1
|
Lee YH, Jung J, Hong JY. Oral Microbial Changes in Oral Squamous Cell Carcinoma: Focus on Treponema denticola, Lactobacillus casei, and Candida albicans. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1753. [PMID: 39596938 PMCID: PMC11596053 DOI: 10.3390/medicina60111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: In this study, we aimed to explore the oral bacteria and fungi that can help discern oral squamous cell carcinoma (OSCC) and investigate the correlations between multiple key pathogens. Materials and Methods: Twelve participants (8 females and 4 males; mean age, 54.33 ± 20.65 years) were prospectively recruited into three groups: Group 1: healthy control, Group 2: patients with stomatitis, and Group 3: patients with OSCC, with 4 individuals in each group. Unstimulated whole saliva samples from these participants were analyzed using real-time PCR to assess the presence and abundance of 14 major oral bacterial species and Candida albicans. Results: The analysis revealed significant differences for certain microorganisms, namely, Treponema denticola (T. denticola), Lactobacillus casei (L. casei), and Candida albicans. T. denticola was most abundant in the OSCC group (5,358,692.95 ± 3,540,767.33), compared to the stomatitis (123,355.54 ± 197,490.86) and healthy control (9999.21 ± 11,998.40) groups. L. casei was undetectable in the healthy control group but was significantly more abundant in the stomatitis group (1653.94 ± 2981.98) and even higher in the OSCC group (21,336.95 ± 9258.79) (p = 0.001). A similar trend was observed for C. albicans, with DNA copy numbers rising from the healthy control (464.29 ± 716.76) to the stomatitis (1861.30 ± 1206.15) to the OSCC group (9347.98 ± 5128.54) (p = 0.006). The amount of T. denticola was positively correlated with L. casei (r = 0.890, p < 0.001) and C. albicans (r = 0.724, p = 0.008). L. casei's DNA copy number was strongly correlated with C. albicans (r = 0.931, p < 0.001). These three oral microbes exhibited strong positive correlations with each other and had various direct or indirect relationships with other species. Conclusions: In the OSCC group, T. denticola, L. casei, and C. albicans exhibited strong positive correlations with one another, further emphasizing the need for a deeper understanding of the complex microbial interactions in the OSCC environment.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, #613 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Junho Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Ji-Youn Hong
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| |
Collapse
|
2
|
Gonzalez Agurto M, Olivares N, Canedo-Marroquin G, Espinoza D, Tortora SC. The Intersection of the Oral Microbiome and Salivary Metabolites in Head and Neck Cancer: From Diagnosis to Treatment. Cancers (Basel) 2024; 16:3545. [PMID: 39456639 PMCID: PMC11506592 DOI: 10.3390/cancers16203545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Head and neck cancers (HNCs) are the seventh most common cancer worldwide, accounting for 4-5% of all malignancies. Salivary metabolites, which serve as key metabolic intermediates and cell-signalling molecules, are emerging as potential diagnostic biomarkers for HNC. While current research has largely concentrated on these metabolites as biomarkers, a critical gap remains in understanding their fluctuations before and after treatment, as well as their involvement in oral side effects. Recent studies emphasise the role of the oral microbiome and its metabolic activity in cancer progression and treatment efficacy by bacterial metabolites and virulence factors. Oral bacteria, such as P. gingivalis and F. nucleatum, contribute to a pro-inflammatory environment that promotes tumour growth. Additionally, F. nucleatum enhances its virulence through flagellar assembly and iron transport mechanisms, facilitating tumour invasion and survival. Moreover, alterations in the oral microbiome can influence chemotherapy efficacy and toxicity through the microbiota-host irinotecan axis, highlighting the complex interplay between microbial communities and therapeutic outcomes. Salivary metabolite profiles are influenced by factors such as gender, methods, and patient habits like smoking-a major risk factor for HNC. Radiotherapy (RT), a key treatment for HNC, often causes side effects such as xerostomia, oral mucositis, and swallowing difficulties which impact survivors' quality of life. Intensity-modulated radiotherapy (IMRT) aims to improve treatment outcomes and minimise side effects but can still lead to significant salivary gland dysfunction and associated complications. This review underscores the microbial and host interactions affecting salivary metabolites and their implications for cancer treatment and patient outcomes.
Collapse
Affiliation(s)
| | - Nicolas Olivares
- Faculty of Dentistry, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Gisela Canedo-Marroquin
- Faculty of Dentistry, Universidad de los Andes, Santiago 7620086, Chile;
- Faculty of Dentistry, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
- Millennium Institute on Immunology and Immunotherapy (MIII), Santiago 8331150, Chile
| | - Daniela Espinoza
- Faculty of Dentistry, Universidad Mayor, Santiago 8580745, Chile
| | - Sofia C. Tortora
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Baima G, Minoli M, Michaud DS, Aimetti M, Sanz M, Loos BG, Romandini M. Periodontitis and risk of cancer: Mechanistic evidence. Periodontol 2000 2024; 96:83-94. [PMID: 38102837 PMCID: PMC11579815 DOI: 10.1111/prd.12540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
This review aims to critically analyze the pathways of interaction and the pathogenic mechanisms linking periodontitis and oral bacteria with the initiation/progression of cancer at different body compartments. A higher risk of head and neck cancer has been consistently associated with periodontitis. This relationship has been explained by the local promotion of dysbiosis, chronic inflammation, immune evasion, and direct (epi)genetic damage to epithelial cells by periodontal pathobionts and their toxins. Epidemiological reports have also studied a possible link between periodontitis and the incidence of other malignancies at distant sites, such as lung, breast, prostate, and digestive tract cancers. Mechanistically, different pathways have been involved, including the induction of a chronic systemic inflammatory state and the spreading of oral pathobionts with carcinogenic potential. Indeed, periodontitis may promote low-grade systemic inflammation and phenotypic changes in the mononuclear cells, leading to the release of free radicals and cytokines, as well as extracellular matrix degradation, which are all mechanisms involved in carcinogenic and metastatic processes. Moreover, the transient hematogenous spill out or micro-aspiration/swallowing of periodontal bacteria and their virulence factors (i.e., lipopolysaccharides, fimbriae), may lead to non-indigenous bacterial colonization of multiple microenvironments. These events may in turn replenish the tumor-associated microbiome and thus influence the molecular hallmarks of cancer. Particularly, specific strains of oral pathobionts (e.g., Porphyromonas gingivalis and Fusobacterium nucleatum) may translocate through the hematogenous and enteral routes, being implicated in esophageal, gastric, pancreatic, and colorectal tumorigenesis through the modulation of the gastrointestinal antitumor immune system (i.e., tumor-infiltrating T cells) and the increased expression of pro-inflammatory/oncogenic genes. Ultimately, the potential influence of common risk factors, relevant comorbidities, and upstream drivers, such as gerovulnerability to multiple diseases, in explaining the relationship cannot be disregarded. The evidence analyzed here emphasizes the possible relevance of periodontitis in cancer initiation/progression and stimulates future research endeavors.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental SchoolUniversity of TurinTurinItaly
| | - Margherita Minoli
- Department of PeriodontologyUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Dominique S. Michaud
- Department of Public Health and Community MedicineTufts University School of MedicineBostonMassachusettsUSA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental SchoolUniversity of TurinTurinItaly
| | - Mariano Sanz
- Faculty of OdontologyUniversity ComplutenseMadridSpain
- Department of Periodontology, Faculty of DentistryUniversity of OsloOsloNorway
| | - Bruno G. Loos
- Department of Periodontology, ACTA ‐ Academic Centre for Dentistry AmsterdamUniversity of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Mario Romandini
- Department of Periodontology, Faculty of DentistryUniversity of OsloOsloNorway
| |
Collapse
|
4
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
5
|
Bai L, Yang M, Wu J, You R, Chen Q, Cheng Y, Qian Z, Yang X, Wang Y, Liu Y. An injectable adhesive hydrogel for photothermal ablation and antitumor immune activation against bacteria-associated oral squamous cell carcinoma. Acta Biomater 2024; 186:229-245. [PMID: 39038749 DOI: 10.1016/j.actbio.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Pathogenic bacteria are closely associated with the occurrence, development and metastasis of oral squamous cell carcinoma (OSCC). Antibacterial therapy has been considered an enhancement strategy to suppress bacteria-associated tumors and promote anti-tumor immune responses. Herein, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for the in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis (Pg), one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, composed of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820, was prepared using a simple dissolve-dry-swell solvent exchange method. Upon 808 nm laser irradiation, PNIPAM/DL@TIR exerted photothermal effects to ablate Pg-colonized OSCC and generate dual tumor and bacterial antigens. Owing to its large number of catechol groups, PNIPAM/DL@TIR efficiently captured these antigens to form an in situ antigen repository, thereby eliciting robust and durable antitumor immune responses. Proteomic analysis revealed that the captured antigens comprised both tumor neoantigens and bacterial antigens. The catechol groups endowed PNIPAM/DL@TIR with antioxidant activity, which was also conducive to stimulating antitumor immunity. Altogether, this study develops an injectable adhesive hydrogel and provides a combination strategy for treating bacteria-associated OSCC. STATEMENT OF SIGNIFICANCE: In this study, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis, one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, which consists of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820 exhibited outstanding photothermal performance. Owing to the presence of catechol groups, PNIPAM/DL@TIR has good bioadhesive properties and can capture protein antigens to form in situ antigen repository, thus initiating robust and long-term antitumor immune responses. In addition, PNIPAM/DL@TIR exhibited strong antioxidant activity that is favorable for promoting antitumor immunity. In the mouse model of OSCC with bacterial infection, PNIPAM/DL@TIR not only ablated the primary tumors upon NIR laser irradiation, but also induced tumor and bacterial vaccination in situ to suppress distant tumors and lung metastasis.
Collapse
Affiliation(s)
- Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jiaxin Wu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran You
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Cheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhanyin Qian
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoying Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
6
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Singh S, Yadav PK, Singh AK. Structure based High-Throughput Virtual Screening, Molecular Docking and Molecular Dynamics Study of anticancer natural compounds against fimbriae (FimA) protein of Porphyromonas gingivalis in oral squamous cell carcinoma. Mol Divers 2024; 28:1141-1152. [PMID: 37043160 DOI: 10.1007/s11030-023-10643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/25/2023] [Indexed: 04/13/2023]
Abstract
Oral cancer is among the most common cancer in the world. Tobacco, alcohol, and viruses have been regarded as a well- known risk factors of OCC however, 15% of OSCC cases occurred each year without these known risk factors. Recently a myriad of studies has shown that bacterial infections lead to cancer. Accumulated shreds of evidence have demonstrated the role of Porphyromonas gingivalis (P. gingivalis) in OSCC. The virulence factor FimA of P. gingivalis activates the oncogenic pathways in OSCC by upregulating various cytokines. It also led to the inactivation of a tumor suppressor protein p53. The present Insilico study uses High-Throughput Virtual Screening, molecular docking, and molecular dynamics techniques to find the potential compounds against the target protein FimA. The goal of this study is to identify the anti-cancer lead compounds retrieved from natural sources that can be used to develop potent drug molecules to treat P.gingivalis-related OSCC. The anticancer natural compounds library was screened to identify the potential lead compounds. Furthermore, these lead compounds were subjected to precise docking, and based on the docking score potential lead compounds were identified. The top docked receptor-ligand complex was subjected to molecular dynamics simulation. A study of this insilico finding provides potent lead molecules which help in the development of therapeutic drugs against the target protein FimA in OSCC.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
8
|
Su L, Yang R, Sheng Y, Ullah S, Zhao Y, Shunjiayi H, Zhao Z, Wang Q. Insights into the oral microbiota in human systemic cancers. Front Microbiol 2024; 15:1369834. [PMID: 38756728 PMCID: PMC11098135 DOI: 10.3389/fmicb.2024.1369834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The oral cavity stands as one of the pivotal interfaces facilitating the intricate interaction between the human body and the external environment. The impact of diverse oral microorganisms on the emergence and progression of various systemic cancers, typified by oral cancer, has garnered increasing attention. The potential pathogenicity of oral bacteria, notably the anaerobic Porphyromonas gingivalis and Fusobacterium nucleatum, has been extensively studied and exhibits obvious correlation with different carcinoma types. Furthermore, oral fungi and viruses are closely linked to oropharyngeal carcinoma. Multiple potential mechanisms of oral microbiota-induced carcinogenesis have been investigated, including heightened inflammatory responses, suppression of the host immune system, influence on the tumor microenvironment, anti-apoptotic activity, and promotion of malignant transformation. The disturbance of microbial equilibrium and the migration of oral microbiota play a pivotal role in facilitating oncogenic functions. This review aims to comprehensively outline the pathogenic mechanisms by which oral microbiota participate in carcinogenesis. Additionally, this review delves into their potential applications in cancer prevention, screening, and treatment. It proves to be a valuable resource for researchers investigating the intricate connection between oral microbiota and systemic cancers.
Collapse
Affiliation(s)
- Lan Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Rui Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yanan Sheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saif Ullah
- Department of Microbiology School of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hu Shunjiayi
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Nie F, Zhang J, Tian H, Zhao J, Gong P, Wang H, Wang S, Yang P, Yang C. The role of CXCL2-mediated crosstalk between tumor cells and macrophages in Fusobacterium nucleatum-promoted oral squamous cell carcinoma progression. Cell Death Dis 2024; 15:277. [PMID: 38637499 PMCID: PMC11026399 DOI: 10.1038/s41419-024-06640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Dysbiosis of the oral microbiota is related to chronic inflammation and carcinogenesis. Fusobacterium nucleatum (Fn), a significant component of the oral microbiota, can perturb the immune system and form an inflammatory microenvironment for promoting the occurrence and progression of oral squamous cell carcinoma (OSCC). However, the underlying mechanisms remain elusive. Here, we investigated the impacts of Fn on OSCC cells and the crosstalk between OSCC cells and macrophages. 16 s rDNA sequencing and fluorescence in situ hybridization verified that Fn was notably enriched in clinical OSCC tissues compared to paracancerous tissues. The conditioned medium co-culture model validated that Fn and macrophages exhibited tumor-promoting properties by facilitating OSCC cell proliferation, migration, and invasion. Besides, Fn and OSCC cells can recruit macrophages and facilitate their M2 polarization. This crosstalk between OSCC cells and macrophages was further enhanced by Fn, thereby amplifying this positive feedback loop between them. The production of CXCL2 in response to Fn stimulation was a significant mediator. Suppression of CXCL2 in OSCC cells weakened Fn's promoting effects on OSCC cell proliferation, migration, macrophage recruitment, and M2 polarization. Conversely, knocking down CXCL2 in macrophages reversed the Fn-induced feedback effect of macrophages on the highly invasive phenotype of OSCC cells. Mechanistically, Fn activated the NF-κB pathway in both OSCC cells and macrophages, leading to the upregulation of CXCL2 expression. In addition, the SCC7 subcutaneous tumor-bearing model in C3H mice also substantiated Fn's ability to enhance tumor progression by facilitating cell proliferation, activating NF-κB signaling, up-regulating CXCL2 expression, and inducing M2 macrophage infiltration. However, these effects were reversed by the CXCL2-CXCR2 inhibitor SB225002. In summary, this study suggests that Fn contributes to OSCC progression by promoting tumor cell proliferation, macrophage recruitment, and M2 polarization. Simultaneously, the enhanced CXCL2-mediated crosstalk between OSCC cells and macrophages plays a vital role in the pro-cancer effect of Fn.
Collapse
Affiliation(s)
- Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Jie Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Haoyang Tian
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Jingjing Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Pizhang Gong
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Huiru Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Suli Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Sukmana BI, Saleh RO, Najim MA, AL-Ghamdi HS, Achmad H, Al-Hamdani MM, Taher AAY, Alsalamy A, Khaledi M, Javadi K. Oral microbiota and oral squamous cell carcinoma: a review of their relation and carcinogenic mechanisms. Front Oncol 2024; 14:1319777. [PMID: 38375155 PMCID: PMC10876296 DOI: 10.3389/fonc.2024.1319777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common type of head and neck cancer worldwide. Emerging research suggests a strong association between OSCC and the oral microbiota, a diverse community of bacteria, fungi, viruses, and archaea. Pathogenic bacteria, in particular Porphyromonas gingivalis and Fusobacterium nucleatum, have been closely linked to OSCC. Moreover, certain oral fungi, such as Candida albicans, and viruses, like the human papillomavirus, have also been implicated in OSCC. Despite these findings, the precise mechanisms through which the oral microbiota influences OSCC development remain unclear and necessitate further research. This paper provides a comprehensive overview of the oral microbiota and its relationship with OSCC and discusses potential carcinogenic pathways that the oral microbiota may activate or modulate are also discussed.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Hasan S. AL-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia (Lecture of Pediatric Dentistry), Makassar, Indonesia
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Al‐Muthanna, Iraq
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
11
|
Ma Y, Yu Y, Yin Y, Wang L, Yang H, Luo S, Zheng Q, Pan Y, Zhang D. Potential role of epithelial-mesenchymal transition induced by periodontal pathogens in oral cancer. J Cell Mol Med 2024; 28:e18064. [PMID: 38031653 PMCID: PMC10805513 DOI: 10.1111/jcmm.18064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yingyi Yu
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yuqing Yin
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Liu Wang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Huishun Yang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Shiyin Luo
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Qifan Zheng
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
12
|
Zhang M, Li Q, Zhang W, Yang Y, Gu J, Dong Q. Identification and validation of genes associated with copper death in oral squamous cell carcinoma based on machine learning and weighted gene co-expression network analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101561. [PMID: 37451513 DOI: 10.1016/j.jormas.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To identify copper-induced death-associated hub genes in oral squamous cell carcinoma (OSCC) and understand their functional and biological significance using machine learning and Weighted Gene Co-expression Network Analysis (WGCNA). METHODS OSCC transcriptomic data from GEO and TCGA databases were subjected to data integration, batch effect removal, background correction, and quantile normalization to select cuproptosis-associated genes using Spearman's correlation analysis. The 'limma' R package was used to filter differentially expressed genes (DEGs). Core module genes selected using gene co-expression network analysis with R package 'WGCNA' were screened using Support Vector Machine (SVM), LASSO regression, and Random Forest (RF) machine learning algorithms and validated using TCGA database samples. Core gene expression variations between OSCC and adjacent normal tissues were validated using immunohistochemistry. Immune infiltration analysis using package 'CIBERSORT' correlated hub genes with immune cells. RESULTS From 19 cuproptosis-related genes (identified from literature), 2382 cuproptosis-related mRNA were obtained through Spearman's correlation analysis; 112 DEGs using 'limma' R package and 32 hub genes using WGCNA were obtained. Hub genes TMPRSS11B, SERPINH1, and CDH3 were identified using machine learning algorithms. TCGA validation showed that TMPRSS11B significantly underexpressed (P < 0.001) but SERPINH1 and CDH3 significantly overexpressed (P < 0.001) in tumor samples. The AUC for TMPRSS11B, SERPINH1, and CDH3 in ROC curve analysis were 78.1%, 95.6%, and 87.5%, respectively. CONCLUSION TMPRSS11B, SERPINH1, and CDH3 may be pivotal for OSCC development and progression and potential targets for new therapeutic and predictive strategies. However, their specific functions and mechanisms underlying OSCC remain to be elucidated.
Collapse
Affiliation(s)
- Mingrui Zhang
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qingxia Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wu Zhang
- Graduate School, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuanbo Yang
- Department of Stomatology, Tangshan Workers Hospital, Tangshan, Hebei, China
| | - Jianqi Gu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qing Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
13
|
Baima G, Ribaldone DG, Romano F, Aimetti M, Romandini M. The Gum-Gut Axis: Periodontitis and the Risk of Gastrointestinal Cancers. Cancers (Basel) 2023; 15:4594. [PMID: 37760563 PMCID: PMC10526746 DOI: 10.3390/cancers15184594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Periodontitis has been linked to an increased risk of various chronic non-communicable diseases, including gastrointestinal cancers. Indeed, dysbiosis of the oral microbiome and immune-inflammatory pathways related to periodontitis may impact the pathophysiology of the gastrointestinal tract and its accessory organs through the so-called "gum-gut axis". In addition to the hematogenous spread of periodontal pathogens and inflammatory cytokines, recent research suggests that oral pathobionts may translocate to the gastrointestinal tract through saliva, possibly impacting neoplastic processes in the gastrointestinal, liver, and pancreatic systems. The exact mechanisms by which oral pathogens contribute to the development of digestive tract cancers are not fully understood but may involve dysbiosis of the gut microbiome, chronic inflammation, and immune modulation/evasion, mainly through the interaction with T-helper and monocytic cells. Specifically, keystone periodontal pathogens, including Porphyromonas gingivalis and Fusobacterium nucleatum, are known to interact with the molecular hallmarks of gastrointestinal cancers, inducing genomic mutations, and promote a permissive immune microenvironment by impairing anti-tumor checkpoints. The evidence gathered here suggests a possible role of periodontitis and oral dysbiosis in the carcinogenesis of the enteral tract. The "gum-gut axis" may therefore represent a promising target for the development of strategies for the prevention and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | | | - Federica Romano
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Aimetti
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
14
|
Lamont RJ, Hajishengallis G, Koo H. Social networking at the microbiome-host interface. Infect Immun 2023; 91:e0012423. [PMID: 37594277 PMCID: PMC10501221 DOI: 10.1128/iai.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
He H, Hao Y, Fan Y, Li B, Cheng L. The interaction between innate immunity and oral microbiota in oral diseases. Expert Rev Clin Immunol 2023; 19:405-415. [PMID: 36803467 DOI: 10.1080/1744666x.2023.2182291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Innate immunity serves as the frontline to combat invading pathogens. Oral microbiota is the total collection of microorganisms colonized within the oral cavity. By recognizing the resident microorganisms through pattern recognition receptors, innate immunity is capable of interacting with oral microbiota and maintaining homeostasis. Dysregulation of interaction may lead to the pathogenesis of several oral diseases. Decoding the crosstalk between oral microbiota and innate immunity may be contributory to developing novel therapies for preventing and treating oral diseases. AREAS COVERED This article reviewed pattern recognition receptors in the recognition of oral microbiota, the reciprocal interaction between innate immunity and oral microbiota, and discussed how the dysregulation of this relationship leads to the pathogenesis and development of oral diseases. EXPERT OPINION Many studies have been conducted to illustrate the relationship between oral microbiota and innate immunity and its role in the occurrence of different oral diseases. The impact and mechanisms of innate immune cells on oral microbiota and the mechanisms of dysbiotic microbiota in altering innate immunity are still needed to be investigated. Altering the oral microbiota might be a possible solution for treating and preventing oral diseases.
Collapse
Affiliation(s)
- Hongzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Abstract
Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Numerous studies have focused on variations in the oral bacterial microbiota of patients with OSCC. However, similar studies on fungal microbiota, another integral component of the oral microbiota, are scarce. Moreover, there is an evidence gap regarding the role that microecosystems play in different niches of the oral cavity at different stages of oral carcinogenesis. Here, we catalogued the microbial communities in the human oral cavity by profiling saliva, gingival plaque, and mucosal samples at different stages of oral carcinogenesis. We analyzed the oral bacteriome and mycobiome along the health-premalignancy-carcinoma sequence. Some species, including Prevotella intermedia, Porphyromonas endodontalis, Acremonium exuviarum, and Aspergillus fumigatus, were enriched, whereas others, such as Streptococcus salivarius subsp. salivarius, Scapharca broughtonii, Mortierella echinula, and Morchella septimelata, were depleted in OSCC. These findings suggest that an array of signature species, including bacteria and fungi, are closely associated with oral carcinogenesis. OSCC-associated diversity differences, species distinction, and functional alterations were most remarkable in mucosal samples, not in gingival plaque or saliva samples, suggesting an urgent need to define oral carcinogenesis-associated microbial dysbiosis based on the spatial microbiome. IMPORTANCE Abundant oral microorganisms constitute a complex microecosystem within the oral environment of the host, which plays a critical role in the adjustment of various physiological and pathological states of the oral cavity. In this study, we demonstrated that variations in the "core microbiome" may be used to predict carcinogenesis. In addition, sample data collected from multiple oral sites along the health-premalignancy-carcinoma sequence increase our understanding of the microecosystems of different oral niches and their specific changes during oral carcinogenesis. This work provides insight into the roles of bacteria and fungi in OSCC and may contribute to the development of early diagnostic assays and novel treatments.
Collapse
|
17
|
Treponema denticola Induces Interleukin-36γ Expression in Human Oral Gingival Keratinocytes via the Parallel Activation of NF-κB and Mitogen-Activated Protein Kinase Pathways. Infect Immun 2022; 90:e0024722. [PMID: 36040155 PMCID: PMC9584330 DOI: 10.1128/iai.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral epithelial barrier acts as both a physical barrier to the abundant oral microbiome and a sentry for the immune system that, in health, constrains the accumulation of the polymicrobial plaque biofilm. The immune homeostasis during gingivitis that is largely protective becomes dysregulated, unproductive, and destructive to gingival tissue as periodontal disease progresses to periodontitis. The progression to periodontitis is associated with the dysbiosis of the oral microbiome, with increasing prevalences and abundances of periodontal pathogens such as Treponema denticola. Despite the association of T. denticola with a chronic inflammatory disease, relatively little is known about gingival epithelial cell responses to T. denticola infection. Here, we characterized the transcriptome of gingival keratinocytes following T. denticola challenge and identified interleukin-36γ (IL-36γ) as the most differentially expressed cytokine. IL-36γ expression is regulated by p65 NF-κB and the activation of both the Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways downstream of Toll-like receptor 2 (TLR2). Finally, we demonstrate for the first time that mitogen- and stress-activated kinase 1 (MSK1) contributes to IL-36γ expression and may link the activation of MAPK and NF-κB signaling. These findings suggest that the interactions of T. denticola with the gingival epithelium lead to elevated IL-36γ expression, which may be a critical inducer and amplifier of gingival inflammation and subsequent alveolar bone loss.
Collapse
|
18
|
Fang Y, Yang Y, Liu C. Evolutionary Relationships Between Dysregulated Genes in Oral Squamous Cell Carcinoma and Oral Microbiota. Front Cell Infect Microbiol 2022; 12:931011. [PMID: 35909962 PMCID: PMC9328420 DOI: 10.3389/fcimb.2022.931011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers in the world. Changes in the composition and abundance of oral microbiota are associated with the development and metastasis of OSCC. To elucidate the exact roles of the oral microbiota in OSCC, it is essential to reveal the evolutionary relationships between the dysregulated genes in OSCC progression and the oral microbiota. Thus, we interrogated the microarray and high-throughput sequencing datasets to obtain the transcriptional landscape of OSCC. After identifying differentially expressed genes (DEGs) with three different methods, pathway and functional analyses were also performed. A total of 127 genes were identified as common DEGs, which were enriched in extracellular matrix organization and cytokine related pathways. Furthermore, we established a predictive pipeline for detecting the coevolutionary of dysregulated host genes and microbial proteomes based on the homology method, and this pipeline was employed to analyze the evolutionary relations between the seven most dysregulated genes (MMP13, MMP7, MMP1, CXCL13, CRISPO3, CYP3A4, and CRNN) and microbiota obtained from the eHOMD database. We found that cytochrome P450 3A4 (CYP3A4), a member of the cytochrome P450 family of oxidizing enzymes, was associated with 45 microbes from the eHOMD database and involved in the oral habitat of Comamonas testosteroni and Arachnia rubra. The peptidase M10 family of matrix metalloproteinases (MMP13, MMP7, and MMP1) was associated with Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Streptococcus salivarius, Tannerella sp._HMT_286, and Streptococcus infantis in the oral cavity. Overall, this study revealed the dysregulated genes in OSCC and explored their evolutionary relationship with oral microbiota, which provides new insight for exploring the microbiota–host interactions in diseases.
Collapse
Affiliation(s)
- Yang Fang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu,
| |
Collapse
|
19
|
Bai H, Yang J, Meng S, Liu C. Oral Microbiota-Driven Cell Migration in Carcinogenesis and Metastasis. Front Cell Infect Microbiol 2022; 12:864479. [PMID: 35573798 PMCID: PMC9103474 DOI: 10.3389/fcimb.2022.864479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Collapse
Affiliation(s)
- Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| |
Collapse
|
20
|
Abstract
Accumulating evidence demonstrates that the oral pathobiont Fusobacterium nucleatum is involved in the progression of an increasing number of tumors types. Thus far, the mechanisms underlying tumor exacerbation by F. nucleatum include the enhancement of proliferation, establishment of a tumor‐promoting immune environment, induction of chemoresistance, and the activation of immune checkpoints. This review focuses on the mechanisms that mediate tumor‐specific colonization by fusobacteria. Elucidating the mechanisms mediating fusobacterial tumor tropism and promotion might provide new insights for the development of novel approaches for tumor detection and treatment.
Collapse
Affiliation(s)
- Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories, Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
21
|
Lamont RJ, Fitzsimonds ZR, Wang H, Gao S. Role of Porphyromonas gingivalis in oral and orodigestive squamous cell carcinoma. Periodontol 2000 2022; 89:154-165. [PMID: 35244980 DOI: 10.1111/prd.12425] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral and esophageal squamous cell carcinomas harbor a diverse microbiome that differs compositionally from precancerous and healthy tissues. Though causality is yet to be definitively established, emerging trends implicate periodontal pathogens such as Porphyromonas gingivalis as associated with the cancerous state. Moreover, infection with P. gingivalis correlates with a poor prognosis, and P. gingivalis is oncopathogenic in animal models. Mechanistically, properties of P. gingivalis that have been established in vitro and could promote tumor development include induction of a dysbiotic inflammatory microenvironment, inhibition of apoptosis, increased cell proliferation, enhanced angiogenesis, activation of epithelial-to-mesenchymal transition, and production of carcinogenic metabolites. The microbial community context is also relevant to oncopathogenicity, and consortia of P. gingivalis and Fusobacterium nucleatum are synergistically pathogenic in oral cancer models in vivo. In contrast, oral streptococci, such as Streptococcus gordonii, can antagonize protumorigenic epithelial cell phenotypes induced by P. gingivalis, indicating functionally specialized roles for bacteria in oncogenic communities. Consistent with the notion of the bacterial community constituting the etiologic unit, metatranscriptomic data indicate that functional, rather than compositional, properties of the tumor-associated communities have more relevance to cancer development. A consistent association of P. gingivalis with oral and orodigestive carcinoma could have diagnostic potential for early detection of these conditions that have a high incidence and low survival rates.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Huizhi Wang
- Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Richmond, Virginia, USA
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
22
|
Oral microbiota in human systematic diseases. Int J Oral Sci 2022; 14:14. [PMID: 35236828 PMCID: PMC8891310 DOI: 10.1038/s41368-022-00163-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
Oral bacteria directly affect the disease status of dental caries and periodontal diseases. The dynamic oral microbiota cooperates with the host to reflect the information and status of immunity and metabolism through two-way communication along the oral cavity and the systemic organs. The oral cavity is one of the most important interaction windows between the human body and the environment. The microenvironment at different sites in the oral cavity has different microbial compositions and is regulated by complex signaling, hosts, and external environmental factors. These processes may affect or reflect human health because certain health states seem to be related to the composition of oral bacteria, and the destruction of the microbial community is related to systemic diseases. In this review, we discussed emerging and exciting evidence of complex and important connections between the oral microbes and multiple human systemic diseases, and the possible contribution of the oral microorganisms to systemic diseases. This review aims to enhance the interest to oral microbes on the whole human body, and also improve clinician’s understanding of the role of oral microbes in systemic diseases. Microbial research in dentistry potentially enhances our knowledge of the pathogenic mechanisms of oral diseases, and at the same time, continuous advances in this frontier field may lead to a tangible impact on human health.
Collapse
|
23
|
Zhang Y, He Y, Ding Y, Liu C. Porphyromonas gingivalis upregulates calbindin 1 and thus promotes the proliferation of gingival epithelial cells. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2022; 40:93-99. [PMID: 38596999 PMCID: PMC8905265 DOI: 10.7518/hxkq.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/04/2021] [Indexed: 04/11/2024]
Abstract
OBJECTIVES This study aims to investigate the effect of calbindin 1 on the proliferation and apoptosis of gingival epithelial cells affected by Porphyromonas gingivalis (P. gingivalis)invitro. METHODS A model of P. gingivalis infecting CA9-22 was established in vitro. At 24 h after infection, the expression of calbindin 1 (CALB1) was detected by real-time fluorescent quantitative polymerase chain reaction, Western blot, and immunofluorescence analyses. The expression of CALB1 was further inhibited by RNA interference. Cell proliferation was detected by BrdU analysis, and cell apoptosis was detected by caspase 3 activity. The expression of MDM2 and p53 was detected by Western blot analysis. RESULTS P. gingivalis infection upregulated the expression of CALB1 in CA9-22 cells with multiplicity-dependent manner. CALB1 promoted the proliferation of CA9-22 cells, increased the expression of MDM2, and inhibited the expression of p53. Inhibiting CALB1 expression did not affect the inhibitory effect of P. gingivalis infection on CA9-22 apoptosis. CONCLUSIONS P. gingivalis infection can promote the proliferation of CA9-22 cells by increasing CALB1 expression. The related mechanism may be associated with MDM2-p53.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuxuan He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Kurago Z, Loveless J. Microbial Colonization and Inflammation as Potential Contributors to the Lack of Therapeutic Success in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:739499. [PMID: 35048056 PMCID: PMC8757816 DOI: 10.3389/froh.2021.739499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
This review discusses the microenvironment of evolving and established conventional oral squamous cell carcinoma, by far the most common oral cancer. The focus of this paper is mainly on the more recent data that describe the role of microorganisms, host-microbial interactions, and in particular, the contributions of cell-surface toll-like receptors on immune system cells and on normal and malignant epithelial cells to their functions that support carcinogenesis. Because carcinomas arising at various host surfaces share much in common, additional information available from studies of other carcinomas is included in the discussion. Accumulating evidence reveals the complex toll-like receptor-mediated tumor-supporting input into many aspects of carcinogenesis via malignant cells, stromal immune cells and non-immune cells, complicating the search for effective treatments.
Collapse
Affiliation(s)
- Zoya Kurago
- Augusta University Dental College of Georgia, Augusta, GA, United States.,Medical College of Georgia, Augusta, GA, United States.,Georgia Cancer Center, Augusta, GA, United States
| | - Jenni Loveless
- Augusta University Dental College of Georgia, Augusta, GA, United States
| |
Collapse
|
25
|
Singh S, Singh AK. Porphyromonas gingivalis in oral squamous cell carcinoma: A review. Microbes Infect 2021; 24:104925. [PMID: 34883247 DOI: 10.1016/j.micinf.2021.104925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Oral cancer contributes significantly to the global cancer burden. Oral bacteria play an important role in the spread of oral cancer, according to mounting evidence. The most proven instance is the carcinogenic implications of Porphyromonas gingivalis, a key pathogen in chronic periodontitis. It is imperative to understand the pathogenesis of P. gingivalis in OSCC. This review aims to gather and assess scientific shreds of evidence on the involvement of Porphyromonas gingivalis in the molecular mechanism of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
26
|
Oral microbiome associated with lymph node metastasis in oral squamous cell carcinoma. Sci Rep 2021; 11:23176. [PMID: 34848792 PMCID: PMC8633319 DOI: 10.1038/s41598-021-02638-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Oral microbiota can alter cancer susceptibility and progression by modulating metabolism and inflammation. We assessed the association between the oral microbiome and lymph node (LN) metastasis in oral squamous cell carcinoma (OSCC). We collected a total of 54 saliva samples from patients with OSCC before surgery. LN metastasis was assessed based on postoperative pathological examination. We used QIIME2, linear discriminant analysis effect size (LEfSe), and PICRUSt2 methods to analyze microbial dysbiosis. A random forest classifier was used to assess whether the oral microbiome could predict LN metastasis. Among the 54 OSCC samples, 20 had LN metastasis, and 34 had no evidence of metastasis. There was a significant difference in β-diversity between the metastasis and no metastasis groups. Through LEfSe analysis, the metastasis group was enriched in the genera Prevotella, Stomatobaculum, Bifidobacterium, Peptostreptococcaceae, Shuttleworthia and Finegoldia. Pathways related to signal peptidase II were predominant in the no metastasis group. The RF model showed a modestly high accuracy for predicting metastasis. Differences in microbial community composition and functions were observed in the oral microbiome of patients with OSCC with and without LN metastasis. However, the finding that specific taxa may be associated with LN metastasis should be verified in a further prospective study.
Collapse
|
27
|
Prucsi Z, Płonczyńska A, Potempa J, Sochalska M. Uncovering the Oral Dysbiotic Microbiota as Masters of Neutrophil Responses in the Pathobiology of Periodontitis. Front Microbiol 2021; 12:729717. [PMID: 34707586 PMCID: PMC8542842 DOI: 10.3389/fmicb.2021.729717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Numerous bacterial species participate in the shift of the oral microbiome from beneficial to dysbiotic. The biggest challenge lying ahead of microbiologists, immunologists and dentists is the fact that the bacterial species act differently, although usually synergistically, on the host immune cells, including neutrophils, and on the surrounding tissues, making the investigation of single factors challenging. As biofilm is a complex community, the members interact with each other, which can be a key issue in future studies designed to develop effective treatments. To understand how a patient gets to the stage of the late-onset (previously termed chronic) periodontitis or develops other, in some cases life-threatening, diseases, it is crucial to identify the microbial composition of the biofilm and the mechanisms behind its pathogenicity. The members of the red complex (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) have long been associated as the cause of periodontitis and stayed in the focus of research. However, novel techniques, such as 16S clonal analysis, demonstrated that the oral microbiome diversity is greater than ever expected and it opened a new era in periodontal research. This review aims to summarize the current knowledge concerning bacterial participation beyond P. gingivalis and the red complex in periodontal inflammation mediated by neutrophils and to spread awareness about the associated diseases and pathological conditions.
Collapse
Affiliation(s)
- Zsombor Prucsi
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
28
|
Cagna DR, Donovan TE, McKee JR, Eichmiller F, Metz JE, Albouy JP, Marzola R, Murphy KG, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2021; 126:276-359. [PMID: 34489050 DOI: 10.1016/j.prosdent.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2020 professional literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to this work to cover this broad topic. Specific subject areas addressed include prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders (TMDs); sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence day-to-day dental treatment decisions with a keen eye on future trends in the profession. With the tremendous volume of dentistry and related literature being published today, this review cannot possibly be comprehensive. The purpose is to update interested readers and provide important resource material for those interested in pursuing greater detail. It remains our intent to assist colleagues in navigating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the dental patients they encounter.
Collapse
Affiliation(s)
- David R Cagna
- Professor, Associate Dean, Chair and Residency Director, Department of Prosthodontics, University of Tennessee Health Sciences Center College of Dentistry, Memphis, Tenn.
| | - Terence E Donovan
- Professor, Department of Comprehensive Oral Health, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Frederick Eichmiller
- Vice President and Science Officer, Delta Dental of Wisconsin, Stevens Point, Wis
| | | | - Jean-Pierre Albouy
- Assistant Professor of Prosthodontics, Department of Restorative Sciences, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Kevin G Murphy
- Associate Clinical Professor, Department of Periodontics, University of Maryland College of Dentistry, Baltimore, Md; Private practice, Baltimore, Md
| | - Matthias Troeltzsch
- Associate Professor, Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University of Munich, Munich, Germany; Private practice, Ansbach, Germany
| |
Collapse
|
29
|
Kabwe M, Dashper S, Bachrach G, Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol Rev 2021; 45:6188389. [PMID: 33765142 DOI: 10.1093/femsre/fuab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, 720 Swanston St, Parkville, Victoria 3010, Australia
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 9112102, Israel
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| |
Collapse
|
30
|
Regulation of olfactomedin 4 by Porphyromonas gingivalis in a community context. THE ISME JOURNAL 2021; 15:2627-2642. [PMID: 33731837 PMCID: PMC8397782 DOI: 10.1038/s41396-021-00956-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
At mucosal barriers, the virulence of microbial communities reflects the outcome of both dysbiotic and eubiotic interactions with the host, with commensal species mitigating or potentiating the action of pathogens. We examined epithelial responses to the oral pathogen Porphyromonas gingivalis as a monoinfection and in association with a community partner, Streptococcus gordonii. RNA-Seq of oral epithelial cells showed that the Notch signaling pathway, including the downstream effector olfactomedin 4 (OLFM4), was differentially regulated by P. gingivalis alone; however, regulation was overridden by S. gordonii. OLFM4 was required for epithelial cell migratory, proliferative and inflammatory responses to P. gingivalis. Activation of Notch signaling was induced through increased expression of the Notch1 receptor and the Jagged1 (Jag1) agonist. In addition, Jag1 was released in response to P. gingivalis, leading to paracrine activation. Following Jag1-Notch1 engagement, the Notch1 extracellular domain was cleaved by P. gingivalis gingipain proteases. Antagonism by S. gordonii involved inhibition of gingipain activity by secreted hydrogen peroxide. The results establish a novel mechanism by which P. gingivalis modulates epithelial cell function which is dependent on community context. These interrelationships have relevance for innate inflammatory responses and epithelial cell fate decisions in oral health and disease.
Collapse
|
31
|
Vyhnalova T, Danek Z, Gachova D, Linhartova PB. The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms 2021; 9:microorganisms9081549. [PMID: 34442627 PMCID: PMC8400438 DOI: 10.3390/microorganisms9081549] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis in the oral environment may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This review aims to summarize the current knowledge about the association of oral microbiota with OSCC and to describe possible etiopathogenetic mechanisms involved in processes of OSCC development and progression. Association studies included in this review were designed as case–control/case studies, analyzing the bacteriome, mycobiome, and virome from saliva, oral rinses, oral mucosal swabs, or oral mucosal tissue samples (deep and superficial) and comparing the results in healthy individuals to those with OSCC and/or with premalignant lesions. Changes in relative abundances of specific bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.) and fungi (especially Candida sp.) were associated with OSCC. Viruses can also play a role; while the results of studies investigating the role of human papillomavirus in OSCC development are controversial, Epstein–Barr virus was positively correlated with OSCC. The oral microbiota has been linked to tumorigenesis through a variety of mechanisms, including the stimulation of cell proliferation, tumor invasiveness, angiogenesis, inhibition of cell apoptosis, induction of chronic inflammation, or production of oncometabolites. We also advocate for the necessity of performing a complex analysis of the microbiome in further studies and of standardizing the sampling procedures by establishing guidelines to support future meta-analyses.
Collapse
Affiliation(s)
- Tereza Vyhnalova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
| | - Zdenek Danek
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Department of Maxillofacial Surgery, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +420-777-550-596
| | - Daniela Gachova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
| | - Petra Borilova Linhartova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
32
|
Su Mun L, Wye Lum S, Kong Yuiin Sze G, Hock Yoong C, Ching Yung K, Kah Lok L, Gopinath D. Association of Microbiome with Oral Squamous Cell Carcinoma: A Systematic Review of the Metagenomic Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7224. [PMID: 34299675 PMCID: PMC8306663 DOI: 10.3390/ijerph18147224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
The past decade has witnessed a surge in epidemiological studies that have explored the relationship between the oral microbiome and oral cancer. Owing to the diversity of the published data, a comprehensive systematic overview of the currently available evidence is critical. This review summarises the current evidence on the metagenomic studies on the oral microbiome in oral cancer. A systematic search was conducted in Medline and Embase databases to identify original studies examining the differences in the oral microbiome of oral cancer cases and controls. A total of twenty-six studies were identified that reported differences in microbial abundance between oral squamous cell carcinoma (OSCC) and controls. Although almost all the studies identified microbial dysbiosis to be associated with oral cancer, the detailed qualitative analysis did not reveal the presence/abundance of any individual bacteria or a consortium to be consistently enriched in OSCC samples across the studies. Interestingly, few studies reported a surge of periodontopathogenic taxa, especially Fusobacteria, whereas others demonstrated a depletion of commensal taxa Streptococci. Considerable heterogeneity could be identified in the parameters used for designing the studies as well as reporting the microbial data. If microbiome data needs to be translated in the future, to complement the clinical parameters for diagnosis and prognosis of oral cancer, further studies with the integration of clinical variables, adequate statistical power, reproducible methods, and models are required.
Collapse
Affiliation(s)
- Lee Su Mun
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - See Wye Lum
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Genevieve Kong Yuiin Sze
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Cheong Hock Yoong
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Kwek Ching Yung
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Liong Kah Lok
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia; (L.S.M.); (S.W.L.); (G.K.Y.S.); (C.H.Y.); (K.C.Y.); (L.K.L.)
| | - Divya Gopinath
- Oral Diagnosis and Surgical Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
33
|
A bacterial tyrosine phosphatase modulates cell proliferation through targeting RGCC. PLoS Pathog 2021; 17:e1009598. [PMID: 34015051 PMCID: PMC8172045 DOI: 10.1371/journal.ppat.1009598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Abstract
Tyrosine phosphatases are often weaponized by bacteria colonizing mucosal barriers to manipulate host cell signal transduction pathways. Porphyromonas gingivalis is a periodontal pathogen and emerging oncopathogen which interferes with gingival epithelial cell proliferation and migration, and induces a partial epithelial mesenchymal transition. P. gingivalis produces two tyrosine phosphatases, and we show here that the low molecular weight tyrosine phosphatase, Ltp1, is secreted within gingival epithelial cells and translocates to the nucleus. An ltp1 mutant of P. gingivalis showed a diminished ability to induce epithelial cell migration and proliferation. Ltp1 was also required for the transcriptional upregulation of Regulator of Growth and Cell Cycle (RGCC), one of the most differentially expressed genes in epithelial cells resulting from P. gingivalis infection. A phosphoarray and siRNA showed that P. gingivalis controlled RGCC expression through Akt, which was activated by phosphorylation on S473. Akt activation is opposed by PTEN, and P. gingivalis decreased the amount of PTEN in epithelial cells. Ectopically expressed Ltp1 bound to PTEN, and reduced phosphorylation of PTEN at Y336 which controls proteasomal degradation. Ltp-1 induced loss of PTEN stability was prevented by chemical inhibition of the proteasome. Knockdown of RGCC suppressed upregulation of Zeb2 and mesenchymal markers by P. gingivalis. RGCC inhibition was also accompanied by a reduction in production of the proinflammatory cytokine IL-6 in response to P. gingivalis. Elevated IL-6 levels can contribute to periodontal destruction, and the ltp1 mutant of P. gingivalis incited less bone loss compared to the parental strain in a murine model of periodontal disease. These results show that P. gingivalis can deliver Ltp1 within gingival epithelial cells, and establish PTEN as the target for Ltp1 phosphatase activity. Disruption of the Akt1/RGCC signaling axis by Ltp1 facilitates P. gingivalis-induced increases in epithelial cell migration, proliferation, EMT and inflammatory cytokine production. Bacteria colonizing the oral cavity can induce inflammatory destruction of the periodontal tissues, and are increasingly associated with oral squamous cell carcinoma. P. gingivalis, a major periodontal pathogen, can subvert epithelial pathways that control important physiological processes relating to innate immunity and cell fate; however, little is known about the effector molecules. Here we show that P. gingivalis can deliver a tyrosine phosphatase, Ltp1, within epithelial cells, and Ltp1 phosphatase activity destabilizes PTEN, a negative regulator of Akt1 signaling. The production of RGCC is thus increased and this leads to increased epithelial cell migration, proliferation, a partial mesenchymal phenotype and inflammatory cytokine production. Ltp1 phosphatase activity thus provides a mechanistic basis for a number of P. gingivalis properties that contribute to disease. Indeed, an Ltp1-deficient mutant was less pathogenic in a murine model of periodontitis. These results contribute to deciphering the pathophysiological events that underlie oral bacterial diseases that initiate at mucosal barriers.
Collapse
|
34
|
Söder B, Källmén H, Yucel-Lindberg T, Meurman JH. Periodontal microorganisms and diagnosis of malignancy: A cross-sectional study. Tumour Biol 2021; 43:1-9. [PMID: 33935124 DOI: 10.3233/tub-200066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral infections associate statistically with cancer. OBJECTIVE We hypothesized that certain periodontal microorganisms might specifically link to malignancies in general and set out to investigate this in our ongoing cohort study. METHODS A sample of 99 clinically examined patients from our cohort of 1676 subjects was used to statistically investigate the associations between harboring periodontal microorganisms Aggregatibacter actinomycetemcomitans (A.a), Porphyromonas gingivalis (P.g), Prevotella intermedia (P.i), Tannerella forsythia (T.f) and Treponema denticola (T.d). We used oral infection indexes and the incidence figures of malignancies as registered in 2008-2016 in the Swedish National Cancer Register. RESULTS The pathogen A.a showed strong association with malignancy in 32 out of the 99 patients while P.g and P.i were more prevalent among patients without malignancy. In principal component analyses, A.a appeared in the strongest component while the second strongest component consisted of a combination of T.f and T.d. The third component consisted of a combination of P.g and P.i, respectively. Of basic and oral health variables, gingival index appeared to be the strongest expression of inflammation (Eigen value 4.11 and Explained Variance 68.44 percent). CONCLUSIONS The results partly confirmed our hypothesis by showing that harboring certain periodontal bacteria might link to malignancy. However, the associations are statistical and no conclusions can be drawn about causality.
Collapse
Affiliation(s)
- Birgitta Söder
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Källmén
- Center for psychiatry research Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
35
|
Lin Q, Zhang Y, Liu Y, Xu X. Effects of long noncoding RNA on prognosis of oral squamous cell carcinoma: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e25507. [PMID: 33879685 PMCID: PMC8078265 DOI: 10.1097/md.0000000000025507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is reported to be upregulated in many tumors. Although the expression of lncRNA in oral squamous cell carcinoma has been assessed, the association between lncRNA expression and prognosis or clinicopathological feature still remains controversial. Therefore, we conducted a meta-analysis to verify whether lncRNA expression was related to prognosis or clinicopathological features in patients with oral squamous cell carcinoma. METHODS We searched Embase, PubMed, Web of Science, Cochrane library, Chinese National Knowledge Infrastructure, and Wanfang databases from inception to February 2021. The language included Chinese and English. The published literature on lncRNA expression and prognosis or clinicopathological characteristics of patients with oral squamous cell carcinoma was statistically analyzed. The combination of hazard ratios (HRs), odds ratios (OR), and 95% confidence intervals (95% CIs) were applied to evaluate the effects of lncRNA on the prognosis and clinicopathological features of oral squamous cell carcinoma. RESULTS This study could provide a comprehensive review of the available evidence of lncRNA on the prognosis and clinicopathological features of oral squamous cell carcinoma. CONCLUSION The conclusion of our study will provide the updated evidence to judge the lncRNA on the prognosis and clinicopathological features of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Qingjie Lin
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan
| | - Yong Zhang
- Department of Implantology, Binzhou Central Hospital, Binzhou
| | - Yanguo Liu
- Department of Implantology, Jinan City People's Hospital, Jinan, Shandong Province, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan
| |
Collapse
|
36
|
Baraniya D, Jain V, Lucarelli R, Tam V, Vanderveer L, Puri S, Yang M, Al-Hebshi NN. Screening of Health-Associated Oral Bacteria for Anticancer Properties in vitro. Front Cell Infect Microbiol 2020; 10:575656. [PMID: 33123499 PMCID: PMC7573156 DOI: 10.3389/fcimb.2020.575656] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
While extensive literature exists about the role of oral bacterial pathogens like Porphyromonas gingivalis and Fusobacterium nucleatum in oral squamous cell carcinoma (OSCC), the role of health-associated species has been largely unexplored. In this study, we assessed the effect of Streptococcus mitis, Rothia mucilaginosa, Neisseria flavescens, Haemophilus parainfluenzae, Lautropia mirabilis, and Veillonella parvula on proliferation and expression of marker genes (IL-6, TNF-α, MMP3, CD36, CCD1, and NANOG) in OSCC cell lines CAL27, SCC25, and SCC4. Porphyromonas gingivalis was included as a pathogenic control. Both bacterial lysates (3 concentrations) and live cells (3 MOIs) were tested. S. mitis, H. parainfluenzae, and N. flavescens resulted in substantial, dose-dependent reduction of proliferation, which was found to be mediated by H2O2 for the former and intracellular infection in the latter two species. However, only H. parainfluenzae showed differential antiproliferative effect against the cancer cell lines vs. the normal control (TIGKs). In the gene expression assays, the health-associated species mostly downregulated CD36, a gene that plays an important role in tumor growth and metastasis, while P. gingivalis upregulated it. IL6 and TNF expression, on the other hand, was upregulated by almost all species, particularly the Gram-negatives including P. gingivalis. The effect on other genes was less evident and varied significantly by cell line. This exploratory study is the first insight into how health-associated bacteria may interact with OSCC. Further studies to explore whether the observed effects may have implications for the prevention or treatment of oral cancer are warranted.
Collapse
Affiliation(s)
- Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Vinay Jain
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Ronald Lucarelli
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Vincent Tam
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lisa Vanderveer
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, United States
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Maobin Yang
- Regenerative Research Laboratory, Department of Endodontology, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Nezar Noor Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States.,Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, United States
| |
Collapse
|
37
|
Affiliation(s)
- N.S. Jakubovics
- School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - W. Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|