1
|
Warit S, Meesawat S, Cheawchanlertfa P, Makhao N, Srilohasin P, Kaewparuehaschai M, Noradechanon K, Pomcoke A, Kemthong T, Prammananan T, Kanitpun R, Palaga T, Malaivijitnond S, Chaiprasert A. The new gamma interferon (IFN-γ) algorithm for tuberculosis diagnosis in cynomolgus macaques. PLoS One 2024; 19:e0302349. [PMID: 39680542 DOI: 10.1371/journal.pone.0302349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Tuberculosis (TB) is the first infectious disease to be screened-out from specified pathogen-free cynomolgus macaques (Macaca fascicularis; Mf) using in human pharmaceutical testing. Being in either latent or active stage after exposure to the Mycobacterium tuberculosis complex (MTBC), the monkey gamma-interferon release assay (mIGRA) was previously introduced for early TB detection. However, a notable incidence of indeterminate results was observed. In this study, we compared two positive mitogen references, phytohemagglutinin (PHA) that is used in the QuantiFERON-TB Gold Plus kit (QFT-PHA) and a combination of Concanavalin A and Pokeweed mitogen (ConA+PWM), in a cohort of 316 MTBC-exposed Mf. Following a 29-month follow-up of 100 selected animals, we established a new mIGRA interpretation algorithm that demonstrated a significant shift in the negative and indeterminate cases regardless of whether the QFT-PHA or ConA+PWM was used as a mitogen. That is, if the ODNIL value was ≤0.18, ODMIT-NIL > ODNIL, and the ODTB1/2-NIL were ≥0.05 and ≥25% of individual ODNIL, the mIGRA result was interpreted as 'positive'. If the ODNIL value was ≤0.18, ODMIT-NIL > ODNIL, and the ODTB-NIL was <0.05, the mIGRA result was interpreted as 'negative'. If the ODNIL value was >0.18 or the OD of mitogen references [OD(QFT-PHA) and OD(ConA+PWM)] were ≤0.18, the mIGRA result was interpreted as 'indeterminate'. As a result, negative cases increased by 10-50%, indeterminate cases decreased by 40-80%, and the number of TB-positive cases remained unchanged. Our findings highlight the critical role of mitogens as positive controls in mIGRA interpretation. This study provides the mIGRA value for the TB screening of cynomolgus macaques that enables the identification of true positive and suspicious TB cases for quarantine programs.
Collapse
Affiliation(s)
- Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Suthirote Meesawat
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
| | | | - Nampueng Makhao
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Srilohasin
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kirana Noradechanon
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Areeya Pomcoke
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
| | - Therdsak Prammananan
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Reka Kanitpun
- National Institute of Animal Health (NIAH), Kaset Klang, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Mohd-Ridwan AR, Md-Zain BM, Najmuddin MF, Othman N, Haris H, Sariyati NH, Matsuda I, Yee BS, Lee Y, Lye SF, Abdul-Latiff MAB. Unveiling the Gut Microbiome of Malaysia's Colobine Monkeys : Insights into Health and Evolution. J Med Primatol 2024; 53:e12742. [PMID: 39462819 DOI: 10.1111/jmp.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Colobines are primarily leaf-eating primates, depend on microbiota of gastrointestinal tracts for food digestion. However, the gut microbiota of Malaysia's colobines specifically langurs remains unstudied. AIMS Hence, we aim to analyze the fecal microbiomes of Malaysia's langurs using Presbytis femoralis, Presbytis robinsoni, Trachypithecus obscurus, and Trachypithecus cristatus from various landscapes as models. MATERIAL AND METHODS We collected samples from all four species across several areas in Peninsular Malaysia and performed 16S ribosomal RNA gene amplicon sequencing using the Illumina sequencing platform. RESULTS Presbytis femoralis exhibited the highest bacterial diversity, followed by T. obscurus, T. cristatus, P. robinsoni and the lowest, P. siamensis. Over 11 million operational taxonomic units (OTUs) were identified across Malaysia's langurs spanning 26 phyla, 180 families, and 329 genera of microbes. The OTUs were dominated by Firmicutes, Proteobacteria, and Bacteroidetes. There are 11 genera of pathogenic bacteria were identified across all host species. Nine pathogenic bacterial genera inhabit both T. obscurus, indicating poor health due to low bacterial diversity and heightened pathogenicity. In contrast, P. robinsoni with the fewest pathogenic species is deemed the healthiest among Malaysia's langurs. DISCUSSION This study demonstrates that alterations in diet, behavior, and habitat affect bacterial diversity in Malaysia's langurs' gut microbiota. Even though this is the first comprehensive analysis of langur microbiomes in Malaysia, it is important to note the limitations regarding the number of samples, populations sampled, and the geographical origins and landscapes of these populations. Our results suggest that Malaysia's langurs may harbor pathogenic bacteria, potentially posing a risk of transmission to humans. CONCLUSION This highlights the critical need for the conservation and management of Malaysia's langurs, particularly considering their interactions with humans. This data can serve as a foundation for authorities to inform the public about the origins and significance of animal health and the management of zoonotic diseases.
Collapse
Affiliation(s)
- Abd Rahman Mohd-Ridwan
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faudzir Najmuddin
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Hidayah Haris
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, Kyoto, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | | | | | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
3
|
Burns M. Review of Environmental and Health Factors Impacting Captive Common Marmoset Welfare in the Biomedical Research Setting. Vet Sci 2023; 10:568. [PMID: 37756090 PMCID: PMC10535419 DOI: 10.3390/vetsci10090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
As a small-bodied neotropical nonhuman primate species, common marmosets have unique requirements for adequate husbandry and veterinary care to ensure proper maintenance and to promote good animal welfare in a biomedical research setting. Environmental conditions, as well as medical and research-related manipulations, can impact marmoset welfare. Research focus areas, including basic neuroscience, transgenics, and aging, involve additional implications for marmoset welfare. This manuscript provides a comprehensive review of factors that should be considered and mitigated as needed by clinical and research staff working with marmosets in biomedical research facilities to optimize the welfare of captive marmosets.
Collapse
Affiliation(s)
- Monika Burns
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Rojas-Sánchez E, Jiménez-Soto M, Barquero-Calvo E, Duarte-Martínez F, Mollenkopf DF, Wittum TE, Muñoz-Vargas L. Prevalence Estimation, Antimicrobial Susceptibility, and Serotyping of Salmonella enterica Recovered from New World Non-Human Primates ( Platyrrhini), Feed, and Environmental Surfaces from Wildlife Centers in Costa Rica. Antibiotics (Basel) 2023; 12:antibiotics12050844. [PMID: 37237747 DOI: 10.3390/antibiotics12050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Concern about zoonoses and wildlife has increased. Few studies described the role of wild mammals and environments in the epidemiology of Salmonella. Antimicrobial resistance is a growing problem associated with Salmonella that threatens global health, food security, the economy, and development in the 21st century. The aim of this study is to estimate the prevalence and identify antibiotic susceptibility profiles and serotypes of non-typhoidal Salmonella enterica recovered from non-human primate feces, feed offered, and surfaces in wildlife centers in Costa Rica. A total of 180 fecal samples, 133 environmental, and 43 feed samples from 10 wildlife centers were evaluated. We recovered Salmonella from 13.9% of feces samples, 11.3% of environmental, and 2.3% of feed samples. Non-susceptibility profiles included six isolates from feces (14.6%): four non-susceptible isolates (9.8%) to ciprofloxacin, one (2.4%) to nitrofurantoin, and one to both ciprofloxacin and nitrofurantoin (2.4%). Regarding the environmental samples, one profile was non-susceptible to ciprofloxacin (2.4%) and two to nitrofurantoin (4.8%). The serotypes identified included Typhimurium/I4,[5],12:i:-, S. Braenderup/Ohio, S. Newport, S. Anatum/Saintpaul, and S. Westhampton. The epidemiological surveillance of Salmonella and antimicrobial resistance can serve in the creation of strategies for the prevention of the disease and its dissemination throughout the One Health approach.
Collapse
Affiliation(s)
- Ernesto Rojas-Sánchez
- Laboratorio de Salud Pública e Inocuidad de Alimentos, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
- Hospital de Especies Menores y Silvestres, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Mauricio Jiménez-Soto
- Hospital de Especies Menores y Silvestres, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Elias Barquero-Calvo
- Laboratorio de Bacteriología, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Francisco Duarte-Martínez
- Laboratorio de Genómica y Biología Molecular, Centro Nacional de Referencia de Inocuidad Microbiológica de Alimentos, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Cartago 30301, Costa Rica
| | - Dixie F Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Thomas E Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Lohendy Muñoz-Vargas
- Laboratorio de Salud Pública e Inocuidad de Alimentos, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
5
|
da Silva JG, Culuchi G, Pestana CP, da Silva Junior HC, Saraiva FB, Kugelmeier T, Rouede D, Pinto ACA, Pissinati T, D'Alincourt Assef AP, Rocha-de-Souza CM, E Oliveira TRT, Senna JPM. Staphylococcus nasal colonization in three species of non-human primates. Braz J Microbiol 2023:10.1007/s42770-023-00959-7. [PMID: 37016049 PMCID: PMC10072810 DOI: 10.1007/s42770-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Bacterial nasal colonization is common in many mammals and Staphylococcus represents the main pathogen isolated. Staphylococcus nasal carriage in humans constitutes a risk factor for Staphylococcus infections pointing out the need for animal experimentation for nasal colonization studies, especially for vaccine development. A limitation in addressing this hypothesis has been a lack of appropriate animal model. Murine models do not mimic human nasal colonization studies. Non-human primates (NHP) remain the best classical models for nasal colonization studies. In this study, we analyzed nasal colonization between two species of Old World monkeys (cynomolgus and rhesus) and a New World monkey (squirrel monkey) from breeding colony at Fiocruz (Brazil). Sixty male and female NHP with the average age of 1-21 years old, comprising twenty animals of each species, were analyzed. Nine different Staphylococcus species (S. aureus, S. cohnii, S. saprophyticus, S. haemolyticus, S. xylosus, S. warneri, S. nepalensis, S. simiae, and S. kloosi) were identified by MALDI-TOF and 16S rRNA gene sequence analyses. Antibiotic resistance was not detected among the isolated bacterial population. S. aureus was the main isolate (19 strains), present in all species, predominant in cynomolgus monkeys (9/20) and squirrel monkeys (7/20). spa typing was used to examine the clonal structure and genetic profile of Staphylococcus aureus isolates. Eight (8) spa types were identified among the S. aureus strains. A major cluster was identified, corresponding to a new spa type t20455, and no spa types found in this study were seen before in Brazil.
Collapse
Affiliation(s)
- Juliana Georg da Silva
- Instituto de Tecnologia em Imunobiológicos-Bio-Manguinhos/Fiocruz, Avenida Brasil 4365, Pavilhão Rocha Lima, sala 412, Rio de Janeiro, RJ, CEP21040-900, Brazil
| | - Glenda Culuchi
- Instituto de Tecnologia em Imunobiológicos-Bio-Manguinhos/Fiocruz, Avenida Brasil 4365, Pavilhão Rocha Lima, sala 412, Rio de Janeiro, RJ, CEP21040-900, Brazil
| | - Cristiane Pinheiro Pestana
- Instituto de Tecnologia em Imunobiológicos-Bio-Manguinhos/Fiocruz, Avenida Brasil 4365, Pavilhão Rocha Lima, sala 412, Rio de Janeiro, RJ, CEP21040-900, Brazil
| | - Haroldo Cid da Silva Junior
- Instituto de Tecnologia em Imunobiológicos-Bio-Manguinhos/Fiocruz, Avenida Brasil 4365, Pavilhão Rocha Lima, sala 412, Rio de Janeiro, RJ, CEP21040-900, Brazil
| | - Felipe Betoni Saraiva
- Instituto de Tecnologia em Imunobiológicos-Bio-Manguinhos/Fiocruz, Avenida Brasil 4365, Pavilhão Rocha Lima, sala 412, Rio de Janeiro, RJ, CEP21040-900, Brazil
| | - Tatiana Kugelmeier
- Laboratório de Pesquisa em Infecção Hospitalar do Instituto Oswaldo Cruz (LAPIH/IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Daniel Rouede
- Laboratório de Pesquisa em Infecção Hospitalar do Instituto Oswaldo Cruz (LAPIH/IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Ana Cristina Araújo Pinto
- Laboratório de Pesquisa em Infecção Hospitalar do Instituto Oswaldo Cruz (LAPIH/IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Thalita Pissinati
- Laboratório de Pesquisa em Infecção Hospitalar do Instituto Oswaldo Cruz (LAPIH/IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula D'Alincourt Assef
- Serviço de Criação de Primatas não Humanos do Instituto de Ciência e Tecnologia em Biomodelos (ICTB/Fiocruz), Rio de Janeiro, Brazil
| | - Claudio Marcos Rocha-de-Souza
- Serviço de Criação de Primatas não Humanos do Instituto de Ciência e Tecnologia em Biomodelos (ICTB/Fiocruz), Rio de Janeiro, Brazil
| | | | - José Procópio M Senna
- Instituto de Tecnologia em Imunobiológicos-Bio-Manguinhos/Fiocruz, Avenida Brasil 4365, Pavilhão Rocha Lima, sala 412, Rio de Janeiro, RJ, CEP21040-900, Brazil.
| |
Collapse
|
6
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
7
|
Warne RK, Moloney GK, Chaber AL. Is biomedical research demand driving a monkey business? One Health 2023. [DOI: 10.1016/j.onehlt.2023.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
8
|
Salian-Mehta S, Poling J, Birkebak J, Rensing S, Carosino C, Santos R, West W, Adams K, Orsted K, Fillman-Holliday D, Burns M. Non-Human Primate Husbandry and Impact on Non-Human Primates Health: Outcomes From an IQ DruSafe/3RS Industrial Benchmark Survey. Int J Toxicol 2023; 42:111-121. [PMID: 36543758 DOI: 10.1177/10915818221146523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The presence of health issues (diarrhea, poor body condition) in non-human primates can impact animal welfare, confound toxicity study data, and lead to animal exclusion from studies. A working group cosponsored by DruSafe and 3Rs Translational and Predictive Sciences Leadership Groups of the IQ Consortium conducted a survey to benchmark quarantine, pre-study screening, husbandry, and veterinary care practices and their impact on NHP health. Nineteen companies participated in the survey providing separate responses for studies conducted in-house and at Contract Research Organizations from 3 regions (North America (NA), Europe and Asia) for an aggregate of 33 responses. A majority of responding companies conducted studies at North America CROs (39%) or in-house (36%) using primarily Chinese (33%) or Cambodian (27%) and to a lesser extent Vietnam (18%) or Mauritian (15%) origin NHPs. Forty-Five percent of responses had pre-study health issues (fecal abnormalities, etc.) on ≥ 1 studies with the highest incidence observed in Vietnam origin NHPs (80%). The survey suggested variable pre-screening and quarantine practices across facilities. Husbandry practices including behavioral assessments, environmental enrichment and consistent diets were associated with a lower incidence of health issues. The survey also benchmarked approaches used to diagnose and manage abnormal feces in NHPs and has provided strategies to minimize impact on NHP health. The survey highlighted opportunities for harmonizing screening criteria across industry and for improving tracking and sharing of health screening results, leading to further refinement of NHP veterinary care practices, higher quality studies, and reduced NHP use.
Collapse
Affiliation(s)
| | - Jerry Poling
- 1539Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Susanne Rensing
- 385232AbbVie Deutschland GmbH and Co KG, Ludwigshafen, Germany
| | | | | | - Wanda West
- 6893Boehringer Ingelheim, Ridgefield, CT, USA
| | - Khary Adams
- Incyte Research Institute, Wilmington, DE, USA
| | | | | | - Monika Burns
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
9
|
Andrade MCR, Lemos BRP, Silva LM, Pecotte JK. Eliminating Potential Effects of Other Infections During Selection of Nonhuman Primates for COVID-19 Research. Comp Med 2023; 73:45-57. [PMID: 36744555 PMCID: PMC9948906 DOI: 10.30802/aalas-cm-21-000086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The study of nonhuman primates (NHP) can provide significant insights into our understanding numerous infectious agents. The etiological agent of COVID-19, SARS-CoV-2 virus, first emerged in 2019 and has so far been responsible for the deaths of over 4 million people globally. In the frenzied search to understand its pathogenesis and immunology and to find measures for prevention and control of this pandemic disease, NHP, particularly macaques, are the preferred model because they manifest similar clinical signs and immunologic features as humans. However, possible latent, subclinical, and opportunistic infections not previously detected in animals participating in a study may obscure experimental results and confound data interpretations in testing treatments and vaccine studies for COVID-19. Certain pathophysiologic changes that occur with SARS-CoV-2 virus infection are similar to those of simian pathogens. The current review discusses numerous coinfections of COVID-19 with other diseases and describes possible outcomes and mechanisms in COVID-19 studies of NHP that have coinfections. Due to the urgency triggered by the pandemic, screening that is more rigorous than usual is necessary to limit background noise and maximize the reliability of data from NHP COVID-19 studies. Screening for influenza virus, selected respiratory bacteria, and regional endemic pathogens such as vector-borne agents, together with the animal's individual exposure history, should be the main considerations in selecting a NHP for a COVID-19 study. In addition, because NHP are susceptible to the SARS-CoV-2 virus, management and surveillance measures should be established to prevent transmission to healthy animals from infected colony animals and husbandry staff. This review presents compiled data on the use of NHP in COVID-19 studies, emphasizing the need to create the most reliable NHP model for those studies by extensive screening for other pathogens.
Collapse
Key Words
- absl, animal biosafety level
- ace-2, angiotensin-converting enzyme
- ards, acute respiratory distress syndrome
- cnprc, california national primate research center
- e, envelope
- esr, erythrocyte sedimentation rate
- hav, hepatitis a virus
- hbv, hepatitis b virus
- hgf hepatocyte growth factor
- htlv, human t-cell lymphotropic virus
- ifn, interferon
- il, interleukin
- ip, inducible protein
- m, matrix
- mcp, monocyte chemotactic proteins
- mcsf, macrophage colony-stimulating factor
- mip, macrophage inflammatory protein
- n, nucleocapsid
- nsp, non-structural proteins
- rdrp, rna-dependent rna polymerase
- s, spike
- sars-cov-2, severe acute respiratory syndrome-coronavirus-2
- sfv, simian foamy virus
- sop, standard operating procedures
- srv/d, simian retrovirus type d
- stlv, simian t-lymphotropic virus
- tb, tuberculosis
- tgf, transforming growth factor
- tmprss2 transmembrane serine protease 2
Collapse
Affiliation(s)
- Marcia C R Andrade
- Institute of Science and Technology on Biomodels, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;,
| | - Bárbara R P Lemos
- Institute of Science and Technology on Biomodels, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa M Silva
- Institute of Science and Technology on Biomodels, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; University of Grande Rio, Duque de Caxias, Brazil
| | | |
Collapse
|
10
|
Pulmonary Granuloma Is Not Always the Tuberculosis Hallmark: Pathology of Tuberculosis Stages in New World and Old World Monkeys Naturally Infected with the Mycobacterium tuberculosis Complex. J Comp Pathol 2022; 199:55-74. [DOI: 10.1016/j.jcpa.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
|
11
|
Jasim AM, Al‐Raweshidy H. Towards a cooperative hierarchical healthcare architecture using the HMAN offloading scenarios and SRT calculation algorithm. IET NETWORKS 2022. [DOI: 10.1049/ntw2.12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ahmed M. Jasim
- College of Engineering, Design and Physical Sciences Brunel University London Uxbridge London UK
- Department of Computer Engineering University of Diyala Baqubah Iraq
| | - Hamed Al‐Raweshidy
- College of Engineering, Design and Physical Sciences Brunel University London Uxbridge London UK
| |
Collapse
|
12
|
Does behaviour predict weight gain during adulthood in captive group-living rhesus macaques? Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zijlmans DGM, Maaskant A, Louwerse AL, Sterck EHM, Langermans JAM. Overweight Management through Mild Caloric Restriction in Multigenerational Long-Tailed Macaque Breeding Groups. Vet Sci 2022; 9:262. [PMID: 35737314 PMCID: PMC9230116 DOI: 10.3390/vetsci9060262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Caloric restriction (CR) is an effective method to reduce overweight in captive non-human primates (NHPs). CR has been applied to individually- and pair-housed NHPs, but whether applying CR can be effective and safe in group-housed NHPs has not yet been assessed. This study investigates the effect of mild (20%) CR on adult overweight and biochemical parameters, immature growth, veterinary consultations, and reproductive success in multigenerational long-tailed macaque (Macaca fascicularis) breeding groups. Data were derived from anthropometric measurements and blood samples during yearly health checks, complemented with retrospective data on veterinary consultations and reproductive success. Adult body measures decreased after CR, with heavier individuals and females losing more weight compared to leaner individuals and males. CR lowered cholesterol levels in adults but had no overall effect on other biochemical parameters. Yet, biochemical parameters of individuals with high baseline values were reduced more compared to individuals with low baseline values. Immature growth, veterinary consultations and reproductive success were not influenced by CR. Thus, CR targeted the right individuals, i.e., overweight adults, and had no adverse effects on the variables examined in this study. This implies that mild CR can be a valuable overweight management strategy in group-housed NHPs.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Annet L. Louwerse
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
14
|
Chamanza R, Naylor SW, Gregori M, Boyle M, Pereira Bacares ME, Drevon-Gaillot E, Romeike A, Courtney C, Johnson K, Turner J, Swierzawski N, Sharma AK. The Influence of Geographical Origin, Age, Sex, and Animal Husbandry on the Spontaneous Histopathology of Laboratory Cynomolgus Macaques ( Macaca Fascicularis): A Contemporary Global and Multisite Review of Historical Control Data. Toxicol Pathol 2022; 50:607-627. [PMID: 35535738 DOI: 10.1177/01926233221096424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To investigate the influence of geographical origin, age, and sex on toxicologically relevant spontaneous histopathology findings in cynomolgus macaques (Macaca fascicularis), we performed a comparative analysis of historical control data (HCD) from 13 test sites that included 3351 animals (1645 females and 1706 males) sourced from Mauritius, China, Vietnam, and Cambodia, aged from 2 to 9.5 years, and from 446 toxicology studies evaluated between 2016 and 2021. The most common findings were mononuclear infiltrates in the kidney, liver, brain, and lung, which showed highest incidences in Mauritian macaques, and heart, salivary glands, and gastrointestinal tract (GIT), which showed highest incidences of mononuclear infiltrates in mainland Asian macaques. Developmental and degenerative findings were more common in Mauritian macaques, while lymphoid hyperplasia and lung pigment showed higher incidences in Asian macaques. Various sex and age-related differences were also present. Despite origin-related differences, the similarities in the nature and distribution of background lesions indicate that macaques from all geographical regions are suitable for toxicity testing and show comparable lesion spectrum. However, in a toxicity study, it is strongly recommended to use animals from a single geographical origin and to follow published guidelines when using HCD to evaluate and interpretate commonly diagnosed spontaneous lesions.
Collapse
Affiliation(s)
- Ronnie Chamanza
- Janssen Pharmaceutical Companies of Johnson & Johnson, High Wycombe, UK.,Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Molly Boyle
- Labcorp Drug Development, Princeton, New Jersey, USA
| | | | | | | | | | - Kelsey Johnson
- Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Julie Turner
- Labcorp Drug Development, Princeton, New Jersey, USA
| | | | | |
Collapse
|
15
|
Bolon B, Everitt JI. Selected Resources for Pathology Evaluation of Nonhuman Primates in Nonclinical Safety Assessment. Toxicol Pathol 2022; 50:725-732. [PMID: 35481786 DOI: 10.1177/01926233221091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Humans and nonhuman primates (NHPs) share numerous anatomical and physiological characteristics, thereby explaining the importance of NHPs as essential animal models for translational medicine and nonclinical toxicity testing. Researchers, toxicologic pathologists, toxicologists, and regulatory reviewers must be familiar with normal and abnormal NHP biological traits when designing, performing, and interpreting data sets from NHP studies. The current compilation presents a list of essential books, journal articles, and websites that provide context to safety assessment and research scientists working with NHP models. The resources used most frequently by the authors have been briefly annotated to permit readers to rapidly ascertain their applicability to particular research endeavors. The references are aimed primarily for toxicologic pathologists working with cynomolgus and rhesus macaques and common marmosets in efficacy and safety assessment studies.
Collapse
Affiliation(s)
| | - Jeffrey I Everitt
- Duke University, Department of Pathology, Durham, North Carolina, USA
| |
Collapse
|
16
|
Prescott MJ, Leach MC, Truelove MA. Harmonisation of welfare indicators for macaques and marmosets used or bred for research. F1000Res 2022; 11:272. [PMID: 36111214 PMCID: PMC9459172 DOI: 10.12688/f1000research.109380.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 09/28/2023] Open
Abstract
Background: Accurate assessment of the welfare of non-human primates (NHPs) used and bred for scientific purposes is essential for effective implementation of obligations to optimise their well-being, for validation of refinement techniques and novel welfare indicators, and for ensuring the highest quality data is obtained from these animals. Despite the importance of welfare assessment in NHP research, there is little consensus on what should be measured. Greater harmonisation of welfare indicators between facilities would enable greater collaboration and data sharing to address welfare-related questions in the management and use of NHPs. Methods: A Delphi consultation was used to survey attendees of the 2019 NC3Rs Primate Welfare Meeting (73 respondents) to build consensus on which welfare indicators for macaques and marmosets are reliable, valid, and practicable, and how these can be measured. Results: Self-harm behaviour, social enrichment, cage dimensions, body weight, a health monitoring programme, appetite, staff training, and positive reinforcement training were considered valid, reliable, and practicable indicators for macaques (≥70% consensus) within a hypothetical scenario context involving 500 animals. Indicators ranked important for assessing marmoset welfare were body weight, NHP induced and environmentally induced injuries, cage furniture, huddled posture, mortality, blood in excreta, and physical enrichment. Participants working with macaques in infectious disease and breeding identified a greater range of indicators as valid and reliable than did those working in neuroscience and toxicology, where animal-based indicators were considered the most important. The findings for macaques were compared with a previous Delphi consultation, and the expert-defined consensus from the two surveys used to develop a prototype protocol for assessing macaque welfare in research settings. Conclusions: Together the Delphi results and proto-protocol enable those working with research NHPs to more effectively assess the welfare of the animals in their care and to collaborate to advance refinement of NHP management and use.
Collapse
Affiliation(s)
- Mark J. Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, NW1 2BE, UK
| | - Matthew C. Leach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Melissa A. Truelove
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, GA 30329, USA
| |
Collapse
|
17
|
Prescott MJ, Leach MC, Truelove MA. Harmonisation of welfare indicators for macaques and marmosets used or bred for research. F1000Res 2022; 11:272. [PMID: 36111214 PMCID: PMC9459172.2 DOI: 10.12688/f1000research.109380.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Accurate assessment of the welfare of non-human primates (NHPs) used and bred for scientific purposes is essential for effective implementation of obligations to optimise their well-being, for validation of refinement techniques and novel welfare indicators, and for ensuring the highest quality data is obtained from these animals. Despite the importance of welfare assessment in NHP research, there is little consensus on what should be measured. Greater harmonisation of welfare indicators between facilities would enable greater collaboration and data sharing to address welfare-related questions in the management and use of NHPs. Methods: A Delphi consultation was used to survey attendees of the 2019 NC3Rs Primate Welfare Meeting (73 respondents) to build consensus on which welfare indicators for macaques and marmosets are reliable, valid, and practicable, and how these can be measured. Results: Self-harm behaviour, social enrichment, cage dimensions, body weight, a health monitoring programme, appetite, staff training, and positive reinforcement training were considered valid, reliable, and practicable indicators for macaques (≥70% consensus) within a hypothetical scenario context involving 500 animals. Indicators ranked important for assessing marmoset welfare were body weight, NHP induced and environmentally induced injuries, cage furniture, huddled posture, mortality, blood in excreta, and physical enrichment. Participants working with macaques in infectious disease and breeding identified a greater range of indicators as valid and reliable than did those working in neuroscience and toxicology, where animal-based indicators were considered the most important. The findings for macaques were compared with a previous Delphi consultation, and the expert-defined consensus from the two surveys used to develop a prototype protocol for assessing macaque welfare in research settings. Conclusions: Together the Delphi results and proto-protocol enable those working with research NHPs to more effectively assess the welfare of the animals in their care and to collaborate to advance refinement of NHP management and use.
Collapse
Affiliation(s)
- Mark J Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, NW1 2BE, UK
| | - Matthew C Leach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Melissa A Truelove
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, GA 30329, USA
| |
Collapse
|
18
|
Prescott MJ, Leach MC, Truelove MA. Harmonisation of welfare indicators for macaques and marmosets used or bred for research. F1000Res 2022; 11:272. [PMID: 36111214 PMCID: PMC9459172 DOI: 10.12688/f1000research.109380.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 09/28/2023] Open
Abstract
Background: Accurate assessment of the welfare of non-human primates (NHPs) used and bred for scientific purposes is essential for effective implementation of obligations to optimise their well-being, for validation of refinement techniques and novel welfare indicators, and for ensuring the highest quality data is obtained from these animals. Despite the importance of welfare assessment in NHP research, there is little consensus on what should be measured. Greater harmonisation of welfare indicators between facilities would enable greater collaboration and data sharing to address welfare-related questions in the management and use of NHPs. Methods: A Delphi consultation was used to survey attendees of the 2019 NC3Rs Primate Welfare Meeting (73 respondents) to build consensus on which welfare indicators for macaques and marmosets are reliable, valid, and practicable, and how these can be measured. Results: Self-harm behaviour, social enrichment, cage dimensions, body weight, a health monitoring programme, appetite, staff training, and positive reinforcement training were considered valid, reliable, and practicable indicators for macaques (≥70% consensus) within a hypothetical scenario context involving 500 animals. Indicators ranked important for assessing marmoset welfare were body weight, NHP induced and environmentally induced injuries, cage furniture, huddled posture, mortality, blood in excreta, and physical enrichment. Participants working with macaques in infectious disease and breeding identified a greater range of indicators as valid and reliable than did those working in neuroscience and toxicology, where animal-based indicators were considered the most important. The findings for macaques were compared with a previous Delphi consultation, and the expert-defined consensus from the two surveys used to develop a prototype protocol for assessing macaque welfare in research settings. Conclusions: Together the Delphi results and proto-protocol enable those working with research NHPs to more effectively assess the welfare of the animals in their care and to collaborate to advance refinement of NHP management and use.
Collapse
Affiliation(s)
- Mark J. Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, NW1 2BE, UK
| | - Matthew C. Leach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Melissa A. Truelove
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, GA 30329, USA
| |
Collapse
|
19
|
Niemiec T, Skowron K, Świderek W, Kwiecińska-Piróg J, Gryń G, Fiszdon K, Łozicki A, Zglińska K, Kosieradzka I, Koczoń P. Radiant catalytic ionization improves the microbiological status of rodent facilities without affecting the prooxidative status of mice. Lab Anim 2021; 56:225-234. [PMID: 34565205 DOI: 10.1177/00236772211027740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main microbial contaminants of rooms in which laboratory rodents are housed are bacteria and fungi. Restriction of microbial growth to below threshold levels requires the application of various sophisticated antimicrobial techniques that must be effective and safe for the animals. Some of the most commonly used techniques, including chemical disinfection, ventilation, filtration, sterilization and radiation, are not always sufficiently effective. The aim of the current study was to evaluate the efficacy of a modern technique (i.e. radiant catalytic ionization (RCI)) on the microbiological status of an animal care facility, and the health of the mice housed therein. The experiment, conducted over seven days, compared an experimental room with an RCI system permanently turned on with a negative control room. At the completion of the experiment, the number of bacteria in the RCI room air and on its walls was lower than that in the control room (p < 0.01 in both cases). Values of the basic prooxidative parameter, thiobarbituric acid reactive substances concentration, in tissues of mice from the RCI room were within allowed boundaries. Hence, application of an RCI system proved to be an ideal technique to ensure high hygienic standards in animal rooms without any adverse effects on the animals housed therein.
Collapse
Affiliation(s)
- Tomasz Niemiec
- Institute of Animal Sciences, Warsaw University of Life Sciences, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Torun, Poland
| | - Wiesław Świderek
- Institute of Animal Sciences, Warsaw University of Life Sciences, Poland
| | | | - Grzegorz Gryń
- Plant Breeding and Acclimatization Institute - National Research Institute, Poland
| | - Katarzyna Fiszdon
- Institute of Animal Sciences, Warsaw University of Life Sciences, Poland
| | - Andrzej Łozicki
- Institute of Animal Sciences, Warsaw University of Life Sciences, Poland
| | - Klara Zglińska
- Institute of Animal Sciences, Warsaw University of Life Sciences, Poland
| | - Iwona Kosieradzka
- Institute of Animal Sciences, Warsaw University of Life Sciences, Poland
| | - Piotr Koczoń
- Institute of Food Sciences, Warsaw University of Life Sciences, Poland
| |
Collapse
|
20
|
Zijlmans DGM, Maaskant A, Sterck EHM, Langermans JAM. Retrospective Evaluation of a Minor Dietary Change in Non-Diabetic Group-Housed Long-Tailed Macaques ( Macaca fascicularis). Animals (Basel) 2021; 11:2749. [PMID: 34573715 PMCID: PMC8472355 DOI: 10.3390/ani11092749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Macaques in captivity are prone to becoming overweight and obese, which may cause several health problems. A diet that mimics the natural diet of macaques may prevent these problems and improve animal welfare. Adjusting captive diets towards a more natural composition may include increasing fiber content and lowering the glycemic index, i.e., reducing the impact on blood glucose levels. Such a dietary change was implemented in our long-tailed macaque (Macaca fascicularis) breeding colony. The basic diet of monkey chow pellets remained the same, while the supplementary provisioning of bread was replaced by grains and vegetables. This study is a retrospective evaluation, based on electronic health records, that investigated whether this minor dietary change had a beneficial effect on relative adiposity and overweight-related health parameters in 44 non-diabetic, group-housed, female long-tailed macaques. Relative adiposity was measured with a weight-for-height index and blood samples were collected during yearly health checks. Glycemic response and lipid metabolism were evaluated using several biochemical parameters. Relative adiposity and overweight status did not differ after dietary change. Yet, relatively heavy individuals generally lost body weight, while relatively lean individuals gained body weight, leading to a more balanced body weight dynamic. Dietary change did not affect HbA1c and triglyceride levels, while fructosamine and cholesterol levels were significantly reduced. Thus, the minor dietary change had no significant effect on overweight status, but some biochemical parameters related to the risk of diabetes and cardiovascular disease were positively affected. This study emphasizes the importance of evaluating husbandry changes and that critically reviewing husbandry practices can provide valuable insights to improve animal health and welfare.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Unit Animals in Science & Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Unit Animals in Science & Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
21
|
Buchheister S, Bleich A. Health Monitoring of Laboratory Rodent Colonies-Talking about (R)evolution. Animals (Basel) 2021; 11:1410. [PMID: 34069175 PMCID: PMC8155880 DOI: 10.3390/ani11051410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
The health monitoring of laboratory rodents is essential for ensuring animal health and standardization in biomedical research. Progress in housing, gnotobiotic derivation, and hygienic monitoring programs led to enormous improvement of the microbiological quality of laboratory animals. While traditional health monitoring and pathogen detection methods still serve as powerful tools for the diagnostics of common animal diseases, molecular methods develop rapidly and not only improve test sensitivities but also allow high throughput analyses of various sample types. Concurrently, to the progress in pathogen detection and elimination, the research community becomes increasingly aware of the striking influence of microbiome compositions in laboratory animals, affecting disease phenotypes and the scientific value of research data. As repeated re-derivation cycles and strict barrier husbandry of laboratory rodents resulted in a limited diversity of the animals' gut microbiome, future monitoring approaches will have to reform-aiming at enhancing the validity of animal experiments. This review will recapitulate common health monitoring concepts and, moreover, outline strategies and measures on coping with microbiome variation in order to increase reproducibility, replicability and generalizability.
Collapse
Affiliation(s)
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| |
Collapse
|
22
|
Compton SR. PCR and RT-PCR in the Diagnosis of Laboratory Animal Infections and in Health Monitoring. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:458-468. [PMID: 32580820 PMCID: PMC7479767 DOI: 10.30802/aalas-jaalas-20-000008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Molecular diagnostics (PCR and RT-PCR) have become commonplace in laboratory animal research and diagnostics, augmenting or replacing serological and microbiologic methods. This overview will discuss the uses of molecular diagnostics in the diagnosis of pathogenic infections of laboratory animals and in monitoring the microbial status of laboratory animals and their environment. The article will focus primarily on laboratory rodents, although PCR can be used on samples from any laboratory animal species.
Collapse
Affiliation(s)
- Susan R Compton
- Section of Comparative Medicine, Yale University School of Medicine;,
| |
Collapse
|
23
|
Devaux CA, Mediannikov O, Medkour H, Raoult D. Infectious Disease Risk Across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front Public Health 2019; 7:305. [PMID: 31828053 PMCID: PMC6849485 DOI: 10.3389/fpubh.2019.00305] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Most of the human pandemics reported to date can be classified as zoonoses. Among these, there is a long history of infectious diseases that have spread from non-human primates (NHP) to humans. For millennia, indigenous groups that depend on wildlife for their survival were exposed to the risk of NHP pathogens' transmission through animal hunting and wild meat consumption. Usually, exposure is of no consequence or is limited to mild infections. In rare situations, it can be more severe or even become a real public health concern. Since the emergence of acquired immune deficiency syndrome (AIDS), nobody can ignore that an emerging infectious diseases (EID) might spread from NHP into the human population. In large parts of Central Africa and Asia, wildlife remains the primary source of meat and income for millions of people living in rural areas. However, in the past few decades the risk of exposure to an NHP pathogen has taken on a new dimension. Unprecedented breaking down of natural barriers between NHP and humans has increased exposure to health risks for a much larger population, including people living in urban areas. There are several reasons for this: (i) due to road development and massive destruction of ecosystems for agricultural needs, wildlife and humans come into contact more frequently; (ii) due to ecological awareness, many long distance travelers are in search of wildlife discovery, with a particular fascination for African great apes; (iii) due to the attraction for ancient temples and mystical practices, others travelers visit Asian places colonized by NHP. In each case, there is a risk of pathogen transmission through a bite or another route of infection. Beside the individual risk of contracting a pathogen, there is also the possibility of starting a new pandemic. This article reviews the known cases of NHP pathogens' transmission to humans whether they are hunters, travelers, ecotourists, veterinarians, or scientists working on NHP. Although pathogen transmission is supposed to be a rare outcome, Rabies virus, Herpes B virus, Monkeypox virus, Ebola virus, or Yellow fever virus infections are of greater concern and require quick countermeasures from public health professionals.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Hacene Medkour
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|