiliation(s)
- Franziska Hoche
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xavier Guell
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cognitive Neuroscience Research Unit (URNC), Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mark G Vangel
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet C Sherman
- Psychology Assessment Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Feasibility of computerized working memory training in individuals with Huntington disease. PLoS One 2017; 12:e0176429. [PMID: 28453532 PMCID: PMC5409057 DOI: 10.1371/journal.pone.0176429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/10/2017] [Indexed: 11/30/2022] Open
Abstract
Objectives Huntington disease (HD) is associated with a variety of cognitive deficits, with prominent difficulties in working memory (WM). WM deficits are notably compromised in early-onset and prodromal HD patients. This study aimed to determine the feasibility of a computerized WM training program (Cogmed QM), novel to the HD population. Methods Nine patients, aged 26–62, with early stage HD underwent a 25-session (5 days/week for 5 weeks) WM training program (Cogmed QM). Training exercises involved the manipulation and storage of verbal and visuospatial information, with difficulty adapted as a function of individual performance. Neuropsychological testing was conducted before and after training, and performance on criterion WM measures (Digit Span and Spatial Span), near-transfer WM measures (Symbol Span and Auditory WM), and control measures were evaluated. Post-training interviews about patient experience were thematically analyzed using NVivo software. Results Seven of nine patients demonstrated adherence to the training and completed all sessions within the recommended timeframe of 5 weeks. All adherent patients showed improvement on the Cogmed tasks as defined by the Improvement Index (M = 22.17, SD = 8.84, range = 13–36). All adherent patients reported that they found training helpful (n = 7), and almost all felt that their memory improved (n = 6). Participants also expressed that the training was difficult, sometimes frustrating, and time consuming. Conclusions This pilot study provides support for feasibility of computerized WM training in early-stage patients with HD. Results suggest that HD patients perceive benefits of intensive WM training, though a full-scale and controlled intervention project is needed to understand the size of the effect and reliability of changes over time. Trial registration ClinicalTrials.gov, Registry number NCT02926820
Collapse
|
8
|
Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, Soliveri P, Girotti F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol 2014; 260:3134-43. [PMID: 24122064 DOI: 10.1007/s00415-013-7138-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
The role of the cerebellum in cognition, both in healthy subjects and in patients with cerebellar diseases, is debated. Neuropsychological studies in spinocerebellar ataxia type 1 (SCA1) and type 2 (SCA2) demonstrated impairments in executive functions, verbal memory, and visuospatial performances, but prospective evaluations are not available. Our aims were to assess progression of cognitive and psychiatric functions in patients with SCA1 and SCA2 in a longitudinal study. We evaluated at baseline 20 patients with SCA1, 22 patients with SCA2 and 17 matched controls. Two subgroups of patients (9 SCA1, 11 SCA2) were re-evaluated after 2 years. We tested cognitive functions (Mini Mental State Examination, digit span, Corsi span, verbal memory, attentional matrices, modified Wisconsin Card Sorting Test, Raven Progressive Matrices, Benton test, phonemic and semantic fluency), psychiatric status (Scales for Assessment of Negative and Positive Symptoms, Hamilton Depression and Anxiety Scales), neurological conditions (Scale for Assessment and Rating of Ataxia), and functional abilities (Unified Huntington Disease Rating Scale–part IV). At baseline, SCA1 and SCA2 patients had significant deficits compared to controls, mainly in executive functions (phonemic and semantic fluencies, attentional matrices); SCA2 showed further impairment in visuospatial and visuoperceptive tests (Raven matrices, Benton test, Corsi span). Both SCA groups had higher depression and negative symptoms, particularly apathy, compared to controls. After 2 years, motor and functional disability worsened, while only attentive performances deteriorated in SCA2. This longitudinal study showed dissociation in progression of motor disability and cognitive impairment, suggesting that in SCA1 and SCA2 motor and cognitive functions might be involved with different progression rates.
Collapse
|
9
|
Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thürling M, Timmann D, Wouters E, Ziegler W. Consensus paper: Language and the cerebellum: an ongoing enigma. CEREBELLUM (LONDON, ENGLAND) 2014; 13:386-410. [PMID: 24318484 PMCID: PMC4090012 DOI: 10.1007/s12311-013-0540-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In less than three decades, the concept "cerebellar neurocognition" has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the "linguistic cerebellum" in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper.
Collapse
Affiliation(s)
- Peter Mariën
- Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hansen ST, Pulst SM. Response to ethanol induced ataxia between C57BL/6J and 129X1/SvJ mouse strains using a treadmill based assay. Pharmacol Biochem Behav 2013; 103:582-8. [PMID: 23103202 PMCID: PMC4900535 DOI: 10.1016/j.pbb.2012.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/09/2012] [Accepted: 10/17/2012] [Indexed: 11/30/2022]
Abstract
More sensitive assays of mouse motor ataxia may provide a better understanding of the pathological profile. Treadmill gait analysis using ventral imaging allows for unhindered access to the ambulating mouse. In contrast to genetic mutations or exogenous brain injury, ethanol (EtOH) allows for the detection of dose dependent changes in motor behavior, which can be used to assess an assay's detection sensitivity. EtOH induced ataxia was assessed in C57BL/6J (B6) and 129X1/SvJ (129) mice using the DigiGait imaging system. Gait was analyzed across EtOH dosage (1.75, 2.25 and 2.75 g/kg) in each strain using a linear mixed effects model. Overall, 129 mice displayed greater susceptibility to EtOH ataxia than their B6 counterparts. In both strains, hind paws exhibited greater sensitivity to EtOH dosage than fore paws. Across most variables analyzed, only a modest EtOH-induced change in motor behavior was observed in each strain with the 1.75 g/kg EtOH doses failing to elicit significant change. These data indicate the ability to detect motor differences between strains, yet only moderate ability to detect change across EtOH dosage using the automated treadmill. Rotarod assays, however, were able to detect motor impairment at lower doses of EtOH. The significant, but opposite changes in paw placement with increasing EtOH doses highlight strain-specific differences in biophysical adaptations in response to acute EtOH intoxication.
Collapse
Affiliation(s)
- Stephen T. Hansen
- Department of Neurology, University of Utah, Salt Lake City, UT 84132
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132
- Brain Institute, University of Utah, Salt Lake City, UT, 84132
| |
Collapse
|
11
|
Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010; 46:831-44. [PMID: 20152963 PMCID: PMC2873095 DOI: 10.1016/j.cortex.2009.11.008] [Citation(s) in RCA: 974] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 09/25/2009] [Accepted: 10/31/2009] [Indexed: 11/18/2022]
Abstract
Patients with cerebellar damage often present with the cerebellar motor syndrome of dysmetria, dysarthria and ataxia, yet cerebellar lesions can also result in the cerebellar cognitive affective syndrome (CCAS), including executive, visual spatial, and linguistic impairments, and affective dysregulation. We have hypothesized that there is topographic organization in the human cerebellum such that the anterior lobe and lobule VIII contain the representation of the sensorimotor cerebellum; lobules VI and VII of the posterior lobe comprise the cognitive cerebellum; and the posterior vermis is the anatomical substrate of the limbic cerebellum. Here we analyze anatomical, functional neuroimaging, and clinical data to test this hypothesis. We find converging lines of evidence supporting regional organization of motor, cognitive, and limbic behaviors in the cerebellum. The cerebellar motor syndrome results when lesions involve the anterior lobe and parts of lobule VI, interrupting cerebellar communication with cerebral and spinal motor systems. Cognitive impairments occur when posterior lobe lesions affect lobules VI and VII (including Crus I, Crus II, and lobule VIIB), disrupting cerebellar modulation of cognitive loops with cerebral association cortices. Neuropsychiatric disorders manifest when vermis lesions deprive cerebro-cerebellar-limbic loops of cerebellar input. We consider this functional topography to be a consequence of the differential arrangement of connections of the cerebellum with the spinal cord, brainstem, and cerebral hemispheres, reflecting cerebellar incorporation into the distributed neural circuits subserving movement, cognition, and emotion. These observations provide testable hypotheses for future investigations.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Ataxia Unit, Cognitive/Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 175 Cambridge Street, Boston, MA 02114, USA.
| | | |
Collapse
|
12
|
Parsons LM, Petacchi A, Schmahmann JD, Bower JM. Pitch discrimination in cerebellar patients: Evidence for a sensory deficit. Brain Res 2009; 1303:84-96. [DOI: 10.1016/j.brainres.2009.09.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/11/2009] [Accepted: 09/12/2009] [Indexed: 01/08/2023]
|
13
|
Teive HAG, Arruda WO. Cognitive dysfunction in spinocerebellar ataxias. Dement Neuropsychol 2009; 3:180-187. [PMID: 29213626 PMCID: PMC5618971 DOI: 10.1590/s1980-57642009dn30300002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/26/2009] [Indexed: 02/13/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) comprise a heterogeneous group of complex neurodegenerative diseases, characterized by the presence of progressive cerebellar ataxia, associated or otherwise with ophthalmoplegia, pyramidal signs, extrapyramidal features, pigmentary retinopathy, peripheral neuropathy, cognitive dysfunction and dementia. OBJECTIVE To verify the presence of cognitive dysfunction among the main types of SCA described in the literature. METHODS the review was conducted using the search system of the PUBMED and OMIM databases. RESULTS Cognitive dysfunction occurs in a considerable proportion of SCA, particularly in SCA 3, which is the most frequent form of SCA worldwide. Dementia has been described in several other types of SCA such as SCA 2, SCA 17 and DRPLA. Mental retardation is a specific clinical feature of SCA 13. CONCLUSIONS The role of the cerebellum in cognitive functions has been observed in different types of SCAs which can manifest varying degrees of cognitive dysfunction, dementia and mental retardation.
Collapse
Affiliation(s)
- Helio Afonso Ghizoni Teive
- Movement Disorders Unit, Neurology Service, Internal
Medicine Department, Hospital de Clínicas, Federal University of
Paraná, Curitiba, PR, Brazil
| | - Walter Oleschko Arruda
- Movement Disorders Unit, Neurology Service, Internal
Medicine Department, Hospital de Clínicas, Federal University of
Paraná, Curitiba, PR, Brazil
| |
Collapse
|
14
|
Duff K, Beglinger LJ, Theriault D, Allison J, Paulsen JS. Cognitive deficits in Huntington's disease on the Repeatable Battery for the Assessment of Neuropsychological Status. J Clin Exp Neuropsychol 2009; 32:231-8. [PMID: 19484645 DOI: 10.1080/13803390902926184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Huntington's disease (HD) is associated with a variety of cognitive deficits, as well as motor and psychiatric disturbances. As clinical trials for HD evolve, briefer screening instruments will be needed to determine cognitive effects of interventions. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) may fill this gap. A total of 75 participants diagnosed with HD were evaluated with the RBANS, as well as several other scales typically used in HD. RBANS performances for these participants fell significantly below expectations for the Total Scale score, all five Indexes, and 11 of the 12 individual subtests. Cognitive scores on the RBANS were also significantly related to other markers of HD, including motor abnormalities, functional abilities, and other cognitive scores. Although additional research is needed, the current study supports the clinical applicability of the RBANS in patients with HD.
Collapse
Affiliation(s)
- Kevin Duff
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242-1000, USA.
| | | | | | | | | |
Collapse
|
15
|
Lagarde J, Hantkie O, Hajjioui A, Yelnik A. Neuropsychological disorders induced by cerebellar damage. Ann Phys Rehabil Med 2009; 52:360-70. [PMID: 19874739 DOI: 10.1016/j.rehab.2009.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 02/20/2009] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Motor coordination disorders caused by cerebellar dysfunction are well known. However, the less known cerebellar neuropsychological disorders also merit attention, since they occur more frequently than one might imagine. CASE REPORT We describe a 66-year-old patient with severe cerebellar damage caused by hemorrhagic stroke and associated with cognitive impairments (including impaired executive function, reasoning and judgment). A review of the literature on these neuropsychological disorders revealed a set of clinical, anatomical and functional imaging arguments that prompted us to broaden our vision of the cerebellum's role by acknowledging the presence of a cognitive component as well as the well-known motility component. In fact, there is good evidence of altered executive function (including mental flexibility, scheduling capacities and verbal working memory) in cerebellar patients. Visuospatial capacities are also affected, with disorders of visual memory and construction abilities having been reported. In terms of language, we noted reports of hypospontaneity and agrammatism with syntax problems. Memory (especially verbal memory), learning (both associative and procedural), judgment and reasoning also seem to be affected. In terms of emotion, various types of abnormal behavior and psychiatric disorders have been described and range from depression to true psychoses. Even though these data are controversial and must be confirmed, they prompt us to reconsider and deepen our understanding of the cerebellum's role and the functioning and improve our approach to (and management of) patients with cerebellar damage.
Collapse
Affiliation(s)
- J Lagarde
- Service de médecine physique et de réadaptation, groupe hospitalier Lariboisière F.-Widal, université Paris 7, 200, rue-de-Faubourg-Saint-Denis, 75475 Paris cedex 10, France
| | | | | | | |
Collapse
|
16
|
Montoya A, Pelletier M, Menear M, Duplessis E, Richer F, Lepage M. Episodic memory impairment in Huntington's disease: a meta-analysis. Neuropsychologia 2006; 44:1984-94. [PMID: 16797615 DOI: 10.1016/j.neuropsychologia.2006.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2006] [Indexed: 01/22/2023]
Abstract
Memory dysfunction is an important feature in the clinical presentation of Huntington's disease (HD) and may precede the onset of motor symptoms. Although several studies have contributed to the quantitative and qualitative description of memory impairments in HD, the characterization of episodic memory impairments has varied considerably. Whereas most studies report significant impairments on free recall tests, performance on recognition tests has been considerably more variable, ranging from normal to markedly deficient. This absence of a well-established recognition memory deficit has led some investigators to attribute the memory deficits in HD to a retrieval-based episodic memory impairment. We felt that a quantitative review of the literature was needed to better characterize these episodic memory impairments. We conducted a meta-analysis to assess the magnitude of the recognition memory deficit in HD and to examine it in relation to the known deficit in recall. Memory data were provided by 544 symptomatic HD patients, 224 presymptomatic gene-carriers, and 963 control subjects. The overall group comparison between symptomatic patients and controls yielded effect sizes of d=1.95 for free recall and d=1.73 for recognition. We split the symptomatic group into two subgroups based on their mental status (mild and moderate/severe dementia) and both showed significant deficits in recall and recognition memory, though recall was more impaired than recognition in the mild dementia subgroup. Only slight memory impairment was observed in the presymptomatic subjects. The results show that deficits in recognition memory must be accounted for in future models of memory impairment in HD.
Collapse
Affiliation(s)
- Alonso Montoya
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Brandt J, Shpritz B, Munro CA, Marsh L, Rosenblatt A. Differential impairment of spatial location memory in Huntington's disease. J Neurol Neurosurg Psychiatry 2005; 76:1516-9. [PMID: 16227542 PMCID: PMC1739409 DOI: 10.1136/jnnp.2004.059253] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine whether a differential impairment of spatial memory exists in Huntington's disease (HD). METHODS Patients with HD and age matched neurologically normal subjects, as well as patients with Alzheimer's disease (AD) and Parkinson's disease (PD), learned the locations of nine items on a 3 x 3 grid over as many as 10 trials. Delayed recall of the items and their spatial locations was tested. RESULTS Patient with HD performed worse than normal subjects on all measures, and intermediate between AD and PD patients. However, they were the only subject group in whom delayed recall of spatial locations was poorer than delayed recall of object identity. This effect was independent of the severity of dementia. CONCLUSIONS HD patients have a differential impairment in memory for object-location information. This finding may relate to the involvement of the caudate nucleus, the primary site of pathology in HD, in corticostriatal circuits linking it with parietal association cortex. It is also consistent with views of the dorsal striatum as responsible for the acquisition over trials of specific place responses.
Collapse
Affiliation(s)
- J Brandt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287-7218, USA.
| | | | | | | | | |
Collapse
|