1
|
Xia Y, Chen Z, Zheng Z, Chen H, Chen Y. Nanomaterial-integrated injectable hydrogels for craniofacial bone reconstruction. J Nanobiotechnology 2024; 22:525. [PMID: 39217329 PMCID: PMC11365286 DOI: 10.1186/s12951-024-02801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The complex anatomy and biology of craniofacial bones pose difficulties in their effective and precise reconstruction. Injectable hydrogels (IHs) with water-swollen networks are emerging as a shape-adaptive alternative for noninvasively rebuilding craniofacial bones. The advent of versatile nanomaterials (NMs) customizes IHs with strengthened mechanical properties and therapeutically favorable performance, presenting excellent contenders over traditional substitutes. Structurally, NM-reinforced IHs are energy dissipative and covalently crosslinked, providing the mechanics necessary to support craniofacial structures and physiological functions. Biofunctionally, incorporating unique NMs into IH expands a plethora of biological activities, including immunomodulatory, osteogenic, angiogenic, and antibacterial effects, further favoring controllable dynamic tissue regeneration. Mechanistically, NM-engineered IHs optimize the physical traits to direct cell responses, regulate intracellular signaling pathways, and control the release of biomolecules, collectively bestowing structure-induced features and multifunctionality. By encompassing state-of-the-art advances in NM-integrated IHs, this review offers a foundation for future clinical translation of craniofacial bone reconstruction.
Collapse
Affiliation(s)
- Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zihan Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zebin Zheng
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Huimin Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuming Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Senos R, Chen MTY, Panse I, Stella JJ, Hankenson KD. An Intact Periosteum is Required for Recombinant Human Jagged1 Guided Bone Regeneration in Calvaria Critical-size Defect Healing. J Craniofac Surg 2024; 35:1585-1590. [PMID: 38864638 DOI: 10.1097/scs.0000000000010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
The need to promote calvaria bone healing as a consequence of injury or craniotomy is a major clinical issue. Previous reports tested recombinant human Jagged1 (rhJagged1) treatment for critical-size calvaria defects in the absence of periosteum, and this resulted in significant new bone formation. As the periosteum contributes to healing by serving as a source of progenitor cells, the present study aimed to examine whether significantly more bone is formed when the periosteum is intact for using rhJagged1 to treat critical-size parietal bone defects in mice. Fifteen healthy adult mice, 34 to 65 weeks of age, 26.9 to 48.2 g, were divided into different groups that compared the critical-size defects treated with either phosphate-buffered saline or rhJagged1 protein in either the presence or absence of periosteum. The results indicated that more bone was formed in the presence of periosteum when rhJagged1 is delivered [35% bone volume per tissue volume (BV/TV); P = 0.02] relative to nonperiosteum. Recombinant human Jagged1 protein delivered in the absence of periosteum had the next most new bone formed (25% BV/TV). Defects with phosphate-buffered saline delivered in the absence or presence of periosteum had the least new bone formed (15% and 18% BV/TV, respectively; P = 0.48). The results also show that rhJagged1 does not form ectopic or hypertrophic bone. The usage of rhJagged1 to treat critical-size defects in calvaria is promising clinically, but to maximize clinical efficacy it will require that the periosteum be intact on the noninjured portions of calvaria.
Collapse
Affiliation(s)
- Rafael Senos
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | | | - Isabella Panse
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI
| | | | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
4
|
Sharif H, Ziaei H, Rezaei N. Stem Cell-Based Regenerative Approaches for the Treatment of Cleft Lip and Palate: A Comprehensive Review. Stem Cell Rev Rep 2024; 20:637-655. [PMID: 38270744 DOI: 10.1007/s12015-024-10676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Cleft lip and/or palate (CLP) is a prevalent congenital craniofacial abnormality that can lead to difficulties in eating, speaking, hearing, and psychological distress. The traditional approach for treating CLP involves bone graft surgery, which has limitations, post-surgical complications, and donor site morbidity. However, regenerative medicine has emerged as a promising alternative, employing a combination of stem cells, growth factors, and scaffolds to promote tissue regeneration. This review aims to provide a comprehensive overview of stem cell-based regenerative approaches in the management of CLP. A thorough search was conducted in the Medline/PubMed and Scopus databases, including cohort studies, randomized controlled trials, case series, case controls, case reports, and animal studies. The identified studies were categorized into two main groups: clinical studies involving human subjects and in vivo studies using animal models. While there are only a limited number of studies investigating the combined use of stem cells and scaffolds for CLP treatment, they have shown promising results. Various types of stem cells have been utilized in conjunction with scaffolds. Importantly, regenerative methods have been successfully applied to patients across a broad range of age groups. The collective findings derived from the reviewed studies consistently support the notion that regenerative medicine holds potential advantages over conventional bone grafting and represents a promising therapeutic option for CLP. However, future well-designed clinical trials, encompassing diverse combinations of stem cells and scaffolds, are warranted to establish the clinical efficacy of these interventions with a larger number of patients.
Collapse
Affiliation(s)
- Helia Sharif
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Dental Society, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Heliya Ziaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, US
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
| |
Collapse
|
5
|
Boubaker F, Teixeira PAG, Hossu G, Douis N, Gillet P, Blum A, Gillet R. In vivo depiction of cortical bone vascularization with ultra-high resolution-CT and deep learning algorithm reconstruction using osteoid osteoma as a model. Diagn Interv Imaging 2024; 105:26-32. [PMID: 37482455 DOI: 10.1016/j.diii.2023.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the ability to depict in vivo bone vascularization using ultra-high-resolution (UHR) computed tomography (CT) with deep learning reconstruction (DLR) and hybrid iterative reconstruction algorithm, compared to simulated conventional CT, using osteoid osteoma as a model. MATERIALS AND METHODS Patients with histopathologically proven cortical osteoid osteoma who underwent UHR-CT between October 2019 and October 2022 were retrospectively included. Images were acquired with a 1024 × 1024 matrix and reconstructed with DLR and hybrid iterative reconstruction algorithm. To simulate conventional CT, images with a 512 × 512 matrix were also reconstructed. Two radiologists (R1, R2) independently evaluated the number of blood vessels entering the nidus and crossing the bone cortex, as well as vessel identification and image quality with a 5-point scale. Standard deviation (SD) of attenuation in the adjacent muscle and that of air were used as image noise and recorded. RESULTS Thirteen patients with 13 osteoid osteomas were included. There were 11 men and two women with a mean age of 21.8 ± 9.1 (SD) years. For both readers, UHR-CT with DLR depicted more nidus vessels (11.5 ± 4.3 [SD] (R1) and 11.9 ± 4.6 [SD] (R2)) and cortical vessels (4 ± 3.8 [SD] and 4.3 ± 4.1 [SD], respectively) than UHR-CT with hybrid iterative reconstruction (10.5 ± 4.3 [SD] and 10.4 ± 4.6 [SD], and 4.1 ± 3.8 [SD] and 4.3 ± 3.8 [SD], respectively) and simulated conventional CT (5.3 ± 2.2 [SD] and 6.4 ± 2.5 [SD], 2 ± 1.2 [SD] and 2.4 ± 1.6 [SD], respectively) (P < 0.05). UHR-CT with DLR provided less image noise than simulated conventional CT and UHR-CT with hybrid iterative reconstruction (P < 0.05). UHR-CT with DLR received the greatest score and simulated conventional CT the lowest score for vessel identification and image quality. CONCLUSION UHR-CT with DLR shows less noise than UHR-CT with hybrid iterative reconstruction and significantly improves cortical bone vascularization depiction compared to simulated conventional CT.
Collapse
Affiliation(s)
- Fatma Boubaker
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France
| | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France
| | - Gabriela Hossu
- Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France
| | - Nicolas Douis
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France
| | - Pierre Gillet
- Université de Lorraine, CNRS, IMoPA, 54000, Nancy, France
| | - Alain Blum
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France
| | - Romain Gillet
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France.
| |
Collapse
|
6
|
Sun Y, Jo JI, Hashimoto Y. Evaluation of Osteogenic Potential for Rat Adipose-Derived Stem Cells under Xeno-Free Environment. Int J Mol Sci 2023; 24:17532. [PMID: 38139360 PMCID: PMC10744054 DOI: 10.3390/ijms242417532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a novel culture method for rat adipose-derived stem cells (rADSC) and evaluate their osteogenic potential. The rADSC cultured in xeno-free culture medium (XF-rADSCs) or conventional culture medium containing fetal bovine serum (FBS-rADSCs) were combined with micropieces of xeno-free recombinant collagen peptide to form 3-dimensional aggregates (XF-rADSC-CellSaic or FBS-rADSC-CellSaic). Both FBS-rADSC and XF-ADSC in CellSaic exhibited multilineage differentiation potential. Compared to FBS-rADSC-CellSaic, XF-rADSC-CellSaic accelerated and promoted osteogenic differentiation in vitro. When transplanted into rat mandibular congenital bone defects, the osteogenically differentiated XF-rADSC-CellSaic induced regeneration of bone tissue with a highly maturated structure compared to FBS-rADSC-CellSaic. In conclusion, XF-rADSC-CellSaic is a feasible 3-dimensional platform for efficient bone formation.
Collapse
Affiliation(s)
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.S.); (Y.H.)
| | | |
Collapse
|
7
|
Liu L, Wu J, Lv S, Xu D, Li S, Hou W, Wang C, Yu D. Synergistic effect of hierarchical topographic structure on 3D-printed Titanium scaffold for enhanced coupling of osteogenesis and angiogenesis. Mater Today Bio 2023; 23:100866. [PMID: 38149019 PMCID: PMC10750103 DOI: 10.1016/j.mtbio.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 12/28/2023] Open
Abstract
The significance of the osteogenesis-angiogenesis relationship in the healing process of bone defects has been increasingly emphasized in recent academic research. Surface topography plays a crucial role in guiding cellular behaviors. Metal-organic framework (MOF) is an innovative biomaterial with nanoscale structural and topological features, enabling the modulation of scaffold physicochemical properties. This study involved the loading of varying quantities of UiO-66 nanocrystals onto alkali-heat treated 3D-printed titanium scaffolds, resulting in the formation of hierarchical micro/nano topography named UiO-66/AHTs. The physicochemical properties of these scaffolds were subsequently characterized. Furthermore, the impact of these scaffolds on the osteogenic potential of BMSCs, the angiogenic potential of HUVECs, and their intercellular communication were investigated. The findings of this study indicated that 1/2UiO-66/AHT outperformed other groups in terms of osteogenic and angiogenic induction, as well as in promoting intercellular crosstalk by enhancing paracrine effects. These results suggest a promising biomimetic hierarchical topography design that facilitates the coupling of osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Leyi Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiyu Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Duoling Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
8
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
9
|
Wan T, Wang YL, Zhang FS, Zhang XM, Zhang YC, Jiang HR, Zhang M, Zhang PX. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration. Int J Mol Sci 2023; 24:14132. [PMID: 37762437 PMCID: PMC10531895 DOI: 10.3390/ijms241814132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.
Collapse
Affiliation(s)
- Teng Wan
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
10
|
Zheng XQ, Huang J, Lin JL, Song CL. Pathophysiological mechanism of acute bone loss after fracture. J Adv Res 2023; 49:63-80. [PMID: 36115662 PMCID: PMC10334135 DOI: 10.1016/j.jare.2022.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Acute bone loss after fracture is associated with various effects on the complete recovery process and a risk of secondary fractures among patients. Studies have reported similarities in pathophysiological mechanisms involved in acute bone loss after fractures and osteoporosis. However, given the silence nature of bone loss and bone metabolism complexities, the actual underlying pathophysiological mechanisms have yet to be fully elucidated. AIM OF REVIEW To elaborate the latest findings in basic research with a focus on acute bone loss after fracture. To briefly highlight potential therapeutic targets and current representative drugs. To arouse researchers' attention and discussion on acute bone loss after fracture. KEY SCIENTIFIC CONCEPTS OF REVIEW Bone loss after fracture is associated with immobilization, mechanical unloading, blood supply damage, sympathetic nerve regulation, and crosstalk between musculoskeletals among other factors. Current treatment strategies rely on regulation of osteoblasts and osteoclasts, therefore, there is a need to elucidate on the underlying mechanisms of acute bone loss after fractures to inform the development of efficacious and safe drugs. In addition, attention should be paid towards ensuring long-term skeletal health.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
11
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
12
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
14
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
|
15
|
Bai H, Guo X, Tan Y, Wang Y, Feng J, Lei K, Liu X, Xiao Y, Bao C. Hypoxia inducible factor-1 signaling pathway in macrophage involved angiogenesis in materials-instructed osteo-induction. J Mater Chem B 2022; 10:6483-6495. [PMID: 35971918 DOI: 10.1039/d2tb00811d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although osteo-inductive materials are regarded as promising candidates for critical-sized bone repair, their clinical application is limited by ambiguous mechanisms. The hypoxia-inducible factor (HIF)-1 signaling pathway, which responds to hypoxic conditions, is involved in both angiogenesis and osteogenesis. Strategies harnessing HIF-1 signaling to promote angiogenesis have been applied and have succeeded in repairing segmental bone defects. Meanwhile, macrophages have been shown to have important immunoregulatory effects on material-induced osteo-induction and correlate with HIF-1 activity. Thus, it is reasonable to assume that HIF-activated macrophages may also play important roles in the angiogenesis of material-induced osteo-induction. To verify this assumption, a classical type of osteo-inductive calcium phosphate (TCPs) was utilized. First, using RNA sequencing, we found that hypoxia activated the HIF signaling pathway in macrophages, which contributed to angiogenesis in TCPs. In addition, after treatment with a conditioned medium extracted from the co-culture system of macrophages and TCPs under hypoxic conditions, the migration and tube formation ability of human umbilical vein endothelial cells (HUVECs) significantly increased. In vivo, inhibition of HIF-1 or clearance of macrophages could result in impaired angiogenesis in TCPs. Finally, more blood vessels were formed in the TCPs group than in the control group. In conclusion, this study elucidated the vital role of the HIF signaling pathway in infiltrating macrophages during early vessel growth in material-induced osteo-induction. It is beneficial in advancing the exploration of the related mechanism and providing possible support for optimizing the applicability of osteo-inductive materials in bone repair.
Collapse
Affiliation(s)
- Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Xiaodong Guo
- National Center of Stomatology & National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Yujie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Jing Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| |
Collapse
|
16
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
17
|
A hierarchical vascularized engineered bone inspired by intramembranous ossification for mandibular regeneration. Int J Oral Sci 2022; 14:31. [PMID: 35732648 PMCID: PMC9217949 DOI: 10.1038/s41368-022-00179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Mandibular defects caused by injuries, tumors, and infections are common and can severely affect mandibular function and the patient’s appearance. However, mandible reconstruction with a mandibular bionic structure remains challenging. Inspired by the process of intramembranous ossification in mandibular development, a hierarchical vascularized engineered bone consisting of angiogenesis and osteogenesis modules has been produced. Moreover, the hierarchical vascular network and bone structure generated by these hierarchical vascularized engineered bone modules match the particular anatomical structure of the mandible. The ultra-tough polyion complex has been used as the basic scaffold for hierarchical vascularized engineered bone for ensuring better reconstruction of mandible function. According to the results of in vivo experiments, the bone regenerated using hierarchical vascularized engineered bone is similar to the natural mandibular bone in terms of morphology and genomics. The sonic hedgehog signaling pathway is specifically activated in hierarchical vascularized engineered bone, indicating that the new bone in hierarchical vascularized engineered bone underwent a process of intramembranous ossification identical to that of mandible development. Thus, hierarchical vascularized engineered bone has a high potential for clinical application in mandibular defect reconstruction. Moreover, the concept based on developmental processes and bionic structures provides an effective strategy for tissue regeneration.
Collapse
|
18
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Reyna-Urrutia VA, González-González AM, Rosales-Ibáñez R. Compositions and Structural Geometries of Scaffolds Used in the Regeneration of Cleft Palates: A Review of the Literature. Polymers (Basel) 2022; 14:polym14030547. [PMID: 35160534 PMCID: PMC8840587 DOI: 10.3390/polym14030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cleft palate (CP) is one of the most common birth defects, presenting a multitude of negative impacts on the health of the patient. It also leads to increased mortality at all stages of life, economic costs and psychosocial effects. The embryological development of CP has been outlined thanks to the advances made in recent years due to biomolecular successions. The etiology is broad and combines certain environmental and genetic factors. Currently, all surgical interventions work off the principle of restoring the area of the fissure and aesthetics of the patient, making use of bone substitutes. These can involve biological products, such as a demineralized bone matrix, as well as natural–synthetic polymers, and can be supplemented with nutrients or growth factors. For this reason, the following review analyzes different biomaterials in which nutrients or biomolecules have been added to improve the bioactive properties of the tissue construct to regenerate new bone, taking into account the greatest limitations of this approach, which are its use for bone substitutes for large areas exclusively and the lack of vascularity. Bone tissue engineering is a promising field, since it favors the development of porous synthetic substitutes with the ability to promote rapid and extensive vascularization within their structures for the regeneration of the CP area.
Collapse
|
20
|
Chen J, Zhou A, Nie Y, Chen K, Zhang Y, Xu Y, Kong D, Shao K, Ning X. Photoactive 3D-Printed Hypertensile Metamaterials for Improving Dynamic Modeling of Stem Cells. NANO LETTERS 2022; 22:135-144. [PMID: 34967636 DOI: 10.1021/acs.nanolett.1c03472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current three-dimensional (3D) cell culture systems mainly rely on static cell culture and lack the ability to thoroughly manage cell intrinsic behaviors and biological characteristics, leading to unsatisfied cell activity. Herein, we have developed photoactive 3D-printed hypertensile metamaterials based dynamic cell culture system (MetaFold) for guiding cell fate. MetaFold exhibited high elasticity and photothermal conversion efficiency due to its metapattern architecture and micro/nanoscale polydopamine coating, allowing for responding to mechanical and light stimulation to construct dynamic culture conditions. In addition, MetaFold possessed excellent cell adhesion capability and could promote cell viability and function under dynamic stimulation, thereby maximizing cell activity. Importantly, MetaFold could improve the differentiation efficacy of stem cells into cardiomyocytes and even their maturation, offering high-quality precious candidates for cell therapy. Therefore, we present a dual stimuli-responsive dynamic culture system, which provides a physiologically realistic environment for cell culture and biological study.
Collapse
Affiliation(s)
- Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210093, Nanjing, China
| | - Yuanyuan Nie
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Kaifeng Shao
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
21
|
A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14010132. [PMID: 35057028 PMCID: PMC8781797 DOI: 10.3390/pharmaceutics14010132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Current cranial repair techniques combine the use of autologous bone grafts and biomaterials. In addition to their association with harvesting morbidity, autografts are often limited by insufficient quantity of bone stock. Biomaterials lead to better outcomes, but their effectiveness is often compromised by the unpredictable lack of integration and structural failure. Bone tissue engineering offers the promising alternative of generating constructs composed of instructive biomaterials including cells or cell-secreted products, which could enhance the outcome of reconstructive treatments. This review focuses on cell-based approaches with potential to regenerate calvarial bone defects, including human studies and preclinical research. Further, we discuss strategies to deliver extracellular matrix, conditioned media and extracellular vesicles derived from cell cultures. Recent advances in 3D printing and bioprinting techniques that appear to be promising for cranial reconstruction are also discussed. Finally, we review cell-based gene therapy approaches, covering both unregulated and regulated gene switches that can create spatiotemporal patterns of transgenic therapeutic molecules. In summary, this review provides an overview of the current developments in cell-based strategies with potential to enhance the surgical armamentarium for regenerating cranial vault defects.
Collapse
|
22
|
Li J, Ahmed A, Degrande T, De Baerdemaeker J, Al-Rasheed A, van den Beucken JJ, Jansen JA, Alghamdi HS, Walboomers XF. Histological evaluation of titanium fiber mesh-coated implants in a rabbit femoral condyle model. Dent Mater 2021; 38:613-621. [PMID: 34955235 DOI: 10.1016/j.dental.2021.12.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study was aimed to comparatively evaluate new bone formation into the pores of a flexible titanium fiber mesh (TFM) applied on the surface of implant. METHODS Twenty-eight custom made cylindrical titanium implants (4 ×10 mm) with and without a layer of two different types of TFM (fiber diameter of 22 µm and 50 µm, volumetric porosity ~70%) were manufactured and installed bilaterally in the femoral condyles of 14 rabbits. The elastic modulus for these two TFM types was ~20 GPa and ~5 GPa respectively, whereas the solid titanium was ~110 GPa. The implants (Control, TFM-22, TFM-50) were retrieved after 14 weeks of healing and prepared for histological assessment. The percentage of the bone area (BA%), the bone-to-implant contact (BIC%) and amount were determined. RESULTS Newly formed bone into mesh porosity was observed for all three types of implants. Histomorphometric analyses revealed significantly higher (~2.5 fold) BA% values for TFM-22 implants (30.9 ± 9.5%) compared to Control implants (12.7 ± 6.0%), whereas BA% for TMF-50 did not significantly differ compared with Control implants. Furthermore, both TFM-22 and TFM-50 implants showed significantly higher BIC% values (64.9 ± 14.0%, ~2.5 fold; 47.1 ± 14.1%, ~2 fold) compared to Control (23.6 ± 17.4%). Finally, TFM-22 implants showed more and thicker trabeculae in the peri-implant region. SIGNIFICANCE This in vivo study demonstrated that implants with a flexible coating of TFM improve bone formation within the inter-fiber space and the peri-implant region.
Collapse
Affiliation(s)
- Jinmeng Li
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Abdulaziz Al-Rasheed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | - John A Jansen
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Hamdan S Alghamdi
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands; Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
23
|
Oliveira CS, Leeuwenburgh S, Mano JF. New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioeng 2021; 5:041507. [PMID: 34765857 PMCID: PMC8568480 DOI: 10.1063/5.0065152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The bone microenvironment is characterized by an intricate interplay between cellular and noncellular components, which controls bone remodeling and repair. Its highly hierarchical architecture and dynamic composition provide a unique microenvironment as source of inspiration for the design of a wide variety of bone tissue engineering strategies. To overcome current limitations associated with the gold standard for the treatment of bone fractures and defects, bioengineered bone microenvironments have the potential to orchestrate the process of bone regeneration in a self-regulated manner. However, successful approaches require a strategic combination of osteogenic, vasculogenic, and immunomodulatory factors through a synergic coordination between bone cells, bone-forming factors, and biomaterials. Herein, we provide an overview of (i) current three-dimensional strategies that mimic the bone microenvironment and (ii) potential applications of bioengineered microenvironments. These strategies range from simple to highly complex, aiming to recreate the architecture and spatial organization of cell-cell, cell-matrix, and cell-soluble factor interactions resembling the in vivo microenvironment. While several bone microenvironment-mimicking strategies with biophysical and biochemical cues have been proposed, approaches that exploit the ability of the cells to self-organize into microenvironments with a high regenerative capacity should become a top priority in the design of strategies toward bone regeneration. These miniaturized bone platforms may recapitulate key characteristics of the bone regenerative process and hold great promise to provide new treatment concepts for the next generation of bone implants.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sander Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - João F. Mano
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
Xu HZ, Su JS. Restoration of critical defects in the rabbit mandible using osteoblasts and vascular endothelial cells co-cultured with vascular stent-loaded nano-composite scaffolds. J Mech Behav Biomed Mater 2021; 124:104831. [PMID: 34555626 DOI: 10.1016/j.jmbbm.2021.104831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
The success of large bone defect repair with tissue engineering technology depends mainly on angiogenesis and osteogenesis. In this study, we prepared poly-caprolactone/nano-hydroxyapatite/beta-calcium phosphate (PCL/nHA/β-TCP) composite scaffolds loaded with poly-(lactic-co-glycolic acid)/nano-hydroxyapatite/collagen/heparin sodium (PLGA/nHA/Col/HS) nanofiber small vascular stent by electrospinning and hot press forming-particle leaching methods. Supramolecular electrostatic self-assembly technology was used to modify the surfaces of small vascular stents to aid in hydrophilicity and anticoagulation. The surfaces of composite scaffolds were modified with an Arg-Gly-Asp (RGD) short peptide by physical adsorption to supply cell adhesion sites. The scaffolds were then combined with rabbit bone marrow-derived osteoblasts (OBs) and rabbit bone marrow-derived vascular endothelial cells (RVECs) to construct large, biologically active vascularized tissue-engineered bone in vitro; this bone was then used to repair critical bone defects in rabbit mandibles. Mechanical and biocompatibility testing results showed that PCL/nHA/β-TCP composite scaffolds loaded with small vascular stents had good surface structure, mechanical properties, biocompatibility, and bone-regeneration induction potential. Twelve weeks after implantation, histological analysis and X-ray scans showed that the use of osteoblasts and vascular endothelial cells co-cultured with PCL/nHA/β-TCP scaffolds was sufficient to repair critical defects in rabbit mandibles.
Collapse
Affiliation(s)
- Hong Zhen Xu
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jian Sheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China.
| |
Collapse
|
25
|
Ping J, Zhou C, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. Modulating immune microenvironment during bone repair using biomaterials: Focusing on the role of macrophages. Mol Immunol 2021; 138:110-120. [PMID: 34392109 DOI: 10.1016/j.molimm.2021.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Bone is a self-regenerative tissue that can repair small defects and fractures. In large defects, bone tissue is unable to provide nutrients and oxygen for repair, and autologous grafting is used as the gold standard. As an alternative method, the bone tissue regeneration approach uses osteoconductive biomaterials to overcome bone graft disadvantages. However, biomaterials are considered as foreign components that can stimulate host immune responses. Although traditional principles have been aimed to minimize immune reactions, the design of biomaterials has steadily shifted toward creating an immunomodulatory microenvironment to harness immune cells and responses to repair damaged tissue. Among immune cells, macrophages secrete various immunomodulatory mediators and crosstalk with bone-forming cells and play key roles in bone tissue engineering. Macrophage polarization toward M1 and M2 subtypes mediate pro-inflammatory and anti-inflammatory responses, respectively, which are crucial for bone repairing at different stages. This review provides an overview of the crosstalk between various immune cells and biomaterials, macrophage polarization, and the effect of physicochemical properties of biomaterials on the immune responses, especially macrophages, in bone tissue engineering.
Collapse
Affiliation(s)
- Jianfeng Ping
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan 316000, Zhejiang Province, PR China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing 312500, Zhejiang Province, PR China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Fangming Xu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China.
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China.
| |
Collapse
|
26
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
27
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
28
|
Pandya M, Saxon M, Bozanich J, Tillberg C, Luan X, Diekwisch TG. The Glycoprotein/Cytokine Erythropoietin Promotes Rapid Alveolar Ridge Regeneration In Vivo by Promoting New Bone Extracellular Matrix Deposition in Conjunction with Coupled Angiogenesis/Osteogenesis. Int J Mol Sci 2021; 22:2788. [PMID: 33801825 PMCID: PMC8002021 DOI: 10.3390/ijms22062788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
The loss of bone following tooth extraction poses a significant clinical problem for maxillofacial esthetics, function, and future implant placement. In the present study, the efficacy of an erythropoietin-impregnated collagen scaffold as an alveolar ridge augmentation material versus a conventional collagen scaffold and a BioOss inorganic bovine bone xenograft was examined. The collagen/Erythropoietin (EPO) scaffold exhibited significantly more rapid and complete osseous regeneration of the alveolar defect when compared to bone xenograft and the collagen membrane alone. The new EPO induced extracellular matrix was rich in Collagen I, Collagen III, Fibronectin (Fn) and E-cadherin, and featured significantly increased levels of the osteogenic transcription factors Runt-related transcription factor 2 (Runx2) and Osterix (Osx). Histomorphometric evaluation revealed a significant two-fold increase in the number of capillaries between the EPO and the BioOss group. Moreover, there was a highly significant 3.5-fold higher level of vascular endothelial growth factor (VEGF) in the collagen/EPO-treated group compared to controls. The significant effect of EPO on VEGF, FN, and RUNX2 upregulation was confirmed in vitro, and VEGF pathway analysis using VEGF inhibitors confirmed that EPO modulated extracellular matrix protein expression through VEGF even in the absence of blood vessels. Together, these data demonstrate the effectiveness of an EPO-impregnated collagen scaffold for bone regeneration as it induces rapid matrix production and osseoinduction adjacent to new capillaries via VEGF.
Collapse
Affiliation(s)
- Mirali Pandya
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.P.); (C.T.); (X.L.)
- Department of Periodontics, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.S.); (J.B.)
| | - Matthew Saxon
- Department of Periodontics, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.S.); (J.B.)
| | - John Bozanich
- Department of Periodontics, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.S.); (J.B.)
| | - Connie Tillberg
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.P.); (C.T.); (X.L.)
| | - Xianghong Luan
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.P.); (C.T.); (X.L.)
- Department of Periodontics, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.S.); (J.B.)
| | - Thomas G.H. Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.P.); (C.T.); (X.L.)
- Department of Periodontics, Texas A&M College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA; (M.S.); (J.B.)
| |
Collapse
|
29
|
The effect of the WKYMVm peptide on promoting mBMSC secretion of exosomes to induce M2 macrophage polarization through the FPR2 pathway. J Orthop Surg Res 2021; 16:171. [PMID: 33658070 PMCID: PMC7927268 DOI: 10.1186/s13018-021-02321-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background When multicystic vesicles (precursors of exosomes) are formed in cells, there are two results. One is decomposition by lysosomes, and the other is the generation of exosomes that are transported out through the transmembrane. On the other hand, M2 macrophages promote the formation of local vascularization and provide necessary support for the repair of bone defects. To provide a new idea for the treatment of bone defects, the purpose of our study was to investigate the effect of WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met-NH2) peptide on the secretion of exosomes from murine bone marrow-derived MSCs (mBMSCs) and the effect of exosomes on the polarization of M2 macrophages. Methods The WKYMVm peptide was used to activate the formyl peptide receptor 2 (FPR2) pathway in mBMSCs. First, we used Cell Counting Kit-8 (CCK-8) to detect the cytotoxic effect of WKYMVm peptide on mBMSCs. Second, we used western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of interferon stimulated gene 15 (ISG15) and transcription factor EB (TFEB) in mBMSCs. Then, we detected lysosomal activity using a lysozyme activity assay kit. Third, we used an exosome extraction kit and western blotting to detect the content of exosomes secreted by mBMSCs. Fourth, we used immunofluorescence and western blotting to count the number of polarized M2 macrophages. Finally, we used an inhibitor to block miRNA-146 in exosomes secreted by mBMSCs and counted the number of polarized M2 macrophages. Results We first found that the WKYMVm peptide had no toxic effect on mBMSCs at a concentration of 1 μmol/L. Second, we found that when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs, ISG15 and TFEB expression was decreased, leading to increased secretion of exosomes. We also found that lysosomal activity was decreased when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs. Third, we demonstrated that exosomes secreted by mBMSCs promote the polarization of M2 macrophages. Moreover, all these effects can be blocked by the WRWWWW (WRW4, H-Trp-Arg-Trp-Trp-Trp-Trp-OH) peptide, an inhibitor of the FPR2 pathway. Finally, we confirmed the effect of miRNA-146 in exosomes secreted by mBMSCs on promoting the polarization of M2 macrophages. Conclusion Our findings demonstrated the potential value of the WKYMVm peptide in promoting the secretion of exosomes by mBMSCs and eventually leading to M2 macrophage polarization. We believe that our study could provide a research basis for the clinical treatment of bone defects.
Collapse
|
30
|
Weng Y, Wang Z, Sun J, Han L, Li X, Wu B, Dong Q, Liu Y. Engineering of axially vascularized bone tissue using natural coral scaffold and osteogenic bone marrow mesenchymal stem cell sheets. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2021; 122:397-404. [PMID: 33529842 DOI: 10.1016/j.jormas.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Blood supply remains one of the obstacles to large bone tissue engineering. This study aimed to generate vascularized bone tissue by inducing axial vascularization into a construct combining natural coral scaffold and a bone marrow mesenchymal stem cells (BMSCs) sheet. MATERIAL AND METHODS Isolated BMSCs were cultured to form an osteogenic cell sheet using a continuous culture method. Natural coral scaffolds were prepared into customized shape with a cylinder of 20 mm length, 8 mm in outer diameter and 5 mm in inner diameter. Then, the freed superficial inferior epigastric vessel of rabbits was first wrapped with a cell sheet, and then inserted into the central passage of the scaffold, after being wrapped with another cell sheet, the complexes were implanted subcutaneously into a rabbit groin area. In contrast, the sheet-scaffold construct that implanted into groin subcutaneous area of the other side of the same rabbit with the distal end of the blood vessel was ligated, which was considered as control. New bone and vascularization formation were evaluated at 12 weeks postoperatively. RESULTS The volume of new bone formation and amount of capillary infiltration in the vascular circulation group were significantly greater than that in the vascular ligation group, which suggested that insertion of axial vessels could significantly promote angiogenesis and osteogenesis of the tissue-engineered bone. CONCLUSIONS These findings indicate that inserting an arteriovenous bundle into the constructs of mesenchymal stem cell sheet and coral has great potential for clinical applications to repair large bone defects.
Collapse
Affiliation(s)
- Yanming Weng
- Department of Stomatology, General Hospital of Central Theater of PLA, Wuhan 430070, China
| | - Zhifa Wang
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Jianwei Sun
- School of Stomatology, Guangzhou Special Service Recuperation Center of PLA Rocket Force, Guangzhou 510010, China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingshan Dong
- Department of Stomatology, General Hospital of Central Theater of PLA, Wuhan 430070, China
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
31
|
Lee DJ, Miguez P, Kwon J, Daniel R, Padilla R, Min S, Zalal R, Ko CC, Shin HW. Decellularized pulp matrix as scaffold for mesenchymal stem cell mediated bone regeneration. J Tissue Eng 2020; 11:2041731420981672. [PMID: 33414903 PMCID: PMC7750895 DOI: 10.1177/2041731420981672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/28/2020] [Indexed: 02/01/2023] Open
Abstract
Scaffolds that are used for bone repair should provide an adequate environment for biomineralization by mesenchymal stem cells (MSCs). Recently, decellularized pulp matrices (DPM) have been utilized in endodontics for their high regenerative potential. Inspired by the dystrophic calcification on the pulp matrix known as pulp stone, we developed acellular pulp bioscaffolds and examined their potential in facilitating MSCs mineralization for bone defect repair. Pulp was decellularized, then retention of its structural integrity was confirmed by histological, mechanical, and biochemical evaluations. MSCs were seeded and proliferation, osteogenic gene expression, and biomineralization were assessed to verify DPM's osteogenic effects in vitro. MicroCT, energy-dispersive X-ray (EDX), and histological analyses were used to confirm that DPM seeded with MSCs result in greater mineralization on rat critical-sized defects than that without MSCs. Overall, our study proves DPM's potential to serve as a scaffolding material for MSC-mediated bone regeneration for future craniofacial bone tissue engineering.
Collapse
Affiliation(s)
- Dong Joon Lee
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia Miguez
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Periodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Jane Kwon
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Neurology and Neurosurgery, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Renie Daniel
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Ricardo Padilla
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel Min
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Rahim Zalal
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Ching-Chang Ko
- Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Hae Won Shin
- Department of Neurology and Neurosurgery, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Miszuk JM, Hu J, Sun H. Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:6538-6545. [PMID: 33163910 DOI: 10.1021/acsabm.0c00946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repair of large bone defects using biomaterials-based strategies has been a significant challenge due to the complex characteristics required for tissue regeneration, especially in the craniofacial region. Tissue engineering strategies aimed at restoration of function face challenges in material selection, synthesis technique, and choice of bioactive factor release in combination with all aforementioned facets. Biomimetic nanofibrous (NF) scaffolds are attractive vehicles for tissue engineering due to their ability to promote endogenous bone regeneration by mimicking the shape and chemistry of natural bone extracellular matrix (ECM). To date, several techniques for generation of biomimetic NF scaffolds have been discovered, each possessing several advantages and drawbacks. This spotlight highlights two of the more popular techniques for biomimetic NF scaffold synthesis: electrospinning and thermally-induced phase separation (TIPS), covering development from inception in each technique as well as discussing the most recent innovations in each fabrication method.
Collapse
Affiliation(s)
- Jacob M Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Aghali A, Arman HE. Photoencapsulated-BMP2 in visible light-cured thiol-acrylate hydrogels for craniofacial bone tissue engineering. Regen Med 2020; 15:2099-2113. [PMID: 33211625 DOI: 10.2217/rme-2020-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
Aim: The study aimed to examine the impact of crosslinking BMP2 in biodegradable visible light-cured thiol-acrylate hydrogels. Materials & methods: BMP2 was photoencapsulated in 10 wt% PEG-diacrylate hydrogels with or without immortalized mouse bone marrow stromal cells (BMSC). Results & conclusion: Photoencapsulated-BMSC with BMP2 (BMBMP2) showed a significantly (p < 0.05) increased level in metabolic activity, by 54.61%, compared with photoencapsulated-BMSC at day 3. Furthermore, BMBMP2 groups showed significantly increased levels in ALP activity compared with BMSC at days, 1, 3, 7 (p < 0.01) and 10 (p < 0.05). This study shows promising results photoencapsulating BMP2 in thiol-acrylate hydrogels for craniofacial bone tissue engineering applications.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| | - Huseyin E Arman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Smirani R, Rémy M, Devillard R, Naveau A. Engineered Prevascularization for Oral Tissue Grafting: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:383-398. [DOI: 10.1089/ten.teb.2020.0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rawen Smirani
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, CHU Bordeaux, 33000, Bordeaux, France
| | - Murielle Rémy
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, 33000, Bordeaux, France
| | - Raphael Devillard
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, CHU Bordeaux, 33000, Bordeaux, France
| | - Adrien Naveau
- Univ. Bordeaux, INSERM, Laboratoire Bioingénierie Tissulaire (BioTis), U1026, CHU Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
35
|
Xing X, Han S, Li Z, Li Z. Emerging role of exosomes in craniofacial and dental applications. Theranostics 2020; 10:8648-8664. [PMID: 32754269 PMCID: PMC7392016 DOI: 10.7150/thno.48291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes, a specific subgroup of extracellular vesicles that are secreted by cells, have been recognized as important mediators of intercellular communication. They participate in a diverse range of physiological and pathological processes. Given the capability of exosomes to carry molecular cargos and transfer bioactive components, exosome-based disease diagnosis and therapeutics have been extensively studied over the past few decades. Herein, we highlight the emerging applications of exosomes as biomarkers and therapeutic agents in the craniofacial and dental field. Moreover, we discuss the current challenges and future perspectives of exosomes in clinical applications.
Collapse
Affiliation(s)
| | | | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Wang Z, Han L, Sun T, Wang W, Li X, Wu B. Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. J Biomed Mater Res A 2020; 109:538-550. [PMID: 32515158 DOI: 10.1002/jbm.a.37036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Cell sheet techniques are widely used in bone engineering. However, vascularization remains a challenge in fabricating vascularized engineered bone. The goal of this study was to induce adipose-derived stem cell (ADSC) osteogenic and angiogenic lineage differentiation and investigate the use of bidiretionally differentiated ADSCs for bone regeneration. ADSCs were cultured to form an osteogenic cell sheet. Other ADSCs were induced to differentiate into endothelial progenitor cells (EPCs), which were identified and characterized by morphological observation and CD31 immunofluorescent staining. Then, the ADSC sheet-EPC complexes were implanted subcutaneously into nude mice, while ADSC sheets alone were implanted as a control. After 8 weeks of transplantation, microcomputed tomography (micro-CT) and histological observation were used to assess bone formation. We then implanted the complexes in calvarial defects in rabbits and assessed bone repair by micro-CT and histological analysis. The ADSC sheets consisted of multiple layers of cells and extracellular matrix. The obtained EPCs formed capillary-like structures and expressed the specific antigen marker CD31. The osteogenic ADSC sheet-EPC complexes formed dense and well-vascularized new bone tissue at 8 weeks after implantation. Bone density was significantly lower in the control group than in the complex group (p < .05). In addition, the reconstruction of calvarial defects in rabbits in complex group was obviously greater than that in the control group (p < .05). These results suggested that the approach of engineering bone tissue with bidiretionally differentiated ADSCs enabled bone regeneration, thus offering a promising strategy for repairing bone defects.
Collapse
Affiliation(s)
- Zhifa Wang
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China.,Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Tianyu Sun
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Weijian Wang
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
37
|
Nie Z, Wang X, Ren L, Kang Y. Development of a decellularized porcine bone matrix for potential applications in bone tissue regeneration. Regen Med 2020; 15:1519-1534. [DOI: 10.2217/rme-2019-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: The objectives of this study were to develop a new decellularized bone matrix (DBM) and to investigate its effect on the in vitro cell behavior of human bone marrow-derived mesenchymal stem cells (hMSCs), compared with porous β-tricalcium phosphate (β-TCP) scaffolds. Materials & methods: Triton X-100 and deoxycholate sodium solution, combining DNase I and RNase, were used to decellularize porcine bones. The DBM were then characterized by DNA contents and matrix components. hMSCs were then seeded on the DBM and β-TCP scaffolds to study cell behavior. Results: Results showed that most porcine cells were removed and the matrix components of the DBM were maintained. Cell culture results showed that DBM promoted cell attachment and proliferation of hMSCs but did not significantly promote the gene expression of osteogenic genes, compared with β-TCP scaffolds. Conclusion: DBM has similar function on cell behavior to β-TCP scaffolds that have promising potential in bone tissue regeneration.
Collapse
Affiliation(s)
- Ziyan Nie
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuesong Wang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Integrative Biology Program, Department of Biological Science, College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
38
|
Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 2020; 241:119909. [PMID: 32135355 DOI: 10.1016/j.biomaterials.2020.119909] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Achievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in hydrogels based on fibrin and plasmonic gold nanoparticles that transduced incident energy of an NIR laser into heat. In the presence of dimerizer, photoinduced mild hyperthermia induced the release of bioactive BMP-2 from NIR-responsive cell constructs. A critical size bone defect, created in calvaria of immunocompetent mice, was filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the heat-activated and dimerizer-dependent gene circuit. In animals that were treated with dimerizer, NIR irradiation of implants induced BMP-2 production in the bone lesion. Induction of NIR-responsive cell constructs conditionally expressing BMP-2 in bone defects resulted in the formation of new mineralized tissue, thus indicating the therapeutic potential of the technological platform.
Collapse
|
39
|
Paré A, Charbonnier B, Tournier P, Vignes C, Veziers J, Lesoeur J, Laure B, Bertin H, De Pinieux G, Cherrier G, Guicheux J, Gauthier O, Corre P, Marchat D, Weiss P. Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair. ACS Biomater Sci Eng 2020; 6:553-563. [PMID: 32158932 PMCID: PMC7064275 DOI: 10.1021/acsbiomaterials.9b01241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Finding alternative strategies for the regeneration of craniofacial bone defects (CSD), such as combining a synthetic ephemeral calcium phosphate (CaP) implant and/or active substances and cells, would contribute to solving this reconstructive roadblock. However, CaP's architectural features (i.e., architecture and composition) still need to be tailored, and the use of processed stem cells and synthetic active substances (e.g., recombinant human bone morphogenetic protein 2) drastically limits the clinical application of such approaches. Focusing on solutions that are directly transposable to the clinical setting, biphasic calcium phosphate (BCP) and carbonated hydroxyapatite (CHA) 3D-printed disks with a triply periodic minimal structure (TPMS) were implanted in calvarial critical-sized defects (rat model) with or without addition of total bone marrow (TBM). Bone regeneration within the defect was evaluated, and the outcomes were compared to a standard-care procedure based on BCP granules soaked with TBM (positive control). After 7 weeks, de novo bone formation was significantly greater in the CHA disks + TBM group than in the positive controls (3.33 mm3 and 2.15 mm3, respectively, P=0.04). These encouraging results indicate that both CHA and TPMS architectures are potentially advantageous in the repair of CSDs and that this one-step procedure warrants further clinical investigation.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Baptiste Charbonnier
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Tournier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Julie Lesoeur
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Boris Laure
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
| | - Hélios Bertin
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - Gonzague De Pinieux
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Grégory Cherrier
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Jérome Guicheux
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de rechecherche et d’investigation préclinique (CRIP), 101 route de Gachet, Nantes F - 44300, France
| | - Pierre Corre
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| |
Collapse
|
40
|
Paré A, Bossard A, Laure B, Weiss P, Gauthier O, Corre P. Reconstruction of segmental mandibular defects: Current procedures and perspectives. Laryngoscope Investig Otolaryngol 2019; 4:587-596. [PMID: 31890875 PMCID: PMC6929581 DOI: 10.1002/lio2.325] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 11/11/2022] Open
Abstract
Background The reconstruction of segmental mandibular defects remains a challenge for the reconstructive surgeon, from both a functional and an esthetic point of view. Methods This clinical review examines the different techniques currently in use for mandibular reconstruction as related to a range of etiologies, including the different bone donor sites, the alternatives to free flaps (FFs), as well as the contribution of computer‐assisted surgery. Recent progress and the perspectives in bone tissue engineering (BTE) are also discussed. Results Osseous FF allows reliable and satisfying outcomes. However, locoregional flap, distraction osteogenesis, or even induced membrane techniques are other potential options in less favorable cases. Obtaining an engineered bone with satisfactory mechanical properties and sufficient vascular supply requires further investigations. Conclusions Osseous FF procedure remains the gold standard for segmental mandible reconstruction. BTE strategies offer promising alternatives.
Collapse
Affiliation(s)
- Arnaud Paré
- Service de Chirurgie Maxillo Faciale Plastique et Brulés, Hôpital Trousseau, CHU de Tours Tours France.,Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,UFR Médecine Université de Tours Tours France.,UFR Odontologie Université́ de Nantes Nantes France
| | - Adeline Bossard
- ONIRIS Nantes-Atlantic College of Veterinary Medicine Centre de Rechecherche et D'investigation Préclinique (CRIP) Nantes France
| | - Boris Laure
- Service de Chirurgie Maxillo Faciale Plastique et Brulés, Hôpital Trousseau, CHU de Tours Tours France
| | - Pierre Weiss
- Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,UFR Odontologie Université́ de Nantes Nantes France
| | - Olivier Gauthier
- Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine Centre de Rechecherche et D'investigation Préclinique (CRIP) Nantes France
| | - Pierre Corre
- Laboratoire Regenerative Medicine and Skeleton RMeS, France INSERM, U 1229 Nantes France.,UFR Odontologie Université́ de Nantes Nantes France.,Service de Chirurgie Maxillo-Faciale et Stomatologie CHU de Nantes Nantes France
| |
Collapse
|
41
|
Inhibiting expression of Cxcl9 promotes angiogenesis in MSCs-HUVECs co-culture. Arch Biochem Biophys 2019; 675:108108. [PMID: 31550444 DOI: 10.1016/j.abb.2019.108108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/18/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
The insufficient vascularization is a major challenge in bone tissue engineering, leading to partial necrosis of the implant. Pre-vascularization is a promising way via in vitro cells co-culture strategies using osteogenic cells and vasculogenic cells, and the cross-talk of cells is essential. In the present study, the effect of rat bone-marrow derived mesenchymal stem cells (BMSCs) on angiogenic capability of human umbilical vein endothelial cells (HUVECs) in growth medium (GM) and osteogenic induction medium (OIM) was investigated. It was demonstrated that cells co-cultured in OIM showed high efficiency in osteogenesis but failed to form capillary-like structure while the results of co-culture in GM were the opposite. By comparing the angiogenic capacity of co-cultures under GM and OIM, chemokine (C-X-C motif) ligand 9 (Cxcl9), secreted by BMSCs in OIM, was identified to be an angiostatic factor to counter-regulate vascular endothelial growth factor (VEGF) and prevent its binding to HUVECs, which abrogated angiogenesis of MSCs-ECs co-culture. Moreover, Cxcl9 was proved to suppress the osteogenic differentiation of BMSCs monoculture. The molecular mechanism of Cxcl9 activation in BMSCs involved mTOR/STAT1 signaling pathway. Therefore, blocking this signaling pathway via rapamycin addition resulted in the inhibition of Cxcl9 and improvement of osteogenic differentiation and angiogenic capacity of co-culture in OIM. These results reveal that Cxcl9 is a negative modulator of angiogenesis and osteogenesis, and its inhibition could promote pre-vascularization of bone tissue engineering.
Collapse
|
42
|
Martín-Del-Campo M, Rosales-Ibañez R, Rojo L. Biomaterials for Cleft Lip and Palate Regeneration. Int J Mol Sci 2019; 20:E2176. [PMID: 31052503 PMCID: PMC6540257 DOI: 10.3390/ijms20092176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Craniofacial bone defect anomalies affect both soft and hard tissues and can be caused by trauma, bone recessions from tumors and cysts, or even from congenital disorders. On this note, cleft/lip palate is the most prevalent congenital craniofacial defect caused by disturbed embryonic development of soft and hard tissues around the oral cavity and face area, resulting in most cases, of severe limitations with chewing, swallowing, and talking as well as problems of insufficient space for teeth, proper breathing, and self-esteem problems as a consequence of facial appearance. Spectacular advances in regenerative medicine have arrived, giving new hope to patients that can benefit from new tissue engineering therapies based on the supportive action of 3D biomaterials together with the synergic action of osteo-inductive molecules and recruited stem cells that can be driven to the process of bone regeneration. However, few studies have focused on the application of tissue engineering to the regeneration of the cleft/lip and only a few have reported significant advances to offer real clinical solutions. This review provides an updated and deep analysis of the studies that have reported on the use of advanced biomaterials and cell therapies for the regeneration of cleft lip and palate regeneration.
Collapse
Affiliation(s)
- Marcela Martín-Del-Campo
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, Av. Dr. Salvador Nava No. 2, Zona Universitaria, San Luis Potosí (S.L.P.) 78290, Mexico.
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - Raúl Rosales-Ibañez
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios N 1, Iztacala Tlalnepantla, Estado de Mexico 54090, Mexico.
| | - Luis Rojo
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva, 3, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red CIBER-BBN, Calle Monforte de Lemos S/N, 28029 Madrid, Spain.
| |
Collapse
|
43
|
Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering. Molecules 2019; 24:molecules24081633. [PMID: 31027249 PMCID: PMC6515047 DOI: 10.3390/molecules24081633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022] Open
Abstract
Fibrous hydrogel scaffolds have recently attracted increasing attention for tissue engineering applications. While a number of approaches have been proposed for fabricating microfibers, it remains difficult for current methods to produce materials that meet the essential requirements of being simple, flexible and bio-friendly. It is especially challenging to prepare cell-laden microfibers which have different structures to meet the needs of various applications using a simple device. In this study, we developed a facile two-flow microfluidic system, through which cell-laden hydrogel microfibers with various structures could be easily prepared in one step. Aiming to meet different tissue engineering needs, several types of microfibers with different structures, including single-layer, double-layer and hollow microfibers, have been prepared using an alginate-methacrylated gelatin composite hydrogel by merely changing the inner and outer fluids. Cell-laden single-layer microfibers were obtained by subsequently seeding mouse embryonic osteoblast precursor cells (MC3T3-E1) cells on the surface of the as-prepared microfibers. Cell-laden double-layer and hollow microfibers were prepared by directly encapsulating MC3T3-E1 cells or human umbilical vein endothelial cells (HUVECs) in the cores of microfibers upon their fabrication. Prominent proliferation of cells happened in all cell-laden single-layer, double-layer and hollow microfibers, implying potential applications for them in tissue engineering.
Collapse
|
44
|
Solakoglu Ö, Götz W, Kiessling MC, Alt C, Schmitz C, Alt EU. Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors: A first-in-human case report and literature review. World J Stem Cells 2019; 11:124-146. [PMID: 30842809 PMCID: PMC6397807 DOI: 10.4252/wjsc.v11.i2.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Novel strategies are needed for improving guided bone regeneration (GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation (GBR-MSA) and in lateral alveolar ridge augmentation (LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells (UA-ADRCs), fraction 2 of plasma rich in growth factors (PRGF-2) and an osteoinductive scaffold (OIS) (UA-ADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone (PRGF-2/OIS) in GBR-MSA/LRA. CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBR-MSA/LRA. At the latter time point implants were placed. Radiographs (32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic, histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS. CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.
Collapse
Affiliation(s)
- Önder Solakoglu
- External Visiting Lecturer, Dental Department of the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Clinic for Periodontology and Implantology, Hamburg 22453, Germany.
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn 53111, Germany
| | - Maren C Kiessling
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Eckhard U Alt
- InGeneron GmbH, Munich 80331, Germany
- InGeneron, Inc., Houston, TX 77054, United States
- Isar Klinikum Munich, 80331 Munich, Germany
| |
Collapse
|
45
|
Veselá B, Švandová E, Bobek J, Lesot H, Matalová E. Osteogenic and Angiogenic Profiles of Mandibular Bone-Forming Cells. Front Physiol 2019; 10:124. [PMID: 30837894 PMCID: PMC6389724 DOI: 10.3389/fphys.2019.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 11/24/2022] Open
Abstract
The mandible is a tooth-bearing structure involving one of the most prominent bones of the facial region. Mesenchymal cell condensation is the first morphological sign of osteogenesis, and several studies have focused on this stage also in the mandible. Little information is available about the early post-condensation period, during which avascular soft condensation turns into vascularized bone, and all three major bone cell types, osteoblasts, osteocytes, and osteoclasts, differentiate. In the mouse first lower molar region, the post-condensation period corresponds to the prenatal days 13–15. If during this critical period, when osteogenesis reaches the point of major bone cell differentiation, vascularization already has to play a critical role, one should be able to show molecular changes which support both types of cellular events. The aim of the present report was to follow in organ context the expression of major osteogenic and angiogenic markers and identify those that are up- or downregulated during this period. To this end, PCR Array was applied covering molecules involved in osteoblastic cell proliferation, commitment or differentiation, extracellular matrix (ECM) deposition, mineralisation, osteocyte maturation, angiogenesis, osteoclastic differentiation, and initial bone remodeling. From 161 analyzed osteogenic and angiogenic factors, the expression of 37 was altered when comparing the condensation stage with the bone stage. The results presented here provide a molecular survey of the early post-condensation stage of mandibular/alveolar bone development which has not yet been investigated in vivo.
Collapse
Affiliation(s)
- Barbora Veselá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Eva Švandová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Jan Bobek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Hervé Lesot
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Eva Matalová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|