1
|
Zang W, Geng F, Liu J, Wang Z, Zhang S, Li Y, Lu Z, Pan Y. Porphyromonas gingivalis potentiates stem-like properties of oral squamous cell carcinoma by modulating SCD1-dependent lipid synthesis via NOD1/KLF5 axis. Int J Oral Sci 2025; 17:15. [PMID: 40016182 PMCID: PMC11868650 DOI: 10.1038/s41368-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 03/01/2025] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as primary mediators to the initiation and progression of tumors. The association between microbial infection and cancer stemness has garnered considerable scholarly interest in recent years. Porphyromonas gingivalis (P. gingivalis) is increasingly considered to be closely related to the development of oral squamous cell carcinoma (OSCC). Nevertheless, the role of P. gingivalis in the stemness of OSCC cells remains uncertain. Herein, we showed that P. gingivalis was positively correlated with CSC markers expression in human OSCC specimens, promoted the stemness and tumorigenicity of OSCC cells, and enhanced tumor formation in nude mice. Mechanistically, P. gingivalis increased lipid synthesis in OSCC cells by upregulating the expression of stearoyl-CoA desaturase 1 (SCD1) expression, a key enzyme involved in lipid metabolism, which ultimately resulted in enhanced acquisition of stemness. Moreover, SCD1 suppression attenuated P. gingivalis-induced stemness of OSCC cells, including CSCs markers expression, sphere formation ability, chemoresistance, and tumor growth, in OSCC cells both in vitro and in vivo. Additionally, upregulation of SCD1 in P. gingivalis-infected OSCC cells was associated with the expression of KLF5, and that was modulated by P. gingivalis-activated NOD1 signaling. Taken together, these findings highlight the importance of SCD1-dependent lipid synthesis in P. gingivalis-induced stemness acquisition in OSCC cells, suggest that the NOD1/KLF5 axis may play a key role in regulating SCD1 expression and provide a molecular basis for targeting SCD1 as a new option for attenuating OSCC cells stemness.
Collapse
Affiliation(s)
- Wenli Zang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Zengxu Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Yuchao Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Ze Lu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China.
| |
Collapse
|
2
|
Abbas M, Tangney M. The oncobiome; what, so what, now what? MICROBIOME RESEARCH REPORTS 2025; 4:16. [PMID: 40207280 PMCID: PMC11977386 DOI: 10.20517/mrr.2024.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Microbial communities inhabiting various body sites play critical roles in the initiation, progression, and treatment of cancer. The gut microbiota, a highly diverse microbial ecosystem, interacts with immune cells to modulate inflammation and immune surveillance, influencing cancer risk and therapeutic outcomes. Local tissue microbiota may impact the transition from premalignant states to malignancy. Characterization of the intratumoral microbiota increasingly reveals distinct microbiomes that may influence tumor growth, immune responses, and treatment efficacy. Various bacteria species have been reported to modulate cancer therapies through mechanisms such as altering drug metabolism and shaping the tumor microenvironment (TME). For instance, gut or intratumoral bacterial enzymatic activity can convert prodrugs into active forms, enhancing therapeutic effects or, conversely, inactivating small-molecule chemotherapeutics. Specific bacterial species have also been linked to improved responses to immunotherapy, underscoring the microbiome's role in treatment outcomes. Furthermore, unique microbial signatures in cancer patients, compared with healthy individuals, demonstrate the diagnostic potential of microbiota. Beyond the gut, tumor-associated and local microbiomes also affect therapy by influencing inflammation, tumor progression, and drug resistance. This review explores the multifaceted relationships between microbiomes and cancer, focusing on their roles in modulating the TME, immune activation, and treatment efficacy. The diagnostic and therapeutic potential of bacterial members of microbiota represents a promising avenue for advancing precision oncology and improving patient outcomes. By leveraging microbial biomarkers and interventions, new strategies can be developed to optimize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Munawar Abbas
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| | - Mark Tangney
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| |
Collapse
|
3
|
Mivehchi H, Eskandari-Yaghbastlo A, Pour Bahrami P, Elhami A, Faghihinia F, Nejati ST, Kazemi KS, Nabi Afjadi M. Exploring the role of oral bacteria in oral cancer: a narrative review. Discov Oncol 2025; 16:242. [PMID: 40009328 DOI: 10.1007/s12672-025-01998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of research indicates that a wide range of cancer types may correlate with human microbiome components. On the other hand, little is known about the potential contribution of the oral microbiota to oral cancer. However, some oral microbiome components can stimulate different tumorigenic processes associated with the development of cancer. In this line, two prevalent oral infections, Porphyromonas gingivalis, and Fusobacterium nucleatum can increase tumor growth. The microbiome can impact the course of the illness through direct interactions with the human body and major modifications to the toxicity and responsiveness to different kinds of cancer therapy. Recent research has demonstrated a relationship between specific phylogenetic groupings and the results of immunotherapy treatment for particular tumor types. Conversely, there has been a recent upsurge in interest in the possibility of using microbes to treat cancer. At the moment, some species, such as Salmonella typhimurium and Clostridium spp., are being explored as possible cancer treatment vectors. Thus, understanding these microbial interactions highlights the importance of maintaining a healthy oral microbiome in preventing oral cancers. From this perspective, this review will discuss the role of the microbiome on oral cancers and their possible application in oral cancer treatment/improvement.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Xia Q, Pierson S. HPV Infection and Oral Microbiota: Interactions and Future Implications. Int J Mol Sci 2025; 26:1424. [PMID: 40003891 PMCID: PMC11855562 DOI: 10.3390/ijms26041424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Human papillomavirus (HPV) is a leading cause of mucosal cancers, including the increasing incidence of HPV-related head and neck cancers. The oral microbiota-a diverse community of bacteria, fungi, and viruses-play a critical role in oral and systemic health. Oral microbiota dysbiosis is increasingly linked to inflammation, immune suppression, and cancer progression. Recent studies have highlighted a complex interaction between HPV and oral microbiota, suggesting this interplay influences viral persistence, immune response and the tumor microenvironment. These interactions hold significant implications for disease progression, clinical outcomes, and therapeutic approaches. Furthermore, the oral microbiota has emerged as a promising biomarker for HPV detection and disease progress assessment. In addition, probiotic-based treatments are gaining attention as an innovative approach for preventing or treating HPV-related cancers by modulating the microbial environment. In this review, current research on the interaction between HPV and oral microbiota is provided, their clinical implications are explored, and the future potential for utilizing microbiota for diagnostic and therapeutic innovations in HPV-associated cancers is discussed.
Collapse
Affiliation(s)
- Qingqing Xia
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| | | |
Collapse
|
5
|
Yuan K, Xu S, Liu G, Han Y, Hu J, Zhang W, Zhang Z, Liu L, Huang Z, Zhu Y, Liu S. Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression by Modulating Autophagy. Oral Dis 2025; 31:492-502. [PMID: 39435608 DOI: 10.1111/odi.15157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVES Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various gastro-intestinal tract cancers. However, whether P. gingivalis can promote oral squamous cell carcinoma (OSCC) and the underlying mechanism associated with such promotion remain unclear. MATERIALS AND METHODS In this study, OSCC xenograft models were used to evaluate the effects of P. gingivalis on tumor progression. The functional studies were done on several OSCC cell lines in vitro. P. gingivalis-specific 16S rRNA fluorescent in situ hybridization (FISH) was used to test its prevalence in clinical samples. RESULTS We found that P. gingivalis increased tumor volume and tumor growth in OSCC nude models. Functional studies demonstrated that P. gingivalis inhibited the apoptosis of OSCC cells by promoting cellular autophagy. P. gingivalis was more prevalent in FISH samples from patients with OSCC than from patients with leukoplakia or healthy subjects (70% vs. 47.2% vs. 33.3%, p = 0.045 and p < 0.001, respectively). CONCLUSION These data suggest that P. gingivalis plays an accelerating role in OSCC progression and contributes to OSCC by enhancing the autophagy pathway to reduce carcinoma apoptosis.
Collapse
Affiliation(s)
- Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengming Xu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglong Liu
- Department of Stomatology, Tengzhou Central People's Hospital, Jining Medical College, Tengzhou, China
| | - Yong Han
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingzhou Hu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Liu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuli Liu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Cao M, Wang S, Zhou S, Yan M, Zou Y, Cui Y, Lou X, Gao Y, Chen Y, Han Z, Qian Y, Chen J, Li X. Development of monoclonal antibodies against P. gingivalis Mfa1 and their protective capacity in an experimental periodontitis model. mSphere 2025; 10:e0072124. [PMID: 39699191 PMCID: PMC11774036 DOI: 10.1128/msphere.00721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a gram-negative, black-pigmented anaerobe, is a major etiological agent and a leading cause of periodontitis. Fimbriae protein Mfa1 is a key virulence factor of P. gingivalis and plays a crucial role in bacterial adhesion, colonization, biofilm formation, and persistent inflammation, making it a promising therapeutic target. However, the role of anti-Mfa1 antibodies and the underlying protective mechanisms remain largely unexplored. Here, we developed and characterized the monoclonal antibodies (mAbs) targeting the Mfa1 protein of P. gingivalis. Function analysis showed that anti-Mfa1 mAbs mediated bacterial agglutination and inhibited P. gingivalis adhesion to saliva-coated hydroxyapatite and host cells. Notably, anti-Mfa1 mAbs significantly reduced bacterial burden and alveolar bone loss in a P. gingivalis-induced experimental periodontitis model. These results show that anti-Mfa1 mAbs can be beneficial in alleviating P. gingivalis infections, and provide important insights for the development of adequate adjuvant treatment regimens for Mfa1-targeted therapeutics. IMPORTANCE Fimbriae (pili) play an important role in bacterial adhesion, invasion of host cells and tissues, and formation of biofilms. Studies have shown that two types of fimbriae of Porphyromonas gingivalis, FimA and Mfa1, are important for colonization and infection through their binding to host tissues and other bacteria. While anti-FimA antibodies have been shown to improve periodontitis, the effect of anti-Mfa1 antibodies on P. gingivalis infection and periodontitis was previously unknown. In this study, we report for the first time that anti-Mfa1 monoclonal antibodies can reduce P. gingivalis infection and improve periodontitis. These findings suggest that Mfa1 represents a promising therapeutic target, and the development of anti-Mfa1 mAbs holds a potential as essential diagnostic and adjunctive therapeutic tools for managing P. gingivalis-related diseases.
Collapse
Affiliation(s)
- Mingya Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Siyu Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Shengke Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Min Yan
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yu Zou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yuan Cui
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Xinyu Lou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yichang Gao
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Ying Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Zijing Han
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yi Qian
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jingying Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Xu H, Gao Z, Liu H, An L, Yang T, Zhang B, Liu G, Sun D. Associations of lifestyle factors with oral cancer risk: An umbrella review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102234. [PMID: 39862963 DOI: 10.1016/j.jormas.2025.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Oral cancer is a common head and neck cancer malignancy that seriously affects patients' quality of life and increases the health care burden. Moreover, there is a lack of comprehensive reviews of previous research on factors associated with oral cancer. The aim of the current umbrella review was to provide a comprehensive and systematic summary of relevant studies, to grade the quality of evidence of relevant studies, and to provide guidance for the prevention of oral cancer. METHODS The PubMed, Web of Science, Medline, Cochrane Library, Embase and CNKI databases were searched for relevant meta-analyses and systematic reviews. Two authors extracted the data separately and assessed the quality of the studies using the AMSTAR-2(A Measurement Tool to Assess Systematic Reviews-2) scale. RESULTS A total of 28 meta-analyses were included in this review:13 meta-analyses of dietary factors and 8 meta-analyses of behavioural habits and 7 meta-analyses of factors that were difficult to categorise as dietary and behavioural. Alcohol, tobacco (chewing tobacco/secondhand smoke exposure), betel quid , processed meat, periodontal disease, HPV (especially HPV16 and HR-HPV) infection, and chronic mechanical irritation were positively correlated with the risk of oral cancer. Vitamin C-rich citrus fruits were negatively associated with the risk of oral cancer . Fish, milk and dairy products except butter, coffee and tea intake may be negatively associated with the risk of oral cancer, but subgroup analyses of studies of fish and milk revealed significant effects only for European populations. Additionally, green tea showed the strongest protective effect among teas. High and moderate coffee intake was negatively associated with the risk of oral cancer. Oral hygiene maintenance was also negatively associated with the risk of oral cancer. CONCLUSION Reducing or eliminating alcohol consumption, refraining from direct or indirect exposure to tobacco products, and reducing betel quid chewing may lead to a reduced risk of oral cancer. Reducing the intake of processed meat, moderate intake of coffee, the consumption of green tea of appropriate temperature and strength, fish and citrus fruit intake, and oral hygiene, preventing periodontal diseases and HPV infections, and reducing mechanical stimulation of the oral mucosa caused by various reasons can exert protective effects against oral cancer.
Collapse
Affiliation(s)
- Haobo Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Zhonglan Gao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Hairong Liu
- Department of Surgery, Zhongdai Hospital of Mengla County, Xishuangbanna, 666300, China
| | - Liya An
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Bojun Zhang
- Department of Stomatology, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Guobin Liu
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.
| | - Dali Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| |
Collapse
|
9
|
Escobar Marcillo DI, Privitera GF, Rollo F, Latini A, Giuliani E, Benevolo M, Giuliani M, Pichi B, Pellini R, Donà MG. Microbiome analysis in individuals with human papillomavirus oral infection. Sci Rep 2025; 15:2953. [PMID: 39848958 PMCID: PMC11757712 DOI: 10.1038/s41598-024-81607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025] Open
Abstract
Microbiome gained attention as a cofactor in cancers originating from epithelial tissues. High-risk (hr)HPV infection causes oropharyngeal squamous cell carcinoma but only in a fraction of hrHPV+ individuals, suggesting that other factors play a role in cancer development. We investigated oral microbiome in cancer-free subjects harboring hrHPV oral infection (n = 33) and matched HPV- controls (n = 30). DNA purified from oral rinse-and-gargles of HIV-infected (HIV+) and HIV-uninfected (HIV-) individuals were used for 16S rRNA gene V3-V4 region amplification and sequencing. Analysis of differential microbial abundance and differential pathway abundance was performed, separately for HIV+ and HIV- individuals. Significant differences in alpha (Chao-1 and Shannon indices) and beta diversity (unweighted UniFrac distance) were observed between hrHPV+ and HPV-negative subjects, but only for the HIV- individuals. Infection by hrHPVs was associated with significant changes in the abundance of Saccharibacteria in HIV+ and Gracilibacteria in HIV- subjects. At the genus level, the greatest change in HIV+ individuals was observed for Bulleidia, which was significantly enriched in hrHPV+ subjects. In HIV- individuals, those hrHPV+ showed a significant enrichment of Parvimonas and depletion of Alloscardovia. Our data suggest a possible interplay between hrHPV infection and oral microbiome, which may vary with the HIV status.
Collapse
Affiliation(s)
- David Israel Escobar Marcillo
- Section of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Grete Francesca Privitera
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Rollo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Alessandra Latini
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Eugenia Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Benevolo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Massimo Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Barbara Pichi
- Otolaryngology Head Neck Surgery Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Raul Pellini
- Otolaryngology Head Neck Surgery Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | |
Collapse
|
10
|
Prostakishina EA, Sidenko EA, Kolegova ES, Patysheva MR, Kononova GA, Choinzonov EL. Premalignant lesions of the oral cavity: a narrative review of factors and mechanisms of transformation into cancer. Int J Oral Maxillofac Surg 2024:S0901-5027(24)00472-7. [PMID: 39730281 DOI: 10.1016/j.ijom.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer. The development and progression of OSCC are closely linked to various aetiological factors. Early signs of OSCC may manifest as oral lesions, genetic abnormalities, and chronic inflammation. Lesions with dysplastic features have a high risk of malignant transformation into OSCC. Moreover, dysplastic lesions are characteristic of many oral potentially malignant disorders (OPMDs). Currently, there is no unified standard of treatment for OPMD patients, due to the variability in risk factors and mechanisms of transformation. Therefore, it is essential to detect and manage OPMDs at an early stage in order to prevent their malignant transformation into OSCC. This necessitates analysing OPMD mechanisms to identify objective markers for predicting the risk of malignant transformation. The aim of this review was to describe the process of OPMD transformation into OSCC under the influence of environmental, immune, microbiome, and molecular factors.
Collapse
Affiliation(s)
- E A Prostakishina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - E A Sidenko
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E S Kolegova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M R Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - G A Kononova
- Laboratory of Epidemiology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E L Choinzonov
- Department of Head and Neck Tumors, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
11
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
12
|
Wang S, Nie F, Yin Q, Tian H, Gong P, Ju J, Liu J, Yang P, Yang C. Periodontitis promotes tumor growth and immune evasion via PD-1/PD-L1. Cancer Immunol Immunother 2024; 74:22. [PMID: 39535607 PMCID: PMC11561227 DOI: 10.1007/s00262-024-03865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Our study investigated the role of experimental periodontitis on tumor growth, local and systemic immunosuppressive status, and programmed death receptor 1 (PD-1) / programmed death ligand 1 (PD-L1) expression in oral squamous cell carcinoma (OSCC) and prostate cancer. METHODS Mouse oral or prostate cancer xenograft models were divided into control, periodontitis and periodontitis + anti-PD-1 groups. Tumor volume and weight were recorded and the levels of relevant immune-suppressive cells and T cells were detected by flow cytometry or immunofluorescence. THP-1 cells were stimulated using conditioned media of LPS-stimulated Cal-27 cells and PD-L1 expression was measured by quantitative real-time PCR, western blotting and immunofluorescence. Tumor specimens from OSCC patients with or without periodontitis were also collected for immunofluorescence. RESULTS Periodontitis significantly promoted tumor volume and weight. Compared to the control, the proportions of tumor-associated macrophages (TAMs), regulatory T cells (Tregs), PD-L1+TAMs and PD-1+CD8+T cells increased, while CD8+T cells decreased in the periodontitis group. Immunofluorescence demonstrated that there was an increase in PD-L1+TAMs and PD-1+CD8+T cells, but a decrease in IFN-γ+CD8+T cells in both xenografts and clinical OSCC samples with periodontitis. In vitro, LPS-stimulated Cal-27 cells had a stronger potential to induce PD-L1 expression in macrophages compared with unstimulated Cal-27 cells. And the promoting effect of periodontitis on tumor growth and immune evasion was significantly attenuated after anti-PD-1 therapy. CONCLUSION Periodontitis may facilitate tumor growth and immune escape evidenced by the increased immune-suppressive cells and the decreased functional T cells, via enhancing PD-1/PD-L1 expression in the tumor microenvironment.
Collapse
Affiliation(s)
- Suli Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Qiuyue Yin
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Haoyang Tian
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Pizhang Gong
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Jinhong Ju
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Jiayi Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Road West, 250012, Jinan, Shandong, China.
| |
Collapse
|
13
|
Plaza-Diaz J, Ruiz-Ojeda FJ, López-Plaza B, Brandimonte-Hernández M, Álvarez-Mercado AI, Arcos-Castellanos L, Feliú-Batlle J, Hummel T, Palma-Milla S, Gil A. Effect of a Novel Food Rich in Miraculin on the Oral Microbiome of Malnourished Oncologic Patients with Dysgeusia. Cancers (Basel) 2024; 16:3414. [PMID: 39410033 PMCID: PMC11475728 DOI: 10.3390/cancers16193414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dysgeusia contributes to the derangement of nutritional status in patients with cancer as well as worsening the quality of life. There has been a lack of effective treatments for taste disorders provided by the pharmaceutical industry. METHODS This was a pilot randomized, parallel, triple-blind, and placebo-controlled intervention clinical trial in which 31 malnourished patients with cancer and dysgeusia receiving antineoplastic treatment were randomized into three arms [standard dose of DMB (150 mg DMB/tablet), high dose of DMB (300 mg DMB/tablet) or placebo (300 mg freeze-dried strawberry)] for three months. Patients consumed a DMB or placebo tablet before each main meal. Using the nanopore methodology, we analyzed the oral microbiome of patients with cancer using saliva samples. RESULTS All patients with cancer and dysgeusia had dysbiosis in terms of lower bacterial diversity and richness. DMB consumption was associated with changes in oral microbiome composition. Neither selected bacteria nor taste perception, type of diet, and cytokine levels were associated with mucositis. Likewise, alcohol and tobacco consumption as well as general and digestive toxicity due to systemic therapy were not associated with specific changes of the oral microbiome, according to logistic binary regression. The standard dose of DMB resulted in a lower abundance of Veillonella compared with the high DMB dose and placebo at 3 months after intervention with DMB. In particular, some species such as Streptococcus parasanguinis, Veillonella parvula, and Streptococcus mutans were less abundant in the DMB standard-dose group. Additionally, the consumption of a standard dose of DMB revealed a negative association between the concentrations of TNF-α and the abundance of species such as Streptococcus thermophilus, Streptococcus pneumoniae, Streptococcus dysgalactiae and Streptococcus agalactiae. CONCLUSIONS Accordingly, regular DMB consumption could modify the oral microbiome in patients with cancer and dysgeusia, which may contribute to maintaining an appropriate immune response. However, as the present pilot study involved a small number of participants, further studies are necessary to draw robust conclusions from the data.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (M.B.-H.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (M.B.-H.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RU Adipocytes and Metabolism, Helmholtz Diabetes Center at Helmholtz Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bricia López-Plaza
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (B.L.-P.); (L.A.-C.)
- Medicine Department, Faculty of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Marco Brandimonte-Hernández
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (M.B.-H.)
| | - Ana Isabel Álvarez-Mercado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
- Department of Pharmacology, University of Granada, 18071 Granada, Spain
| | - Lucía Arcos-Castellanos
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (B.L.-P.); (L.A.-C.)
| | - Jaime Feliú-Batlle
- Oncology Department, Hospital La Paz Institute for Health Research-IdiPAZ, Hospital Universitario La Paz, 28029 Madrid, Spain;
- CIBERONC (CIBER Cancer), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain;
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Samara Palma-Milla
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.J.R.-O.); (M.B.-H.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
15
|
Suganya G, Sahana NS, Akalya P, Yadav ST, Suresh T, Chandrakala J. Detection of porphyromonas gingivalis in oral potentially malignant disorders and oral squamous cell carcinoma using qRT-PCR: A comparative study. J Oral Maxillofac Pathol 2024; 28:583-588. [PMID: 39949692 PMCID: PMC11819619 DOI: 10.4103/jomfp.jomfp_119_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/16/2024] [Accepted: 11/08/2024] [Indexed: 02/16/2025] Open
Abstract
Background Recent researches has shown a significant association between microorganisms and oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, is considered as an important potential etiologic agent of OSCC, but the underlying mechanisms by which P. gingivalis mediates OSCC progression remain poorly understood. Aim The aim of this study was to compare the levels of P. gingivalis in oral potentially malignant disorders, oral squamous cell carcinoma and normal oral mucosa using qRT-PCR. Method and Material Genomic DNA was extracted and quantified, and the expression of the P. gingivalis levels was done in 16 cases of oral potentially malignant disorders, 16 cases of oral squamous cell carcinoma and 16 cases of normal oral mucosa by quantitative real-time polymerase chain reaction (RT-qPCR). Results It was observed that there was an over expression of P. gingivalis in both oral potentially malignant disorders and oral squamous cell carcinoma with good mean cycle threshold (CT) value of 27.00 and 27.55, respectively. When comparing the levels of P. gingivalis in three groups, oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) showed higher expression than normal mucosa and in between two groups OSCC showed higher expression than OPMD and the difference is statistically significant with P value less than 0.001. Conclusion Our findings suggest that there is an over expression of P. gingivalis in oral potentially malignant disorders and oral squamous cell carcinoma, compared to normal mucosa and highly expressed in OSCCs compared to OPMD. Increased levels of P. gingivalis in OPMDs and OSCCs may suggest the early event of tumorigenesis. Hence, it can be used as a valuable marker for early diagnosis, prognosis marker and in the identification of therapeutic targets.
Collapse
Affiliation(s)
- G Suganya
- Department of Oral and Maxillofacial Pathology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - NS Sahana
- Department of Oral and Maxillofacial Pathology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - P Akalya
- Department of Oral and Maxillofacial Pathology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - Satish T. Yadav
- Department of Oral and Maxillofacial Pathology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - T Suresh
- Department of Oral and Maxillofacial Pathology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - J Chandrakala
- Department of Oral and Maxillofacial Pathology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
16
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
17
|
Knop-Chodyła K, Kochanowska-Mazurek A, Piasecka Z, Głaz A, Wesołek-Bielaska EW, Syty K, Forma A, Baj J. Oral Microbiota and the Risk of Gastrointestinal Cancers-A Narrative Literature Review. Pathogens 2024; 13:819. [PMID: 39339011 PMCID: PMC11434710 DOI: 10.3390/pathogens13090819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The human body is colonized by trillions of microorganisms in a symbiotic relationship. The oral cavity represents one of the most abundant microbial habitats in our body. Advances in sequencing techniques provide a more detailed understanding of the oral microbiota and how imbalances between bacteria, the phenomenon of dysbiosis, can affect not only the development of dental caries or inflammation within the oral cavity but also systemic diseases and cancers in distant locations. This narrative review evaluates the relationship between oral microbiota and its impact on gastrointestinal cancers. Using the keywords "oral microbiota 'AND' gastrointestinal cancers", the PubMed Web of Science and Scopus databases were searched for articles published between 2014 and 2024. Based on the review, the relationship between oral microbiota and oral, esophageal, gastric, colorectal, hepatocellular, and pancreatic cancers was described. Potential oncogenic mechanisms exploited by the microbiota such as the production of pro-inflammatory cytokines, induction of abnormal immune responses, and disruption of cell metabolic pathways were assessed. Further research and a thorough understanding of the impact of the oral microbiota on the development of cancers of the gastrointestinal tract may play a key role in their prevention, diagnosis, and treatment in the future.
Collapse
Affiliation(s)
- Kinga Knop-Chodyła
- University Clinical Hospital Number 4 in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.K.-C.); (E.W.W.-B.)
| | - Anna Kochanowska-Mazurek
- Stefan Cardinal Wyszynski Province Specialist Hospital, al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Zuzanna Piasecka
- Saint Queen Jadwiga’s Regional Clinical Hospital Number 2 in Rzeszow, Lwowska 60, 35-301 Rzeszów, Poland;
| | - Aneta Głaz
- Faculty of Medicine, Medical University of Lublin, al. Racławickie 1, 20-059 Lublin, Poland;
| | | | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
18
|
Luo Z, Lv S, Lou F, Yan L, Xu J, Kang N, Dong Y, Jin X. Roles of intralesional bacteria in the initiation and progression of oral squamous cell carcinoma. Cancer Med 2024; 13:e70209. [PMID: 39300932 PMCID: PMC11413416 DOI: 10.1002/cam4.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the predominant form of head and neck cancer, often diagnosed at late stages, resulting in a poor prognosis. Recent studies indicate a potential association between OSCC and microbial presence. Microorganisms have been identified in various tumors and lesions, including OSCC and oral potentially malignant disorders (OPMDs). Intralesional microbiota are considered important components of the tumor microenvironment (TME) and may contribute to carcinogenesis. METHODS Sources were collected through thorough searches of databases PubMed and Embase. The review focused on microbial characteristics, potential origins, and their impact on cancer progression. RESULTS Bacteria display varying abundance and diversity throughout the stages of OSCC and OPMDs. Intraleisional bacteria may have diverse sources, including not only oral plaque and saliva but also potentially the gut. Intralesional bacteria have both pro-carcinogenic and anti-carcinogenic effects, affecting processes like cell proliferation, invasion, and immune response. CONCLUSIONS Intralesional microbiota are crucial in OSCC and OPMDs, influencing both disease progression and treatments. Despite their significance, challenges like inconsistent sampling and microbial identification remain. Future research is required to fully understand their role and improve clinical applications.
Collapse
Affiliation(s)
- Zhuoyan Luo
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Shiping Lv
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Fangzhi Lou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Li Yan
- College of Medical InformaticsChongqing Medical UniversityChongqingChina
| | - Jingyi Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Ning Kang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Yunmei Dong
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Xin Jin
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| |
Collapse
|
19
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
20
|
Wang S, Tan X, Cheng J, Liu Z, Zhou H, Liao J, Wang X, Liu H. Oral microbiome and its relationship with oral cancer. J Cancer Res Ther 2024; 20:1141-1149. [PMID: 39206975 DOI: 10.4103/jcrt.jcrt_44_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT As the initial point for digestion, the balance of oral microorganisms plays an important role in maintaining local and systemic health. Oral dysbiosis, or an imbalance in the oral microbial community, may lead to the onset of various diseases. The presence or abnormal increase of microbes in the oral cavity has attracted significant attention due to its complicated relationship with oral cancer. Oral cancer can remodel microbial profiles by creating a more beneficial microenvironment for its progression. On the other hand, altered microbial profiles can promote tumorigenesis by evoking a complex inflammatory response and affecting host immunity. This review analyzes the oncogenic potential of oral microbiome alterations as a driver and biomarker. Additionally, a potentially therapeutic strategy via the reversal of the oral microbiome dysbiosis in oral cancers has been discussed.
Collapse
Affiliation(s)
- Shengran Wang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xiao Tan
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Juan Cheng
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Zeyang Liu
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Huiping Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Jiyuan Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xijun Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Hongyun Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| |
Collapse
|
21
|
Miluna-Meldere S, Rostoka D, Broks R, Viksne K, Ciematnieks R, Skadins I, Kroica J. The Effects of Nicotine Pouches and E-Cigarettes on Oral Microbes: A Pilot Study. Microorganisms 2024; 12:1514. [PMID: 39203357 PMCID: PMC11356086 DOI: 10.3390/microorganisms12081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
It remains uncertain whether nicotine pouches and electronic cigarettes alter the oral environment and result in a high presence of periodontopathogenic bacteria in saliva, compared to that among cigarette users or non-tobacco users. In this study, saliva samples were collected from respondents using nicotine pouches, electronic cigarettes, and conventional cigarettes, alongside a control group of non-tobacco users. Polymerase chain reaction was used to identify clinical isolates of the following periodontal bacteria: Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Fusobacterium nucleatum, Fusobacterium periodonticum, Porphyromonas endodontalis, and Rothia mucilaginosa. The presence of some periodontal pathogens was detected in the saliva samples from users of nicotine pouches, electronic cigarettes, and conventional cigarettes but not in samples taken from the control group. Therefore, the initial results of this pilot study suggest that the presence of periodontopathogenic bacteria in the saliva of nicotine pouch and electronic cigarette users could alter the oral microbiome, leading to periodontal diseases. However, further quantitative investigation is needed.
Collapse
Affiliation(s)
| | - Dagnija Rostoka
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Renars Broks
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Kristine Viksne
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Rolands Ciematnieks
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| |
Collapse
|
22
|
Unlu O, Demirci M, Paksoy T, Eden AB, Tansuker HD, Dalmizrak A, Aktan C, Senel F, Sunter AV, Yigit O, Cakir BO, Kantarci A. Oral microbial dysbiosis in patients with oral cavity cancers. Clin Oral Investig 2024; 28:377. [PMID: 38884817 PMCID: PMC11182825 DOI: 10.1007/s00784-024-05770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES The pathogenesis of oral cavity cancers is complex. We tested the hypothesis that oral microbiota dysbiosis is associated with oral cavity cancer. MATERIALS AND METHODS Patients with primary oral cavity cancer who met the inclusion and exclusion criteria were included in the study. Matching healthy individuals were recruited as controls. Data on socio-demographic and behavioral factors, self-reported periodontal measures and habits, and current dental status were collected using a structured questionnaire and periodontal chartings. In addition to self-reported oral health measures, each participant received a standard and detailed clinical examination. DNA was extracted from saliva samples from patients and healthy controls. Next-generation sequencing was performed by targeting V3-V4 gene regions of the 16 S rRNA with subsequent bioinformatic analyses. RESULTS Patients with oral cavity cancers had a lower quality of oral health than healthy controls. Proteobacteria, Aggregatibacter, Haemophilus, and Neisseria decreased, while Firmicutes, Bacteroidetes, Actinobacteria, Lactobacillus, Gemella, and Fusobacteria increased in oral cancer patients. At the species level, C. durum, L. umeaens, N. subflava, A. massiliensis, and V. dispar were significantly lower, while G. haemolysans was significantly increased (p < 0.05). Major periodontopathogens associated with periodontal disease (P. gingivalis and F.nucleatum) increased 6.5- and 2.8-fold, respectively. CONCLUSION These data suggested that patients with oral cancer had worse oral health conditions and a distinct oral microbiome composition that is affected by personal daily habits and may be associated with the pathogenicity of the disease and interspecies interactions. CLINICAL RELEVANCE This paper demonstrates the link between oral bacteria and oral cancers, identifying mechanistic interactions between species of oral microbiome.
Collapse
Affiliation(s)
- Ozge Unlu
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Atlas University, Istanbul, Turkey.
- ADA Forsyth Institute, Cambridge, MA, USA.
| | - Mehmet Demirci
- Faculty of Medicine, Department of Medical Microbiology, Kırklareli University, Kırklareli, Turkey
| | - Tugce Paksoy
- Faculty of Dentistry, Department of Periodontology, University of Health Sciences, Istanbul, Turkey
| | - Arzu Baygul Eden
- Faculty of Medicine, Department of Biostatistics, Koc University, Istanbul, Turkey
| | - Hasan Deniz Tansuker
- Faculty of Medicine, Department of Otolaryngology, Yeditepe University, Istanbul, Turkey
| | - Aysegul Dalmizrak
- Faculty of Medicine, Department of Medical Biology, Balıkesir University, Balıkesir, Turkey
| | - Cagdas Aktan
- Faculty of Medicine, Department of Medical Biology, Bandirma University, Balıkesir, Turkey
| | - Firdevs Senel
- Faculty of Dentistry, Department of Oral & Maxillofacial Surgery, Beykent University, Istanbul, Turkey
| | - Ahmet Volkan Sunter
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey
| | - Ozgur Yigit
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey
| | - Burak Omur Cakir
- Faculty of Medicine, Department of Ear, Nose and Throat Diseases, Istanbul Aydin University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, MA, USA
- School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
23
|
Singh S, Yadav PK, Singh AK. Structure based High-Throughput Virtual Screening, Molecular Docking and Molecular Dynamics Study of anticancer natural compounds against fimbriae (FimA) protein of Porphyromonas gingivalis in oral squamous cell carcinoma. Mol Divers 2024; 28:1141-1152. [PMID: 37043160 DOI: 10.1007/s11030-023-10643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/25/2023] [Indexed: 04/13/2023]
Abstract
Oral cancer is among the most common cancer in the world. Tobacco, alcohol, and viruses have been regarded as a well- known risk factors of OCC however, 15% of OSCC cases occurred each year without these known risk factors. Recently a myriad of studies has shown that bacterial infections lead to cancer. Accumulated shreds of evidence have demonstrated the role of Porphyromonas gingivalis (P. gingivalis) in OSCC. The virulence factor FimA of P. gingivalis activates the oncogenic pathways in OSCC by upregulating various cytokines. It also led to the inactivation of a tumor suppressor protein p53. The present Insilico study uses High-Throughput Virtual Screening, molecular docking, and molecular dynamics techniques to find the potential compounds against the target protein FimA. The goal of this study is to identify the anti-cancer lead compounds retrieved from natural sources that can be used to develop potent drug molecules to treat P.gingivalis-related OSCC. The anticancer natural compounds library was screened to identify the potential lead compounds. Furthermore, these lead compounds were subjected to precise docking, and based on the docking score potential lead compounds were identified. The top docked receptor-ligand complex was subjected to molecular dynamics simulation. A study of this insilico finding provides potent lead molecules which help in the development of therapeutic drugs against the target protein FimA in OSCC.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
24
|
Wang X, Jing M, Ma Q, Lin Y, Zheng T, Yan J, Yun L, Wang C, Li Y. Oral microbiome sequencing revealed the enrichment of Fusobacterium sp., Porphyromonas sp., Campylobacter sp., and Neisseria sp. on the oral malignant fibroma surface of giant panda. Front Cell Infect Microbiol 2024; 14:1356907. [PMID: 38863832 PMCID: PMC11165184 DOI: 10.3389/fcimb.2024.1356907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Microbial community composition is closely associated with host disease onset and progression, underscoring the importance of understanding host-microbiota dynamics in various health contexts. Methods In this study, we utilized full-length 16S rRNA gene sequencing to conduct species-level identification of the microorganisms in the oral cavity of a giant panda (Ailuropoda melanoleuca) with oral malignant fibroma. Results We observed a significant difference between the microbial community of the tumor side and non-tumor side of the oral cavity of the giant panda, with the latter exhibiting higher microbial diversity. The tumor side was dominated by specific microorganisms, such as Fusobacterium simiae, Porphyromonas sp. feline oral taxon 110, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline oral taxon 078, that have been reported to be associated with tumorigenic processes and periodontal diseases in other organisms. According to the linear discriminant analysis effect size analysis, more than 9 distinct biomarkers were obtained between the tumor side and non-tumor side samples. Furthermore, the Kyoto Encyclopedia of Genes and Genomes analysis revealed that the oral microbiota of the giant panda was significantly associated with genetic information processing and metabolism, particularly cofactor and vitamin, amino acid, and carbohydrate metabolism. Furthermore, a significant bacterial invasion of epithelial cells was predicted in the tumor side. Discussion This study provides crucial insights into the association between oral microbiota and oral tumors in giant pandas and offers potential biomarkers that may guide future health assessments and preventive strategies for captive and aging giant pandas.
Collapse
Affiliation(s)
- Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongwang Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ting Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Libing Yun
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, Sichuan, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on The Giant Panda, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Fang X, Tong W, Wu S, Zhu Z, Zhu J. The role of intratumoral microorganisms in the progression and immunotherapeutic efficacy of head and neck cancer. ONCOLOGIE 2024; 26:349-360. [DOI: 10.1515/oncologie-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The effectiveness of cancer immunization is largely dependent on the tumor’s microenvironment, especially the tumor immune microenvironment. Emerging studies say microbes exist in tumor cells and immune cells, suggesting that these microbes can affect the state of the immune microenvironment of the tumor. Our comprehensive review navigates the intricate nexus between intratumoral microorganisms and their role in tumor biology and immune modulation. Beginning with an exploration of the historical acknowledgment of microorganisms within tumors, the article underscores the evolution of the tumor microenvironment (TME) and its subsequent implications. Using findings from recent studies, we delve into the unique bacterial compositions across different tumor types and their influence on tumor growth, DNA damage, and immune regulation. Furthermore, we illuminate the potential therapeutic implications of targeting these intratumoral microorganisms, emphasizing their multifaceted roles from drug delivery agents to immunotherapy enhancers. As advancements in next-generation sequencing (NGS) technology redefine our understanding of the tumor microbiome, the article underscores the importance of discerning their precise role in tumor progression and tailoring therapeutic interventions. The review culminates by emphasizing ongoing challenges and the pressing need for further research to harness the potential of intratumoral microorganisms in cancer care.
Collapse
Affiliation(s)
- Xuzhe Fang
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Weihong Tong
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Sheng Wu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhengyong Zhu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Jin Zhu
- Department of Otorhinolaryngology and Head Neck Surgery, Affiliated Hangzhou First People’s Hospital , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
26
|
Ciani L, Libonati A, Dri M, Pomella S, Campanella V, Barillari G. About a Possible Impact of Endodontic Infections by Fusobacterium nucleatum or Porphyromonas gingivalis on Oral Carcinogenesis: A Literature Overview. Int J Mol Sci 2024; 25:5083. [PMID: 38791123 PMCID: PMC11121237 DOI: 10.3390/ijms25105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis is linked to the onset and progression of oral squamous cell carcinoma (OSCC), an epidemiologically frequent and clinically aggressive malignancy. In this context, Fusobacterium (F.) nucleatum and Porphyromonas (P.) gingivalis, two bacteria that cause periodontitis, are found in OSCC tissues as well as in oral premalignant lesions, where they exert pro-tumorigenic activities. Since the two bacteria are present also in endodontic diseases, playing a role in their pathogenesis, here we analyze the literature searching for information on the impact that endodontic infection by P. gingivalis or F. nucleatum could have on cellular and molecular events involved in oral carcinogenesis. Results from the reviewed papers indicate that infection by P. gingivalis and/or F. nucleatum triggers the production of inflammatory cytokines and growth factors in dental pulp cells or periodontal cells, affecting the survival, proliferation, invasion, and differentiation of OSCC cells. In addition, the two bacteria and the cytokines they induce halt the differentiation and stimulate the proliferation and invasion of stem cells populating the dental pulp or the periodontium. Although most of the literature confutes the possibility that bacteria-induced endodontic inflammatory diseases could impact on oral carcinogenesis, the papers we have analyzed and discussed herein recommend further investigations on this topic.
Collapse
Affiliation(s)
- Luca Ciani
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Antonio Libonati
- Department of Surgical Sciences, Catholic University of Our Lady of Good Counsel of Tirane, 1001 Tirana, Albania;
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Vincenzo Campanella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| |
Collapse
|
27
|
Su L, Yang R, Sheng Y, Ullah S, Zhao Y, Shunjiayi H, Zhao Z, Wang Q. Insights into the oral microbiota in human systemic cancers. Front Microbiol 2024; 15:1369834. [PMID: 38756728 PMCID: PMC11098135 DOI: 10.3389/fmicb.2024.1369834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The oral cavity stands as one of the pivotal interfaces facilitating the intricate interaction between the human body and the external environment. The impact of diverse oral microorganisms on the emergence and progression of various systemic cancers, typified by oral cancer, has garnered increasing attention. The potential pathogenicity of oral bacteria, notably the anaerobic Porphyromonas gingivalis and Fusobacterium nucleatum, has been extensively studied and exhibits obvious correlation with different carcinoma types. Furthermore, oral fungi and viruses are closely linked to oropharyngeal carcinoma. Multiple potential mechanisms of oral microbiota-induced carcinogenesis have been investigated, including heightened inflammatory responses, suppression of the host immune system, influence on the tumor microenvironment, anti-apoptotic activity, and promotion of malignant transformation. The disturbance of microbial equilibrium and the migration of oral microbiota play a pivotal role in facilitating oncogenic functions. This review aims to comprehensively outline the pathogenic mechanisms by which oral microbiota participate in carcinogenesis. Additionally, this review delves into their potential applications in cancer prevention, screening, and treatment. It proves to be a valuable resource for researchers investigating the intricate connection between oral microbiota and systemic cancers.
Collapse
Affiliation(s)
- Lan Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Rui Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yanan Sheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saif Ullah
- Department of Microbiology School of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hu Shunjiayi
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Guo ZC, Jing SL, Jia XY, Elayah SA, Xie LY, Cui H, Tu JB, Na SJ. Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by stimulating the release of neutrophil extracellular traps in the tumor immune microenvironment. Inflamm Res 2024; 73:693-705. [PMID: 38150024 DOI: 10.1007/s00011-023-01822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the impact of Porphyromonas gingivalis (P. gingivalis) on the progression of oral squamous cell carcinoma (OSCC) through neutrophil extracellular traps (NETs) in the tumor immune microenvironment. METHODS The expression of NETs-related markers was identified through immunohistochemistry, immunofluorescence, and Western blotting in different clinical stages of OSCC samples. The relationship between NETs-related markers and clinicopathological characteristics in 180 samples was analyzed using immunohistochemistry data. Furthermore, the ability to predict the prognosis of OSCC patients was determined by ROC curve analysis and survival analysis. The effect of P. gingivalis on the release of NETs was identified through immunofluorescence and immunohistochemistry, both in vitro and in vivo. CAL27 and SCC25 cell lines were subjected to NETs stimulation to elucidate the influence of NETs on various cellular processes, including cell proliferation, migration, invasion, and metastasis in vitro. Furthermore, the impact of NETs on the growth and metastatic potential of OSCC was assessed using in vivo models involving tumor-bearing mice and tumor metastasis mouse models. RESULTS Immunochemistry analysis revealed a significant correlation between the NETs-related markers and clinical stage, living status as well as TN stage. P. gingivalis has demonstrated its ability to effectively induce the release of NETs both in vivo and in vitro. NETs have the potential to facilitate cell migration, invasion, and colony formation. Moreover, in vivo experiments have demonstrated that NETs play a pivotal role in promoting tumor metastasis. CONCLUSION High expression of NETs-related markers demonstrates a strong correlation with the progression of OSCC. Inhibition of the NETs release process stimulated by P. gingivalis and targeted NETs could potentially open up a novel avenue in the field of immunotherapy for patients afflicted with OSCC.
Collapse
Affiliation(s)
- Zhi-Chen Guo
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Si-Li Jing
- Shannxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, China
| | - Xin-Yu Jia
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sadam Ahmed Elayah
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jiblah University for Medical and Health Sciences, Ibb, Yemen
| | - Lin-Yang Xie
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hao Cui
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jun-Bo Tu
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Si-Jia Na
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
29
|
Li C, Li M, Wei W, Wang Z, Yu J, Gong Z. Association of DOK3 and infiltrated tumor-associated macrophages with risk for the prognosis of Porphyromonas gingivalis-infected oral cancer: a 12-year data analysis of 200 patients from a tertiary teaching hospital, Urumqi, China. BMC Cancer 2024; 24:534. [PMID: 38671413 PMCID: PMC11055382 DOI: 10.1186/s12885-024-12300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND While there is an understanding of the association between the expression of Porphyromonas gingivalis (P. gingivalis) and prognosis of oral squamous cell carcinoma (OSCC), significance specially to address the relevance between different immunohistochemical intensities of P. gingivalis and tumor-associated macrophages (TAMs) in OSCC tissue and related clinicopathologic characteristics has not been well investigated. The present study aimed to investigate the pathological features related to M2-TAM in P. gingivalis-infected OSCC and ascertain its clinical relevance with patients' prognosis. METHODS A prospective cohort study was designed to comparatively analyze 200 patients from June 2008 to June 2020. Bioinformatics analyses were implemented to identify DOK3 as a key molecule and to appraise immunocyte infiltration using Gene Expression Omnibus and The Cancer Genome Atlas databases. Immunohistochemical evaluation was performed to analyze the association between the expression levels of P. gingivalis, DOK3, and M2-TAM and clinicopathological variables using Fisher's exact test or Pearson's chi-square test. Cox analysis was used to calculate hazard ratios (HR) with corresponding 95% confidence interval (CI) for various clinicopathological features. The Kaplan-Meier approach and log-rank test were used to plot the survival curves. RESULTS The expression level of P. gingivalis was positively associated with DOK3 and M2-TAMs expression level (P < 0.001). Parameters, including body mass index, clinical stage, recurrence, tumor differentiation, and P. gingivalis, DOK3, and M2-TAM immunoexpression levels, affected the prognosis of patients with OSCC (all P < 0.05). In addition, P. gingivalis (HR = 1.674, 95%CI 1.216-4.142, P = 0.012), DOK3 (HR = 1.881, 95%CI 1.433-3.457, P = 0.042), and M2-TAM (HR = 1.649, 95%CI 0.824-3.082, P = 0.034) were significantly associated with the 10-year cumulative survival rate. CONCLUSIONS Elevated expression of P. gingivalis and DOK3 indicates M2-TAM infiltration and unfavorable prognosis of OSCC, and could be considered as three novel independent risk factors for predicting the prognosis of OSCC.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Oral and Maxillofacial Oncology & Surgery, School / Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, P.R. China.
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, School of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Muqiu Li
- Department of Oral and Maxillofacial Oncology & Surgery, School / Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, P.R. China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| | - Wei Wei
- Department of Oral and Maxillofacial Oncology & Surgery, School / Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, P.R. China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| | - Zhengye Wang
- Center for Disease Control and Prevention, Xinjiang Production and Construction Corps, Urumqi, 830092, China
| | - Jingwen Yu
- Department of Pathology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Zhongcheng Gong
- Department of Oral and Maxillofacial Oncology & Surgery, School / Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, P.R. China.
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
30
|
Qin Y, Li Z, Liu T, Ma J, Liu H, Zhou Y, Wang S, Zhang L, Peng Q, Ye P, Duan N, Wang W, Wang X. Prevotella intermedia boosts OSCC progression through ISG15 upregulation: a new target for intervention. J Cancer Res Clin Oncol 2024; 150:206. [PMID: 38644421 PMCID: PMC11033248 DOI: 10.1007/s00432-024-05730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE Periodontitis-associated bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are closely linked to the risk of oral squamous cell carcinoma (OSCC). Emerging studies have indicated that another common periodontal pathogen, Prevotella intermedia (P. intermedia), is enriched in OSCC and could affect the occurrence and progression of OSCC. Our aim is to determine the effects of P. intermedia on the progression of OSCC and the role of antibiotics in reversing these effects. METHODS In this study, a murine xenograft model of OSCC was established, and the mice were injected intratumorally with PBS (control group), P. intermedia (P.i group), or P. intermedia combined with an antibiotic cocktail administration (P.i + ABX group), respectively. The effects of P. intermedia and ABX administration on xenograft tumor growth, invasion, angiogenesis, and metastasis were investigated by tumor volume measurement and histopathological examination. Enzyme-linked immunosorbent assay (ELISA) was used to investigate the changes in serum cytokine levels. Immunohistochemistry (IHC) was adopted to analyze the alterations in the levels of inflammatory cytokines and infiltrated immune cells in OSCC tissues of xenograft tumors. Transcriptome sequencing and analysis were conducted to determine differential expression genes among various groups. RESULTS Compared with the control treatment, P. intermedia treatment significantly promoted tumor growth, invasion, angiogenesis, and metastasis, markedly affected the levels of inflammatory cytokines, and markedly altered M2 macrophages and regulatory T cells (Tregs) infiltration in the tumor microenvironment. However, ABX administration clearly abolished these effects of P. intermedia. Transcriptome and immunohistochemical analyses revealed that P. intermedia infection increased the expression of interferon-stimulated gene 15 (ISG15). Correlation analysis indicated that the expression level of ISG15 was positively correlated with the Ki67 expression level, microvessel density, serum concentrations and tissue expression levels of inflammatory cytokines, and quantities of infiltrated M2 macrophages and Tregs. However, it is negatively correlated with the quantities of infiltrated CD4+ and CD8+ T cells. CONCLUSION In conclusion, intratumoral P. intermedia infection aggravated OSCC progression, which may be achieved through upregulation of ISG15. This study sheds new light on the possible pathogenic mechanism of intratumoral P. intermedia in OSCC progression, which could be a prospective target for OSCC prevention and treatment.
Collapse
Affiliation(s)
- Yao Qin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhiyuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ting Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jingjing Ma
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Hong Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yifan Zhou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Shuai Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Lei Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiao Peng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Pei Ye
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
31
|
García-Arévalo F, Leija-Montoya AG, González-Ramírez J, Isiordia-Espinoza M, Serafín-Higuera I, Fuchen-Ramos DM, Vazquez-Jimenez JG, Serafín-Higuera N. Modulation of myeloid-derived suppressor cell functions by oral inflammatory diseases and important oral pathogens. Front Immunol 2024; 15:1349067. [PMID: 38495880 PMCID: PMC10940359 DOI: 10.3389/fimmu.2024.1349067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
The oral cavity presents a diverse microbiota in a dynamic balance with the host. Disruption of the microbial community can promote dysregulation of local immune response which could generate oral diseases. Additionally, alterations in host immune system can result in inflammatory disorders. Different microorganisms have been associated with establishment and progression of the oral diseases. Oral cavity pathogens/diseases can modulate components of the inflammatory response. Myeloid-derived suppressor cells (MDSCs) own immunoregulatory functions and have been involved in different inflammatory conditions such as infectious processes, autoimmune diseases, and cancer. The aim of this review is to provide a comprehensive overview of generation, phenotypes, and biological functions of the MDSCs in oral inflammatory diseases. Also, it is addressed the biological aspects of MDSCs in presence of major oral pathogens. MDSCs have been mainly analyzed in periodontal disease and Sjögren's syndrome and could be involved in the outcome of these diseases. Studies including the participation of MDSCs in other important oral diseases are very scarce. Major oral bacterial and fungal pathogens can modulate expansion, subpopulations, recruitment, metabolism, immunosuppressive activity and osteoclastogenic potential of MDSCs. Moreover, MDSC plasticity is exhibited in presence of oral inflammatory diseases/oral pathogens and appears to be relevant in the disease progression and potentially useful in the searching of possible treatments. Further analyses of MDSCs in oral cavity context could allow to understand the contribution of these cells in the fine-tuned balance between host immune system and microorganism of the oral biofilm, as well as their involvement in the development of oral diseases when this balance is altered.
Collapse
Affiliation(s)
- Fernando García-Arévalo
- Laboratorio de Biología Celular, Centro de Ciencias de la Salud Mexicali, Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali, BC, Mexico
| | | | - Javier González-Ramírez
- Laboratorio de Biología Molecular, Centro de Ciencias de la Salud Mexicali, Facultad de Enfermería Mexicali, Universidad Autónoma de Baja California, Mexicali, BC, Mexico
| | - Mario Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal, Mexico
| | - Idanya Serafín-Higuera
- Laboratorio de Microbiología, Facultad de Medicina, Universidad Autónoma de Baja California, Tijuana, BC, Mexico
| | - Dulce Martha Fuchen-Ramos
- Laboratorio de Biología Celular, Centro de Ciencias de la Salud Mexicali, Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali, BC, Mexico
| | | | - Nicolas Serafín-Higuera
- Laboratorio de Biología Celular, Centro de Ciencias de la Salud Mexicali, Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali, BC, Mexico
| |
Collapse
|
32
|
Dellino M, Pinto G, D’Amato A, Barbara F, Di Gennaro F, Saracino A, Laganà AS, Vimercati A, Malvasi A, Malvasi VM, Cicinelli E, Vitagliano A, Cascardi E, Pinto V. Analogies between HPV Behavior in Oral and Vaginal Cavity: Narrative Review on the Current Evidence in the Literature. J Clin Med 2024; 13:1429. [PMID: 38592283 PMCID: PMC10932293 DOI: 10.3390/jcm13051429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Human genital papilloma virus infection is the most prevalent sexually transmitted infection in the world. It is estimated that more than 75% of sexually active women contract this infection in their lifetime. In 80% of young women, there is the clearance of the virus within 18-24 months. In developed countries, oral squamous cell carcinoma (OSCC) is now the most frequent human papilloma virus (HPV)-related cancer, having surpassed cervical cancer, and it is predicted that by 2030 most squamous cell carcinomas will be the HPV-related rather than non-HPV-related form. However, there are currently no screening programs for oral cavity infection. While the natural history of HPV infection in the cervix is well known, in the oropharynx, it is not entirely clear. Furthermore, the prevalence of HPV in the oropharynx is unknown. Published studies have found wide-ranging prevalence estimates of 2.6% to 50%. There are also conflicting results regarding the percentage of women presenting the same type of HPV at two mucosal sites, ranging from 0 to 60%. Additionally, the question arises as to whether oral infection can develop from genital HPV infection, through oral and genital contact or by self-inoculation, or whether it should be considered an independent event. However, there is still no consensus on these topics, nor on the relationship between genital and oral HPV infections. Therefore, this literature review aims to evaluate whether there is evidence of a connection between oral and cervical HPV, while also endorsing the usefulness of the screening of oral infection in patients with high-risk cervical HPV as a means of facilitating the diagnosis and early management of HPV-related oral lesions. Finally, this review emphasizes the recommendation for the use of the HPV vaccines in primary prevention in the male and female population as the most effective means of successfully counteracting the increasing incidence of OSCC to date.
Collapse
Affiliation(s)
- Miriam Dellino
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Grazia Pinto
- Dentistry Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, 70124 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Francesco Barbara
- Unit of Otolaryngology, Department of Ophtalmology and Otolaryngology, University of Bari, 70124 Bari, Italy;
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Antonella Vimercati
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Antonio Malvasi
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | | | - Ettore Cicinelli
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Amerigo Vitagliano
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Eliano Cascardi
- Pathology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Vincenzo Pinto
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| |
Collapse
|
33
|
González-Arriagada WA, Canedo-Marroquin G, Adorno-Farías D, Fernández-Ramires R. New insights into the role of the oral leukoplakia microenvironment in malignant transformation. FRONTIERS IN ORAL HEALTH 2024; 5:1363052. [PMID: 38450102 PMCID: PMC10914962 DOI: 10.3389/froh.2024.1363052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Oral leukoplakia is the most frequent and potentially malignant lesion of the oral cavity. Although dysplasia grading remains the main factor for risk assessment, challenges persist in determining the exact risk of transformation, and the literature has focused on studying alternative biomarkers. The interaction between dysplastic epithelial cells and the microenvironment starts early, and the communication is mainly mediated by lymphocytes, inflammatory factors, fibroblasts, and the extracellular matrix, leading to dysplastic progression. Leukoplakia-infiltrating leukocytes (LILs) and leukoplakia-associated fibroblasts (LAFs) play crucial roles in the dysplastic microenvironment. The immune response is related to intraepithelial T lymphocyte infiltration, mechanisms of immunosuppression coordinated by regulatory T cells, M2 macrophage polarization, and increased numbers of Langerhans cells; in contrast, fibroblastic and extracellular matrix factors are associated with increased numbers of pro-tumorigenic myofibroblasts, increased expression of metalloproteinases vs. decreased expression of TIMPs, and increased expression of chemokines and other inflammatory mediators. The microenvironment offers insights into the progression of leukoplakia to carcinoma, and understanding the complexity of the oral microenvironment in potentially malignant diseases aids in determining the risk of malignant transformation and proposing new therapeutic alternatives.
Collapse
Affiliation(s)
- Wilfredo Alejandro González-Arriagada
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
| | - Gisela Canedo-Marroquin
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Daniela Adorno-Farías
- School of Dentistry, Oral Medicine and Pathology Department, Universidad de Chile, Santiago, Chile
| | - Ricardo Fernández-Ramires
- Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
- Grupo Chileno de Cáncer Hereditario, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
34
|
Ma Y, Yu Y, Yin Y, Wang L, Yang H, Luo S, Zheng Q, Pan Y, Zhang D. Potential role of epithelial-mesenchymal transition induced by periodontal pathogens in oral cancer. J Cell Mol Med 2024; 28:e18064. [PMID: 38031653 PMCID: PMC10805513 DOI: 10.1111/jcmm.18064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yingyi Yu
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yuqing Yin
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Liu Wang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Huishun Yang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Shiyin Luo
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Qifan Zheng
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
35
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
36
|
Gao S, Zhang Z, Sun K, Li MX, Qi YJ. Upper gastrointestinal tract microbiota with oral origin in relation to oesophageal squamous cell carcinoma. Ann Med 2023; 55:2295401. [PMID: 38151037 PMCID: PMC10763922 DOI: 10.1080/07853890.2023.2295401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction: Poor oral hygiene is linked to high risks of many systemic diseases, including cancers. Oral dysbiosis is closely associated with poor oral hygiene, causing tooth loss, gingivitis, and periodontitis. We provide a summary of studies and discuss the risk factors for oesophageal squamous cell carcinoma (ESCC) from a microbial perspective in this review.Methods: A literature search of studies published before December 31, 2022 from PubMed, Web of Science, and The Cochrane Library was performed. The search strategies included the following keywords: (1) oral care, oral health, oral hygiene, dental health, dental hygiene, tooth loss, teeth loss, tooth absence, missing teeth, edentulism, tooth brushing, mouthwash, and tooth cleaning; (2) esophageal, esophagus, oesophagus, and oesophageal; (3) cancer, carcinoma, tumor, and neoplasm.Discussion: Poor oral health, indicated by infrequent tooth brushing, chronic periodontitis, and tooth loss, has been associated with an increased risk of squamous dysplasia and ESCC. Oral microbial diversity and composition are profoundly dysregulated during oesophageal tumorigenesis. Similar to the oral microbiota, the oesophageal microbiota varies distinctly in multiple bacterial taxa in ESCC and gastric cardia adenocarcinoma, both of which have high co-occurrence rates in the "Oesophageal Cancer Belt". In addition, the potential roles of oncogenic viruses in ESCC have also been discussed. We also briefly explore the potential mechanisms underlying the tumor-promoting role of dysregulated microbiota for the development of therapeutic targeting strategies.Conclusion: Poor oral health is an established risk indicator of ESCC. The dysbiosis of microbiota in upper gastrointestinal tract that highly resembles the oral microbial ecosystem but with distinct features at individual sites contributes to the development and progression of ESCC.
Collapse
Affiliation(s)
- Shegan Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Zichao Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Kui Sun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Meng-Xiang Li
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, China
| | - Yi-Jun Qi
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
37
|
Desai S. Influence of pathogens on host genome and epigenome in development of head and neck cancer. Cancer Rep (Hoboken) 2023; 6:e1846. [PMID: 37322598 PMCID: PMC10644332 DOI: 10.1002/cnr2.1846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNSCC) is a heterogeneous group of cancers, affecting multiple regions such as oral cavity, pharynx, larynx, and nasal region, each showing a distinct molecular profile. HNSCC accounts for more than 6 million cases worldwide, soaring mainly in the developing countries. RECENT FINDINGS The aetiology of HNSCC is complex and multifactorial, involving both genetic and environmental factors. The critical role of microbiome, which includes bacteria, viruses, and fungi, is under spotlight due to the recent reports on their contribution in the development and progression of HNSCC. This review focuses on the effect of opportunistic pathogens on the host genome and epigenome, which contributes to the disease progression. Drawing parallels from the host-pathogen interactions observed in other tumour types arising from the epithelial tissue such as colorectal cancer, the review also calls attention to the potential explorations of the role of pathogens in HNSCC biology and discusses the clinical implications of microbiome research in detection and treatment of HNSCC. CONCLUSION Our understanding of the genomic effects of the microbes on the disease progression and the mechanistic insights of the host-pathogen interaction will pave way to novel treatment and preventive approaches in HNSCC.
Collapse
|
38
|
Lan Z, Liu WJ, Cui H, Zou KL, Chen H, Zhao YY, Yu GT. The role of oral microbiota in cancer. Front Microbiol 2023; 14:1253025. [PMID: 37954233 PMCID: PMC10634615 DOI: 10.3389/fmicb.2023.1253025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Cancer remains a significant global challenge, with an estimated 47% increase in cancer patients from 2020 to 2040. Increasing research has identified microorganism as a risk factor for cancer development. The oral cavity, second only to the colon, harbors more than 700 bacterial species and serves as a crucial microbial habitat. Although numerous epidemiological studies have reported associations between oral microorganisms and major systemic tumors, the relationship between oral microorganisms and cancers remains largely unclear. Current research primarily focuses on respiratory and digestive system tumors due to their anatomical proximity to the oral cavity. The relevant mechanism research mainly involves 47% dominant oral microbial population that can be cultured in vitro. However, further exploration is necessary to elucidate the mechanisms underlying the association between oral microbiota and tumors. This review systematically summarizes the reported correlations between oral microbiota and common cancers while also outlining potential mechanisms that may guide biological tumor treatment.
Collapse
Affiliation(s)
- Zhou Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Wei-Jia Liu
- Department of Oral Mucosal Diseases, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Wang XL, Xu HW, Liu NN. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:535-547. [PMID: 37881320 PMCID: PMC10593652 DOI: 10.1007/s43657-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
The polymorphic microbiome has been defined as one of the "Hallmarks of Cancer". Extensive studies have now uncovered the role of oral microbiota in cancer development and progression. Bacteria, fungi, archaea, and viruses in the oral cavity interact dynamically with the oral microenvironment to maintain the oral micro-ecological homeostasis. This complex interaction is influenced by many factors, such as maternal transmission, personal factors and environmental factors. Dysbiosis of oral microbiota can disturbed this host-microbiota interaction, leading to systemic diseases. Numerous studies have shown the potential associations between oral microbiota and a variety of cancers. However, the underlying mechanisms and therapeutic insights are still poorly understood. In this review, we mainly focus on the following aspects: (1) the factors affect oral microbiota composition and function; (2) the interaction between microenvironment and oral microbiota; (3) the role of multi-kingdom oral microbiota in human health; (4) the potential underlying mechanisms and therapeutic benefits of oral microbiota against cancer. Finally, we aim to describe the impact of oral microbiota on cancer progression and provide novel therapeutic insights into cancer prevention and treatment by targeting oral microbiota.
Collapse
Affiliation(s)
- Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hua-Wen Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| |
Collapse
|
40
|
Zhong W, Tao SY, Guo X, Cheng XF, Yuan Q, Li CX, Tian HY, Yang S, Sunchuri D, Guo ZL. Network pharmacology and molecular docking-based investigation on traditional Chinese medicine Astragalus membranaceus in oral ulcer treatment. Medicine (Baltimore) 2023; 102:e34744. [PMID: 37653793 PMCID: PMC10470703 DOI: 10.1097/md.0000000000034744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
To analyze the mechanism of Astragalus membranaceus (AM) in molecular level in the oral ulcer (OU) treatment with reference to network pharmacology. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used in screening the AM active components and AM action targets; GeneCards database was used to screen OU targets; the common target were screened by Venny online tool; Cytoscape software was applied to construct the target gene regulation map of AM active components; STRING database was used to construct the protein-protein interaction network and the key targets were screened as per degree value; gene ontology enrichment and KEGG pathway enrichment of interactive genes were calculated through David database. There were 17 active ingredients and 429 target spots in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. There are 606 target genes for OU in GeneCards database. There are 67 common targets, including 10 key targets: IL10, IL6, TNF, IL1B, CXCL8, CCL2, TLR4, IL4, ICAM1, and IFNG. It involves 30 gene ontology terms and 20 KEGG signal channels. The molecular docking results showed that quercetin and kaempferol had a good binding activity with IL6, IL1B, TNF, and CCL2. Network pharmacological analysis shows that AM can regulate multiple signal pathways through multiple targets to treat OU.
Collapse
Affiliation(s)
- Wan Zhong
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Si-Yu Tao
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiang Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiao-Fang Cheng
- Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR. China
| | - Qing Yuan
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Chu-Xing Li
- Department of Dentistry, The Second Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Hong-Yuan Tian
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Song Yang
- Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR. China
| | - Diwas Sunchuri
- School of International Education, Hainan Medical University, Haikou, PR China
| | - Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
- Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR. China
| |
Collapse
|
41
|
Mäkinen AI, Pappalardo VY, Buijs MJ, Brandt BW, Mäkitie AA, Meurman JH, Zaura E. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. MICROBIOME 2023; 11:171. [PMID: 37542310 PMCID: PMC10403937 DOI: 10.1186/s40168-023-01613-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Treating oral squamous cell carcinoma (OSCC) introduces new ecological environments in the oral cavity. This is expected to cause changes in the oral microbiome. The purpose of this study was to gain new information on the salivary microbiome of OSCC patients in order to improve the aftercare of OSCC patients. The aims of this study were to investigate possible changes in the salivary microbiome profiles of OSCC patients before and after cancer treatment and to compare these changes with the profiles of healthy controls. PATIENTS AND METHODS Paraffin-stimulated whole saliva samples were collected, and the salivary flow rate was measured from 99 OSCC patients prior to surgical resection of the tumor and other adjuvant therapy. After treatment, 28 OSCC patients were re-examined with a mean follow-up time of 48 months. In addition, 101 healthy controls were examined and sampled. After DNA extraction and purification, the V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using Illumina MiSeq. The merged read pairs were denoised using UNOISE3, mapped to zero-radius operational taxonomic units (zOTUs), and the representative zOTU sequences were assigned a taxonomy using HOMD. Descriptive statistics were used to study the differences in the microbial profiles of OSCC patients before and after treatment and in comparison to healthy controls. RESULTS At baseline, the OSCC patients showed a higher relative abundance of zOTUs classified as Streptococcus anginosus, Abiotrophia defectiva, and Fusobacterium nucleatum. The microbial profiles differed significantly between OSCC patients and healthy controls (F = 5.9, p < 0.001). Alpha diversity of the salivary microbiome of OSCC patients was decreased at the follow-up, and the microbial profiles differed significantly from the pre-treatment (p < 0.001) and from that of healthy controls (p < 0.001). CONCLUSIONS OSCC patients' salivary microbiome profile had a higher abundance of potentially pathogenic bacteria compared to healthy controls. Treatment of the OSCC caused a significant decrease in alpha diversity and increase in variability of the salivary microbiome, which was still evident after several years of follow-up. OSCC patients may benefit from preventive measures, such as the use of pre- or probiotics, salivary substitutes, or dietary counseling. Video Abstract.
Collapse
Affiliation(s)
- Anna I. Mäkinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 63, 00014 Helsinki, Finland
| | - Vincent Y. Pappalardo
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 63, 00014 Helsinki, Finland
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Caponio VCA, Zhurakivska K, Lo Muzio L, Troiano G, Cirillo N. The Immune Cells in the Development of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:3779. [PMID: 37568595 PMCID: PMC10417065 DOI: 10.3390/cancers15153779] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
A still unresolved issue surrounding tumor formation concerns the role that the immune system plays in preventing the formation and progression of neoplasia, including oral squamous cell carcinoma (OSCC). Antitumor immunity has historically been seen as a critical barrier for cancer cells to develop, grow and spread, and this can be modulated using immunotherapies to achieve antitumor clinical responses. However, it has recently become clear that tumor-associated immunity, particularly the inflammatory microenvironment, has the paradoxical effect of enhancing tumorigenesis and progression. In this review, we discuss the multifaceted function of infiltrating immune cells in suppressing or promoting premalignancy and cancer. In particular, we report on the evidence supporting a role for T lymphocytes, dendritic cells, macrophages, and neutrophils in the development and progression of oral potentially malignant disorders (OPMD) and OSCC. We also draw attention to the clinical relevance of immune cell phenotypes and associated molecules for use as biomarkers and to the translatability of current research findings to improve classification systems and precision medicine in patients with OSCC.
Collapse
Affiliation(s)
- Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC 3010, Australia
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
43
|
Ladjevac N, Milovanovic M, Jevtovic A, Arsenijevic D, Stojanovic B, Dimitrijevic Stojanovic M, Stojanovic B, Arsenijevic N, Arsenijevic A, Milovanovic J. The Role of IL-17 in the Pathogenesis of Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:9874. [PMID: 37373022 DOI: 10.3390/ijms24129874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Elucidating the inflammatory mechanisms underlying formation and progression of oral squamous cell carcinoma (OSCC) is crucial for discovering new targeted therapeutics. The proinflammatory cytokine IL-17 has proven roles in tumor formation, growth, and metastasis. The presence of IL-17 is demonstrated in both in vitro and in vivo models, and in OSCC patients, is mostly accompanied by enhanced proliferation and invasiveness of cancer cells. Here we review the known facts regarding the role of IL-17 in OSCC pathogenesis, namely the IL-17 mediated production of proinflammatory mediators that mobilize and activate myeloid cells with suppressive and proangiogenic activities and proliferative signals that directly induce proliferation of cancer cells and stem cells. The possibility of a potential IL-17 blockade in OSCC therapy is also discussed.
Collapse
Affiliation(s)
- Nevena Ladjevac
- Department of Otorhinolaryngology, General Hospital Uzice, 31000 Uzice, Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Andra Jevtovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Otorhinolaryngology and Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology end Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
44
|
Jing SL, Afshari K, Guo ZC. Inflammatory response-related genes predict prognosis in patients with HNSCC. Immunol Lett 2023:S0165-2478(23)00094-9. [PMID: 37279805 DOI: 10.1016/j.imlet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy of the head and neck, and the inflammatory microenvironment can impact the prognosis of HNSCC. However, the contribution of inflammation to tumour progression has not been fully elucidated. METHODS The mRNA expression profiles and corresponding clinical data of HNSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The least absolute shrinkage and selection operator (LASSO) Cox analysis model was used to identify prognostic genes. The overall survival (OS) between high- and low-risk patients was compared by Kaplan‒Meier analysis. The independent predictors of OS were determined by univariate and multivariate Cox analyses. Single-sample gene set enrichment analysis (ssGSEA) was used to assess immune cell infiltration and immune-related pathway activity. GSEA was used to analyse Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Gene Expression Profiling Interactive Analysis (GEPIA) database was used to examine prognostic genes in HNSCC patients. Immunohistochemistry was used to verify the protein expression of prognostic genes in HNSCC samples. RESULTS An inflammatory response-related gene signature was constructed by LASSO Cox regression analysis. HNSCC patients in the high-risk group showed significantly reduced OS compared with those in the low-risk group. The predictive capacity of the prognostic gene signature was confirmed by ROC curve analysis. Multivariate Cox analysis revealed that the risk score was an independent predictor for OS. Functional analysis indicated that the immune status was markedly different between the two risk groups. The risk score was significantly related to tumour stage and immune subtype. The expression levels of the prognostic genes were significantly related to the sensitivity of cancer cells to antitumour drugs. Furthermore, high expression of the prognostic genes significantly predicted poor prognosis of HNSCC patients. CONCLUSIONS The novel signature containing 9 inflammatory response-related genes reflects the immune status of HNSCC and can be used for prognosis prediction. Furthermore, the genes may be potential targets for HNSCC treatment.
Collapse
Affiliation(s)
- Si-Li Jing
- Shannxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Keihan Afshari
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhi-Chen Guo
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
45
|
Li Z, Fu R, Huang X, Wen X, Zhang L. A decade of progress: bibliometric analysis of trends and hotspots in oral microbiome research (2013-2022). Front Cell Infect Microbiol 2023; 13:1195127. [PMID: 37249977 PMCID: PMC10213461 DOI: 10.3389/fcimb.2023.1195127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background Over the past decade, a plethora of studies have delved into the oral microbiome. Our objective was to evaluate the trends in oral microbiome research employing a quantitative approach. Materials and methods We extracted clinical studies on the oral microbiome published between 2013 and 2022 from the Web of Science database, yielding 3024 articles. The assembled literature was visually scrutinized using VOSviewer 1.6.18, Citespace 6.1.6, Pajek, Scimago Graphica, and other specialized software to assess authors, institutions, countries, journals, co-cited literature, keywords, genes, and diseases. Results Our analysis identified a total of 3024 articles. The volume and rate of annual publications steadily increased, with research interest in the oral microbiome progressively intensifying. The United States, China, and the UK contributed the highest number of publications. Growth rates of publications varied among countries over time. The Forsyth Institute emerged as the most collaborative institution, boasting the highest number of relevant papers (135) and securing the top rank, followed by Sichuan University and Harvard University. Paster Bruce J, Zhou Xuedong, and He Xuesong were pioneers in the field of oral microbiome research. This analysis demonstrates that the homeostatic balance of the oral microbiome, advanced microbial sequencing technology, connections with gut microbiota, and tumorigenesis, including oral cancer, have become emerging topics in the oral microbiome field. Conclusions This study delineated a comprehensive landscape of hotspots and frontiers in oral microbiome research, thus facilitating the identification of interdisciplinary advancements. We sincerely hope that our bibliometric analysis will enable researchers to leverage the oral microbiome to ultimately improve human oral health.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| |
Collapse
|
46
|
Zhu H, Yip HC, Cheung MK, Chan HC, Ng C, Lau EHL, Yeung ZWC, Wong EWY, Leung L, Qu X, Wang D, Cai L, Chan PKS, Chan JYK, Chen Z. Convergent dysbiosis of upper aerodigestive microbiota between patients with esophageal and oral cavity squamous cell carcinoma. Int J Cancer 2023; 152:1903-1915. [PMID: 36752573 DOI: 10.1002/ijc.34460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
The bidirectional association between primary esophageal squamous cell carcinoma (ESCC) and oral cavity squamous cell carcinoma (OSCC) suggests common risk factors and oncogenic molecular processes but it is unclear whether these two cancers display similar patterns of dysbiosis in their upper aerodigestive microbiota (UADM). We conducted a case-control study to characterize the microbial communities in esophageal lavage samples from 49 ESCC patients and oral rinse samples from 91 OSCC patients using 16S rRNA V3-V4 amplicon sequencing. Compared with their respective non-SCC controls from the same anatomical sites, 32 and 45 discriminative bacterial genera were detected in ESCC and OSCC patients, respectively. Interestingly, 20 of them were commonly enriched or depleted in both types of cancer, suggesting a convergent niche adaptation of upper aerodigestive SCC-associated bacteria that may play important roles in the pathogenesis of malignancies. Notably, Fusobacterium, Selenomonas, Peptoanaerobacter and Peptostreptococcus were enriched in both ESCC and OSCC, whereas Streptococcus and Granulicatelia were commonly depleted. We further identified Fusobacterium nucleatum as the most abundant species enriched in the upper aerodigestive SCC microenvironment, and the higher relative abundances of Selenomonas danae and Treponema maroon were positively correlated with smoking. In addition, predicted functional analysis revealed several depleted (eg, lipoic acid and pyruvate metabolism) and enriched (eg, RNA polymerase and nucleotide excision repair) pathways common to both cancers. Our findings reveal a convergent dysbiosis in the UADM between patients with ESCC and OSCC, suggesting a shared niche adaptation of host-microbiota interactions in the pathogenesis of upper aerodigestive tract malignancies.
Collapse
Affiliation(s)
- Hengyan Zhu
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon Chi Yip
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Man Kit Cheung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Cherrie Ng
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eric H L Lau
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenon W C Yeung
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eddy W Y Wong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Leanne Leung
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daijuanru Wang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Liuyang Cai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason Y K Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Yamada C, Ho A, Nusbaum A, Xu R, Davey ME, Nichols F, Mao C, Movila A. Inhibitory effect of Porphyromonas gingivalis-derived phosphoethanolamine dihydroceramide on acid ceramidase expression in oral squamous cells. J Cell Mol Med 2023; 27:1290-1295. [PMID: 37016912 PMCID: PMC10148054 DOI: 10.1111/jcmm.17722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 04/06/2023] Open
Abstract
The maintenance of diminished acid ceramidase (ASAH1) gene expression leading to the accumulation of antiproliferative intracellular ceramides in oral squamous cell carcinoma (OSCC) has emerged as a prospective oral cancer therapeutic regimen. Our published study demonstrated that the key periodontal pathogen Porphyromonas gingivalis downregulates the expression patterns of ASAH1 mRNA in normal epithelial cells in vitro. Therefore, P. gingivalis may also beneficially diminish the expression of ASAH1 in OSCC. Because a uniquely structured P. gingivalis-derived phosphoethanolamine dihydroceramide (PEDHC) inhibits the proliferation of normal human fibroblasts, this study aimed to test the effect of PEDHC on the survival of human oral squamous OECM-1 cells in vitro. We demonstrated that the P. gingivalis dihydroceramide-null (ΔPG1780) strain upregulates the expression of ASAH1 mRNA and promotes aggressive proliferation and migration of OECM-1 cells compared to the parent P. gingivalis-W83 strain. In addition, the intracellular concentration of ceramides was dramatically elevated in OECM-1 cells exposed to PEDHC in vitro. Furthermore, PEDHC inhibited expression patterns of ASAH1 mRNA as well as some genes associated with degradation of the basement membranes and extracellular matrix, for example, MMP-2, ADAM-17 and IL-6, in OECM-1 cells. Altogether, these data indicated that PEDHC produced by P. gingivalis inhibits acid ceramidase expression, promotes intracellular ceramide accumulation and suppresses the survival and migration of OSCC cells in vitro. Further studies are needed to determine molecular mechanisms of PEDHC-mediated inhibitory effect(s) on OSCC using in vivo models of oral cancer.
Collapse
Affiliation(s)
- Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| | - Anny Ho
- Institute for Neuro‐Immune MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ruijuan Xu
- Department of Medicine, Stony Brook Cancer CenterRenaissance School of MedicineThe State University of New York at Stony BrookStony BrookNew YorkUSA
| | - Mary Ellen Davey
- Department of MicrobiologyThe Forsyth InstituteCambridgeMassachusettsUSA
| | - Frank Nichols
- Department of Oral Health and Diagnostic SciencesUniversity of Connecticut School of Dental MedicineFarmingtonConnecticutUSA
| | - Cungui Mao
- Department of Medicine, Stony Brook Cancer CenterRenaissance School of MedicineThe State University of New York at Stony BrookStony BrookNew YorkUSA
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
48
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
49
|
Danella EB, Costa de Medeiros M, D'Silva NJ. Cytokines secreted by inflamed oral mucosa: implications for oral cancer progression. Oncogene 2023; 42:1159-1165. [PMID: 36879116 DOI: 10.1038/s41388-023-02649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
The oral mucosa has an essential role in protecting against physical, microbial, and chemical harm. Compromise of this barrier triggers a wound healing response. Key events in this response such as immune infiltration, re-epithelialization, and stroma remodeling are coordinated by cytokines that promote cellular migration, invasion, and proliferation. Cytokine-mediated cellular invasion and migration are also essential features in cancer dissemination. Therefore, exploration of cytokines that regulate each stage of oral wound healing will provide insights about cytokines that are exploited by oral squamous cell carcinoma (SCC) to promote tumor development and progression. This will aid in identifying potential therapeutic targets to constrain SCC recurrence and increase patient survival. In this review, we discuss cytokines that overlap in oral wounds and SCC, emphasizing how these cytokines promote cancer progression.
Collapse
Affiliation(s)
- Erika B Danella
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Marcell Costa de Medeiros
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Nisha J D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA. .,Pathology, University of Michigan Medical School, 1500 E Medical Center Dr, Ann Arbor, MI, USA. .,Rogel Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
He H, Hao Y, Fan Y, Li B, Cheng L. The interaction between innate immunity and oral microbiota in oral diseases. Expert Rev Clin Immunol 2023; 19:405-415. [PMID: 36803467 DOI: 10.1080/1744666x.2023.2182291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Innate immunity serves as the frontline to combat invading pathogens. Oral microbiota is the total collection of microorganisms colonized within the oral cavity. By recognizing the resident microorganisms through pattern recognition receptors, innate immunity is capable of interacting with oral microbiota and maintaining homeostasis. Dysregulation of interaction may lead to the pathogenesis of several oral diseases. Decoding the crosstalk between oral microbiota and innate immunity may be contributory to developing novel therapies for preventing and treating oral diseases. AREAS COVERED This article reviewed pattern recognition receptors in the recognition of oral microbiota, the reciprocal interaction between innate immunity and oral microbiota, and discussed how the dysregulation of this relationship leads to the pathogenesis and development of oral diseases. EXPERT OPINION Many studies have been conducted to illustrate the relationship between oral microbiota and innate immunity and its role in the occurrence of different oral diseases. The impact and mechanisms of innate immune cells on oral microbiota and the mechanisms of dysbiotic microbiota in altering innate immunity are still needed to be investigated. Altering the oral microbiota might be a possible solution for treating and preventing oral diseases.
Collapse
Affiliation(s)
- Hongzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|