1
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
2
|
Wiedmann MK, Steinsvåg IV, Dinh T, Vigeland MD, Larsson PG, Hjorthaug H, Sheng Y, Mero IL, Selmer KK. Whole-exome sequencing in moyamoya patients of Northern-European origin identifies gene variants involved in Nitric Oxide metabolism: A pilot study. BRAIN & SPINE 2023; 3:101745. [PMID: 37383439 PMCID: PMC10293314 DOI: 10.1016/j.bas.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 06/30/2023]
Abstract
Introduction Moyamoya disease (MMD) is a chronic cerebrovascular steno-occlusive disease of largely unknown etiology. Variants in the RNF213 gene are strongly associated with MMD in East-Asia. In MMD patients of Northern-European origin, no predominant susceptibility variants have been identified so far. Research question Are there specific candidate genes associated with MMD of Northern-European origin, including the known RNF213 gene? Can we establish a hypothesis for MMD phenotype and associated genetic variants identified for further research? Material and methods Adult patients of Northern-European origin, treated surgically for MMD at Oslo University Hospital between October 2018 to January 2019 were asked to participate. WES was performed, with subsequent bioinformatic analysis and variant filtering. The selected candidate genes were either previously reported in MMD or known to be involved in angiogenesis. The variant filtering was based on variant type, location, population frequency, and predicted impact on protein function. Results Analysis of WES data revealed nine variants of interest in eight genes. Five of those encode proteins involved in nitric oxide (NO) metabolism: NOS3, NR4A3, ITGAV, GRB7 and AGXT2. In the AGXT2 gene, a de novo variant was detected, not previously described in MMD. None harboured the p.R4810K missense variant in the RNF213 gene known to be associated with MMD in East-Asian patients. Discussion and conclusion Our findings suggest a role for NO regulation pathways in Northern-European MMD and introduce AGXT2 as a new susceptibility gene. This pilot study warrants replication in larger patient cohorts and further functional investigations.
Collapse
Affiliation(s)
- Markus K.H. Wiedmann
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingunn V. Steinsvåg
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Tovy Dinh
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Magnus D. Vigeland
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Pål G. Larsson
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Hanne Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Kaja K. Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Lima e Silva R, Mirando AC, Tzeng SY, Green JJ, Popel AS, Pandey NB, Campochiaro PA. Anti-angiogenic collagen IV-derived peptide target engagement with α vβ 3 and α 5β 1 in ocular neovascularization models. iScience 2023; 26:106078. [PMID: 36844452 PMCID: PMC9947312 DOI: 10.1016/j.isci.2023.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
AXT107, a collagen-derived peptide that binds integrins αvβ3 and α5β1 with high affinity, suppresses vascular endothelial growth factor (VEGF) signaling, promotes angiopoietin 2-induced Tie2 activation, and suppresses neovascularization (NV) and vascular leakage. Immunohistochemical staining for αvβ3 and α5β1 was markedly increased in NV compared with normal retinal vessels. After intravitreous injection of AXT107, there was no staining with an anti-AXT107 antibody on normal vessels but robust staining of NV that co-localized with αvβ3 and α5β1. Likewise, after intravitreous injection, fluorescein amidite-labeled AXT107 co-localized with αvβ3 and α5β1 on NV but not normal vessels. AXT107 also co-localized with αv and α5 at cell-cell junctions of human umbilical vein endothelial cells (HUVECs). AXT107-integrin binding was demonstrated by ex vivo cross-linking/pull-down experiments. These data support the hypothesis that AXT107 therapeutic activity is mediated through binding αvβ3 and α5β1 which are markedly upregulated on endothelial cells in NV providing selective targeting of diseased vessels which has therapeutic and safety benefits.
Collapse
Affiliation(s)
- Raquel Lima e Silva
- Department of Ophthalmology and The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam C. Mirando
- AsclepiX Therapeutics, Inc., Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J. Green
- Department of Ophthalmology and The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Niranjan B. Pandey
- AsclepiX Therapeutics, Inc., Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A. Campochiaro
- Department of Ophthalmology and The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Beiter RM, Rivet-Noor C, Merchak AR, Bai R, Johanson DM, Slogar E, Sol-Church K, Overall CC, Gaultier A. Evidence for oligodendrocyte progenitor cell heterogeneity in the adult mouse brain. Sci Rep 2022; 12:12921. [PMID: 35902669 PMCID: PMC9334628 DOI: 10.1038/s41598-022-17081-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) account for approximately 5% of the adult brain and have been historically studied for their role in myelination. In the adult brain, OPCs maintain their proliferative capacity and ability to differentiate into oligodendrocytes throughout adulthood, even though relatively few mature oligodendrocytes are produced post-developmental myelination. Recent work has begun to demonstrate that OPCs likely perform multiple functions in both homeostasis and disease and can significantly impact behavioral phenotypes such as food intake and depressive symptoms. However, the exact mechanisms through which OPCs might influence brain function remain unclear. The first step in further exploration of OPC function is to profile the transcriptional repertoire and assess the heterogeneity of adult OPCs. In this work, we demonstrate that adult OPCs are transcriptionally diverse and separate into two distinct populations in the homeostatic brain. These two groups show distinct transcriptional signatures and enrichment of biological processes unique to individual OPC populations. We have validated these OPC populations using multiple methods, including multiplex RNA in situ hybridization and RNA flow cytometry. This study provides an important resource that profiles the transcriptome of adult OPCs and will provide a toolbox for further investigation into novel OPC functions.
Collapse
Affiliation(s)
- Rebecca M Beiter
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Courtney Rivet-Noor
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Andrea R Merchak
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin Bai
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David M Johanson
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Erica Slogar
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Katia Sol-Church
- Genome Analysis and Technology Core, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Christopher C Overall
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alban Gaultier
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
5
|
Bosma EK, Darwesh S, Zheng JY, van Noorden CJF, Schlingemann RO, Klaassen I. Quantitative Assessment of the Apical and Basolateral Membrane Expression of VEGFR2 and NRP2 in VEGF-A-stimulated Cultured Human Umbilical Vein Endothelial Cells. J Histochem Cytochem 2022; 70:557-569. [PMID: 35876388 PMCID: PMC9393510 DOI: 10.1369/00221554221115767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells (ECs) form a precisely regulated polarized monolayer in capillary walls. Vascular endothelial growth factor-A (VEGF-A) induces endothelial hyperpermeability, and VEGF-A applied to the basolateral side, but not the apical side, has been shown to be a strong barrier disruptor in blood-retinal barrier ECs. We show here that VEGF-A presented to the basolateral side of human umbilical vein ECs (HUVECs) induces higher permeability than apical stimulation, which is similar to results obtained with bovine retinal ECs. We investigated with immunocytochemistry and confocal imaging the distribution of VEGF receptor-2 (VEGFR2) and neuropilin-2 (NRP2) in perinuclear apical and basolateral membrane domains. Orthogonal z-sections of cultured HUVECs were obtained, and the fluorescence intensity at the apical and basolateral membrane compartments was measured. We found that VEGFR2 and NRP2 are evenly distributed throughout perinuclear apical and basolateral membrane compartments in unstimulated HUVECs grown on Transwell inserts, whereas basolateral VEGF-A stimulation induces a shift toward basolateral VEGFR2 and NRP2 localization. When HUVECs were grown on coverslips, the distribution of VEGFR2 and NRP2 across the perinuclear apical and basolateral membrane domains was different. Our findings demonstrate that HUVECs dynamically regulate VEGFR2 and NRP2 localization on membrane microdomains, depending on growth conditions and the polarity of VEGF-A stimulation.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.,Department of Ophthalmology, Fondation Asile des Aveugles, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Putera I, Suryono AN, Artini W. Challenging Management of Neovascular Glaucoma to Achieve the Best Visual Outcome. Case Rep Ophthalmol 2020; 11:85-91. [PMID: 32231558 PMCID: PMC7098362 DOI: 10.1159/000506041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/19/2020] [Indexed: 11/24/2022] Open
Abstract
Neovascular glaucoma (NVG) resulting from ischemic insults caused by various diseases, such as proliferative diabetic retinopathy and central vein occlusion, remains a challenging situation. This case report aims to describe the complex management of NVG, resulting from diabetic retinopathy, to achieve the best visual outcome. A 47-year-old male presented with poor visual acuity of both eyes. His right eye was inoperable. Ahmed valve implantation with intraoperative intravitreal bevacizumab injection was performed in his left eye. Panretinal photocoagulation was performed serially after phacoemulsification. However, intraocular pressure was found to be raised, thus necessitating 5-fluorouracil needling bleb revision and administration of intracameral bevacizumab injection. During 15 months of follow-up we were able to achieve the best visual outcome possible in this patient. Comprehensive management of NVG should be implemented with a multidisciplinary approach.
Collapse
Affiliation(s)
| | | | - Widya Artini
- *Widya Artini, Department of Ophthalmology, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Kirana Hospital, Jl. Kimia No. 8–10, Menteng, Jakarta Pusat, Jakarta 10320 (Indonesia),
| |
Collapse
|
7
|
Tjakra M, Wang Y, Vania V, Hou Z, Durkan C, Wang N, Wang G. Overview of Crosstalk Between Multiple Factor of Transcytosis in Blood Brain Barrier. Front Neurosci 2020; 13:1436. [PMID: 32038141 PMCID: PMC6990130 DOI: 10.3389/fnins.2019.01436] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Blood brain barrier (BBB) conserves unique regulatory system to maintain barrier tightness while allowing adequate transport between neurovascular units. This mechanism possess a challenge for drug delivery, while abnormality may result in pathogenesis. Communication between vascular and neural system is mediated through paracellular and transcellular (transcytosis) pathway. Transcytosis itself showed dependency with various components, focusing on caveolae-mediated. Among several factors, intense communication between endothelial cells, pericytes, and astrocytes is the key for a normal development. Regulatory signaling pathway such as VEGF, Notch, S1P, PDGFβ, Ang/Tie, and TGF-β showed interaction with the transcytosis steps. Recent discoveries showed exploration of various factors which has been proven to interact with one of the process of transcytosis, either endocytosis, endosomal rearrangement, or exocytosis. As well as providing a hypothetical regulatory pathway between each factors, specifically miRNA, mechanical stress, various cytokines, physicochemical, basement membrane and junctions remodeling, and crosstalk between developmental regulatory pathways. Finally, various hypotheses and probable crosstalk between each factors will be expressed, to point out relevant research application (Drug therapy design and BBB-on-a-chip) and unexplored terrain.
Collapse
Affiliation(s)
- Marco Tjakra
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Vicki Vania
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Zhengjun Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Tkachuk VA, Parfyonova YV, Plekhanova OS, Stepanova VV, Menshikov MY, Semina EV, Bibilashvili RS, Chazov EI. [Fibrinolytics: from the thrombolysis to the processes of blood vessels growth and remodeling, neurogenesis, carcinogenesis and fibrosis]. TERAPEVT ARKH 2019; 91:4-9. [PMID: 32598807 DOI: 10.26442/00403660.2019.09.000411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
One of the most outstanding scientific achievements in the thrombolysis is the development and administration of fibrinolysin - the first Soviet drug that lyses blood clots. Intracoronary administration of fibrinolysin reduced the mortality of patients with myocardial infarction by almost 20%. For his work in this field Yevgeny Chazov was awarded the Lenin Prize in 1982. Over the next decades, under his leadership, the Cardiology Center established scientific and clinical laboratories that created new generations of drugs based on fibrinolytics for treating patients with myocardial infarction, restoration of blood flow in ischemic tissue, and also studying the mechanisms of remodeling of blood vessels involving the fibrinolysis system. It have been found new mechanisms of regulation of the navigation of blood vessels and nerves growth, tumor growth and its metastasis with the participation of the fibrinolysis system proteins. The review reports the role of the fibrinolysis system in the thrombolysis, blood vessels growth and remodeling, neurogenesis, carcinogenesis and fibrosis. The article is dedicated to the 90th anniversary of academician E.I. Chazov.
Collapse
Affiliation(s)
- V A Tkachuk
- National Medical Research Center of Cardiology
| | | | | | | | | | - E V Semina
- National Medical Research Center of Cardiology
| | | | - E I Chazov
- National Medical Research Center of Cardiology
| |
Collapse
|
9
|
The uPAR System as a Potential Therapeutic Target in the Diseased Eye. Cells 2019; 8:cells8080925. [PMID: 31426601 PMCID: PMC6721659 DOI: 10.3390/cells8080925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of vascular networks is characteristic of eye diseases associated with retinal cell degeneration and visual loss. Visual impairment is also the consequence of photoreceptor degeneration in inherited eye diseases with a major inflammatory component, but without angiogenic profile. Among the pathways with high impact on vascular/degenerative diseases of the eye, a central role is played by a system formed by the ligand urokinase-type plasminogen activator (uPA) and its receptor uPAR. The uPAR system, although extensively investigated in tumors, still remains a key issue in vascular diseases of the eye and even less studied in inherited retinal pathologies such as retinitis pigmantosa (RP). Its spectrum of action has been extended far beyond a classical pro-angiogenic function and has emerged as a central actor in inflammation. Preclinical studies in more prevalent eye diseases characterized by neovascular formation, as in retinopathy of prematurity, wet macular degeneration and rubeosis iridis or vasopermeability excess as in diabetic retinopathy, suggest a critical role of increased uPAR signaling indicating the potentiality of its modulation to counteract neovessel formation and microvascular dysfunction. The additional observation that the uPAR system plays a major role in RP by limiting the inflammatory cascade triggered by rod degeneration rises further questions about its role in the diseased eye.
Collapse
|
10
|
Iancu CB, Rusu MC, Mogoantă L, Hostiuc S, Grigoriu M. Myocardial Telocyte-Like Cells: A Review Including New Evidence. Cells Tissues Organs 2019; 206:16-25. [PMID: 30879002 DOI: 10.1159/000497194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/17/2019] [Indexed: 11/19/2022] Open
Abstract
Telocytes (TCs) are a controversial cell type characterized by the presence of a particular kind of prolongations, known as telopodes, which are long, thin, and moniliform. A number of attempts has been made to establish the molecular phenotype of cardiac TCs (i.e., expression of c-kit, CD34, vimentin, PDGRFα, PDGRFβ, etc.). We designed an immunohistochemical study involving cardiac tissue samples obtained from 10 cadavers with the aim of determining whether there are TC-like interstitial cells that populate the interstitial space other than the mural microvascular cells. We applied the markers for CD31, CD34, PDGRFα, CD117/c-kit, and α-smooth muscle actin (α-SMA). We found that, in relation to two-dimensional cuts, the endothelial tubes could be misidentified as TC-like cells, the difference being the positive identification of endothelial lumina. Moreover, we found that cardiac pericytes express PDGRFα, CD117/c-kit, and α-SMA, and that they could also be misidentified as TCs when using light microscopy. We reviewed the respective values of the previously identified markers for achieving a clear-cut identification of cardiac TCs, highlighting the critical lack of specificity.
Collapse
Affiliation(s)
- Cristian B Iancu
- Division of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,
| | - Laurenţiu Mogoantă
- Department of Histology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Sorin Hostiuc
- Department of Legal Medicine and Bioethics, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Grigoriu
- Division of Surgery, University Emergency Hospital Bucharest, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
11
|
Askew BC, Furuya T, Edwards DS. Ocular Distribution and Pharmacodynamics of SF0166, a Topically Administered αvβ3 Integrin Antagonist, for the Treatment of Retinal Diseases. J Pharmacol Exp Ther 2018; 366:244-250. [DOI: 10.1124/jpet.118.248427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
|
12
|
Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Sci Rep 2017; 7:9049. [PMID: 28831080 PMCID: PMC5567377 DOI: 10.1038/s41598-017-08982-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Microvascular endothelial cell heterogeneity and its relationship to hemodynamics remains poorly understood due to a lack of sufficient methods to examine these parameters in vivo at high resolution throughout an angiogenic network. The availability of surrogate markers for functional vascular proteins, such as green fluorescent protein, enables expression in individual cells to be followed over time using confocal microscopy, while photoacoustic microscopy enables dynamic measurement of blood flow across the network with capillary-level resolution. We combined these two non-invasive imaging modalities in order to spatially and temporally analyze biochemical and biomechanical drivers of angiogenesis in murine corneal neovessels. By stimulating corneal angiogenesis with an alkali burn in Tie2-GFP fluorescent-reporter mice, we evaluated how onset of blood flow and surgically-altered blood flow affects Tie2-GFP expression. Our study establishes a novel platform for analyzing heterogeneous blood flow and fluorescent reporter protein expression across a dynamic microvascular network in an adult mammal.
Collapse
|
13
|
Tanaka M, Iwakiri Y. The Hepatic Lymphatic Vascular System: Structure, Function, Markers, and Lymphangiogenesis. Cell Mol Gastroenterol Hepatol 2016; 2:733-749. [PMID: 28105461 PMCID: PMC5240041 DOI: 10.1016/j.jcmgh.2016.09.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vascular system has been minimally explored in the liver despite its essential functions including maintenance of tissue fluid homeostasis. The discovery of specific markers for lymphatic endothelial cells has advanced the study of lymphatics by methods including imaging, cell isolation, and transgenic animal models and has resulted in rapid progress in lymphatic vascular research during the last decade. These studies have yielded concrete evidence that lymphatic vessel dysfunction plays an important role in the pathogenesis of many diseases. This article reviews the current knowledge of the structure, function, and markers of the hepatic lymphatic vascular system as well as factors associated with hepatic lymphangiogenesis and compares liver lymphatics with those in other tissues.
Collapse
Key Words
- CCl4, carbon tetrachloride
- Cirrhosis
- EHE, epithelioid hemangioendothelioma
- HA, hyaluronan
- HBx Ag, hepatitis B x antigen
- HCC, hepatocellular carcinoma
- IFN, interferon
- IL, interleukin
- Inflammation
- LSEC, liver sinusoidal endothelial cell
- LYVE-1, lymphatic vessel endothelial hyaluronan receptor 1
- LyEC, lymphatic endothelial cell
- NO, nitric oxide
- Portal Hypertension
- Prox1, prospero homeobox protein 1
- VEGF
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
| | - Yasuko Iwakiri
- Reprint requests Address requests for reprints to: Yasuko Iwakiri, PhD, Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, TAC S223B, 333 Cedar Street, New Haven, Connecticut 06520. fax: (203) 785-7273.Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineTAC S223B, 333 Cedar StreetNew HavenConnecticut 06520
| |
Collapse
|
14
|
Wu J, Su W, Powner MB, Liu J, Copland DA, Fruttiger M, Madeddu P, Dick AD, Liu L. Pleiotropic action of CpG-ODN on endothelium and macrophages attenuates angiogenesis through distinct pathways. Sci Rep 2016; 6:31873. [PMID: 27558877 PMCID: PMC4997267 DOI: 10.1038/srep31873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
There is an integral relationship between vascular cells and leukocytes in supporting healthy tissue homeostasis. Furthermore, activation of these two cellular components is key for tissue repair following injury. Toll-like receptors (TLRs) play a role in innate immunity defending the organism against infection, but their contribution to angiogenesis remains unclear. Here we used synthetic TLR9 agonists, cytosine-phosphate-guanosine oligodeoxynucleotides (CpG-ODN), to investigate the role of TLR9 in vascular pathophysiology and identify potential therapeutic translation. We demonstrate that CpG-ODN stimulates inflammation yet inhibits angiogenesis. Regulation of angiogenesis by CpG-ODN is pervasive and tissue non-specific. Further, we noted that synthetic CpG-ODN requires backbone phosphorothioate but not TLR9 activation to render and maintain endothelial stalk cells quiescent. CpG-ODN pre-treated endothelial cells enhance macrophage migration but restrain pericyte mobilisation. CpG-ODN attenuation of angiogenesis, however, remains TLR9-dependent, as inhibition is lost in TLR9 deficient mice. Additionally, CpG-ODNs induce an M1 macrophage phenotype that restricts angiogenesis. The effects mediated by CpG-ODNs can therefore modulate both endothelial cells and macrophages through distinct pathways, providing potential therapeutic application in ocular vascular disease.
Collapse
Affiliation(s)
- Jiahui Wu
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, UK
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
- Centre for Clinic Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou, China
| | - Michael B. Powner
- UCL-Institute of Ophthalmology, University College London, London, UK
| | - Jian Liu
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, UK
| | - David A. Copland
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, UK
| | - Marcus Fruttiger
- UCL-Institute of Ophthalmology, University College London, London, UK
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, UK
| | - Andrew D. Dick
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, UK
- UCL-Institute of Ophthalmology, University College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital, London, UK.
| | - Lei Liu
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, UK
| |
Collapse
|
15
|
Shrivastav S, Bal A, Singh G, Joshi K. Tumor Angiogenesis in Breast Cancer: Pericytes and Maturation Does Not Correlate With Lymph Node Metastasis and Molecular Subtypes. Clin Breast Cancer 2016; 16:131-8. [DOI: 10.1016/j.clbc.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 08/16/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
16
|
Plasmalemma Vesicle–Associated Protein Has a Key Role in Blood-Retinal Barrier Loss. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1044-54. [DOI: 10.1016/j.ajpath.2015.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 12/15/2022]
|
17
|
Roy Chaudhuri T, Straubinger NL, Pitoniak RF, Hylander BL, Repasky EA, Ma WW, Straubinger RM. Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model. Mol Cancer Ther 2015; 15:84-93. [PMID: 26516158 DOI: 10.1158/1535-7163.mct-15-0602] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
Most pancreatic adenocarcinoma patients present with unresectable disease and benefit little from chemotherapy. Poor tumor perfusion and vascular permeability limit drug deposition. Previous work showed that Smoothened inhibitors of hedgehog signaling (sHHI) promote neovascularization in spontaneous mouse models of pancreatic cancer (PaCA) and enhance tumor permeability to low-molecular weight compounds. Here, we tested the hypothesis that sHHI can enhance tumor deposition and efficacy of drug-containing nanoparticles consisting of 80 to 100 nm sterically-stabilized liposomes (SSL) containing doxorubicin (SSL-DXR). SCID mice bearing low-passage patient-derived PaCA xenografts (PDX) were pretreated p.o. for 10 days with 40 mg/kg/d NVP-LDE225 (erismodegib), followed by i.v. SSL-DXR. Microvessel density, permeability, perfusion, and morphology were compared with untreated controls, as was SSL deposition and therapeutic efficacy. The sHHI alone affected tumor growth minimally, but markedly increased extravasation of nanoparticles into adenocarcinoma cell-enriched regions of the tumor. Immunostaining showed that sHHI treatment decreased pericyte coverage (α-SMA(+)) of CD31(+) vascular endothelium structures, and increased the abundance of endothelium-poor (CD31(-)) basement membrane structures (collagen IV(+)), suggesting increased immature microvessels. SSL-DXR (15 mg/kg) administered after sHHI pretreatment arrested tumor volume progression and decreased tumor perfusion/permeability, suggesting an initial vascular pruning response. Compared with controls, one cycle of 10-day sHHI pretreatment followed by 6 mg/kg SSL-DXR doubled median tumor progression time. Three cycles of treatment with sHHI and SSL-DXR, with a 10-day between-cycle drug holiday, nearly tripled median tumor progression time. Based upon these data, short-term sHHI treatment sequenced with nanoparticulate drug carriers constitutes a potential strategy to enhance efficacy of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Tista Roy Chaudhuri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York. Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, New York
| | - Ninfa L Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | | | - Bonnie L Hylander
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Wen Wee Ma
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York. Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, New York. Department of Cancer Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York. New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.
| |
Collapse
|
18
|
Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One 2015; 10:e0124362. [PMID: 25884837 PMCID: PMC4401453 DOI: 10.1371/journal.pone.0124362] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) integrity occurring during the early onset of stroke is not only a consequence of, but also contributes to the further progression of stroke. Although it has been well documented that brain microvascular endothelial cells and astrocytes play a critical role in the maintenance of BBB integrity, pericytes, sandwiched between endothelial cells and astrocytes, remain poorly studied in the pathogenesis of stroke. Our findings demonstrated that treatment of human brain microvascular pericytes with sodium cyanide (NaCN) and glucose deprivation resulted in increased expression of vascular endothelial growth factor (VEGF) via the activation of tyrosine kinase Src, with downstream activation of mitogen activated protein kinase and PI3K/Akt pathways and subsequent translocation of NF-κB into the nucleus. Conditioned medium from NaCN-treated pericytes led to increased permeability of endothelial cells, and this effect was significantly inhibited by VEGF-neutralizing antibody. The in vivo relevance of these findings was further corroborated in the stroke model of mice wherein the mice, demonstrated disruption of the BBB integrity and concomitant increase in the expression of VEGF in the brain tissue as well as in the isolated microvessel. These findings thus suggest the role of pericyte-derived VEGF in modulating increased permeability of BBB during stroke. Understanding the regulation of VEGF expression could open new avenues for the development of potential therapeutic targets for stroke and other neurological disease.
Collapse
|
19
|
Li YJ, Li XH, Wang LF, Kuang X, Hang ZX, Deng Y, Du JR. Therapeutic efficacy of a novel non-peptide αvβ3 integrin antagonist for pathological retinal angiogenesis in mice. Exp Eye Res 2014; 129:119-26. [PMID: 25446322 DOI: 10.1016/j.exer.2014.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 09/14/2014] [Accepted: 11/07/2014] [Indexed: 02/08/2023]
Abstract
αvβ3 integrin has been reported as a promising therapeutic target for angiogenesis. In the present study, we tested the antiangiogenic activity of 3-[3-(6-guanidino-1-oxoisoindolin-2-yl) propanamido]-3-(pyridin-3-yl) propanoic acid dihydrochloride (GOPPP), a novel non-peptide αvβ3 antagonist. Both human umbilical vein endothelial cells (HUVECs) and a mouse model of oxygen-induced retinopathy (OIR) were investigated separately. HUVEC adhesion, proliferation, migration, ERK1/2 and Akt phosphorylation were assessed. C57BL/6 mice were used for the studies in the OIR model. After exposure to 75% oxygen from postnatal day (PD) 7 to PD12, the mice were returned to room air, and GOPPP was intravitreally administered on PD12. Retinal neovascularization was evaluated on PD17. Hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels and ERK1/2 phosphorylation were determined by Western blot analysis of retina proteins. GOPPP significantly inhibited the pro-angiogenic effects of vitronectin on HUVECs, including adhesion, proliferation, and migration, and inhibited ERK1/2 and Akt phosphorylation. Retinal neovascularization in the OIR model was significantly suppressed by intravitreal administration of 50 ng GOPPP. The pro-angiogenic factors HIF-1α and VEGF induced by hypoxia were significantly inhibited by GOPPP in OIR mice. GOPPP administration also inhibited ERK1/2 phosphorylation in the OIR model. These results indicate that GOPPP, a novel αvβ3 integrin antagonist, may have potential for the treatment of pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Yong-Jie Li
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiao-Hong Li
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang-Fen Wang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xi Kuang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhi-Xiong Hang
- Department of Medical Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Deng
- Department of Medical Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Park YS, Cho JH, Kim IH, Cho GS, Cho JH, Park JH, Ahn JH, Chen BH, Shin BN, Shin MC, Tae HJ, Cho YS, Lee YL, Kim YM, Won MH, Lee JC. Effects of ischemic preconditioning on VEGF and pFlk-1 immunoreactivities in the gerbil ischemic hippocampus after transient cerebral ischemia. J Neurol Sci 2014; 347:179-87. [PMID: 25300771 DOI: 10.1016/j.jns.2014.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
Ischemia preconditioning (IPC) displays an important adaptation of the CNS to sub-lethal ischemia. In the present study, we examined the effect of IPC on immunoreactivities of VEGF-, and phospho-Flk-1 (pFlk-1) following transient cerebral ischemia in gerbils. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+) sham-operated-group, and IPC+ischemia-operated-group). IPC was induced by subjecting gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated-group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) alone 5 days after ischemia-reperfusion, however, in all the IPC+ischemia-operated-groups, pyramidal neurons in the SP were well protected. In immunohistochemical study, VEGF immunoreactivity in the ischemia-operated-group was increased in the SP at 1 day post-ischemia and decreased with time. Five days after ischemia-reperfusion, strong VEGF immunoreactivity was found in non-pyramidal cells, which were identified as pericytes, in the stratum oriens (SO) and radiatum (SR). In the IPC+sham-operated- and IPC+ischemia-operated-groups, VEGF immunoreactivity was significantly increased in the SP. pFlk-1 immunoreactivity in the sham-operated- and ischemia-operated-groups was hardly found in the SP, and, from 2 days post-ischemia, pFlk-1 immunoreactivity was strongly increased in non-pyramidal cells, which were identified as pericytes. In the IPC+sham-operated-group, pFlk-1 immunoreactivity was significantly increased in both pyramidal and non-pyramidal cells; in the IPC+ischemia-operated-groups, the similar pattern of VEGF immunoreactivity was found in the ischemic CA1, although the VEGF immunoreactivity was strong in non-pyramidal cells at 5 days post-ischemia. In brief, our findings show that IPC dramatically augmented the induction of VEGF and pFlk-1 immunoreactivity in the pyramidal cells of the CA1 after ischemia-reperfusion, and these findings suggest that the increases of VEGF and Flk-1 expressions may be necessary for neurons to survive from transient ischemic damage.
Collapse
Affiliation(s)
- Yoo Seok Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 140-743, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
21
|
Wisniewska-Kruk J, Klaassen I, Vogels IMC, Magno AL, Lai CM, Van Noorden CJF, Schlingemann RO, Rakoczy EP. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Exp Eye Res 2014; 122:123-31. [PMID: 24703908 DOI: 10.1016/j.exer.2014.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022]
Abstract
The molecular mechanisms of vascular leakage in diabetic macular edema and proliferative retinopathy are poorly understood, mainly due to the lack of reliable in vivo models. The Akimba (Ins2(Akita)VEGF(+/-)) mouse model combines retinal neovascularization with hyperglycemia, and in contrast to other models, displays the majority of signs of advanced clinical diabetic retinopathy (DR). To study the molecular mechanism that underlies the breakdown of the blood-retinal barrier (BRB) in diabetic macular edema and proliferative diabetic retinopathy, we investigated the retinal vasculature of Akimba and its parental mice Kimba (trVEGF029) and Akita (Ins2(Akita)). Quantitative PCR, immunohistochemistry and fluorescein angiography were used to characterize the retinal vasculature with special reference to the inner BRB. Correlations between the degree of fluorescein leakage and retinal gene expression were tested by calculating the Spearman's correlation coefficient. Fluorescein leakage demonstrating BRB loss was observed in Kimba and Akimba, but not in Akita or wild type mice. In Kimba and Akimba mice fluorescein leakage was associated with focal angiogenesis and correlated significantly with Plvap gene expression. PLVAP is an endothelial cell-specific protein that is absent in intact blood-retinal barrier, but its expression significantly increases in pathological conditions such as DR. Furthermore, in Akimba mice BRB disruption was linked to decreased expression of endothelial junction proteins, pericyte dropout and vessel loss. Despite fluorescein leakage, no alteration in BRB protein levels or pericyte coverage was detected in retinas of Kimba mice. In summary, our data not only demonstrate that hyperglycemia sensitizes retinal vasculature to the effects of VEGF, leading to more severe microvascular changes, but also confirm an important role of PLVAP in the regulation of BRB permeability.
Collapse
Affiliation(s)
- Joanna Wisniewska-Kruk
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ilse M C Vogels
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Aaron L Magno
- Department of Molecular Ophthalmology, Lions Eye Institute, Nedlands, Western Australia, Australia.
| | - Chooi-May Lai
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.
| | - Cornelis J F Van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical and Molecular Ophthalmogenetics, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science (KNAW), Amsterdam, The Netherlands.
| | - Elizabeth P Rakoczy
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.
| |
Collapse
|
22
|
Langenkamp E, Kamps JAAM, Mrug M, Verpoorte E, Niyaz Y, Horvatovich P, Bischoff R, Struijker-Boudier H, Molema G. Innovations in studying in vivo cell behavior and pharmacology in complex tissues--microvascular endothelial cells in the spotlight. Cell Tissue Res 2013; 354:647-69. [PMID: 24072341 DOI: 10.1007/s00441-013-1714-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023]
Abstract
Many studies on the molecular control underlying normal cell behavior and cellular responses to disease stimuli and pharmacological intervention are conducted in single-cell culture systems, while the read-out of cellular engagement in disease and responsiveness to drugs in vivo is often based on overall tissue responses. As the majority of drugs under development aim to specifically interact with molecular targets in subsets of cells in complex tissues, this approach poses a major experimental discrepancy that prevents successful development of new therapeutics. In this review, we address the shortcomings of the use of artificial (single) cell systems and of whole tissue analyses in creating a better understanding of cell engagement in disease and of the true effects of drugs. We focus on microvascular endothelial cells that actively engage in a wide range of physiological and pathological processes. We propose a new strategy in which in vivo molecular control of cells is studied directly in the diseased endothelium instead of at a (far) distance from the site where drugs have to act, thereby accounting for tissue-controlled cell responses. The strategy uses laser microdissection-based enrichment of microvascular endothelium which, when combined with transcriptome and (phospho)proteome analyses, provides a factual view on their status in their complex microenvironment. Combining this with miniaturized sample handling using microfluidic devices enables handling the minute sample input that results from this strategy. The multidisciplinary approach proposed will enable compartmentalized analysis of cell behavior and drug effects in complex tissue to become widely implemented in daily biomedical research and drug development practice.
Collapse
Affiliation(s)
- Elise Langenkamp
- University Medical Center Groningen, Department of Pathology and Medical Biology, Medical Biology section, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Blocki A, Wang Y, Koch M, Peh P, Beyer S, Law P, Hui J, Raghunath M. Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells Dev 2013; 22:2347-55. [PMID: 23600480 DOI: 10.1089/scd.2012.0415] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pericytes play a crucial role in angiogenesis and vascular maintenance. They can be readily identified in vivo and isolated as CD146(+)CD34(-) cells from various tissues. Whether these and other markers reliably identify pericytes in vitro is unclear. CD146(+)CD34(-) selected cells exhibit multilineage potential. Thus, their perivascular location might represent a stem cell niche. This has spurred assumptions that not only all pericytes are mesenchymal stromal cells (MSCs), but also that all MSCs can act as pericytes. Considering this hypothesis, we developed functional assays by confronting test cells with endothelial cultures based on matrigel assay, spheroid sprouting, and cord formation. We calibrated these assays first with commercial cell lines [CD146(+)CD34(-) placenta-derived pericytes (Pl-Prc), bone marrow (bm)MSCs and fibroblasts]. We then functionally compared the angiogenic abilities of CD146(+)CD34(-)selected bmMSCs with CD146(-) selected bmMSCs from fresh human bm aspirates. We show here that only CD146(+)CD34(-) selected Pl-Prc and CD146(+)CD34(-) selected bmMSCs maintain endothelial tubular networks on matrigel and improve endothelial sprout morphology. CD146(-) selected bmMSCs neither showed these abilities, nor did they attain pericyte function despite progressive CD146 expression once passaged. Thus, cell culture conditions appear to influence expression of this and other reported pericyte markers significantly without correlation to function. The newly developed assays, therefore, promise to close a gap in the in vitro identification of pericytes via function. Indeed, our functional data suggest that pericytes represent a subpopulation of MSCs in bm with a specialized role in vascular biology. However, these functions are not inherent to all MSCs.
Collapse
Affiliation(s)
- Anna Blocki
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore , Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wittig D, Jászai J, Corbeil D, Funk RHW. Immunohistochemical localization and characterization of putative mesenchymal stem cell markers in the retinal capillary network of rodents. Cells Tissues Organs 2013; 197:344-59. [PMID: 23571553 DOI: 10.1159/000346661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
Perivascular cells of microvascular niches are the prime candidates for being a reservoire of mesenchymal stem cell (MSC)-like cells in many tissues and organs that could serve as a potential source of cells and a target of novel cell-based therapeutic approaches. In the present study, by utilising typical markers of pericytes (neuronal-glial antigen 2, NG2, a chondroitin sulphate proteoglycan) and those of MSCs (CD146 and CD105) and primitive pluripotent cells (sex-determining region Y-box 2, Sox2), the phenotypic traits and the distribution of murine and rat retinal perivascular cells were investigated in situ. Our findings indicate that retinal microvessels of juvenile rodents are highly covered by NG2-positive branching processes of pericytic (perivascular) cells that are less prominent in mature capillary networks of the adult retina. In the adult rodent retinal vascular bed, NG2 labeling is mainly confined to membranes of the cell body resulting in a pearl-chain-like distribution along the vessels. Retinal pericytes, which were identified by their morphology and NG2 expression, simultaneously express CD146. Furthermore, CD146-positive cells located at small arteriole-to-capillary branching points appear more intensely stained than elsewhere. Evidence for a differential expression of the two markers around capillaries that would hint at a clonal heterogeneity among pericytic cells, however, is lacking. In contrast, the expression of CD105 is exclusively restricted to vascular endothelial cells and Sox2 is detected neither in perivascular nor in endothelial cells. In dissociated retinal cultures, however, simultaneous expression of NG2 and CD105 was observed. Collectively, our data indicate that vascular wall resident retinal pericytes share some phenotypic features (i.e. CD146 expression) with archetypal MSCs, which is even more striking in dissociated retinal cultures (i.e. CD105 expression). These findings might have implications for the treatment of retinal pathologies.
Collapse
Affiliation(s)
- Dierk Wittig
- Institute of Anatomy, TU Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
25
|
Cipriani P, Marrelli A, Benedetto PD, Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF, Grazioli P, Screpanti I, Giacomelli R. Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis 2013; 16:595-607. [DOI: 10.1007/s10456-013-9338-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
26
|
Klaassen I, Van Noorden CJF, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 2013; 34:19-48. [PMID: 23416119 DOI: 10.1016/j.preteyeres.2013.02.001] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/19/2012] [Accepted: 02/01/2013] [Indexed: 12/16/2022]
Abstract
Breakdown of the inner endothelial blood-retinal barrier (BRB), as occurs in diabetic retinopathy, age-related macular degeneration, retinal vein occlusions, uveitis and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing loss of vision. The central mechanism of altered BRB function is a change in the permeability characteristics of retinal endothelial cells caused by elevated levels of growth factors, cytokines, advanced glycation end products, inflammation, hyperglycemia and loss of pericytes. Subsequently, paracellular but also transcellular transport across the retinal vascular wall increases via opening of endothelial intercellular junctions and qualitative and quantitative changes in endothelial caveolar transcellular transport, respectively. Functional changes in pericytes and astrocytes, as well as structural changes in the composition of the endothelial glycocalyx and the basal lamina around BRB endothelium further facilitate BRB leakage. As Starling's rules apply, active transcellular transport of plasma proteins by the BRB endothelial cells causing increased interstitial osmotic pressure is probably the main factor in the formation of macular edema. The understanding of the complex cellular and molecular processes involved in BRB leakage has grown rapidly in recent years. Although appropriate animal models for human conditions like diabetic macular edema are lacking, these insights have provided tools for rational design of drugs aimed at restoring the BRB as well as for design of effective transport of drugs across the BRB, to treat the chronic retinal diseases such as diabetic macular edema that affect the quality-of-life of millions of patients.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Siemerink MJ, Klaassen I, Van Noorden CJF, Schlingemann RO. Endothelial tip cells in ocular angiogenesis: potential target for anti-angiogenesis therapy. J Histochem Cytochem 2012; 61:101-15. [PMID: 23092791 PMCID: PMC3636692 DOI: 10.1369/0022155412467635] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endothelial tip cells are leading cells at the tips of vascular sprouts coordinating multiple processes during angiogenesis. In the developing retina, tip cells play a tightly controlled, timely role in angiogenesis. In contrast, excessive numbers of tip cells are a characteristic of the chaotic pathological blood vessels in proliferative retinopathies. Tip cells control adjacent endothelial cells in a hierarchical manner to form the stalk of the sprouting vessel, using, among others, the VEGF-DLL-Notch signaling pathway, and recruit pericytes. Tip cells are guided toward avascular areas by signals from the local extracellular matrix that are released by cells from the neuroretina such as astrocytes. Recently, tip cells were identified in endothelial cell cultures, enabling identification of novel molecular markers and mechanisms involved in tip cell biology. These mechanisms are relevant for understanding proliferative retinopathies. Agents that primarily target tip cells can block pathological angiogenesis in the retina efficiently and safely without adverse effects. A striking example is platelet-derived growth factor, which was recently shown to be an efficacious additional target in the treatment of retinal neovascularization. Here we discuss these and other tip cell-based strategies with respect to their potential to treat patients with ocular diseases dominated by neovascularization.
Collapse
Affiliation(s)
- Martin J Siemerink
- Ocular Angiogenesis Group, Department of Ophthalmology and Department of Cell Biology and Histology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Abstract
Blood vessel networks form in a 2-step process of sprouting angiogenesis followed by selective branch regression and stabilization of remaining vessels. Pericytes are known to function in stabilizing blood vessels, but their role in vascular sprouting and selective vessel regression is poorly understood. The endosialin (CD248) receptor is expressed by pericytes associated with newly forming but not stable quiescent vessels. In the present study, we used the Endosialin(-/-) mouse as a means to uncover novel roles for pericytes during the process of vascular network formation. We demonstrate in a postnatal retina model that Endosialin(-/-) mice have normal vascular sprouting but are defective in selective vessel regression, leading to increased vessel density. Examination of the Endosialin(-/-) mouse tumor vasculature revealed an equivalent phenotype, indicating that pericytes perform a hitherto unidentified function to promote vessel destabilization and regression in vivo in both physiologic and pathologic angiogenesis. Mechanistically, Endosialin(-/-) mice have no defect in pericyte recruitment. Rather, endosialin binding to an endothelial associated, but not a pericyte associated, basement membrane component induces endothelial cell apoptosis and detachment. The results of the present study advance our understanding of pericyte biology and pericyte/endothelial cell cooperation during vascular patterning and have implications for the design of both pro- and antiangiogenic therapies.
Collapse
|
29
|
Bonagura TW, Babischkin JS, Aberdeen GW, Pepe GJ, Albrecht ED. Prematurely elevating estradiol in early baboon pregnancy suppresses uterine artery remodeling and expression of extravillous placental vascular endothelial growth factor and α1β1 and α5β1 integrins. Endocrinology 2012; 153:2897-906. [PMID: 22495671 PMCID: PMC3359598 DOI: 10.1210/en.2012-1141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously showed that advancing the increase in estradiol levels from the second to the first third of baboon pregnancy suppressed placental extravillous trophoblast (EVT) invasion and remodeling of the uterine spiral arteries. Cell culture studies show that vascular endothelial cell growth factor (VEGF) plays a central role in regulating EVT migration and remodeling of the uterine spiral arteries by increasing the expression/action of certain integrins that control extracellular matrix remodeling. To test the hypothesis that the estradiol-induced reduction in vessel remodeling in baboons is associated with an alteration in VEGF and integrin expression, extravillous placental VEGF and integrin expression was determined on d 60 of gestation (term is 184 d) in baboons in which uterine artery transformation was suppressed by maternal estradiol administration on d 25-59. EVT uterine spiral artery invasion was 5-fold lower (P < 0.01), and VEGF protein expression, quantified by in situ proximity ligation assay, was 50% lower (P < 0.05) in the placenta anchoring villi of estradiol-treated than in untreated baboons. α1β1 and α5β1 mRNA levels in cells isolated by laser capture microdissection from the anchoring villi and cytotrophoblastic shell of estradiol-treated baboons were over 2-fold (P < 0.01) and 40% (P < 0.05) lower, respectively, than in untreated animals. In contrast, placental extravillous αvβ3 mRNA expression was unaltered by estradiol treatment. In summary, extravillous placental expression of VEGF and α1β1 and α5β1 integrins was decreased in a cell- and integrin-specific manner in baboons in which EVT invasion and remodeling of the uterine spiral arteries were suppressed by prematurely elevating estradiol levels in early pregnancy. We propose that estrogen normally controls the extent to which the uterine arteries are transformed by placental EVT in primate pregnancy by regulating expression of VEGF and particular integrin extracellular remodeling molecules that mediate this process.
Collapse
Affiliation(s)
- Thomas W Bonagura
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
30
|
Langenkamp E, Zwiers PJ, Moorlag HE, Leenders WP, St Croix B, Molema G. Vascular endothelial growth factor receptor 2 inhibition in-vivo affects tumor vasculature in a tumor type-dependent way and downregulates vascular endothelial growth factor receptor 2 protein without a prominent role for miR-296. Anticancer Drugs 2012; 23:161-72. [PMID: 22075979 DOI: 10.1097/cad.0b013e32834dc279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The precise molecular effects that antiangiogenic drugs exert on tumor vasculature remain to be poorly understood. We therefore set out to investigate the molecular and architectural changes that occur in the vasculature of two different tumor types that both respond to vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor therapy. Mice bearing Lewis lung carcinoma (LLC) or B16.F10 melanoma were treated with vandetanib (ZD6474), a VEGFR2/epidermal growth factor receptor (EGFR)/REarranged during Transfection (RET) kinase inhibitor, resulting in a significant 80% reduction in tumor outgrowth. Although in LLC the vascular density was not affected by vandetanib treatment, it was significantly decreased in B16.F10. In LLC, vandetanib treatment induced a shift in vascular gene expression toward stabilization, as demonstrated by upregulation of Tie2 and N-cadherin and downregulation of Ang2 and integrin β3. In contrast, only eNOS and P-selectin responded to vandetanib treatment in B16.F10 vasculature. Strikingly, vandetanib reduced protein expression of VEGFR2 in both models, whereas mRNA remained unaffected. Analysis of miR-296 expression allowed us to exclude a role for the recently proposed microRNA-296 in VEGFR2 posttranslational control in LLC and B16.F10 in vivo. Our data demonstrate that VEGFR2/EGFR inhibition through vandetanib slows down both LLC and B16.F10 tumor growth. Yet, the underlying molecular changes in the vasculature that orchestrate the antitumor effect differ between tumor types. Importantly, in both models, vandetanib treatment induced loss of its pharmacological target, which was not directly related to miR-296 expression. Validation of our observations in tumor biopsies from VEGFR2 inhibitor-treated patients will be essential to unravel the effects of VEGFR2 inhibitor therapy on tumor vasculature in relation to therapeutic efficacy.
Collapse
Affiliation(s)
- Elise Langenkamp
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Pericytes on the tumor vasculature: jekyll or hyde? CANCER MICROENVIRONMENT 2012; 6:1-17. [PMID: 22467426 DOI: 10.1007/s12307-012-0102-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/08/2012] [Indexed: 12/15/2022]
Abstract
The induction of tumor vasculature, known as the 'angiogenic switch', is a rate-limiting step in tumor progression. Normal blood vessels are composed of two distinct cell types: endothelial cells which form the channel through which blood flows, and mural cells, the pericytes and smooth muscle cells which serve to support and stabilize the endothelium. Most functional studies have focused on the responses of endothelial cells to pro-angiogenic stimuli; however, there is mounting evidence that the supporting mural cells, particularly pericytes, may play key regulatory roles in both promoting vessel growth as well as terminating vessel growth to generate a mature, quiescent vasculature. Tumor vessels are characterized by numerous structural and functional abnormalities, including altered association between endothelial cells and pericytes. These dysfunctional, unstable vessels contribute to hypoxia, interstitial fluid pressure, and enhanced susceptibility to metastatic invasion. Increasing evidence points to the pericyte as a critical regulator of endothelial activation and subsequent vessel development, stability, and function. Here we discuss both the stimulatory and inhibitory effects of pericytes on the vasculature and the possible utilization of vessel normalization as a therapeutic strategy to combat cancer.
Collapse
|
32
|
CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 2012; 15:151-63. [PMID: 22249946 PMCID: PMC3274677 DOI: 10.1007/s10456-011-9251-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022]
Abstract
The functional shift of quiescent endothelial cells into tip cells that migrate and stalk cells that proliferate is a key event during sprouting angiogenesis. We previously showed that the sialomucin CD34 is expressed in a small subset of cultured endothelial cells and that these cells extend filopodia: a hallmark of tip cells in vivo. In the present study, we characterized endothelial cells expressing CD34 in endothelial monolayers in vitro. We found that CD34-positive human umbilical vein endothelial cells show low proliferation activity and increased mRNA expression of all known tip cell markers, as compared to CD34-negative cells. Genome-wide mRNA profiling analysis of CD34-positive endothelial cells demonstrated enrichment for biological functions related to angiogenesis and migration, whereas CD34-negative cells were enriched for functions related to proliferation. In addition, we found an increase or decrease of CD34-positive cells in vitro upon exposure to stimuli that enhance or limit the number of tip cells in vivo, respectively. Our findings suggest cells with virtually all known properties of tip cells are present in vascular endothelial cell cultures and that they can be isolated based on expression of CD34. This novel strategy may open alternative avenues for future studies of molecular processes and functions in tip cells in angiogenesis.
Collapse
|
33
|
Matsumoto Y, Tsunekawa Y, Nomura T, Suto F, Matsumata M, Tsuchiya S, Osumi N. Differential proliferation rhythm of neural progenitor and oligodendrocyte precursor cells in the young adult hippocampus. PLoS One 2011; 6:e27628. [PMID: 22110700 PMCID: PMC3215740 DOI: 10.1371/journal.pone.0027628] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a unique type of glial cells that function as oligodendrocyte progenitors while constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in the subgranular zone (SGZ); the former showed S-phase and M-phase peaks in the resting and active periods, respectively, while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC proliferation in the hippocampus.
Collapse
Affiliation(s)
- Yoko Matsumoto
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Yuji Tsunekawa
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Matsumata
- Department of Developmental Gene Regulation, Brain Science of Institute, RIKEN, Wako, Japan
| | - Shigeru Tsuchiya
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
34
|
D'Onofrio PM, Thayapararajah M, Lysko MD, Magharious M, Spratt SK, Lee G, Ando D, Surosky R, Fehlings MG, Koeberle PD. Gene Therapy for Traumatic Central Nervous System Injury and Stroke Using an Engineered Zinc Finger Protein that Upregulates VEGF-A. J Neurotrauma 2011; 28:1863-79. [DOI: 10.1089/neu.2011.1896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
| | | | - Meghan D. Lysko
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mark Magharious
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| | - S. Kaye Spratt
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | - Gary Lee
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | - Dale Ando
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | - Richard Surosky
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | | | - Paulo D. Koeberle
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Lim WT, Ng QS, Ivy P, Leong SS, Singh O, Chowbay B, Gao F, Thng CH, Goh BC, Tan DSW, Koh TS, Toh CK, Tan EH. A Phase II Study of Pazopanib in Asian Patients with Recurrent/Metastatic Nasopharyngeal Carcinoma. Clin Cancer Res 2011; 17:5481-9. [DOI: 10.1158/1078-0432.ccr-10-3409] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol 2011; 43:1284-93. [PMID: 21601005 DOI: 10.1016/j.biocel.2011.05.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 11/21/2022]
Abstract
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes and neurons. In this study we analyzed the differentiation stage dependent influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells. At first, we were able to induce two distinct differentiation stages of the primary pericytes in vitro. TGFβ treated pericytes expressed more α-SMA and actin while desmin, vimentin and nestin expression was decreased when compared to bFGF induced cells. Further analysis of α-SMA revealed that most of the pericytes differentiated with TGFβ expressed functional α-SMA while only few cells expressed functional α-SMA in the presence of bFGF. In addition the permeability factors VEGF, MMP-2 and MMP-9 were higher secreted by the α-SMA positive phenotype indicating a proangiogenic role of this TGFβ induced pericyte differentiation stage. Higher level of VEGF, MMP-2 and MMP-9 were as well detected in the TGFβ pretreated pericyte coculture with endothelial cells when compared to the influence of the bFGF pretreated pericytes. The TEER measurement of the barrier integrity of endothelial cells revealed that bFGF induced α-SMA negative pericytes stabilize the barrier integrity while α-SMA positive pericytes differentiated by TGFβ decrease the barrier integrity. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity in a differentiation stage dependant pathway.
Collapse
|
37
|
Faure C, Vico L, Tracqui P, Laroche N, Vanden-Bossche A, Linossier MT, Rattner A, Guignandon A. Functionalization of matrices by cyclically stretched osteoblasts through matrix targeting of VEGF. Biomaterials 2010; 31:6477-84. [DOI: 10.1016/j.biomaterials.2010.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/07/2010] [Indexed: 11/25/2022]
|
38
|
Thanabalasundaram G, Pieper C, Lischper M, Galla HJ. Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res 2010; 1347:1-10. [PMID: 20553880 DOI: 10.1016/j.brainres.2010.05.096] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/03/2010] [Accepted: 05/31/2010] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes, and neurons. In this study, we analyzed the influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells in a species-consistent in vitro coculture model. We were able to show a barrier integrity-decreasing impact of pericytes by transendothelial electrical resistance (TEER) and (14)C-sucrose permeability measurements. The morphology analysis revealed serrated cell borders and a shift of the endothelial morphology towards a cobblestone shape under the influence of pericytes. The analysis of the two major barrier integrity modulators vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) displayed higher MMP activity and higher levels VEGF, MMP-2, and MMP-9 in the coculture, whereas VEGF levels were decreased by the MMP inhibitor GM6001, indicating a complex interplay of both. Inhibition experiments with neutralizing VEGF antibody and GM6001 increased the TEER, which proves the involvement of VEGF and MMPs in the barrier-decreasing process. Analysis of occludin yielded decreased protein content and discontinuous expression at the endothelial cell borders under the influence of pericytes. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity via MMPs and VEGF.
Collapse
|
39
|
Sugimoto Y, Mochizuki H, Okumichi H, Takumida M, Takamatsu M, Kawamata S, Kiuchi Y. Effect of intravitreal bevacizumab on iris vessels in neovascular glaucoma patients. Graefes Arch Clin Exp Ophthalmol 2010; 248:1601-9. [PMID: 20524132 DOI: 10.1007/s00417-010-1406-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022] Open
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Angiogenesis Inhibitors/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal, Humanized
- Antigens, CD34/metabolism
- Bevacizumab
- Female
- Glaucoma, Neovascular/drug therapy
- Glaucoma, Neovascular/metabolism
- Glaucoma, Open-Angle/drug therapy
- Glaucoma, Open-Angle/metabolism
- Humans
- Intravitreal Injections
- Iris/blood supply
- Male
- Microscopy, Fluorescence
- Middle Aged
- Neovascularization, Pathologic/drug therapy
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Yosuke Sugimoto
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Zarfoss MK, Breaux CB, Whiteley HE, Hamor RE, Flaws JA, Labelle P, Dubielzig RR. Canine pre-iridal fibrovascular membranes: morphologic and immunohistochemical investigations. Vet Ophthalmol 2010; 13:4-13. [DOI: 10.1111/j.1463-5224.2009.00739.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Abrass CK, Hansen KM, Patton BL. Laminin alpha4-null mutant mice develop chronic kidney disease with persistent overexpression of platelet-derived growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:839-49. [PMID: 20035058 DOI: 10.2353/ajpath.2010.090570] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Each extracellular matrix compartment in the kidney has a unique composition, with regional specificity in the expression of various laminin isoforms. Although null mutations in the majority of laminin chains lead to specific developmental abnormalities in the kidney, Lama4-/- mice have progressive glomerular and tubulointerstitial fibrosis. These mice have a significant increase in expression of platelet-derived growth factor (PDGF)-BB, PDGF-DD, and PDGF receptor beta in association with immature glomerular and peritubular capillaries. In addition, mesangial cell exposure to alpha4-containing laminins, but not other isoforms, results in down-regulation of PDGF receptor mRNA and protein, suggesting a direct effect of LN411/LN421 on vessel maturation. Given the known role of overexpression of PDGF-BB and PDGF-DD on glomerular and tubulointerstitial fibrosis, these data suggest that failure of laminin alpha4-mediated down-regulation of PDGF activity contributes to the progressive renal lesions in this animal model. Given the recent demonstration that individuals with laminin alpha4 mutations develop cardiomyopathy, these findings may be relevant to kidney disease in humans.
Collapse
Affiliation(s)
- Christine K Abrass
- Primary and Specialty Care Medicine, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
| | | | | |
Collapse
|
42
|
Mokrý J, Ehrmann J, Karbanová J, Cízková D, Soukup T, Suchánek J, Filip S, Kolár Z. Expression of intermediate filament nestin in blood vessels of neural and non-neural tissues. ACTA MEDICA (HRADEC KRÁLOVÉ) 2009; 51:173-9. [PMID: 19271685 DOI: 10.14712/18059694.2017.20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Our previous findings performed in rat tissues demonstrated that intermediate filament nestin is expressed in endothelial cells of newly formed blood vessels of developing organs and neural transplants. The aim of the present study was to identify other cellular markers expressed in nestin-positive (nestin+) blood vessels. To reach this goal we performed double immunofluorescent study to co-localize nestin with endothelium-specific markers (CD31, CD34 II, vimentin) or markers of perivascular cells (GFAP, SMA) in paraffin-embedded sections of normal human brain tissue, low- and high-grade gliomas, postinfarcted heart and samples of non-neural tumours. Our findings documented that all the samples examined contained blood vessels with different ratio of nestin+ endothelial cells. Double immunostaining provided unambiguous evidence that endothelial cells expressed nestin and allowed them to distinguish from other nestin+ elements (perivascular astrocytic endfeet, undifferentiated tumour cells, smooth muscle cells and pericytes). Nestin+ endothelium was not confined only to newly formed capillaries but was also observed in blood vessels of larger calibres, frequently in arterioles and venules. We conclude that nestin represents a reliable vascular marker that is expressed in endothelial cells. Elevation of nestin expression likely corresponds to reorganization of intermediate filament network in the cytoskeleton of endothelial cells in the course of their maturation or adaptation to changes in growing tissues.
Collapse
Affiliation(s)
- Jaroslav Mokrý
- Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Department of Histology and Embryology, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schlingemann RO, Witmer AN. Treatment of retinal diseases with VEGF antagonists. PROGRESS IN BRAIN RESEARCH 2009; 175:253-67. [PMID: 19660661 DOI: 10.1016/s0079-6123(09)17517-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are the most prevalent causes of blindness in the Western world. The pathogenesis of neovascularization and vascular leakage, both hallmarks of these diseases, appears to have one common denominator: vascular endothelial growth factor (VEGF). Since the recent introduction of anti-VEGF therapy, intravitreal injections with these agents have become standard care in neovascular AMD, and have been found to be a valuable additional treatment strategy in several other vascular retinal diseases. This review provides an overview of the history of anti-VEGF treatment in the eye, its rationale, its efficacy, and its potential drawbacks.
Collapse
Affiliation(s)
- R O Schlingemann
- Department of Ophthalmology, University of Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands.
| | | |
Collapse
|
44
|
Baluk P, McDonald DM. Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 2008; 1131:1-12. [PMID: 18519955 DOI: 10.1196/annals.1413.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Imaging of lymphangiogenesis and angiogenesis requires robust and unambiguous markers of lymphatic and blood vessels. Although much progress has been made in recent years in identifying molecules specifically expressed on lymphatic and blood vessels, no perfect marker has been found that works reliably in all species, tissues, vascular beds, and in all physiological and pathologic conditions. The heterogeneity of expression of markers in both blood and lymphatic vessels reflects underlying differences in the phenotype of endothelial cells. Use of only one marker can lead to misleading interpretations, but these pitfalls can usually be avoided by use of multiple markers and three-dimensional whole-mount preparations. LYVE-1, VEGFR-3, Prox1, and podoplanin are among the most useful markers for microscopic imaging of lymphatic vessels, but, depending on histologic location, each marker can be expressed by other cell types, including vascular endothelial cells. Other markers, including CD31, junctional proteins, and receptors, such as VEGF-2, are shared by lymphatic and blood vessels.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
45
|
Gérard AC, Poncin S, Caetano B, Sonveaux P, Audinot JN, Feron O, Colin IM, Soncin F. Iodine deficiency induces a thyroid stimulating hormone-independent early phase of microvascular reshaping in the thyroid. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:748-60. [PMID: 18276786 DOI: 10.2353/ajpath.2008.070841] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expansion of the thyroid microvasculature is the earliest event during goiter formation, always occurring before thyrocyte proliferation; however, the precise mechanisms governing this physiological angiogenesis are not well understood. Using reverse transcriptase-polymerase chain reaction and immunohistochemistry to measure gene expression and laser Doppler to measure blood flow in an animal model of goitrogenesis, we show that thyroid angiogenesis occurred into two successive phases. The first phase lasted a week and involved vascular activation; this process was thyroid-stimulating hormone (TSH)-independent and was directly triggered by expression of vascular endothelial growth factor (VEGF) by thyrocytes as soon as the intracellular iodine content decreased. This early reaction was followed by an increase in thyroid blood flow and endothelial cell proliferation, both of which were mediated by VEGF and inhibited by VEGF-blocking antibodies. The second, angiogenic, phase was TSH-dependent and was activated as TSH levels increased. This phase involved substantial up-regulation of the major proangiogenic factors VEGF-A, fibroblast growth factor-2, angiopoietin 1, and NG2 as well as their receptors Flk-1/VEGFR2, Flt-1/VEGFR1, and Tie-2. In conclusion, goiter-associated angiogenesis promotes thyroid adaptation to iodine deficiency. Specifically, as soon as the iodine supply is limited, thyrocytes produce proangiogenic signals that elicit early TSH-independent microvascular activation; if iodine deficiency persists, TSH plasma levels increase, triggering the second angiogenic phase that supports thyrocyte proliferation.
Collapse
Affiliation(s)
- Anne-Catherine Gérard
- CNRS UMR8161, Institut de Biologie de Lille, 1, rue Calmette, 59021 Lille Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Santulli RJ, Kinney WA, Ghosh S, Decorte BL, Liu L, Tuman RWA, Zhou Z, Huebert N, Bursell SE, Clermont AC, Grant MB, Shaw LC, Mousa SA, Galemmo RA, Johnson DL, Maryanoff BE, Damiano BP. Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J Pharmacol Exp Ther 2007; 324:894-901. [PMID: 18083913 DOI: 10.1124/jpet.107.131656] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The alpha(V) integrins are key receptors involved in mediating cell migration and angiogenesis. In age-related macular degeneration (AMD) and diabetic retinopathy, angiogenesis plays a critical role in the loss of vision. These ocular vasculopathies might be treatable with a suitable alpha(V) antagonist, and an oral drug would offer a distinct advantage over current therapies. (3,S,beta,S)-1,2,3,4-Tetrahydro-beta-[[1-[1-oxo-3-(1,5,6,7-tetrahydro-1,8-naphthyridin-2-yl)propyl]-4-piperidinyl]methyl]-3-quinolinepropanoic acid (JNJ-26076713) is a potent, orally bioavailable, nonpeptide alpha(V) antagonist derived from the arginine-glycine-asparagine binding motif in the matrix protein ligands (e.g., vitronectin). This compound inhibits alpha(V)beta(3) and alpha(V)beta(5) binding to vitronectin in the low nanomolar range, it has excellent selectivity over integrins alpha(IIb)beta(3) and alpha(5)beta(1), and it prevents adhesion to human, rat, and mouse endothelial cells. JNJ-26076713 blocks cell migration induced by vascular endothelial growth factor, fibroblast growth factor (FGF), and serum, and angiogenesis induced by FGF in the chick chorioallantoic membrane model. JNJ-26076713 is the first alpha(V) antagonist reported to inhibit retinal neovascularization in an oxygen-induced model of retinopathy of prematurity after oral administration. In diabetic rats, orally administered JNJ-26076713 markedly inhibits retinal vascular permeability, a key early event in diabetic macular edema and AMD. Given this profile, JNJ-26076713 represents a potential therapeutic candidate for the treatment of age-related macular degeneration, macular edema, and proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Rosemary J Santulli
- Johnson & Johnson Pharmaceutical Research & Development, Welsh and McKean Rds., Spring House, PA 19477-0776, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Erratum. J Cell Mol Med 2007. [PMCID: PMC3823496 DOI: 10.1111/j.1582-4934.2008.00237.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Abstract
Vascular endothelium lines the entire cardiovascular system where performs a series of vital functions including the control of microvascular permeability, coagulation inflammation, vascular tone as well as the formation of new vessels via vasculogenesis and angiogenesis in normal and disease states. Normal endothelium consists of heterogeneous populations of cells differentiated according to the vascular bed and segment of the vascular tree where they occur. One of the cardinal features is the expression of specific subcellular structures such as plas-malemmal vesicles or caveolae, transendothelial channels, vesiculo-vacuolar organelles, endothelial pockets and fenestrae, whose presence define several endothelial morphological types. A less explored observation is the differential expression of such structures in diverse settings of angiogenesis. This review will focus on the latest developments on the components, structure and function of these specific endothelial structures in normal endothelium as well as in diverse settings of angiogenesis.
Collapse
Affiliation(s)
- RV Stan
- *Correspondence to:Radu V.STAN, M.D. Dartmouth Medical School, Department of Pathology, HB 7600, Borwell 502W, 1 Medical Center Drive, Hanover, NH 92093-0651, USA. Tel.:(603) 65 0-87 81; Fax:(603) 65 0-61 20 E-mail:
| |
Collapse
|
49
|
Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, Perris R, Roncali L. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis 2007; 10:35-45. [PMID: 17225955 DOI: 10.1007/s10456-006-9061-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
In order to better understand the process of angiogenesis in the developing human brain, we have examined the spatial relationship and relative contributions of endothelial cells and pericytes, the two primary cell types involved in vessel growth, together with their relation with the vascular basement membrane. Pericytes were immunolocalized through use of the specific markers nerve/glial antigen 2 (NG2) proteoglycan, endosialin (CD248) and the platelet-derived growth factor receptor beta (PDGFR-beta), while endothelial cells were identified by the pan-endothelial marker CD31 and the blood brain barrier (BBB)-specific markers claudin-5 and glucose transporter isoform 1 (GLUT-1). The quantitative analysis demonstrates that microvessels of the fetal human telencephalon are characterized by a continuous layer of activated/angiogenic NG2 pericytes, which tightly invest endothelial cells and participate in the earliest stages of vessel growth. Immunolabelling with anti-active matrix metalloproteinase-2 (aMMP-2) and anti-collagen type IV antibodies revealed that aMMP-2 producing endothelial cells and pericytes are both associated with the vascular basement membrane during vessel sprouting. Detailed localization of the two vascular cell types during angiogenesis suggests that growing microvessels of the human telencephalon are formed by a pericyte-driven angiogenic process in which the endothelial cells are preceded and guided by migrating pericytes during organization of the growing vessel wall.
Collapse
Affiliation(s)
- Daniela Virgintino
- Department of Human Anatomy and Histology, University of Bari School of Medicine, Piazza Giulio Cesare, 11, Bari 70124, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sun XF, Zhang H. Clinicopathological significance of stromal variables: angiogenesis, lymphangiogenesis, inflammatory infiltration, MMP and PINCH in colorectal carcinomas. Mol Cancer 2006; 5:43. [PMID: 17026740 PMCID: PMC1618857 DOI: 10.1186/1476-4598-5-43] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 10/06/2006] [Indexed: 02/08/2023] Open
Abstract
Cancer research has mainly focused on alterations of genes and proteins in cancer cells themselves that result in either gain-of-function in oncogenes or loss-of-function in tumour-suppressor genes. However, stromal variables within or around tumours, including blood and lymph vessels, stromal cells and various proteins, have also important impacts on tumour development and progression. It has been shown that disruption of stromal-epithelial interactions influences cellular proliferation, differentiation, death, motility, genomic integrity, angiogenesis, and other phenotypes in various tissues. Moreover, stromal variables are also critical to therapy in cancer patients. In this review, we mainly focus on the clinicopathological significance of stromal variables including angiogenesis, lymphangiogenesis, inflammatory infiltration, matrix metalloproteinase (MMP), and the particularly interesting new cysteine-histidine rich protein (PINCH) in colorectal cancer (CRC).
Collapse
Affiliation(s)
- Xiao-Feng Sun
- Department of Oncology, Institute of Biomedicine and Surgery, University of Linköping, SE-581 85 Linköping, Sweden
| | - Hong Zhang
- Department of Dermatology, Institute of Biomedicine and Surgery, University of Linköping, SE-581 85 Linköping, Sweden
| |
Collapse
|