1
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
2
|
Cetina-Palma A, Namorado-Tónix C, Rodríguez-Muñoz R, Vergara P, Reyes-Sánchez JL, Segovia J. Characterization of the pattern of expression of Gas1 in the kidney during postnatal development in the rat. PLoS One 2023; 18:e0284816. [PMID: 37093844 PMCID: PMC10124827 DOI: 10.1371/journal.pone.0284816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
Growth Arrest-Specific 1 (Gas1) is a pleiotropic protein with different functions, in the adult kidney Gas1 acts as an endogenous inhibitor of cell proliferation but it is also necessary for the maintenance and proliferation of Renal Progenitor Cells (RPC) during early development, thus it fulfills important functions in the adult kidney. However, it is not known whether or not Gas1 is expressed during postnatal development, a critical stage for renal maturation. For this reason, the main objective of this work was to characterize the expression pattern of Gas1 in the different regions of the kidney by immunofluorescence and Western blot analysis during the postnatal development of the rat. We found that Gas1 is present and has a differential expression pattern in the various regions of the nephron during postnatal development. We observed that the highest levels of expression of Gas1 occur in the adult, however, Gas1 is also expressed in RPC and interestingly, the expression of RPC markers such as the Neural cell adhesion molecule (NCAM) and Cluster of differentiation 24 (CD24) were found to have an inverse pattern of expression to Gas1 (decreases as the kidney matures) during postnatal renal maturation, this indicates a role for Gas1 in the regulation of renal cell proliferation at this stage of development.
Collapse
Affiliation(s)
- Andrea Cetina-Palma
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Carmen Namorado-Tónix
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - José Luis Reyes-Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
3
|
The Regional and Cellular Distribution of GABAA Receptor Subunits in the Human Amygdala. J Chem Neuroanat 2022; 126:102185. [DOI: 10.1016/j.jchemneu.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
4
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry 2020; 3. [PMID: 32656540 PMCID: PMC7351254 DOI: 10.1016/j.bionps.2020.100015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain cognitive deficits in schizophrenia, such as impaired working memory, are thought to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex (DLPFC). Gamma oscillations in the DLPFC appear to be a neural corollary of working memory function, and the power of these oscillations during working memory tasks is lower in individuals with schizophrenia. Thus, gamma oscillations represent a potentially useful biomarker to index dysfunction in the DLPFC circuitry responsible for working memory in schizophrenia. Postmortem studies, by identifying the cellular basis of DLPFC dysfunction, can help inform the utility of biomarker measures obtained in vivo. Given that gamma oscillations reflect network activity of excitatory pyramidal neurons and inhibitory GABA neurons, we review postmortem findings of alterations to both cell types in the DLPFC and discuss how these findings might inform future biomarker development and use.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| |
Collapse
|
6
|
GABA ARα2 is Decreased in the Axon Initial Segment of Pyramidal Cells in Specific Areas of the Prefrontal Cortex in Autism. Neuroscience 2020; 437:76-86. [PMID: 32335215 DOI: 10.1016/j.neuroscience.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Some forms of Autism Spectrum Disorder, a neurodevelopmental syndrome characterized by impaired communication and social skills as well as repetitive behaviors, are purportedly associated with dysregulation of the excitation/inhibition balance in the cerebral cortex. Through human postmortem tissue analysis, we previously found a significant decrease in the number of a gamma-aminobutyric acid (GABA)ergic interneuron subtype, the chandelier (Ch) cell, in the prefrontal cortex of subjects with autism. Ch cells exclusively target the axon initial segment (AIS) of excitatory pyramidal (Pyr) neurons, and a single Ch cell forms synapses on hundreds of Pyr cells, indicating a possible role in maintaining electrical balance. Thus, we herein investigated this crucial link between Ch and Pyr cells in the anatomy of autism neuropathology by examining GABA receptor protein expression in the Pyr cell AIS in subjects with autism. We collected tissue from the prefrontal cortex (Brodmann Areas (BA) 9, 46, and 47) of 20 subjects with autism and 20 age- and sex-matched control subjects. Immunohistochemical staining with antibodies against the GABAA receptor subunit α2 (GABAARα2) - the subunit most prevalent in the Pyr cell AIS - revealed a significantly decreased GABAARα2 protein in the Pyr cell AIS in supragranular layers of prefrontal cortical areas BA9 and BA47 in autism. Downregulated GABAARα2 protein in the Pyr cell AIS may result from decreased GABA synthesis in the prefrontal cortex of subjects with autism, and thereby contribute to an excitation/inhibition imbalance. Our findings support the potential for GABA receptor agonists asa therapeutic tool for autism.
Collapse
|
7
|
Ucha M, Roura-Martínez D, Contreras A, Pinto-Rivero S, Orihuel J, Ambrosio E, Higuera-Matas A. Impulsive Action and Impulsive Choice Are Differentially Associated With Gene Expression Variations of the GABA A Receptor Alfa 1 Subunit and the CB 1 Receptor in the Lateral and Medial Orbitofrontal Cortices. Front Behav Neurosci 2019; 13:22. [PMID: 30842730 PMCID: PMC6391359 DOI: 10.3389/fnbeh.2019.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/28/2019] [Indexed: 11/18/2022] Open
Abstract
The orbitofrontal cortex (OFC) is a key brain region for decision-making, action control and impulsivity. Quite notably, previous research has identified a double dissociation regarding the role of this cortical territory in impulsive choice. While medial orbitofrontal lesions increase preference for a large but delayed reward, lateral orbitofrontal lesions have the opposite effect. However, there are no data regarding this anatomical dissociation in impulsive action. The neurochemical basis of impulsivity is still being elucidated, however, in recent years a role for the endocannabinoids and the related glutamatergic and GABAergic neurotransmitter systems has been suggested. Here, we submitted male Wistar rats to a delay-discounting task (DDT) or a two-choice serial reaction time task (2-CSRTT) and classified them as high impulsive or low impulsive in either task using cluster analysis. We then examined the gene expression of several elements of the endocannabinoid system or different subunits of certain glutamatergic or GABAergic ionotropic receptors (AMPA, NMDA, or GABAA) in the lateral or medial divisions of their orbitofrontal cortices. Our results confirm, at the gene expression level, the dissociation in the participation of the medial, and lateral divisions of the orbitofrontal cortex in impulsivity. While in the 2-CSRTT (inhibitory control) we found that high impulsive animals exhibited lower gene expression levels of the α1 GABAA receptor subunit in the lateral OFC, no such differences were evident in the medial OFC. When we analyzed DDT performance, we found that high impulsive animals displayed lower levels of CB1 gene expression in the medial but not in the lateral OFC. We propose that GABAergic dynamics in the lateral OFC might contribute to the inhibitory control mechanisms that are altered in impulsive behavior while endocannabinoid receptor gene transcription in the medial OFC may subserve the delay-discounting processes that participate in certain types of impulsiveness.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Ana Contreras
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Sheyla Pinto-Rivero
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Javier Orihuel
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| |
Collapse
|
8
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
9
|
γ-Aminobutyric Acid (GABA): Biosynthesis, Role, Commercial Production, and Applications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00013-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Wu XH, Song JJ, Faull RLM, Waldvogel HJ. GABAAand GABABreceptor subunit localization on neurochemically identified neurons of the human subthalamic nucleus. J Comp Neurol 2017; 526:803-823. [DOI: 10.1002/cne.24368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Xi Hua Wu
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Jennifer Junru Song
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences; The University of Auckland; Auckland New Zealand
| |
Collapse
|
11
|
Luna-Antonio BI, Rodriguez-Muñoz R, Namorado-Tonix C, Vergara P, Segovia J, Reyes JL. Gas1 expression in parietal cells of Bowman’s capsule in experimental diabetic nephropathy. Histochem Cell Biol 2017; 148:33-47. [DOI: 10.1007/s00418-017-1550-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
|
12
|
Activation of GABA A receptors controls mesiotemporal lobe epilepsy despite changes in chloride transporters expression: In vivo and in silico approach. Exp Neurol 2016; 284:11-28. [DOI: 10.1016/j.expneurol.2016.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/16/2022]
|
13
|
Kerti-Szigeti K, Nusser Z. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells. eLife 2016; 5. [PMID: 27537197 PMCID: PMC4990423 DOI: 10.7554/elife.18426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022] Open
Abstract
Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. DOI:http://dx.doi.org/10.7554/eLife.18426.001
Collapse
Affiliation(s)
- Katalin Kerti-Szigeti
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
14
|
Gao Y, Heldt SA. Enrichment of GABAA Receptor α-Subunits on the Axonal Initial Segment Shows Regional Differences. Front Cell Neurosci 2016; 10:39. [PMID: 26973458 PMCID: PMC4771769 DOI: 10.3389/fncel.2016.00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Although it is generally recognized that certain α-subunits of γ-aminobutyric acid type A receptors (GABAARs) form enriched clusters on the axonal initial segment (AIS), the degree to which these clusters vary in different brain areas is not well known. In the current study, we quantified the density, size, and enrichment ratio of fluorescently labeled α1-, α2-, or α3-subunits aggregates co-localized with the AIS-marker ankyrin G and compared them to aggregates in non-AIS locations among different brain areas including hippocampal subfields, basal lateral amygdala (BLA), prefrontal cortex (PFC), and sensory cortex (CTX). We found regional differences in the enrichment of GABAAR α-subunits on the AIS. Significant enrichment was identified in the CA3 of hippocampus for α1-subunits, in the CA1, CA3, and BLA for α2-subunits, and in the BLA for α3-subunits. Using α-subunit knock-out (KO) mice, we found that BLA enrichment of α2- and α3-subunits were physiologically independent of each other, as the enrichment of one subunit was unaffected by the genomic deletion of the other. To further investigate the unique pattern of α-subunit enrichment in the BLA, we examined the association of α2- and α3-subunits with the presynaptic vesicular GABA transporter (vGAT) and the anchoring protein gephyrin (Geph). As expected, both α2- and α3-subunits on the AIS within the BLA received prominent GABAergic innervation from vGAT-positive terminals. Further, we found that the association of α2- and α3-subunits with Geph was weaker in AIS versus non-AIS locations, suggesting that Geph might be playing a lesser role in the enrichment of α2- and α3-subunits on the AIS. Overall, these observations suggest that GABAARs on the AIS differ in subunit composition across brain regions. As with somatodendritic GABAARs, the distinctive expression pattern of AIS-located GABAAR α-subunits in the BLA, and other brain areas, likely contribute to unique forms of GABAergic inhibitory transmission and pharmacological profiles seen in different brain areas.
Collapse
Affiliation(s)
| | - Scott A. Heldt
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, MemphisTN, USA
| |
Collapse
|
15
|
α2-containing GABA(A) receptors: a requirement for midazolam-escalated aggression and social approach in mice. Psychopharmacology (Berl) 2015; 232:4359-69. [PMID: 26381154 PMCID: PMC4618782 DOI: 10.1007/s00213-015-4069-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/25/2015] [Indexed: 02/04/2023]
Abstract
RATIONALE Benzodiazepines (BZDs) are prescribed to reduce anxiety, agitation, and muscle spasms and for their sedative-hypnotic and anticonvulsant effects. Under specific conditions, BZDs escalate aggression in some individuals. Specific effects of BZDs have been linked to the α-subunit subtype composition of GABAA receptors. OBJECTIVES Point-mutated mice rendered selectively insensitive to BZDs at α1-, α2-, or α3-containing GABAA receptors were used to determine which α-subunit subtypes are necessary for BZDs to escalate aggression and social approach and to reduce fear-motivated behavior. METHODS During resident-intruder confrontations, male wild-type (WT) and point-mutated α1(H101R), α2(H101R), and α3(H126R) mice were treated with midazolam (0-1.7 mg/kg, i.p.) and evaluated for aggression in an unfamiliar environment. Separate midazolam-treated WT and point-mutated mice were assessed for social approach toward a female or investigated in a 6-day fear-potentiated startle procedure. RESULTS Moderate doses of midazolam (0.3-0.56 mg/kg, i.p.) escalated aggression in WT and α3(H126R) mutants and increased social approach in WT and α1(H101R) mice. The highest dose of midazolam (1.0 mg/kg) reduced fear-potentiated startle responding. All mice were sensitive to the sedative effect of midazolam (1.7 mg/kg) except α1(H101R) mutants. CONCLUSIONS Midazolam requires BZD-sensitive α1- and α2-containing GABAA receptors in order to escalate aggression and α2- and α3-containing receptors to reduce social anxiety-like behavior. GABAA receptors containing the α1-subunit are crucial for BZD-induced sedation, while α2-containing GABAA receptors may be a shared site of action for the pro-aggressive and anxiolytic effects of BZDs.
Collapse
|
16
|
Möhler H. The legacy of the benzodiazepine receptor: from flumazenil to enhancing cognition in Down syndrome and social interaction in autism. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 72:1-36. [PMID: 25600365 DOI: 10.1016/bs.apha.2014.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study of the psychopharmacology of benzodiazepines continues to provide new insights into diverse brain functions related to vigilance, anxiety, mood, epileptiform activity, schizophrenia, cognitive performance, and autism-related social behavior. In this endeavor, the discovery of the benzodiazepine receptor was a key event, as it supplied the primary benzodiazepine drug-target site, provided the molecular link to the allosteric modulation of GABAA receptors and, following the recognition of GABAA receptor subtypes, furnished the platform for future, more selective drug actions. This review has two parts. In a retrospective first part, it acknowledges the contributions to the field made by my collaborators over the years, initially at Hoffmann-La Roche in Basle and later, in academia, at the University and the ETH of Zurich. In the second part, the new frontier of GABA pharmacology, targeting GABAA receptor subtypes, is reviewed with special focus on nonsedative anxiolytics, antidepressants, analgesics, as well as enhancers of cognition in Down syndrome and attenuators of symptoms of autism spectrum disorders. It is encouraging that a clinical trial has been initiated with a partial inverse agonist acting on α5 GABAA receptors in an attempt to alleviate the cognitive deficits in Down syndrome.
Collapse
Affiliation(s)
- Hanns Möhler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Federal Institute of Technology (ETH), Zurich, Switzerland.
| |
Collapse
|
17
|
Eugène E, Cluzeaud F, Cifuentes-Diaz C, Fricker D, Le Duigou C, Clemenceau S, Baulac M, Poncer JC, Miles R. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J Neurosci Methods 2014; 235:234-44. [PMID: 25064188 PMCID: PMC4426207 DOI: 10.1016/j.jneumeth.2014.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND A long-term in vitro preparation of diseased brain tissue would facilitate work on human pathologies. Organotypic tissue cultures retain an appropriate neuronal form, spatial arrangement, connectivity and electrical activity over several weeks. However, they are typically prepared with tissue from immature animals. In work using tissue from adult animals or humans, survival times longer than a few days have not been reported and it is not clear that pathological neuronal activities are retained. NEW METHOD We modified tissue preparation procedures and used a defined culture medium to make organotypic cultures of temporal lobe tissue obtained after operations on adult patients with pharmaco-resistant mesial temporal lobe epilepsies. RESULTS Organototypic culture preparation and maintenance techniques were judged on criteria of morphology and the generation of epileptiform activities. Short-duration (30-100 ms) interictal-like population activities were initiated spontaneously in either the subiculum, dentate gyrus or the CA2/CA3 region, but not the cortex, for up to 3-4 weeks in culture. Ictal-like discharges, of duration greater than 10s, were induced by convulsants. Epileptiform activities were modulated by both glutamatergic and GABAergic receptor antagonists. COMPARISON WITH EXISTING METHODS Our methods now permit the maintenance in organotypic culture of epileptic adult human tissue, generating appropriate epileptiform activity over 3-4 weeks. CONCLUSIONS We have shown that characteristic morphology and pathological activities are maintained in organotypic cultures of adult human tissue. These cultures should permit studies on the effects of prolonged drug treatments and long-term procedures such as viral transduction.
Collapse
Affiliation(s)
- Emmanuel Eugène
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France; INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France.
| | - Françoise Cluzeaud
- Service Microscopie, Centre de recherche biomedicale, CHU Bichat, Université Paris Diderot, 16 rue Henri Huchard, Paris 75870, France
| | - Carmen Cifuentes-Diaz
- INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France
| | - Desdemona Fricker
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Caroline Le Duigou
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Stephane Clemenceau
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Michel Baulac
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Jean-Christophe Poncer
- INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France
| | - Richard Miles
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France.
| |
Collapse
|
18
|
Del Pino I, García-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martínez de Lagrán M, Ciceri G, Gabaldón MV, Moratal D, Dierssen M, Canals S, Marín O, Rico B. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 2013; 79:1152-68. [PMID: 24050403 DOI: 10.1016/j.neuron.2013.07.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
Abstract
Genetic variation in neuregulin and its ErbB4 receptor has been linked to schizophrenia, although little is known about how they contribute to the disease process. Here, we have examined conditional Erbb4 mouse mutants to study how disruption of specific inhibitory circuits in the cerebral cortex may cause large-scale functional deficits. We found that deletion of ErbB4 from the two main classes of fast-spiking interneurons, chandelier and basket cells, causes relatively subtle but consistent synaptic defects. Surprisingly, these relatively small wiring abnormalities boost cortical excitability, increase oscillatory activity, and disrupt synchrony across cortical regions. These functional deficits are associated with increased locomotor activity, abnormal emotional responses, and impaired social behavior and cognitive function. Our results reinforce the view that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Isabel Del Pino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Notter T, Knuesel I. Reelin immunoreactivity in neuritic varicosities in the human hippocampal formation of non-demented subjects and Alzheimer's disease patients. Acta Neuropathol Commun 2013; 1:27. [PMID: 24252415 PMCID: PMC3893416 DOI: 10.1186/2051-5960-1-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/10/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Reelin and its downstream signaling members are important modulators of actin and microtubule cytoskeleton dynamics, a fundamental prerequisite for proper neurodevelopment and adult neuronal functions. Reductions in Reelin levels have been suggested to contribute to Alzheimer's disease (AD) pathophysiology. We have previously reported an age-related reduction in Reelin levels and its accumulation in neuritic varicosities along the olfactory-limbic tracts, which correlated with cognitive impairments in aged mice. Here, we aimed to investigate whether a similar Reelin-associated neuropathology is observed in the aged human hippocampus and whether it correlated with dementia status. RESULTS Our immunohistochemical stainings revealed the presence of N- and C-terminus-containing Reelin fragments in corpora amylacea (CAm), aging-associated spherical deposits. The density of these deposits was increased in the molecular layer of the subiculum of AD compared to non-demented individuals. Despite the limitation of a small sample size, our evaluation of several neuronal and glial markers indicates that the presence of Reelin in CAm might be related to aging-associated impairments in neuronal transport leading to accumulation of organelles and protein metabolites in neuritic varicosities, as previously suggested by the findings and discussions in rodents and primates. CONCLUSIONS Our results indicate that aging- and disease-associated changes in Reelin levels and proteolytic processing might play a role in the formation of CAm by altering cytoskeletal dynamics. However, its presence may also be an indicator of a degenerative state of neuritic compartments.
Collapse
|
20
|
Jinde S, Zsiros V, Nakazawa K. Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits 2013; 7:14. [PMID: 23407806 PMCID: PMC3569840 DOI: 10.3389/fncir.2013.00014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability—the “dormant basket cell” and the “irritable mossy cell” hypotheses. The “dormant basket cell” hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The “irritable mossy cell” hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
21
|
Bautista-García P, Reyes JL, Martín D, Namorado MC, Chavez-Munguía B, Soria-Castro E, Huber O, González-Mariscal L. Zona occludens-2 protects against podocyte dysfunction induced by ADR in mice. Am J Physiol Renal Physiol 2012; 304:F77-87. [PMID: 23034938 DOI: 10.1152/ajprenal.00089.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Zona occludens-2 (ZO-2) is a protein present at the tight junction and nucleus of epithelial cells. ZO-2 represses the transcription of genes regulated by the Wnt/β-catenin pathway. This pathway plays a critical role in podocyte injury and proteinuria. Here, we analyze whether the overexpression of ZO-2 in the glomerulus, by hydrodynamics transfection, prevents podocyte injury mediated by the Wnt/β-catenin pathway in the mouse model of adriamycin (ADR) nephrosis. By immunofluorescence and immunogold electron microscopy, we show that ZO-2 is present in mice glomerulus, not at the slit diaphragms where nephrin concentrates, but in the cytoplasm and at processes of podocytes. Our results indicate that in the glomeruli of mice treated with ADR, ZO-2 overexpression increases the amount of phosphorylated β-catenin, inhibits the expression of the transcription factor snail, prevents nephrin and podocalyxin loss, reduces podocyte effacement and massive fusions, restrains proteinuria, and supports urea and creatinine clearance. These results suggest that ZO-2 could be a new target for the regulation of hyperactive Wnt/β-catenin signaling in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Pablo Bautista-García
- Dept. of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu JYW, Thom M, Catarino CB, Martinian L, Figarella-Branger D, Bartolomei F, Koepp M, Sisodiya SM. Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy. ACTA ACUST UNITED AC 2012; 135:3115-33. [PMID: 22750659 DOI: 10.1093/brain/aws147] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Blood-brain barrier dysfunction is implicated in various neurological conditions. Modulating the blood-brain barrier may have therapeutic value. Progress is hindered by our limited understanding of the pathophysiology of the blood-brain barrier in humans, partly due to restricted availability of human tissue, and because human tissue can only provide limited data about temporal patterns of change. We addressed these important challenges by examining surgically resected brain tissue with various lengths of interval between intracranial depth electrode-related injury and resection, and post-mortem whole brain from patients with drug-sensitive or drug-resistant chronic epilepsy and controls. In this valuable set of resources, we found that: (i) there is a highly localized overexpression of P-glycoprotein in the epileptogenic hippocampus of patients with drug-resistant epilepsy; (ii) this overexpression appears specific to P-glycoprotein and does not affect other transporters; (iii) P-glycoprotein is expressed on the vascular endothelium and end-feet of vascular glia (forming a 'double cuff') in drug-resistant epileptic cases but not in post-mortem controls or surgical epilepsy tissue with electrode-related injuries; (iv) an acute insult from intracranial electrode recording causes localized inflammation, increased blood-brain barrier permeability and structural changes to vasculature detectable for up to at least 330 days and (v) chronic epilepsy is associated with inflammation, enhanced blood-brain barrier permeability and increased P-glycoprotein expression. The occurrence of seizures appears central to P-glycoprotein overexpression. Our findings have potential clinical impact because they directly improve our understanding of blood-brain barrier disruption and transporter expression in humans. In particular, our findings show that the expression of P-glycoprotein in humans is compatible with the inherent assumptions of one current hypothesis of multidrug resistance, and that the specific upregulation of P-glycoprotein expression is likely to be associated with ongoing chronic seizures. There may be a therapeutic window after initial acute injury for the prevention of P-glycoprotein overexpression, and thus this one potential component of drug resistance. Our findings add to the need for careful consideration of the benefit and risks of invasive electroencephalographic recording in surgical evaluation of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Joan Y W Liu
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast 2011; 2011:723184. [PMID: 21904685 PMCID: PMC3167184 DOI: 10.1155/2011/723184] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/01/2011] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.
Collapse
|
24
|
Hoftman GD, Lewis DA. Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 2011; 37:493-503. [PMID: 21505116 PMCID: PMC3080694 DOI: 10.1093/schbul/sbr029] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia.
Collapse
Affiliation(s)
- Gil D. Hoftman
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - David A. Lewis
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; 3811 O'Hara Street, Biomedical Science Tower, W-1654, Pittsburgh, PA 15213, US; tel: 412-383-8548, fax: 412-624-9910, e-mail:
| |
Collapse
|
25
|
Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. Int J Dev Neurosci 2011; 29:295-304. [PMID: 20797429 PMCID: PMC3319737 DOI: 10.1016/j.ijdevneu.2010.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/19/2022] Open
Abstract
The hypothesis that schizophrenia results from a developmental, as opposed to a degenerative, process affecting the connectivity and network plasticity of the cerebral cortex is supported by findings from morphological and molecular postmortem studies. Specifically, abnormalities in the expression of protein markers of GABA neurotransmission and the lamina- and circuit-specificity of these changes in the cortex in schizophrenia, in concert with knowledge of their developmental trajectories, offer crucial insight into the vulnerability of specific cortical networks to environmental insults during different periods of development. These findings reveal potential targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia, and provide guidance for future preventive strategies to preserve cortical neurotransmission in at-risk individuals.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry, University of Pittsburgh, W1656 Biomedical Science Tower, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
26
|
Saari TI, Uusi-Oukari M, Ahonen J, Olkkola KT. Enhancement of GABAergic activity: neuropharmacological effects of benzodiazepines and therapeutic use in anesthesiology. Pharmacol Rev 2011; 63:243-67. [PMID: 21245208 DOI: 10.1124/pr.110.002717] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). The type A GABA receptor (GABA(A)R) system is the primary pharmacological target for many drugs used in clinical anesthesia. The α1, β2, and γ2 subunit-containing GABA(A)Rs located in the various parts of CNS are thought to be involved in versatile effects caused by inhaled anesthetics and classic benzodiazepines (BZD), both of which are widely used in clinical anesthesiology. During the past decade, the emergence of tonic inhibitory conductance in extrasynaptic GABA(A)Rs has coincided with evidence showing that these receptors are highly sensitive to the sedatives and hypnotics used in anesthesia. Anesthetic enhancement of tonic GABAergic inhibition seems to be preferentially increased in regions shown to be important in controlling memory, awareness, and sleep. This review focuses on the physiology of the GABA(A)Rs and the pharmacological properties of clinically used BZDs. Although classic BZDs are widely used in anesthesiological practice, there is a constant need for new drugs with more favorable pharmacokinetic and pharmacodynamic effects and fewer side effects. New hypnotics are currently developed, and promising results for one of these, the GABA(A)R agonist remimazolam, have recently been published.
Collapse
Affiliation(s)
- Teijo I Saari
- Department of Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Hospital, P.O. Box 52 (Kiinamyllynkatu 4-8), FI-20520 Turku, Finland.
| | | | | | | |
Collapse
|
27
|
McCullumsmith RE, Meador-Woodruff JH. Novel approaches to the study of postmortem brain in psychiatric illness: old limitations and new challenges. Biol Psychiatry 2011; 69:127-33. [PMID: 21094488 DOI: 10.1016/j.biopsych.2010.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 11/29/2022]
Abstract
Biological psychiatry has made significant advances through the development of postmortem studies, animal models, and studies with living humans. Although these approaches each have advantages and disadvantages, the postmortem field is undergoing a significant shift toward more complex and informative methodologies. In the first part of this review, we summarize the long-standing methodologic challenges facing this field. In the second part of the article, we discuss the innovative approaches being used for postmortem studies, including laser capture microdissection and subcellular fractionization. These techniques will permit scientists working in the postmortem field to ask and answer the largest possible questions, providing new targets for drug discovery and improved treatments for severe mental illness.
Collapse
Affiliation(s)
- Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neurobiology, Universityof Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
28
|
Beneyto M, Abbott A, Hashimoto T, Lewis DA. Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. ACTA ACUST UNITED AC 2010; 21:999-1011. [PMID: 20843900 DOI: 10.1093/cercor/bhq169] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysfunction of the dorsolateral prefrontal cortex (DLPFC) in schizophrenia is associated with lamina-specific alterations in particular subpopulations of interneurons. In pyramidal cells, postsynaptic γ-aminobutyric acid (GABA(A)) receptors containing different α subunits are inserted preferentially in distinct subcellular locations targeted by inputs from specific interneuron subpopulations. We used in situ hybridization to quantify the laminar expression of α1, α2, α3, and α5 subunit, and of β1-3 subunit, mRNAs in the DLFPC of schizophrenia, and matched normal comparison subjects. In subjects with schizophrenia, mean GABA(A) α1 mRNA expression was 17% lower in layers 3 and 4, α2 expression was 14% higher in layer 2, α5 expression was 15% lower in layer 4, and α3 expression did not differ relative to comparison subjects. The mRNA expression of β2, which preferentially assembles with α1 subunits, was also 20% lower in layers 3 and 4, whereas β1 and β3 mRNA levels were not altered in schizophrenia. These expression differences were not attributable to medication effects or other potential confounds. These findings suggest that GABA neurotransmission in the DLPFC is altered at the postsynaptic level in a receptor subunit- and layer-specific manner in subjects with schizophrenia and support the hypothesis that GABA neurotransmission in this illness is predominantly impaired in certain cortical microcircuits.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry, University of Pittsburgh, W1656 Biomedical Science Tower, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
29
|
Waldvogel HJ, Baer K, Eady E, Allen KL, Gilbert RT, Mohler H, Rees MI, Nicholson LFB, Faull RLM. Differential localization of gamma-aminobutyric acid type A and glycine receptor subunits and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal cord: an immunohistochemical study. J Comp Neurol 2010; 518:305-28. [PMID: 19950251 DOI: 10.1002/cne.22212] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gephyrin is a multifunctional protein responsible for the clustering of glycine receptors (GlyR) and gamma-aminobutyric acid type A receptors (GABA(A)R). GlyR and GABA(A)R are heteropentameric chloride ion channels that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We investigated the immunohistochemical distribution of gephyrin and the major GABA(A)R and GlyR subunits in the human light microscopically in the rostral and caudal one-thirds of the pons, in the middle and caudal one-thirds of the medulla oblongata, and in the first cervical segment of the spinal cord. The results demonstrate a widespread pattern of immunoreactivity for GlyR and GABA(A)R subunits throughout these regions, including the spinal trigeminal nucleus, abducens nucleus, facial nucleus, pontine reticular formation, dorsal motor nucleus of the vagus nerve, hypoglossal nucleus, lateral cuneate nucleus, and nucleus of the solitary tract. The GABA(A)R alpha(1) and GlyR alpha(1) and beta subunits show high levels of immunoreactivity in these nuclei. The GABA(A)R subunits alpha(2), alpha(3), beta(2,3), and gamma(2) present weaker levels of immunoreactivity. Exceptions are intense levels of GABA(A)R alpha(2) subunit immunoreactivity in the inferior olivary complex and high levels of GABA(A)R alpha(3) subunit immunoreactivity in the locus coeruleus and raphe nuclei. Gephyrin immunoreactivity is highest in the first segment of the cervical spinal cord and hypoglossal nucleus. Our results suggest that a variety of different inhibitory receptor subtypes is responsible for inhibitory functions in the human brainstem and cervical spinal cord and that gephyrin functions as a clustering molecule for major subtypes of these inhibitory neurotransmitter receptors.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lewis DA. Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877495 PMCID: PMC3075863 DOI: 10.31887/dcns.2009.11.3/dalewis] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by deficits in cognitive processes mediated by the circuitry of the dorsolateral prefrontal cortex (DLPFC). These deficits are associated with a range of alterations in DLPFC circuitry, some of which reflect the pathology of the illness and others of which reflect the neuroplasticity of the brain in response to the underlying disease process. This article reviews disturbances in excitatory and inhibitory components of DLPFC circuitry from the perspective of developmental neuroplasticity and discusses their implications for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Charych EI, Liu F, Moss SJ, Brandon NJ. GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology 2009; 57:481-95. [PMID: 19631671 DOI: 10.1016/j.neuropharm.2009.07.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 02/05/2023]
Abstract
Gamma-aminobutyric acid type A (GABA(A)) receptors play an important role in mediating fast synaptic inhibition in the brain. They are ubiquitously expressed in the CNS and also represent a major site of action for clinically relevant drugs. Recent technological advances have greatly clarified the molecular and cellular roles played by distinct GABA(A) receptor subunit classes and isoforms in normal brain function. At the same time, postmortem and genetic studies have linked neuropsychiatric disorders including schizophrenia and bipolar disorder with GABAergic neurotransmission and various specific GABA(A) receptor subunits, while evidence implicating GABA(A)R-associated proteins is beginning to emerge. In this review we discuss the mounting genetic, molecular, and cellular evidence pointing toward a role for GABA(A) receptor heterogeneity in both schizophrenia etiology and therapeutic development. Finally, we speculate on the relationship between schizophrenia-related disorders and selected GABA(A) receptor associated proteins, key regulators of GABA(A) receptor trafficking, targeting, clustering, and anchoring that often carry out these functions in a subtype-specific manner.
Collapse
Affiliation(s)
- Erik I Charych
- Wyeth Research, Neuroscience Discovery, Princeton NJ 08852, USA.
| | | | | | | |
Collapse
|
32
|
Loup F, Picard F, Yonekawa Y, Wieser HG, Fritschy JM. Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy. Brain 2009; 132:2449-63. [DOI: 10.1093/brain/awp178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
33
|
Cruz DA, Lovallo EM, Stockton S, Rasband M, Lewis DA. Postnatal development of synaptic structure proteins in pyramidal neuron axon initial segments in monkey prefrontal cortex. J Comp Neurol 2009; 514:353-67. [PMID: 19330819 DOI: 10.1002/cne.22006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the primate prefrontal cortex (PFC), the functional maturation of the synaptic connections of certain classes of gamma-aminobutyric acid (GABA) neurons is very complex. For example, the levels of both pre- and postsynaptic proteins that regulate GABA neurotransmission from the chandelier class of cortical interneurons to the axon initial segment (AIS) of pyramidal neurons undergo marked changes during both the perinatal period and adolescence in the monkey PFC. In order to understand the potential molecular mechanisms associated with these developmental refinements, we quantified the relative densities, laminar distributions, and lengths of pyramidal neuron AIS immunoreactive for ankyrin-G, betaIV spectrin, or gephyrin, three proteins involved in regulating synapse structure and receptor localization, in the PFC of rhesus monkeys ranging in age from birth through adulthood. Ankyrin-G- and betaIV spectrin-labeled AIS declined in density and length during the first 6 postnatal months, but then remained stable through adolescence and into adulthood. In contrast, the density of gephyrin-labeled AIS was stable until approximately 15 months of age and then markedly declined during adolescence. Thus, molecular determinants of the structural features that define GABA inputs to pyramidal neuron AIS in monkey PFC undergo distinct developmental trajectories with different types of changes occurring during the perinatal period and adolescence. In concert with previous data, these findings reveal a two-phase developmental process of GABAergic synaptic stability and GABA neurotransmission at chandelier cell inputs to pyramidal neurons that likely contributes to the protracted maturation of behaviors mediated by primate PFC circuitry.
Collapse
Affiliation(s)
- Dianne A Cruz
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
34
|
The localization of inhibitory neurotransmitter receptors on dopaminergic neurons of the human substantia nigra. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:59-70. [PMID: 20411768 DOI: 10.1007/978-3-211-92660-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The substantia nigra pars compacta (SNc) is comprised mainly of dopaminergic pigmented neurons arranged in groups, with a small population of nonpigmented neurons scattered among these groups. These different types of neurons possess GABAA, GABAB, and glycine receptors. The SNc-pigmented dopaminergic neurons have postsynaptic GABAA receptors (GABAAR) with a subunit configuration containing alpha3 and gamma2 subunits, with a small population of pigmented neurons containing alpha1 beta2,3 gamma2 subunits. GABAB receptors comprised of R1 and R2 subunits and glycine receptors are also localized on pigmented neurons. In contrast, nonpigmented (mainly parvalbumin positive neurons) located in the SNc are morphologically and neurochemically similar to substantia nigra pars reticulata (SNr) neurons by showing immunoreactivity for parvalbumin and GABAARs containing immunoreactivity for alpha1, alpha3, beta2,3, and gamma2 subunits as well as GABAB R1 and R2 subunits and glycine receptors. Thus, these two neuronal types of the SNc, either pigmented dopaminergic neurons or nonpigmented parvalbumin positive neurons, have similar GABAB and glycine receptor combinations, but differ mainly in the subunit composition of the GABAARs located on their membranes. The different types of GABAARs suggest that GABAergic inputs to these neuronal types operate through GABAARs with different pharmacological and physiological profiles, whereas GABABR and glycine receptors of these cell types are likely to have similar properties.
Collapse
|
35
|
Müllner A, Gonzenbach RR, Weinmann O, Schnell L, Liebscher T, Schwab ME. Lamina-specific restoration of serotonergic projections after Nogo-A antibody treatment of spinal cord injury in rats. Eur J Neurosci 2008; 27:326-33. [DOI: 10.1111/j.1460-9568.2007.06006.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
The core features of schizophrenia include deficits in cognitive processes mediated by the circuitry of the dorsolateral prefrontal cortex (DLPFC). These deficits are associated with a range of molecular and morphological alterations in the DLPFC, each of which could be a cause, consequence, or compensation in relation to other changes, and thus reflect the neuroplasticity of the brain in response to the underlying disease process. In this review, we consider disturbances in excitatory, inhibitory, and modulatory connections of DLPFC circuitry from the perspective of disease- and development-related neuroplasticity and discuss their implications for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
37
|
Pitkänen A, Mathiesen C, Rønn LCB, Møller A, Nissinen J. Effect of novel AMPA antagonist, NS1209, on status epilepticus. Epilepsy Res 2007; 74:45-54. [PMID: 17289347 DOI: 10.1016/j.eplepsyres.2006.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 12/19/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
The current first line treatment of status epilepticus (SE) is based on the use of compounds that enhance GABAergic transmission or block sodium channels. These treatments discontinue SE in only two-thirds of patients, and therefore new therapeutic approaches are needed. We investigated whether a novel water-soluble AMPA antagonist, NS1209, discontinues SE in adult rats. SE was induced by electrical stimulation of the amygdala or subcutaneous administration of kainic acid. Animals were monitored continuously with video-electroencephalography during SE and drug treatment. We found that NS1209 could be safely administered to rats undergoing electrically induced SE at doses up to 50mg/kg followed by intravenous infusion of 5mg/kg for up to 24h. NS1209 administered as a bolus dose of 10-50mg/kg (i.p. or i.v.) followed by infusion of 4 or 5mg/kg h (i.v.) for 2-24h effectively discontinued electrically induced SE in all animals within 30-60 min, and there was no recurrence of SE after a 24-h infusion. Kainate-induced SE was similarly blocked by 10 or 30 mg/kg NS1209 (i.v.). To compare the efficacy and neuroprotective effects of NS1209 with those of diazepam (DZP), one group of rats received DZP (20mg/kg, i.p. and another dose of 10 mg/kg 6h later). By using the administration protocols described, the anticonvulsant effect of NS1209 was faster and more complete than that of DZP. NS1209 treatment (20 mg/kg bolus followed by 5mg/kg h infusion for 24 h) was neuroprotective against SE-induced hippocampal neurodegeneration, but to a lesser extent than DZP. These findings suggest that AMPA receptor blockade by NS1209 provides a novel and mechanistically complimentary addition to the armamentarium of drugs used to treat SE in humans.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute, University of Kuopio, PO Box 1627, FIN-70 211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
38
|
Transcriptome alterations in schizophrenia: disturbing the functional architecture of the dorsolateral prefrontal cortex. PROGRESS IN BRAIN RESEARCH 2007; 158:141-52. [PMID: 17027695 DOI: 10.1016/s0079-6123(06)58007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The availability of methods for quantifying tissue concentrations of messenger RNAs in the postmortem of the human brain has provided a number of new findings in schizophrenia. However, understanding how these findings actually relate to the disease process of schizophrenia requires knowledge both of the factors that might give rise to such changes in gene expression and of the impact of these changes on the function of the affected neural circuits. Consequently, this chapter provides a review of the potential causes and consequences of some of the schizophrenia-related transcriptome changes in the dorsolateral prefrontal cortex, a brain region implicated in the pathophysiology of certain core cognitive deficits in this illness.
Collapse
|
39
|
Waldvogel H, Baer K, Gai WP, Gilbert R, Rees M, Mohler H, Faull R. Differential localization of GABAA receptor subunits within the substantia nigra of the human brain: An immunohistochemical study. J Comp Neurol 2007; 506:912-29. [DOI: 10.1002/cne.21573] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Waldvogel HJ, Curtis MA, Baer K, Rees MI, Faull RLM. Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc 2006; 1:2719-32. [PMID: 17406528 DOI: 10.1038/nprot.2006.354] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the challenges for modern neuroscience is to understand the basis of coordinated neuronal function and networking in the human brain. Some of these questions can be addressed using low- and high-resolution imaging techniques on post-mortem human brain tissue. We have established a versatile protocol for fixation of post-mortem adult human brain tissue, storage of the tissue in a human brain bank, and immunohistochemical analysis in order to understand human brain functions in normal controls and in neuropathological conditions. The brains are fixed by perfusion through the internal carotid and basilar arteries to enhance the penetration of fixative throughout the brain, then blocked, postfixed, cryoprotected, snap-frozen and stored at -80 degrees C. Sections are processed for immunohistochemical single- or double-label staining and conventional-, electron- or confocal laser scanning-microscopy analysis. The results gained using this tissue and protocol are vital for determining the localization of neurochemicals throughout the human brain and to document the changes that occur in neurological diseases.
Collapse
Affiliation(s)
- Henry J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, Baldy-Moulinier M, Bockaert J, Lerner-Natoli M. Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis 2005; 19:436-50. [PMID: 16023586 DOI: 10.1016/j.nbd.2005.01.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 12/18/2004] [Accepted: 01/20/2005] [Indexed: 10/25/2022] Open
Abstract
An increased neurogenesis is reported in animal models of mesial temporal lobe epilepsy (MTLE) but the fate of newborn cells is unknown. Here, we attempted to demonstrate neurogenesis in adult epileptic tissue obtained after hippocampectomy. MTLE hippocampi showed increased expression of division markers and of Musashi-1, a marker of neural progenitors, compared to control hippocampi. Large quantities of Musashi-1+ cells were obvious in the subgranular layer and the subventricular zone, both known neurogenic areas, and in the fissura hippocampi. Musashi-1 was expressed by small cells that were mainly vimentin+ or nestin+, rarely Dcx+ or PSA-NCAM+ and negative for markers of mature neurons or astrocytes. Some of them are present in the granular layer, the hilus, and CA1 area resembling the ectopic positions described in rodents. These findings demonstrate that neural progenitors proliferate in chronic epilepsy and suggest that the fissura hippocampi behaves like another neurogenic area.
Collapse
Affiliation(s)
- Arielle Crespel
- Institut de Génomique Fonctionnelle, CNRS UMR 5023-INSERM U661, UM1-UM2, 141 rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (gamma-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
44
|
Volk DW, Lewis DA. GABA Targets for the Treatment of Cognitive Dysfunction in Schizophrenia. Curr Neuropharmacol 2005; 3:45-62. [PMID: 22545031 DOI: 10.2174/1570159052773396] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive deficits, including impairments in working memory that have been linked to the prefrontal cortex, are among the most debilitating and difficult to treat features of schizophrenia. Consequently, the identification of potential targets informed by the pathophysiology of the illness is needed to develop novel pharmacological approaches for ameliorating these deficits. Postmortem studies of the prefrontal cortex in schizophrenia subjects have revealed disturbances restricted to a subpopulation of inhibitory neurons that includes chandelier neurons, whose axon terminals synapse on the axon initial segment of pyramidal neurons. Chandelier neurons play an important role in synchronizing pyramidal neuron activity and appear to be a critical component of the prefrontal cortical circuitry that subserves working memory function. Therefore, in this paper we review evidence suggesting that drugs which selectively enhance chandelier neuron-mediated inhibition of prefrontal pyramidal neurons may improve working memory dysfunction in schizophrenia. Potential novel targets for such agents include GABA(A) receptors that contain the α(2) subunit. In addition, we discuss potential complementary mechanisms for enhancing inhibitory input to pyramidal cell bodies, including drugs with activity at the CB1 receptor of the endocannabinoid system. The development of pathophysiologically-based treatments that selectively remediate disturbances in specific neural circuits underlying working memory may provide an effective approach to improving cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- David W Volk
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, PA 15260
| | | |
Collapse
|
45
|
Rissman RA, Bennett DA, Armstrong DM. Subregional analysis of GABAA receptor subunit mRNAs in the hippocampus of older persons with and without cognitive impairment. J Chem Neuroanat 2004; 28:17-25. [PMID: 15363487 DOI: 10.1016/j.jchemneu.2004.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/11/2004] [Accepted: 05/12/2004] [Indexed: 11/15/2022]
Abstract
We employed in situ hybridization and quantitative densitometry techniques to examine hippocampal mRNA expression of GABA(A) receptor subunits alpha1 and alpha5 in human subjects with progressing cognitive impairment. Included in this study were 17 participants of the Religious Order Study (ROS), who were categorized into three groups based upon degree of cognitive impairment: no cognitive impairment (n = 6); moderate cognitive impairment (n = 5); and probable Alzheimer's disease (AD) (n = 6). While the levels of each specific subunit mRNA were relatively homogeneously distributed throughout the five hippocampal subregions analyzed (CA1-4, and the granule cell layer of the dentate gyrus), mRNA expression of the alpha1 receptor subunit was found to be 20% reduced in the moderate cognitive impairment group as compared to the no cognitive impairment group. In addition, alpha1 mRNA expression was 25% reduced in the probable Alzheimer's disease group compared to the group with no cognitive impairment. Similarly, alpha5 subunit mRNA was reduced 32% between no cognitive impairment and moderate cognitive impairment groups, and 35% between no cognitive impairment and probable Alzheimer's disease groups. No significant reductions were found between moderate cognitive impairment and probable Alzheimer's disease groups for either subunit. Collectively, our data provide evidence for modest reductions in GABA(A) receptor subunit mRNAs, and suggest these changes occur very early in the progression of Alzheimer's disease cognitive impairment.
Collapse
Affiliation(s)
- Robert A Rissman
- Department of Neurobiology and Anatomy, Graduate Program in Neuroscience, MCP Hahnemann University School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
46
|
Lewis DA, Cruz D, Eggan S, Erickson S. Postnatal development of prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction in schizophrenia. Ann N Y Acad Sci 2004; 1021:64-76. [PMID: 15251876 DOI: 10.1196/annals.1308.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The typical appearance of the clinical features of schizophrenia during late adolescence or early adulthood suggests that adolescence-related neurodevelopmental events may contribute to the pathophysiology of this disorder. Here the role that GABA-mediated inhibition in the dorsal lateral prefrontal cortex (DLPFC) plays in regulating working memory, a core cognitive process that matures late and that is disturbed in schizophrenia, is reviewed. Recent studies are summarized that demonstrate (1) that certain pre- and postsynaptic markers of GABA neurotransmission in the monkey DLPFC exhibit striking changes during adolescence, and (2) that these same markers are markedly altered in the DLPFC of subjects with schizophrenia. The implications of these findings for treatment and prevention strategies are discussed.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, W1651 BST, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
47
|
Lewis DA, Volk DW, Hashimoto T. Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl) 2004; 174:143-50. [PMID: 15205885 DOI: 10.1007/s00213-003-1673-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 09/30/2003] [Indexed: 12/24/2022]
Abstract
RATIONALE Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear to reflect a disturbance in executive control, the processes that facilitate complex information processing and behavior and that include context representation and maintenance, functions dependent on the dorsolateral prefrontal cortex (DLPFC). Studies in non-human primates indicate that normal working memory function depends upon appropriate GABA neurotransmission in the DLPFC, and alterations in markers of GABA neurotransmission are well documented in the DLPFC of subjects with schizophrenia. OBJECTIVES Thus, the purpose of this paper is to review the nature of the altered GABA neurotransmission in the DLPFC in schizophrenia, and to consider how these findings might inform the search for new treatments for cognitive dysfunction in this illness. RESULTS AND CONCLUSIONS Postmortem studies suggest that markers of reduced GABA neurotransmission in schizophrenia may be selective for, or at least particularly prominent in, the subclass of GABA neurons, chandelier cells, that provide inhibitory input to the axon initial segment of populations of pyramidal neurons. Given the critical role that chandelier cells play in synchronizing the activity of pyramidal neurons, the pharmacological amelioration of this deficit may be particularly effective in normalizing the neural network activity required for working memory function. Because GABA(A) receptors containing the a(2) subunit are selectively localized to the axon initial segment of pyramidal cells, and appear to be markedly up-regulated in schizophrenia, treatment with novel benzodiazepine-like agents with selective activity at GABA(A) receptors containing the a(2) subunit may be effective adjuvant agents for improving working memory function in schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, W1651 BST, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
48
|
Lin SM, Frevert CW, Kajikawa O, Wurfel MM, Ballman K, Mongovin S, Wong VA, Selk A, Martin TR. Differential regulation of membrane CD14 expression and endotoxin-tolerance in alveolar macrophages. Am J Respir Cell Mol Biol 2004; 31:162-70. [PMID: 15059784 PMCID: PMC4096031 DOI: 10.1165/rcmb.2003-0307oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CD14 is important in the clearance of bacterial pathogens from lungs. However, the mechanisms that regulate the expression of membrane CD14 (mCD14) on alveolar macrophages (AM) have not been studied in detail. This study examines the regulation of mCD14 on AM exposed to Escherichia coli in vivo and in vitro, and explores the consequences of changes in mCD14 expression. The expression of mCD14 was decreased on AM exposed to E. coli in vivo and AM incubated with lipopolysaccharide (LPS) or E. coli in vitro. Polymyxin B abolished LPS effects, but only partially blocked the effects of E. coli. Blockade of extracellular signal-regulated kinase pathways attenuated LPS and E. coli-induced decrease in mCD14 expression. Inhibition of proteases abrogated the LPS-induced decrease in mCD14 expression on AM and the release of sCD14 into the supernatants, but did not affect the response to E. coli. The production of tumor necrosis factor-alpha in response to a second challenge with Staphylococcus aureus or zymosan was decreased in AM after incubation with E. coli but not LPS. These studies show that distinct mechanisms regulate the expression of mCD14 and the induction of endotoxin tolerance in AM, and suggest that AM function is impaired at sites of bacterial infection.
Collapse
Affiliation(s)
- Shu-Min Lin
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
- Department of Thoracic Medicine II, Chang Gung Memorial Hospital, Taipei, Taiwan Supported in part by NIH grants GM37696, HL30542
| | - Charles W. Frevert
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Osamu Kajikawa
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Mark M. Wurfel
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Kimberly Ballman
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Stephen Mongovin
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Venus A. Wong
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Amy Selk
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Thomas R. Martin
- Pulmonary Research Laboratories at the VA Puget Sound Medical Center, and the Division of Pulmonary/Critical Care Medicine, Department of Medicine; University of Washington School of Medicine, Seattle, WA, U.S.A
| |
Collapse
|
49
|
Jia HG, Yamuy J, Sampogna S, Morales FR, Chase MH. Colocalization of gamma-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study. Brain Res 2004; 992:205-19. [PMID: 14625059 DOI: 10.1016/j.brainres.2003.08.062] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cholinergic and gamma-aminobutyric acid (GABA) mechanisms in the dorsolateral pontomesencephalic tegmentum have been implicated in the control of active (REM) sleep and wakefulness. To determine the relationships between neurons that contain these neurotransmitters in this region of the brainstem in adult cats, combined light and electron microscopic immunocytochemical procedures were employed. Light microscopic analyses revealed that choline acetyltransferase (ChAT) and GABA immunoreactive neurons were distributed throughout the laterodorsal and pedunculopontine tegmental nuclei (LDT and PPT). Surprisingly, approximately 50% of the ChAT immunoreactive neurons in these nuclei also contained GABA. Using electron microscopic pre-embedding immunocytochemistry, GABA immunoreactivity was observed in somas, dendrites and axon terminals in both the LDT and PPT. Most of the GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites. Electron microscopic double-immunolabeling techniques revealed that ChAT and GABA were colocalized in axon terminals in the LDT/PPT. Approximately 30% of the ChAT immunoreactive terminals were also GABA immunoreactive, whereas only 6-8% of the GABA immunoreactive terminals were ChAT immunoreactive. Most of the ChAT/GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites; however, ChAT/GABA immunoreactive terminals were also observed that contacted ChAT immunoreactive dendrites. With respect to ChAT immunoreactive postsynaptic profiles, approximately 40% of the somas and 50% of the dendrites received synaptic contact from GABA immunoreactive terminals in both the LDT and PPT. These findings (a) indicate that there are fundamental interactions between cholinergic and GABAergic neurons within the LDT/PPT that play an important role in the control of active sleep and wakefulness and (b) provide an anatomical basis for the intriguing possibility that a mechanism of acetylcholine and GABA co-release from the terminals of LDT/PPT neurons is involved in the regulation of behavioral states.
Collapse
Affiliation(s)
- Hong-Ge Jia
- Department of Physiology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Cruz DA, Eggan SM, Lewis DA. Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex. J Comp Neurol 2003; 465:385-400. [PMID: 12966563 DOI: 10.1002/cne.10833] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The protracted postnatal maturation of the primate prefrontal cortex (PFC) is associated with substantial changes in the number of excitatory synapses on pyramidal neurons, whereas the total number of inhibitory synapses appears to remain constant. In this study, we sought to determine whether the developmental changes in excitatory input to pyramidal cells are paralleled by changes in functional markers of inhibitory inputs to pyramidal neurons. The chandelier subclass of gamma-aminobutyric acid (GABA) neurons provides potent inhibitory control over pyramidal neurons by virtue of their axon terminals, which form distinct vertical structures (termed cartridges) that synapse at the axon initial segment (AIS) of pyramidal neurons. Thus, we examined the relative densities, laminar distributions, and lengths of presynaptic chandelier axon cartridges immunoreactive for the GABA membrane transporter 1 (GAT1) or the calcium-binding protein parvalbumin (PV) and of postsynaptic pyramidal neuron AIS immunoreactive for the GABA(A) receptor alpha(2) subunit (GABA(A) alpha(2)) in PFC area 46 of 38 rhesus monkeys (Macaca mulatta). From birth through 2 years of age, the relative densities and laminar distributions of these three markers exhibited different trajectories, suggesting developmental shifts in the weighting of at least some factors that determine inhibition at the AIS. In contrast, from 2 to 4 years of age, all three markers exhibited similar declines in density and length that paralleled the periadolescent pruning of excitatory synapses to pyramidal neurons. Across development, the predominant laminar location of PV-labeled cartridges and GABA(A) alpha(2)-immunoreactive AIS shifted from the middle to superficial layers, whereas the laminar distribution of GAT1-positive cartridges did not change. Together, these findings suggest that the maturation of inhibitory inputs to the AIS of PFC pyramidal neurons is a complex process that may differentially affect the firing patterns of subpopulations of pyramidal neurons at specific postnatal time points.
Collapse
Affiliation(s)
- Dianne A Cruz
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|