1
|
Shimamura K, Nojiri T, Kondo H, Ikeda Y, Yasuhara R, Ida-Yonemochi H, Otsu K, Harada H, Mishima K, Ohshima H, Kobayashi T, Irié T. The potential role of chromodomain helicase DNA-binding protein 3 in defining the cervical width by regulating the early growth stage of the apical papilla during tooth development. J Oral Biosci 2024:100604. [PMID: 39710094 DOI: 10.1016/j.job.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE This study aimed to evaluate the role of the chromodomain helicase DNA-binding protein 3 (CHD3) in tooth morphogenesis in Chd3 knockout mice. METHODS Chd3 knockout mice were generated using the CRISPR-Cas9 method. Mandibular first molars were extracted from the mice and their littermates and morphometrically analyzed. Subsequent histological and immunohistochemical analyses of teeth were performed at each developmental stage. Chd3 knockdown in mesenchymal cells from the dental papilla (mDP) and Hertwig's epithelial root sheath (HERS) was performed by Chd3 shRNA transduction or a control using an adenoviral vector. These effects were examined using cell proliferation assays and quantitative real-time polymerase chain reaction. RESULTS Narrowing of tooth cervical width was observed in mandibular first molars of Chd3 knockout mice. On postnatal day (PN) 8, the cervical width was narrow before root formation in tooth germs. The number of Ki-67-positive cells decreased in the dental mesenchyme at PN1 and apical papilla at PN8. Chd3 promoted the proliferation of dental mesenchymal cells, but no significant changes were observed in HERS epithelial cells. Chd3 maintained sonic hedgehog (Shh) expression and inhibited that of bone morphogenetic protein (Bmp)4 in dental mesenchymal cells, maintaining Shh and Wnt3a expression and inhibited that of Bmp2 in HERS epithelial cells. CONCLUSION Chd3 may regulate tooth cervical width during the early growth stage of the apical papilla via Shh, Bmp, and Wnt signaling.
Collapse
Affiliation(s)
- Kento Shimamura
- Division of Fixed Prosthodontics and Oral Implantology, Department of Prosthodontics, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan; Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Toshiki Nojiri
- Division of Fixed Prosthodontics and Oral Implantology, Department of Prosthodontics, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Hisatomo Kondo
- Department of Fixed Prosthodontics and Oral Implantology, Aichi Gakuin University, 2-11, Suemoridori, Chikusa-ku, Nagoya, 464-8651, Japan
| | - Yunosuke Ikeda
- Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan; Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Takuya Kobayashi
- Division of Removable Prosthodontics and Oral Rehabilitation, Department of Prosthodontics, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Tarou Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| |
Collapse
|
2
|
Alimardanian L, Soltani BM, Irani S, Sheikhpour M. Bioinformatics Study and Experimental Evaluation of miR-182, and miR-34 Expression Profiles in Tuberculosis and Lung Cancer. Tuberc Respir Dis (Seoul) 2024; 87:398-408. [PMID: 38616694 PMCID: PMC11222103 DOI: 10.4046/trd.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/20/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most dangerous cancers and tuberculosis is one of the deadliest infectious diseases in the world. Many studies have confirmed the connection between lung cancer and tuberculosis, and also the microRNAs (miRNAs) that play a major role in the development of these two diseases. This study aims to use different databases to find effective miRNAs and their role in different genes in lung and tuberculosis diseases. It also aims to determine the role of miR-34a and miR-182 in lung cancer and tuberculosis. METHODS Using the Gene Expression Omnibus (GEO) database, the influential miRNA databases were studied in the two diseases. Finally, considering bioinformatics results and literature studies, two miR-34a and miR-182 were selected. The role of these miRNAs and their target genes was carefully evaluated using bioinformatics. The expression of miRNAs in the plasma of patients with lung cancer and tuberculosis and healthy individuals was investigated. RESULTS According to the GEO database, miR-34a and miR-182 are miRNAs that affect tuberculosis and lung cancer. By checking the miRBase, miRcode, DIANA, miRDB, galaxy, Kyoto Encyclopedia of Genes and Genomes databases, the role of these miRNAs on genes and different molecular pathways and their effect on these miRNAs were mentioned. The results of the present study showed that the expression of miR-34a and miR-182 was lower than that of healthy people. The p-value for miR-182 was <0.0001 and for miR-34a was 0.3380. CONCLUSION Reducing the expression pattern of these miRNAs indicates their role in lung cancer and tuberculosis occurrence. Therefore, these miRNAs can be used as a biomarker for prognosis, diagnosis, and treatment methods.
Collapse
Affiliation(s)
- Leila Alimardanian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Wu S, Xu X, Gao S, Huo S, Wan M, Zhou X, Zhou X, Zheng L, Zhou Y. MicroRNA-93-5p regulates odontogenic differentiation and dentin formation via KDM6B. J Transl Med 2024; 22:54. [PMID: 38218880 PMCID: PMC10787997 DOI: 10.1186/s12967-024-04862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Epigenetic factors influence the odontogenic differentiation of dental pulp stem cells and play indispensable roles during tooth development. Some microRNAs can epigenetically regulate other epigenetic factors like DNA methyltransferases and histone modification enzymes, functioning as epigenetic-microRNAs. In our previous study, microarray analysis suggested microRNA-93-5p (miR-93-5p) was differentially expressed during the bell stage in human tooth germ. Prediction tools indicated that miR-93-5p may target lysine-specific demethylase 6B (KDM6B). Therefore, we explored the role of miR-93-5p as an epi-miRNA in tooth development and further investigated the underlying mechanisms of miR-93-5p in regulating odontogenic differentiation and dentin formation. METHODS The expression pattern of miR-93-5p and KDM6B of dental pulp stem cells (DPSCs) was examined during tooth development and odontogenic differentiation. Dual luciferase reporter and ChIP-qPCR assay were used to validate the target and downstream regulatory genes of miR-93-5p in human DPSCs (hDPSCs). Histological analyses and qPCR assays were conducted for investigating the effects of miR-93-5p mimic and inhibitor on odontogenic differentiation of hDPSCs. A pulpotomy rat model was further established, microCT and histological analyses were performed to explore the effects of KDM6B-overexpression and miR-93-5p inhibition on the formation of tertiary dentin. RESULTS The expression level of miR-93-5p decreased as odontoblast differentiated, in parallel with elevated expression of histone demethylase KDM6B. In hDPSCs, miR-93-5p overexpression inhibited the odontogenic differentiation and vice versa. MiR-93-5p targeted 3' untranslated region (UTR) of KDM6B, thereby inhibiting its protein translation. Furthermore, KDM6B bound the promoter region of BMP2 to demethylate H3K27me3 marks and thus upregulated BMP2 transcription. In the rat pulpotomy model, KDM6B-overexpression or miR-93-5p inhibition suppressed H3K27me3 level in DPSCs and consequently promoted the formation of tertiary dentin. CONCLUSIONS MiR-93-5p targets epigenetic regulator KDM6B and regulates H3K27me3 marks on BMP2 promoters, thus modulating the odontogenic differentiation of DPSCs and dentin formation.
Collapse
Affiliation(s)
- Si Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Shiqi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Sibei Huo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Nasiri K, Jahri M, Kolahdouz S, Soleimani M, Makiya A, Saini RS, Merza MS, Yasamineh S, Banakar M, Yazdanpanah MH. MicroRNAs Function in Dental Stem Cells as a Promising Biomarker and Therapeutic Target for Dental Diseases. Mol Diagn Ther 2023; 27:703-722. [PMID: 37773247 DOI: 10.1007/s40291-023-00675-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/01/2023]
Abstract
Undifferentiated, highly proliferative, clonogenic, and self-renewing dental stem cells have paved the way for novel approaches to mending cleft palates, rebuilding lost jawbone and periodontal tissue, and, most significantly, recreating lost teeth. New treatment techniques may be guided by a better understanding of these cells and their potential in terms of the specificity of the regenerative response. MicroRNAs have been recognized as an essential component in stem cell biology due to their role as epigenetic regulators of the processes that determine stem cell destiny. MicroRNAs have been proven to be crucial in a wide variety of molecular and biological processes, including apoptosis, cell proliferation, migration, and necrocytosis. MicroRNAs have been recognized to control protein translation, messenger RNA stability, and transcription and have been reported to play essential roles in dental stem cell biology, including the differentiation of dental stem cells, the immunological response, apoptosis, and the inflammation of the dental pulp. Because microRNAs increase dental stem cell differentiation, they may be used in regenerative medicine to either preserve the stem cell phenotype or to aid in the development of tooth tissue. The development of novel biomarkers and therapies for dental illnesses relies heavily on progress made in our knowledge of the roles played by microRNAs in regulating dental stem cells. In this article, we discuss how dental stem cells and their associated microRNAs may be used to cure dental illness.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Mohammad Jahri
- Dental Research Center, School of Dentistry, Shahid Beheshti, Research Institute of Dental Sciences, University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Makiya
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Ravinder S Saini
- COAMS, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran.
| | | |
Collapse
|
5
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
6
|
Iranmanesh P, Vedaei A, Salehi-Mazandarani S, Nikpour P, Khazaei S, Khademi A, Galler KM, Nekoofar MH, Dummer PMH. MicroRNAs-mediated regulation of the differentiation of dental pulp-derived mesenchymal stem cells: a systematic review and bioinformatic analysis. Stem Cell Res Ther 2023; 14:76. [PMID: 37038220 PMCID: PMC10088330 DOI: 10.1186/s13287-023-03289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Human dental pulp-derived mesenchymal stem cells (hDP-MSCs), which include human dental pulp stem cells (hDPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs), are promising cell sources for regenerative therapies. Nevertheless, a lack of knowledge relating to the mechanisms regulating their differentiation has limited their clinical application. microRNAs (miRNAs) are important regulatory molecules in cellular processes including cell differentiation. This systematic review aims to provide a panel of miRNAs that regulate the differentiation of hDP-MSCs including hDPSCs and SHEDs. Additionally, bioinformatic analyses were conducted to discover target genes, signaling pathways and gene ontologies associated with the identified miRNAs. METHODS A literature search was performed in MEDLINE (via PubMed), Web of Science, Scopus, Embase and Cochrane Library. Experimental studies assessing the promotive/suppressive effect of miRNAs on the differentiation of hDP-MSCs and studies evaluating changes to the expression of miRNAs during the differentiation of hDP-MSCs were included. miRNAs involved in odontogenic/osteogenic differentiation were then included in a bioinformatic analysis. A miRNA-mRNA network was constructed, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. A protein-protein interaction (PPI) network was also constructed. RESULTS Of 766 initially identified records through database searching, 42 and 36 studies were included in qualitative synthesis and bioinformatic analyses, respectively. Thirteen miRNAs promoted and 17 suppressed odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-140-5p, hsa-miR-218 and hsa-miR-143 were more frequently reported suppressing the odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-221 and hsa-miR-124 promoted and hsa-miR-140-5p inhibited neuronal differentiation, hsa-miR-26a-5p promoted and hsa-miR-424 suppressed angiogenic differentiation, and hsa-miR-135 and hsa-miR-143 inhibited differentiation within myogenic lineages. A miRNA-mRNA network including 1890 nodes and 2171 edges was constructed. KEGG pathway analysis revealed MAPK, PI3K-Akt and FoxO as key signaling pathways involved in the odontogenic/osteogenic differentiation of hDP-MSCs. CONCLUSIONS The findings of this systematic review support the potential application of the specific miRNAs to regulate the directed differentiation of hDP-MSCs in the field of regenerative therapies.
Collapse
Affiliation(s)
- Pedram Iranmanesh
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Vedaei
- Student Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbasali Khademi
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Mohammad-Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M. H. Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159:114269. [PMID: 36682246 DOI: 10.1016/j.biopha.2023.114269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Short nucleotide sequences like miRNA and siRNA have attracted a lot of interest in Oral-biome investigations. miRNA is a small class of non-coding RNA that regulates gene expression to provide effective regulation of post-transcription. On contrary, siRNA is 21-25 nucleotide dsRNA impairing gene function post-transcriptionally through inhibition of mRNA for homologous dependent gene silencing. This review highlights the application of miRNA in oral biome including oral cancer, dental implants, periodontal diseases, gingival fibroblasts, oral submucous fibrosis, radiation-induced oral mucositis, dental Pulp, and oral lichenoid disease. Moreover, we have also discussed the application of siRNA against the aforementioned disease along with the impact of miRNA and siRNA to the various pathways and molecular effectors pertaining to the dental diseases. The influence of upregulation and downregulation of molecular effector post-treatment with miRNA and siRNA and their impact on the clinical setting has been elucidated. Thus, the mentioned details on application of miRNA and siRNA will provide a novel gateway to the scholars to not only mitigate the long-lasting issue in dentistry but also develop new theragnostic approaches.
Collapse
|
8
|
Liu Z, Li S, Xu S, A Bu Du Xi Ku NEBY, Wen J, Zeng X, Shen X, Xu P. Hsa_ Circ_0005044 Promotes Osteo/Odontogenic Differentiation of Dental Pulp Stem Cell Via Modulating miR-296-3p/FOSL1. DNA Cell Biol 2023; 42:14-26. [PMID: 36576872 DOI: 10.1089/dna.2022.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circular RNAs (circRNAs) are a form of RNAs that lack coding potential. The role of such circRNAs in dental pulp stem cell (DPSC) osteo/odontogenic differentiation remains to be determined. In this study, circRNA expression profiles in DPSC osteo/odontogenic differentiation process were analyzed by RNA-seq. qRT-PCR was used to confirm the differential expression of circ_0005044, miR-296-3p, and FOSL1 in DPSC osteogenic differentiation process. Circ_0005044, miR-296-3p, and FOSL1 were knocked down or overexpressed. Osteoblastic activity and associated mineral activity were monitored via alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Interactions between miR-296-3p, circ_0005044, and FOSL1 were assessed through luciferase reporter assays. Finally, an in vivo system was used to confirm the relevance of circ_0005044 to osteoblastic differentiation. As results, we detected significant circ_0005044 and FOSL1 upregulation in DPSC osteo/odontogenic differentiation process, as well as concomitant miR-296-3p downregulation. When knocking down circ_0005044 or overexpressed miR-296-3p, this significantly inhibited osteogenesis. Luciferase reporter assay confirmed that miR-296-3p was capable of binding to conserved sequences in the wild-type forms of both the circ_0005044 and FOSL1. Furthermore, knocking down circ_0005044 in vivo significantly attenuated bone formation. Therefore, the circ_0005044/miR-2964-3p/FOSL1 axis regulates DPSC osteo/odontogenic differentiation, which may provide potential molecular targets for dental-pulp complex regeneration.
Collapse
Affiliation(s)
- Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | | | - Jun Wen
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiongqun Zeng
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqing Shen
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Pingping Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Roganović J, Petrović N. Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review. Int J Mol Sci 2022; 23:ijms23158278. [PMID: 35955417 PMCID: PMC9368403 DOI: 10.3390/ijms23158278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) represent a research hotspot by playing a key role in epigenetic and transcriptional regulation of diverse biological functions and due to their involvement in different diseases, including oral inflammatory diseases. Based on ncRNAs’ suitability for salivary biomarkers and their involvement in neuropathic pain and tissue regeneration signaling pathways, the present narrative review aims to highlight the potential clinical applications of ncRNAs in oral inflammatory diseases, with an emphasis on salivary diagnostics, regenerative dentistry, and precision medicine for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-641976330
| | - Nina Petrović
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Zeng B, Huang J. Progress in the Study of Non-Coding RNAs in Multidifferentiation Potential of Dental-Derived Mesenchymal Stem Cells. Front Genet 2022; 13:854285. [PMID: 35480302 PMCID: PMC9037064 DOI: 10.3389/fgene.2022.854285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
For decades, the desire for tissue regeneration has never been quenched. Dental-derived mesenchymal stem cells (DMSCs), with the potential of self-renewal and multi-directional differentiation, have attracted much attention in this topic. Growing evidence suggests that non-coding RNAs (ncRNAs) can activate various regulatory processes. Even with a slight decrease or increase in expression, ncRNAs can weaken or even subvert cellular fate. Therefore, a systematic interpretation of ncRNAs that guide the differentiation of DMSCs into cells of other tissue types is urgently needed. In this review, we introduce the roles of ncRNAs in the differentiation of DMSCs, such as osteogenic differentiation, odontogenic differentiation, neurogenic differentiation, angiogenic differentiation and myogenic differentiation. Additionally, we illustrate the regulatory mechanisms of ncRNAs in the differentiation of DMSCs, such as epigenetic regulation, transcriptional regulation, mRNA modulation, miRNA sponges and signalling. Finally, we summarize the types and mechanisms of ncRNAs in the differentiation of DMSCs, such as let-7 family, miR-17∼92 family, miR-21, lncRNA H19, lncRNA ANCR, lncRNA MEG3, circRNA CDR1as and CircRNA SIPA1L1. If revealing the intricate relationship between ncRNAs and pluripotency of DMSCs 1 day, the application of DMSCs in regenerative medicine and tissue engineering will be improved. Our work could be an important stepping stone towards this future.
Collapse
Affiliation(s)
- Biyun Zeng
- Department of Oral Pathology, Xiangya Stomatological Hospital & Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha, China
| | - Junhui Huang
- Department of Oral Pathology, Xiangya Stomatological Hospital & Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha, China
| |
Collapse
|
11
|
Zeng K, Li W, Kang Q, Li Y, Cheng Q, Xia W. miR-342-5p inhibits odonto/osteogenic differentiation of human dental pulp stem cells via targeting Wnt7b. Oral Dis 2022. [PMID: 35322903 DOI: 10.1111/odi.14195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Human dental pulp stem cells (hDPSCs) constitute a promising source of stem cells in tissue engineering. However, the molecular mechanism of differentiation in hDPSCs remains largely unclear. MicroRNAs (miRNAs) play crucial roles in lineage-specific differentiation of stem cells. The present study investigated the function of miRNA-342-5p in the odonto/osteogenic differentiation of hDPSCs. METHODS The miRNA array profiling and quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed the expression of miR-342-5p during odonto/osteogenic differentiation of hDPSCs. hDPSCs were treated with miR-342-5p mimic and inhibitor to investigate the regulatory roles of miR-342-5p in the differentiation of hDPSCs. Moreover, miR-342-5p inhibitor and small interference RNA (siRNA) targeting Wnt7b were applied to explore the regulatory mechanism of miR-342-5p. RESULTS Downregulated miR-342-5p was observed during odonto/osteogenic differentiation of hDPSCs. The overexpression of miR-342-5p inhibited the odonto/osteogenic potential of DPSCs, as indicated by low levels of alkaline phosphatase activity, calcium deposition formation, and odonto/osteogenic differentiation markers, whereas silencing of miR-342-5p exhibited the opposite effect. When co-treated with siRNA targeting Wnt7b and miR-342-5p inhibitor in hDPSCs, the odonto/osteogenic potential and activation of Wnt7b/β-catenin pathway were attenuated. CONCLUSIONS This study showed that miR-342-5p inhibits the odonto/osteogenic differentiation of hDPSCs by interfering with Wnt/β-catenin signaling via targeting Wnt7b.
Collapse
Affiliation(s)
- Kangrui Zeng
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Kang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Cheng
- Department of stomatology, The affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, Jiangsu, China
| | - Wenwei Xia
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Li Y, Zhao X, Sun M, Pei D, Li A. Deciphering the Epigenetic Code of Stem Cells Derived From Dental Tissues. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.807046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cells derived from dental tissues (DSCs) exhibit multipotent regenerative potential in pioneering tissue engineering regimens. The multipotency of DSCs is critically regulated by an intricate range of factors, of which the epigenetic influence is considered vital. To gain a better understanding of how epigenetic alterations are involved in the DSC fate determination, the present review overviews the current knowledge relating to DSC epigenetic modifications, paying special attention to the landscape of epigenetic modifying agents as well as the related signaling pathways in DSC regulation. In addition, insights into the future opportunities of epigenetic targeted therapies mediated by DSCs are discussed to hold promise for the novel therapeutic interventions in future translational medicine.
Collapse
|
13
|
Kapoor P, Chowdhry A, Bagga DK, Bhargava D, Aishwarya S. MicroRNAs in oral fluids (saliva and gingival crevicular fluid) as biomarkers in orthodontics: systematic review and integrated bioinformatic analysis. Prog Orthod 2021; 22:31. [PMID: 34632546 PMCID: PMC8502526 DOI: 10.1186/s40510-021-00377-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding short, single-stranded RNA molecules that may serve as biomarkers for various inflammatory and molecular mechanisms underlying bone and tissue remodeling consequent to orthodontic force application. METHODS A thorough literature search in major databases was conducted in March 2021 to generate evidence for miRNAs in orthodontics, with prior PROSPERO registration. The initial search revealed 920 articles, subjected to strict selection criteria according to PRISMA, and resulted in final inclusion of four studies. Quality assessment by QUADAS-2 classified three studies as unclear risk-of-bias while the applicability was high. Further, bioinformatic analysis was performed to identify the target genes from the miRNA database (miRDB) and TargetScan databases and their protein-protein interaction pathways with the STRING analysis. RESULTS Multiple miRNAs in gingival crevicular fluid (GCF) of orthodontic patients were seen, including miRNA-21, 27(a/b), 29(a/b/c), 34,146(a/b), 101, and 214 along with matrix metalloproteinases (MMPs)-1, 2, 3, 8, 9, 14 in one study. A statistically significant increase in expression of miRNA-29a/b/c,101, 21 from pre-treatment (before initiation of retraction) was seen to reach a peak at 4-6 weeks (wk) of retraction. On the contrary, miRNA-34a showed downregulation from the 1 day to 4 wk of retraction and also, negatively correlated with MMPs-2,9,14 levels at the same observation times. The distance of canine movement showed mild correlation with miRNA-27a/b, 214 at 2 wk of retraction. Bioinformatics revealed 1213 mutual target genes which were analyzed for inter-relational pathways using Cytoscape plugin, MCODE. Further, 894 prominent protein interactions were identified from the STRING database and SMAD4, IGF1, ADAMTS6, COL4A1, COL1A1, COL3A1, FGFR1, COL19A1, FBN1, COL5A1, MGAT4A, LTBP1, MSR1, COL11A1, and COL5A3 were recognized as the hub genes. Their interactions were able to isolate multiple miRNAs: hsa-miR-34a-5p, hsa-miR-29b-2-5p, hsa-miR-29b-3p, hsa-miR-34a-3p, hsa-miR-27a-5p, hsa-miR-29a-5p, hsa-miR-29b-1-5p, hsa-miR-29c-3p, hsa-miR-214-5p, hsa-miR-27a-3p, hsa-miR-29a-3p, hsamiR-146-5p, which were found promising as biomarkers for tooth movement. CONCLUSIONS Our results support using miRNAs as biomarkers in varied orthodontic study designs and for inter-relationships with pathological settings like periodontal disease, pre-malignancies, or conditions like obesity or metabolic irregularities, etc. The identified target genes and their protein interaction pathways can be used to propose precision therapies, focusing on ideal tooth movement with minimal iatrogenic side-effects.
Collapse
Affiliation(s)
- Priyanka Kapoor
- School of Dental Sciences, Sharda University, Greater Noida, UP India
- Department of Orthodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Aman Chowdhry
- School of Dental Sciences, Sharda University, Greater Noida, UP India
- Department of Oral Pathology & Microbiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Dinesh Kumar Bagga
- Department of Orthodontics & Dentofacial Orthopaedics, School of Dental Sciences, Sharda University, Greater Noida, UP India
| | - Deepak Bhargava
- Department of Oral Pathology & Microbiology, School of Dental Sciences, Sharda University, Greater Noida, UP India
| | - S. Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, India
| |
Collapse
|
14
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
15
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
16
|
Driesen RB, Gervois P, Vangansewinkel T, Lambrichts I. Unraveling the Role of the Apical Papilla During Dental Root Maturation. Front Cell Dev Biol 2021; 9:665600. [PMID: 34026757 PMCID: PMC8134663 DOI: 10.3389/fcell.2021.665600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The apical papilla is a stem cell rich tissue located at the base of the developing dental root and is responsible for the progressive elongation and maturation of the root. The multipotent stem cells of the apical papilla (SCAP) are extensively studied in cell culture since they demonstrate a high capacity for osteogenic, adipogenic, and chondrogenic differentiation and are thus an attractive stem cell source for stem cell-based therapies. Currently, only few studies are dedicated to determining the role of the apical papilla in dental root development. In this review, we will focus on the architecture of the apical papilla and describe the specific SCAP signaling pathways involved in root maturation. Furthermore, we will explore the heterogeneity of the SCAP phenotype within the tissue and determine their micro-environmental interaction. Understanding the mechanism of postnatal dental root growth could further aid in developing novel strategies in dental root regeneration.
Collapse
Affiliation(s)
- Ronald B Driesen
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Pascal Gervois
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Tim Vangansewinkel
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| |
Collapse
|
17
|
Liu J, Wang X, Song M, Du J, Yu J, Zheng W, Zhang C, Wang Y. MiR-497-5p Regulates Osteo/Odontogenic Differentiation of Stem Cells From Apical Papilla via the Smad Signaling Pathway by Targeting Smurf2. Front Genet 2020; 11:582366. [PMID: 33193708 PMCID: PMC7662069 DOI: 10.3389/fgene.2020.582366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Osteo/odontogenic differentiation is a key process of human stem cells from apical papilla (SCAP) in tooth root development. Emerging evidence indicates microRNAs (miRNAs) play diverse roles in osteogenesis. However, their functions in osteo/odontogenic differentiation of SCAP require further elucidation. To investigate the role of miRNA in SCAP osteo/odontogenic differentiation and underlying mechanisms, miRNA microarray analysis was performed to screen differentially expressed miRNAs between control and osteo/odontogenic-induced group. Quantitative real-time PCR (qRT-PCR) and western blot were used to detected osteo/odontogenic differentiation-related markers and possible signaling pathway SCAP-associated genes. Alizarin Red Staining (ARS) were applied to evaluated osteogenic capacity. The results showed that miR-497-5p increased during SCAP osteo/odontogenic differentiation. Overexpression of miR-497-5p enhanced the osteo/odontogenic differentiation of SCAP, whereas downregulation of miR-497-5p elicited the opposite effect, thus suggesting that miR-497-5p is a positive regulator of the osteo/odontogenic differentiation of SCAP. Bioinformatic analysis and dual luciferase reporter assay identified that SMAD specific E3 ubiquitin protein ligase 2 (Smurf2) is a direct target of miR-497-5p. Further study demonstrated that Smurf2 negatively regulates SCAP osteo/odontogenic differentiation, and silencing Smurf2 could block the inhibitory effect of the miR-497-5p inhibitor. Meanwhile, pathway detection manifested that miR-497-5p promotes osteo/odontogenic differentiation via Smad signaling pathway. Collectively, our findings demostrate that miR-497-5p promotes osteo/odontogenic differentiation of SCAP via Smad signaling pathway by targeting Smurf2.
Collapse
Affiliation(s)
- Junqing Liu
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Mengxiao Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oral Pathology, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Jing Du
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiali Yu
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenzhou Zheng
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chengfei Zhang
- Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yan Wang
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
18
|
Toshima T, Watanabe T, Narumi T, Otaki Y, Shishido T, Aono T, Goto J, Watanabe K, Sugai T, Takahashi T, Yokoyama M, Kinoshita D, Tamura H, Kato S, Nishiyama S, Arimoto T, Takahashi H, Miyamoto T, Sadahiro M, Watanabe M. Therapeutic inhibition of microRNA-34a ameliorates aortic valve calcification via modulation of Notch1-Runx2 signalling. Cardiovasc Res 2020; 116:983-994. [PMID: 31393559 DOI: 10.1093/cvr/cvz210] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/09/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS Calcific aortic valve stenosis (CAVS) is the most common valvular heart disease and is increased with elderly population. However, effective drug therapy has not been established yet. This study aimed to investigate the role of microRNAs (miRs) in the development of CAVS. METHODS AND RESULTS We measured the expression of 10 miRs, which were reportedly involved in calcification by using human aortic valve tissue from patients who underwent aortic valve replacement with CAVS or aortic regurgitation (AR) and porcine aortic valve interstitial cells (AVICs) after treatment with osteogenic induction medium. We investigated whether a specific miR-inhibitor can suppress aortic valve calcification in wire injury CAVS mice model. Expression of miR-23a, miR-34a, miR-34c, miR-133a, miR-146a, and miR-155 was increased, and expression of miR-27a and miR-204 was decreased in valve tissues from CAVS compared with those from AR. Expression of Notch1 was decreased, and expression of Runt-related transcription factor 2 (Runx2) was increased in patients with CAVS compared with those with AR. We selected miR-34a among increased miRs in porcine AVICs after osteogenic treatment, which was consistent with results from patients with CAVS. MiR-34a increased calcium deposition in AVICs compared with miR-control. Notch1 expression was decreased, and Runx2 expression was increased in miR-34a transfected AVICs compared with that in miR-control. Conversely, inhibition of miR-34a significantly attenuated these calcification signals in AVICs compared with miR-control. RNA pull-down assay revealed that miR-34a directly targeted Notch1 expression by binding to Notch1 mRNA 3' untranslated region. In wire injury CAVS mice, locked nucleic acid miR-34a inhibitor suppressed aortic velocity, calcium deposition of aortic valves, and cardiac hypertrophy, which were involved in decreased Runx2 and increased Notch1 expressions. CONCLUSION miR-34a plays an important role in the development of CAVS via Notch1-Runx2 signalling pathway. Inhibition of miR-34a may be the therapeutic target for CAVS.
Collapse
Affiliation(s)
- Taku Toshima
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tomonori Aono
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Jun Goto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Ken Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takayuki Sugai
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsuya Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Miyuki Yokoyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Daisuke Kinoshita
- Department of Cardiology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takuya Miyamoto
- Department of Internal Medicine, Yamagata Prefectural Shinjo Hospital, Yamagata, Japan
| | - Mitsuaki Sadahiro
- Department of Cardiovascular, Thoracic and Pediatric Surgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
19
|
Gu M, Yu X, Fan L, Zhu G, Yang F, Lou S, Ma L, Pan Y, Wang L. Genetic Variants in miRNAs Are Associated With Risk of Non-syndromic Tooth Agenesis. Front Physiol 2020; 11:1052. [PMID: 32973563 PMCID: PMC7472694 DOI: 10.3389/fphys.2020.01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental abnormalities. MiRNAs participated in the craniofacial and tooth development. Therefore, single nucleotide polymorphisms (SNPs) in miRNA genes may contribute to the susceptibility of non-syndromic tooth agenesis. Here, a total of 625 non-syndromic tooth agenesis cases and 1,144 healthy controls were recruited, and four miRNA SNPs (miR-146a/rs2910164, miR-196a2/rs11614913, pre-miR-605/rs2043556, pre-miR-618/rs2682818) were genotyped by the TaqMan platform. Rs2043556 showed nominal associations with risk of non-syndromic tooth agenesis (P Add = 0.021) in the overall analysis, as well as upper lateral incisor agenesis (P Add = 0.047) and lower incisor agenesis (P Add = 0.049) in the subgroup analysis. Notably, its significant association with upper canine agenesis was observed (P Add = 0.0016). Rs2043556 affected the mature of miR-605-3p and miR-605-5p while dual-luciferase report analysis indicated that MDM2 was the binding target of miR-605-5p. Our study indicated that pre-miR-605 rs2043556 was associated with risk of non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Min Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Dentistry, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xin Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Zhang B, Yang L, Zheng W, Lin T. MicroRNA-34 expression in gingival crevicular fluid correlated with orthodontic tooth movement. Angle Orthod 2020; 90:702-706. [PMID: 33378474 PMCID: PMC8032257 DOI: 10.2319/090219-574.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To explore the expression of miR-34a and its effect on expression of matrix metalloproteinases (MMPs) during orthodontic tooth movement (OTM). MATERIALS AND METHODS Twenty patients, age 12-18 years old, who underwent orthodontic treatment were enrolled. The expression of miR-34a and MMPs (MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and MMP-14) were detected in gingival crevicular fluid by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction at different time points. The miR-34a mimics or inhibitors were transfected into human periodontal ligament (hPDL) cells, and the MMP expression was measured by ELISA. RESULTS The miR-34 expression in GCF on both the tension and pressure sides after orthodontic treatment were significantly downregulated, while the levels of MMPs were significantly upregulated compared with baseline level. The levels of miR-34 and MMPs returned to baseline level 3 months after orthodontic treatment. The expression of miR-34 was negatively correlated with the expression of MMP-2, MMP-9, and MMP-14. After transfection with miR-34, the MMP-2, MMP-9, and MMP-14 expression by hPDL cells were significantly downregulated compared with miR-control and miR-34 inhibitor. CONCLUSIONS Downregulated miR-34 expression was positively correlated with MMP-2, MMP-9, and MMP-14 expression. The miR-34a transfection into hPDL cells inhibited expression of MMPs. The results suggest that miR-34a is involved in expression of MMPs during OTM.
Collapse
|
21
|
Fang F, Zhang K, Chen Z, Wu B. Noncoding RNAs: new insights into the odontogenic differentiation of dental tissue-derived mesenchymal stem cells. Stem Cell Res Ther 2019; 10:297. [PMID: 31547871 PMCID: PMC6757432 DOI: 10.1186/s13287-019-1411-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Odontoblasts are cells that contribute to the formation of the dental pulp complex. The differentiation of dental tissue-derived mesenchymal stem cells into odontoblasts comprises many factors and signaling pathways. Noncoding RNAs (ncRNAs), comprising a substantial part of poly-A tail mature RNAs, are considered “transcriptional noise.” Emerging evidence has shown that ncRNAs have key functions in the differentiation of mesenchymal stem cells. In this review, we discussed two major types of ncRNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), in terms of their role in the odontogenic differentiation of dental tissue-derived stem cells. Recent findings have demonstrated important functions for miRNAs and lncRNAs in odontogenic differentiation. It is expected that ncRNAs will become promising therapeutic targets for dentin regeneration based on stem cells.
Collapse
Affiliation(s)
- Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,College of Stomatology, Southern Medical University, 1838 GuangZhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China. .,College of Stomatology, Southern Medical University, 1838 GuangZhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Li Z, Ge X, Lu J, Bian M, Li N, Wu X, Li Y, Yan M, Yu J. MiR-141-3p regulates proliferation and senescence of stem cells from apical papilla by targeting YAP. Exp Cell Res 2019; 383:111562. [PMID: 31437458 DOI: 10.1016/j.yexcr.2019.111562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/14/2023]
Abstract
Biological phenotypes of mesenchymal stem cells (MSCs) are regulated by a series of biochemical elements, including microRNAs, hormones and growth factors. Our previous study illustrated a significant role of miR-141-3p during the osteogenic differentiation of stem cells from apical papilla (SCAPs). Nevertheless, the functions of miR-141-3p in regulating the proliferative ability and senescence of SCAPs have not been determined. This study identified that overexpression of miR-141-3p inhibited the proliferative ability of SCAPs. Meanwhile, the senescence of SCAPs was ahead of time. Conversely, transfection of miR-141-3p inhibitor promoted the proliferative ability of SCAPs and delayed their senescence. Yes-associated protein (YAP) was predicted as the downstream target gene of miR-141-3p by online softwares (miRDB, miRTarBase, miRWalk, and TargetScan), and was further verified by dual-luciferase reporter gene assay. Additionally, knockdown of YAP inhibited the proliferation and accelerated the senescence of SCAPs. Collectively, these findings proposed a novel direction that miR-141-3p impeded proliferative ability and promoted senescence of SCAPs through post-transcriptionally downregulating YAP.
Collapse
Affiliation(s)
- Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xingyun Ge
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Jiamin Lu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Minxia Bian
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xiao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yuzhi Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Jinhua Yu
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
23
|
Li Z, Li N, Ge X, Pan Y, Lu J, Gobin R, Yan M, Yu J. Differential circular RNA expression profiling during osteogenic differentiation of stem cells from apical papilla. Epigenomics 2019; 11:1057-1073. [DOI: 10.2217/epi-2018-0184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: This study aimed to investigate the distinct expression pattern of circular RNAs (circRNAs) in stem cells from apical papilla (SCAPs) during osteogenesis. Materials & methods: Isolated SCAPs were cultured in growth medium or osteogenic medium, respectively. Total RNA was extracted and submitted to RNA-sequencing. Expression profiles of circRNAs and constructed circRNA–miRNA–mRNA networks were determined. Results: A total of 333 unregulated circRNAs and 317 downregulated circRNAs in osteogenic differentiation were detected. Bioinformatics analysis identified that several biological pathways may be associated with osteogenic differentiation of SCAPs. Moreover, ten circRNAs, 21 miRNAs and 19 mRNAs were selected to construct competing endogenous RNA networks. Conclusion: This study revealed that expression profiles of circRNAs were significantly altered and specific circRNAs might function as competing endogenous RNAs in SCAPs during osteogenic differentiation.
Collapse
Affiliation(s)
- Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Xingyun Ge
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Yin Pan
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Jiamin Lu
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Romila Gobin
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province & Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
- Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| |
Collapse
|
24
|
Qiu Z, Lin S, Hu X, Zeng J, Xiao T, Ke Z, Lv H. Involvement of miR-146a-5p/neurogenic locus notch homolog protein 1 in the proliferation and differentiation of STRO-1 + human dental pulp stem cells. Eur J Oral Sci 2019; 127:294-303. [PMID: 31216106 DOI: 10.1111/eos.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAPs) are oral mesenchymal stem cells capable of self-renewal and have a potential for multilineage differentiation. Increasing evidence shows that microRNAs (miRNAs) play important roles in stem cell biology. Here, we focused on exploring miR-146a-5p and its relationship to the undifferentiated status of STRO-1+ SCAPs and STRO-1+ DPSCs, as well as its role during STRO-1+ DPSC differentiation and proliferation. Our data indicated that baseline miR-146a-5p expression is significantly lower in STRO-1+ SCAPs than in STRO-1+ DPSCs and increased in the latter during osteogenic induction. Moreover, we identified miR-146a-5p as a key miRNA that promotes osteo/odontogenic differentiation of STRO-1+ DPSCs and attenuates cell proliferation. Additionally, it was observed that STRO-1+ DPSC mineralization results in the downregulation of notch receptor 1 (NOTCH1) and hes family bHLH transcription factor 1 (HES1). Interference with neurogenic locus notch homolog protein 1 (Notch 1) signaling was verified to enhance differentiation and suppress STRO-1+ DPSC proliferation. It was further observed that miR-146a-5p directly targets the 3'-untranslated region (3'-UTR) of NOTCH1 and inhibits expression of both NOTCH1 and HES1mRNAs and Notch 1 and transcription factor HES-1 (HES-1) proteins in STRO-1+ DPSCs. We conclude that miR-146a-5p exerts its regulatory effect on STRO-1+ DPSC differentiation and proliferation partially by suppressing Notch signaling.
Collapse
Affiliation(s)
- Zailing Qiu
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Shihan Lin
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Xuegang Hu
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Jianchai Zeng
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Tingting Xiao
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Zhihong Ke
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Hongbing Lv
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Promoting dentinogenesis of DPSCs through inhibiting microRNA-218 by using magnetic nanocarrier delivery. J Formos Med Assoc 2019; 118:1005-1013. [DOI: 10.1016/j.jfma.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
|
26
|
Wu Z, Liang S, Kuai W, Hu L, Qian A. MicroRNAs and long noncoding RNAs: new regulators in cell fate determination of mesenchymal stem cells. RSC Adv 2019; 9:37300-37311. [PMID: 35542270 PMCID: PMC9075730 DOI: 10.1039/c9ra06563f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into numerous cell types, including well-known inherent osteoblasts, adipocytes, and chondrocytes, and other cell types, such as hepatocytes, cardiomyocytes and nerve cells. They have become a favorite source of cell-based therapy. Therefore, knowing the mechanism that determines the cell fate of MSCs is important not only for deep understanding of the MSC function but also for the manipulation of MSCs for clinical application. Recently, studies have demonstrated that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), the two best studied noncoding RNAs, show key roles in cell fate determination of MSCs by functioning as vital regulators of their target gene expression or signaling transduction. Here, we summarize the characteristics of miRNAs and lncRNAs, and review the recent advances proving their profound involvement in determining the cell fate of MSCs to inherent osteoblast, adipocyte, and chondrocyte cells, and to several key cell types including hepatocytes, cardiomyocytes and nerve cells. This will provide researchers with a deep understanding of the role of miRNAs and lncRNAs in MSCs and provide guidance for future research. The recent advances of miRNAs and lncRNAs in determining the cell fate of MSCs.![]()
Collapse
Affiliation(s)
- Zixiang Wu
- Laboratory for Bone Metabolism
- Key Laboratory for Space Biosciences and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Shujing Liang
- Laboratory for Bone Metabolism
- Key Laboratory for Space Biosciences and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Wenyu Kuai
- Laboratory for Bone Metabolism
- Key Laboratory for Space Biosciences and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Lifang Hu
- Laboratory for Bone Metabolism
- Key Laboratory for Space Biosciences and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Airong Qian
- Laboratory for Bone Metabolism
- Key Laboratory for Space Biosciences and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| |
Collapse
|
27
|
Zhang S, Zhang R, Wu F, Li X. MicroRNA-208a Regulates H9c2 Cells Simulated Ischemia-Reperfusion Myocardial Injury via Targeting CHD9 through Notch/NF-kappa B Signal Pathways. Int Heart J 2018; 59:580-588. [DOI: 10.1536/ihj.17-147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Fangfang Wu
- Department of Cardiology, Linyi People's Hospital
| | - Xinhua Li
- Department of Cardiology, Linyi People's Hospital
| |
Collapse
|
28
|
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40:1010428318773675. [PMID: 29775159 DOI: 10.1177/1010428318773675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
Collapse
Affiliation(s)
- Bangly Soliman
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
| | - Ahmed Salem
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghazy
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- 3 Stem Cells Research Group, Medical Centre of Excellence, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mahmoud El Hefnawi
- 2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt.,4 Centre for Informatics, Nile University, Sheikh Zayed City, Egypt
| |
Collapse
|
29
|
Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B. Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 2018; 66-67:30-41. [PMID: 29723707 DOI: 10.1016/j.dnarep.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Despite their simple structure, the Notch family of receptors regulates a wide-spectrum of key cellular processes including development, tissue patterning, cell-fate determination, proliferation, differentiation and, cell death. On the other hand, accumulating date pinpointed the role of non-coding microRNAs, namely miRNAs in cancer initiation/progression via regulating the expression of multiple oncogenes and tumor suppressor genes, as such the Notch signaling. It is now documented that these two partners are in one or in the opposite directions and rule together the cancer fate. Here, we review the current knowledge relevant to this tricky interplay between different miRNAs and components of Notch signaling pathway. Further, we discuss the implication of this crosstalk in cancer progression/regression in the context of cancer stem cells, tumor angiogenesis, metastasis and emergence of multi-drug resistance. Understanding the molecular cues and mechanisms that occur at the interface of miRNA and Notch signaling would open new avenues for development of novel and effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rana Jahanban-Esfahlan
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Shuai Y, Ma Y, Guo T, Zhang L, Yang R, Qi M, Liu W, Jin Y. Dental Stem Cells and Tooth Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:41-52. [DOI: 10.1007/5584_2018_252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Shen Y, Liu Y, Gao H, Fei H, Yu W, Hu T, Zheng Y, Bi X, Lin C. N-Acetyl-l-leucine-polyethylenimine-mediated miR-34a delivery improves osteogenesis and bone formationin vitroandin vivo. RSC Adv 2018; 8:8080-8088. [PMID: 35542025 PMCID: PMC9078501 DOI: 10.1039/c7ra12548h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/12/2018] [Indexed: 12/28/2022] Open
Abstract
We employN-acetyl-l-leucine-modified polyethylenimine as an miR-34a carrier and evaluate its delivery ability, transfection efficiency, cytotoxicity and whether it enhances osteogenic differentiation and bone formationin vitroandin vivo.
Collapse
Affiliation(s)
- Yuqin Shen
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Yin Liu
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Han Gao
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Hongbo Fei
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Wenwen Yu
- Department of Orthodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Tianqi Hu
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Yi Zheng
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Xueting Bi
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Chongtao Lin
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
32
|
Fadejeva I, Olschewski H, Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget 2017; 8:115754-115773. [PMID: 29383199 PMCID: PMC5777811 DOI: 10.18632/oncotarget.22975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
With more than 80% of all diagnosed lung cancer cases, non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Exact diagnosis is mostly very late and advanced-stage NSCLCs are inoperable at admission. Tailored therapies with tyrosine kinase inhibitors are only available for a minority of patients. Thus, chemotherapy is often the treatment of choice. As first-line chemotherapy for NSCLCs, platinum-based substances (e.g. cisplatin, CDDP) are mainly used. Unfortunately, the positive effects of CDDP are frequently diminished due to development of drug resistance and negative influence of microenvironmental factors like hypoxia. MicroRNAs (miRNAs) are small, non-coding molecules involved in the regulation of gene expression and modification of biological processes like cell proliferation, apoptosis and cell response to chemotherapeutics. Expression of miRNAs is often deregulated in lung cancer compared to corresponding non-malignant tissue. In this review we summarize the present knowledge about the effects of miRNAs on CDDP-resistance in NSCLCs. Further, we focus on miRNAs deregulated by hypoxia, which is an important factor in the development of CDDP-resistance in NSCLCs. This review will contribute to the general understanding of miRNA-regulated biological processes in NSCLC, with special focus on the role of miRNA in CDDP-resistance.
Collapse
Affiliation(s)
- Irina Fadejeva
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
33
|
Yu W, Zheng Y, Yang Z, Fei H, Wang Y, Hou X, Sun X, Shen Y. N-AC-l-Leu-PEI-mediated miR-34a delivery improves osteogenic differentiation under orthodontic force. Oncotarget 2017; 8:110460-110473. [PMID: 29299161 PMCID: PMC5746396 DOI: 10.18632/oncotarget.22790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
Rare therapeutic genes or agents are reported to control orthodontic bone remodeling. MicroRNAs have recently been associated with bone metabolism. Here, we report the in vitro and in vivo effects of miR-34a on osteogenic differentiation under orthodontic force using an N-acetyl-L-leucine-modified polyethylenimine (N-Ac-l-Leu-PEI) carrier. N-Ac-l-Leu-PEI exhibited low cytotoxicity and high miR-34a transfection efficiency in rat bone mineral stem cells and local alveolar bone tissue. After transfection, miR-34a enhanced the osteogenic differentiation of Runx2 and ColI, Runx2 and ColI protein levels, and early osteogenesis function under orthodontic strain in vitro. MiR-34a also enhanced alveolar bone remodeling under orthodontic force in vivo, as evidenced by elevated gene and protein expression, upregulated indices of alveolar bone anabolism, and diminished tooth movement. We determined that the mechanism miR-34a in osteogenesis under orthodontic force may be associated with GSK-3β. These results suggested that miR-34a delivered by N-Ac-l-Leu-PEI could be a potential therapeutic target for orthodontic treatment.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yi Zheng
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhujun Yang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Hongbo Fei
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yang Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xu Hou
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xinhua Sun
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yuqin Shen
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
34
|
Manokawinchoke J, Nattasit P, Thongngam T, Pavasant P, Tompkins KA, Egusa H, Osathanon T. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells. Sci Rep 2017; 7:10124. [PMID: 28860516 PMCID: PMC5578993 DOI: 10.1038/s41598-017-10638-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Praphawi Nattasit
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanutchaporn Thongngam
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Thanaphum Osathanon
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Craniofacial Genetics and Stem Cells Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
35
|
Xiaobing T, Qingyuan D. [Characterization of microRNAs profiles of induced pluripotent stem cells reprogrammed from human dental pulp stem cells and stem cells from apical papilla]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:269-274. [PMID: 28675011 DOI: 10.7518/hxkq.2017.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To compare characterization of microRNAs (miRNAs) expression profiles of induced pluripotent stem cells (iPSCs) reprogrammed from human dental pulp stem cells (DPSCs) and stem cells from apical papilla (SCAP) and screen-specific microRNA. METHODS Human DPSCs and SCAP were reprogrammed into iPSCs using a Sendai virus vector. Total RNA of human DPSCs-iPSCs and SCAP-iPSCs were extracted. miRNAs were labeled and hybridized. Slides were scanned, and images were imported into GenePix Pro 6.0 for grid alignment and data extraction. Significant differentially expressed miRNAs between the two groups were identified using fold change and P-value and were analyzed. RESULTS Both human DPSCs and SCAP were successfully reprogrammed into iPSCs. Among miRNA genes analyzed by miRNA microarray, 68 were differentially expressed by more than 10-fold in DPSCs-iPSCs; 37 of these genes were up-regulated, and 31 were down-regulated. In SCAP-iPSCs, 107 genes were differentially expressed by more than 10-fold; 68 were up-regulated, and 39 were down-regulated. In both cells, only miR-302e was up-regulated, whereas 9 miRNAs were down-regulated: miR-29b-3p, miR-181b-5p, miR-4328, miR-22-5p, miR-145-5p, miR-4324, let-7b-5p, miR-181a-5p, and miR-27b-3p. CONCLUSIONS Multiple miRNAs participated in reprogramming of human DPSCs and SCAP into iPSCs. Most miRNAs are related to cell cycle, transforming growth factor-β signaling pathways and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Tan Xiaobing
- Dept. of Oral Medicine, First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Dai Qingyuan
- Dept. of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
36
|
Fang Y, Zhang L, Feng J, Lin W, Cai Q, Peng J. Spica Prunellae extract suppresses the growth of human colon carcinoma cells by targeting multiple oncogenes via activating miR-34a. Oncol Rep 2017; 38:1895-1901. [PMID: 28713966 DOI: 10.3892/or.2017.5792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/19/2017] [Indexed: 11/05/2022] Open
Abstract
Spica Prunellae is the spike of the herb Prunella vulgaris L. in traditional Chinese medicine which is often used for the treatment of various cancers including colorectal cancer. In the present study, we found that a key tumor suppressor, microRNA-34a (miR-34a) is involved in the antitumor activity for Spica Prunellae. Human colon carcinoma HCT-8 cells treated with an ethanol extract of Spica Prunellae (EESP) had significantly decreased cell proliferation and viability, in a dose-dependent manner. Flow cytometry analysis with Annexin V/PI staining analysis revealed that EESP treatment could induce apoptosis of HCT-8 cells. The level of miR-34a was upregulated in HCT-8 cells following EESP treatment, whereas expression levels of its target genes Notch1, Notch2 and Bcl-2 were downregulated. Inhibition of miR-34a rescued the expression of these target genes. These results revealed that Spica Prunellae can suppress the growth of HCT-8 cells by targeting Notch1, Notch2 and Bcl-2 via activation of miR-34a.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Ling Zhang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jianyu Feng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Wei Lin
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Qiaoyan Cai
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
37
|
Yachuan Z, Xuedong Z, Liwei Z. [Expression and function of microRNAs in enamel development]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:328-333. [PMID: 28675021 DOI: 10.7518/hxkq.2017.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
microRNAs (miRNAs) are endogenous short, noncoding RNAs that can negatively regulate gene expression post-transcriptionally. miRNAs are involved in multiple developmental events in various tissues and organs, including dental enamel development. Any disruption during enamel development may result in inherited enamel malformations. This article reviews the expression and function of miRNAs in enamel development.
Collapse
Affiliation(s)
- Zhou Yachuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhou Xuedong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Liwei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Mitsiadis TA, Catón J, Pagella P, Orsini G, Jimenez-Rojo L. Monitoring Notch Signaling-Associated Activation of Stem Cell Niches within Injured Dental Pulp. Front Physiol 2017; 8:372. [PMID: 28611689 PMCID: PMC5447770 DOI: 10.3389/fphys.2017.00372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Dental pulp stem/progenitor cells guarantee tooth homeostasis, repair and regeneration throughout life. The decision between renewal and differentiation of these cells is influenced by physical and molecular interactions with stromal cells and extracellular matrix molecules forming the specialized microenvironment of dental pulp stem cell niches. Here we study the activation of putative pulp niches after tooth injury through the upregulation of Notch signaling pathway. Notch1, Notch2, and Notch3 molecules were used as markers of dental pulp stem/progenitor cells. Upon dental injury, Notch1 and Notch3 are detected in cells related to vascular structures suggesting a role of these proteins in the activation of specific pulpal perivascular niches. In contrast, a population of Notch2-positive cells that are actively proliferative is observed in the apical part of the pulp. Kinetics of these cells is followed up with a lipophilic DiI labeling, showing that apical pulp cells migrate toward the injury site where dynamic regenerative/repair events occur. The knowledge of the activation and regulation of dental pulp stem/progenitor cells within their niches in pathologic conditions may be helpful for the realization of innovative dental treatments in the near future.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| | - Javier Catón
- Department of Medical Basic Sciences, Faculty of Medicine, University CEU-San PabloMadrid, Spain
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| | - Giovanna Orsini
- Department of Clinical Sciences and Stomatology, Polytechnic University of MarcheAncona, Italy
| | - Lucia Jimenez-Rojo
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| |
Collapse
|
39
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
40
|
Palmini G, Marini F, Brandi ML. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma? Molecules 2017; 22:E417. [PMID: 28272374 PMCID: PMC6155266 DOI: 10.3390/molecules22030417] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
41
|
Jin Y, Wang C, Cheng S, Zhao Z, Li J. MicroRNA control of tooth formation and eruption. Arch Oral Biol 2017; 73:302-310. [DOI: 10.1016/j.archoralbio.2016.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
|
42
|
Regulatory roles of microRNAs in human dental tissues. Gene 2017; 596:9-18. [DOI: 10.1016/j.gene.2016.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023]
|
43
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
44
|
miR-34a sensitizes lung cancer cells to cisplatin via p53/miR-34a/MYCN axis. Biochem Biophys Res Commun 2016; 482:22-27. [PMID: 27836543 DOI: 10.1016/j.bbrc.2016.11.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, a large proportion of NSCLC patients were insensitive to chemotherapy. This study explored the role of miR-34a in regulating sensitivity of NSCLC cells to cisplatin and its downstream targets. The quantitative PCR result showed that miR-34a expression was upregulated in cisplatin sensitive NSCLC patients compared cisplatin insensitive NSCLC controls. By applying loss-and-gain function analysis, we demonstrated that miR-34a directly targeted to MYCN to sensitize NSCLC cells to cisplatin. In addition, p53 was found to monitor the expression of miR-34a in NSCLC cells after cisplatin treatment. Therefore, the sensitivity of cisplatin in NSCLC cells was modulated via p53/miR-34a/MYCN axis.
Collapse
|
45
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
46
|
Fan C, Jia L, Zheng Y, Jin C, Liu Y, Liu H, Zhou Y. MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network. Stem Cell Reports 2016; 7:236-48. [PMID: 27453008 PMCID: PMC4982986 DOI: 10.1016/j.stemcr.2016.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 02/08/2023] Open
Abstract
MiR-34a was demonstrated to be upregulated during the osteogenic differentiation of human adipose-derived stem cells (hASCs). Overexpression of miR-34a significantly increased alkaline phosphatase activity, mineralization capacity, and the expression of osteogenesis-associated genes in hASCs in vitro. Enhanced heterotopic bone formation in vivo was also observed upon overexpression of miR-34a in hASCs. Mechanistic investigations revealed that miR-34a inhibited the expression of retinoblastoma binding protein 2 (RBP2) and reduced the luciferase activity of reporter gene construct comprising putative miR-34a binding sites in the 3′ UTR of RBP2. Moreover, miR-34a downregulated the expression of NOTCH1 and CYCLIN D1 and upregulated the expression of RUNX2 by targeting RBP2, NOTCH1, and CYCLIN D1. Taken together, our results suggested that miR-34a promotes the osteogenic differentiation of hASCs via the RBP2/NOTCH1/CYCLIN D1 coregulatory network, indicating that miR-34a-targeted therapy could be a valuable approach to promote bone regeneration. MiR-34a promotes osteogenesis of hASCs in vitro and in vivo MiR-34a directly binds to the 3′ UTR of RBP2 mRNA in hASCs MiR-34a promotes osteogenesis of hASCs via the RBP2/NOTCH1/CYCLIN D1 network
Collapse
Affiliation(s)
- Cong Fan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
47
|
Lopes HB, Ferraz EP, Almeida ALG, Florio P, Gimenes R, Rosa AL, Beloti MM. Participation of MicroRNA-34a and RANKL on bone repair induced by poly(vinylidene-trifluoroethylene)/barium titanate membrane. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1369-79. [PMID: 27312544 DOI: 10.1080/09205063.2016.1203217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The poly(vinylidene-trifluoroethylene)/barium titanate (PVDF) membrane enhances in vitro osteoblast differentiation and in vivo bone repair. Here, we hypothesized that this higher bone repair could be also due to bone resorption inhibition mediated by a microRNA (miR)/RANKL circuit. To test our hypothesis, the large-scale miR expression of bone tissue grown on PVDF and polytetrafluoroethylene (PTFE) membranes was evaluated to identify potential RANKL-targeted miRs modulated by PVDF. The animal model used was rat calvarial defects implanted with either PVDF or PTFE. At 4 and 8 weeks, the bone tissue grown on membranes was submitted to a large-scale analysis of miRs by microarray. The expression of miR-34a and some of its targets, including RANKL, were evaluated by real-time polimerase chain reaction and osteoclast activity was detected by tartrate-resistant acid phosphatase (TRAP) staining. Among more than 250 miRs, twelve, including miR-34a, were simultaneously higher expressed (≥2 fold) at 4 and 8 weeks on PVDF. The higher expression of miR-34a was concomitant with a reduced expression of all its evaluated targets, including RANKL. Additionally, more TRAP-positive cells were observed in bone tissue grown on PTFE compared with PVDF in both time points. In conclusion, our results suggest that the higher bone formation induced by PVDF could be, at least in part, triggered by a miR-34a increase and RANKL decrease, which may inhibit osteoclast differentiation and activity, and bone resorption.
Collapse
Affiliation(s)
- Helena B Lopes
- a Cell Culture Laboratory , School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Emanuela P Ferraz
- a Cell Culture Laboratory , School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Adriana L G Almeida
- a Cell Culture Laboratory , School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Pedro Florio
- a Cell Culture Laboratory , School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Rossano Gimenes
- b Institute of Physics and Chemistry, Federal University of Itajubá , Itajubá , Brazil
| | - Adalberto L Rosa
- a Cell Culture Laboratory , School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Marcio M Beloti
- a Cell Culture Laboratory , School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
48
|
3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Sci Rep 2016; 6:28858. [PMID: 27345219 PMCID: PMC4921838 DOI: 10.1038/srep28858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a critical developmental program in cancer stem cell (CSC) maintenance and in cancer metastasis. Here, our study found that 3,6-DHF could effectively inhibit EMT in BC cells in vitro and in vivo. 3,6-DHF effectively inhibits the formation and proliferation of BCSCs, and consequently reduces the tumor-initiating capacity of tumor cells in NOD/SCID mice. Optical in vivo imaging of cancer metastasis showed that 3,6-DHF administration suppresses the lung metastasis of BC cells in vivo. Further studies indicated that 3,6-DHF down-regulates Notch1, NICD, Hes-1 and c-Myc, consequently decreasing the formation of the functional transcriptional unit of NICD-CSL-MAML, causing Notch signaling inactivation in BC cells. Over-expression of Notch1 or inhibition of miR-34a significantly reduced the inhibitory effects of 3,6-DHF on EMT, CSCs, as well as cells migration and invasion in BC cells. These data indicated that 3,6-DHF effectively inhibits EMT and CSCs, as well as cells migration and invasion in BC cells, in which miR-34a-mediated Notch1 down-regulation plays a crucial role.
Collapse
|
49
|
Peng S, Gao D, Gao C, Wei P, Niu M, Shuai C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep 2016; 14:623-9. [PMID: 27222009 PMCID: PMC4918597 DOI: 10.3892/mmr.2016.5335] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis is a complex multi-step process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblast progenitor cells, preosteoblasts, osteoblasts and osteocytes, and the crosstalk between multiple cell types for the formation and remodeling of bone. The signaling regulatory networks during osteogenesis include various components, including growth factors, transcription factors, micro (mi)RNAs and effectors, a number of which form feedback loops controlling the balance of osteogenic differentiation by positive or negative regulation. miRNAs have been found to be important regulators of osteogenic signaling pathways in multiple aspects and multiple signaling pathways. The present review focusses on the progress in elucidating the role of miRNA in the osteogenesis signaling networks of MSCs as a substitute for bone implantation the the field of bone tissue engineering. In particular, the review classifies which miRNAs promote or suppress the osteogenic process, and summarizes which signaling pathway these miRNAs are involved in. Improvements in knowledge of the characteristics of miRNAs in osteogenesis provide an important step for their application in translational investigations of bone tissue engineering and bone disease.
Collapse
Affiliation(s)
- Shuping Peng
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Gao
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| | - Pingpin Wei
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Man Niu
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
50
|
Jamal M, Chogle SM, Karam SM, Huang GTJ. NOTCH3 is expressed in human apical papilla and in subpopulations of stem cells isolated from the tissue. Genes Dis 2015; 2:261-267. [PMID: 26989760 PMCID: PMC4792283 DOI: 10.1016/j.gendis.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NOTCH plays a role in regulating stem cell function and fate decision. It is involved in tooth development and injury repair. Information regarding NOTCH expression in human dental root apical papilla (AP) and its residing stem cells (SCAP) is limited. Here we investigated the expression of NOTCH3, its ligand JAG1, and mesenchymal stem cell markers CD146 and STRO-1 in the AP or in the primary cultures of SCAP isolated from AP. Our in situ immunostaining showed that in the AP NOTCH3 and CD146 were co-expressed and associated with blood vessels having NOTCH3 located more peripherally. In cultured SCAP, NOTCH3 and JAG1 were co-expressed. Flow cytometry analysis showed that 7%, 16% and 98% of the isolated SCAP were positive for NOTCH3, STRO-1 and CD146, respectively with a rare 1.5% subpopulation of SCAP co-expressing all three markers. The expression level of NOTCH3 reduced when SCAP underwent osteogenic differentiation. Our findings are the first step towards defining the regulatory role of NOTCH3 in SCAP fate decision.
Collapse
Affiliation(s)
- Mohamed Jamal
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Endodontics, Boston, MA 02118, USA
| | - Sami M. Chogle
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Endodontics, Boston, MA 02118, USA
| | - Sherif M. Karam
- United Arab Emirates University, Department of Anatomy, Faculty of Medicine and Health Sciences, Al-Ain, United Arab Emirates
| | - George T.-J. Huang
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Endodontics, Boston, MA 02118, USA
- University of Tennessee Health Science Center, College of Dentistry, Department of Bioscience Research, Memphis, TN 38163, USA
- Corresponding author. Cancer Research Building, University of Tennessee Health Science Center, 19 S. Manassas St. Lab Rm 225, Office 222, Memphis, TN 38163, USA. Tel.: +1 901 448 1490; fax: +1 901 448 3910.
| |
Collapse
|