1
|
Djouonkep LDW, Tamo CT, Simo BE, Issah N, Tchouagtie MN, Selabi NBS, Doench I, Kamdem Tamo A, Xie B, Osorio-Madrazo A. Synthesis by Melt-Polymerization of a Novel Series of Bio-Based and Biodegradable Thiophene-Containing Copolyesters with Promising Gas Barrier and High Thermomechanical Properties. Molecules 2023; 28:1825. [PMID: 36838821 PMCID: PMC9965281 DOI: 10.3390/molecules28041825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Volatile global oil prices, owing to the scarcity of fossil resources, have impacted the cost of producing petrochemicals. Therefore, there is a need to seek novel, renewable chemicals from biomass feedstocks that have comparable properties to petrochemicals. In this study, synthesis, thermal and mechanical properties, and degradability studies of a novel series of sustainable thiophene-based copolyesters like poly(hexylene 2,5-thiophenedicarboxylate-co-bis(2-hydroxyethoxybenzene) (PTBxHy) were conducted via a controlled melt polymerization method. Fourier-transform infrared (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy techniques elucidated the degree of randomness and structural properties of copolyesters. Meanwhile, gel permeation chromatography (GPC) analysis showed a high average molecular weight in the range of 67.4-78.7 × 103 g/mol. The glass transition temperature (Tg) was between 69.4 and 105.5 °C, and the melting point between 173.7 and 194.2 °C. The synthesized polymers outperformed poly(ethylene 2,5-thiophenedicarboxylate) (PETF) and behaved similarly to polyethylene terephthalate. The copolyesters exhibited a high tensile strength of 46.4-70.5 MPa and a toughness of more than 600%, superior to their corresponding homopolyesters. The copolyesters, which ranged from 1,4-bis(2-hydroxyethyl)benzene thiophenedicarboxylate (TBB)-enriched to hexylene thiophenedicarboxylate (THH)-enriched, offered significant control over crystallinity, thermal and mechanical properties. Enzymatic hydrolysis of synthetized polymers using porcine pancreatic lipase (PP-L) over a short period resulted in significant weight losses of 9.6, 11.4, 30.2, and 35 wt%, as observed by scanning electron microscopy (SEM), with perforations visible on all surfaces of the films. Thus, thiophene-based polyesters with cyclic aromatic structures similar to terephthalic acid (TPA) show great promise as PET mimics. At the same time, PP-L appears to be a promising biocatalyst for the degradation of bioplastic waste and its recycling via re-synthesis processes.
Collapse
Affiliation(s)
- Lesly Dasilva Wandji Djouonkep
- Department of Petroleum Engineering, Applied Chemistry in Oil and Gas Fields, Yangtze University, Wuhan 430100, China
- Lost Circulation Control Laboratory, National Engineering Laboratory for Petroleum Drilling Engineering, Yangtze University, Wuhan 430100, China
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Christian Tatchum Tamo
- National Advanced School of Engineering, University of Maroua, Maroua P.O. Box 46, Cameroon
| | - Belle Elda Simo
- Department of Earth Sciences, University of Dschang, Dschang P.O. Box 96, Cameroon
| | - Nasiru Issah
- Department of Biochemistry, Kwame Nkrumah University, Kabwe P.O. Box 80404, Ghana
| | | | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ingo Doench
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Binqiang Xie
- Department of Petroleum Engineering, Applied Chemistry in Oil and Gas Fields, Yangtze University, Wuhan 430100, China
- Lost Circulation Control Laboratory, National Engineering Laboratory for Petroleum Drilling Engineering, Yangtze University, Wuhan 430100, China
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Meier A, Worch S, Hartmann A, Marzec M, Mock HP, Bode R, Kunze G, Matthes F. Characterization of Catechol-1,2-Dioxygenase (Acdo1p) From Blastobotrys raffinosifermentans and Investigation of Its Role in the Catabolism of Aromatic Compounds. Front Microbiol 2022; 13:872298. [PMID: 35722288 PMCID: PMC9204233 DOI: 10.3389/fmicb.2022.872298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non-conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (K M = 0.004 ± 0.001 mM, k cat = 15.6 ± 0.4 s-1) than to pyrogallol (K M = 0.1 ± 0.02 mM, k cat = 10.6 ± 0.4 s-1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.
Collapse
Affiliation(s)
- Anna Meier
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Sebastian Worch
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Anja Hartmann
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Marek Marzec
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Hans-Peter Mock
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Gotthard Kunze
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Falko Matthes
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
3
|
Moriwaki-Takano M, Asada C, Nakamura Y. Production of spiculisporic acid by Talaromyces trachyspermus in fed-batch bioreactor culture. BIORESOUR BIOPROCESS 2021; 8:59. [PMID: 38650186 PMCID: PMC10991155 DOI: 10.1186/s40643-021-00414-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
Spiculisporic acid (SA) is a fatty acid-type biosurfactant with one lactone ring and two carboxyl groups. It has been used in metal removers and cosmetics, because of its low propensity to cause irritation to the skin, its anti-bacterial properties, and high surface activity. In the present study, we report an effective method for producing SA by selecting a high-producing strain and investigating the effective medium components, conditions, and environments for its culture. Among the 11 kinds of Talaromyces species, T. trachyspermus NBRC 32238 showed the highest production of a crystalline substance, which was determined to be SA using NMR. The strain was able to produce SA under acidic conditions from hexoses, pentoses, and disaccharides, with glucose and sucrose serving as the most appropriate substrates. Investigation of nitrogen sources and trace metal ions revealed meat extract and FeCl3 as components that promoted SA production. Upon comparing the two types of cultures with glucose in a baffle flask or aeration bioreactor, SA production was found to be slightly higher in the flask than in the reactor. In the bioreactor culture, sucrose was found to be an appropriate substrate for SA production, as compared to glucose, because with sucrose, the lag time until the start of SA production was shortened. Finally, fed-batch culture with sucrose resulted in 60 g/L of SA, with a total yield of 0.22 g SA/g sucrose and a productivity of 6.6 g/L/day.
Collapse
Affiliation(s)
- Maki Moriwaki-Takano
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan.
| | - Chikako Asada
- Department of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Yoshitosi Nakamura
- Department of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| |
Collapse
|
4
|
Alessio HM, Bassett DR, Bopp MJ, Parr BB, Patch GS, Rankin JW, Rojas-Rueda D, Roti MW, Wojcik JR. Climate Change, Air Pollution, and Physical Inactivity: Is Active Transportation Part of the Solution? Med Sci Sports Exerc 2021; 53:1170-1178. [PMID: 33986228 DOI: 10.1249/mss.0000000000002569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Active transportation is defined as self-propelled, human-powered transportation modes, such as walking and bicycling. In this article, we review the evidence that reliance on gasoline-powered transportation is contributing to global climate change, air pollution, and physical inactivity and that this is harmful to human health. Global climate change poses a major threat to human health and in the future could offset the health gains achieved over the last 100 yr. Based on hundreds of scientific studies, there is strong evidence that human-caused greenhouse gas emissions are contributing to global climate change. Climate change is associated with increased severity of storms, flooding, rising sea levels, hotter climates, and drought, all leading to increased morbidity and mortality. Along with increases in atmospheric CO2, other pollutants such as nitrogen dioxide, ozone, and particulate matter (e.g., PM2.5) are released by combustion engines and industry, which can lead to pulmonary and cardiovascular diseases. Also, as car ownership and vehicle miles traveled have increased, the shift toward motorized transport has contributed to physical inactivity. Each of these global challenges has resulted in, or is projected to result in, millions of premature deaths each year. One of the ways that nations can mitigate the health consequences of climate change, air pollution, and chronic diseases is through the use of active transportation. Research indicates that populations that rely heavily on active transportation enjoy better health and increased longevity. In summary, active transportation has tremendous potential to simultaneously address three global public health challenges of the 21st century.
Collapse
Affiliation(s)
- Helaine M Alessio
- Department of Kinesiology, Nutrition, and Health, Miami University, Miami, OH
| | - David R Bassett
- Department of Kinesiology, Recreation, and Sport Studies, University of Tennessee, Knoxville, TN
| | - Melissa J Bopp
- Department of Kinesiology, Pennsylvania State University, State College, PA
| | - Brian B Parr
- Department of Exercise and Sports Science, University of South Carolina, Aiken, SC
| | | | - Janet W Rankin
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - David Rojas-Rueda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Melissa W Roti
- Movement Science, Sport, and Leisure Studies Department, Westfield State University, Westfield, MA
| | - Janet R Wojcik
- Department of Physical Education, Sport, and Human Performance, Winthrop University, Rock Hill, SC
| |
Collapse
|
5
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
6
|
Villela HDM, Peixoto RS, Soriano AU, Carmo FL. Microbial bioremediation of oil contaminated seawater: A survey of patent deposits and the characterization of the top genera applied. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:743-758. [PMID: 30812008 DOI: 10.1016/j.scitotenv.2019.02.153] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 05/20/2023]
Abstract
Petroleum has been the world's major source of energy since the middle of the twentieth century, leading to positive changes but also social, political, and environmental problems worldwide. Oil contamination affects all ecosystems, and the remediation of polluted sites using environmentally friendly strategies is crucial. Here, we report an analysis of the patent documents of potential petroleum bioremediation techniques that use microbes to clean seawater. The patent search was performed using Orbit Intelligence®, SciFinder® and the Derwent World Patents Index®. A group of 500 patent documents were validated according to the search objective and carefully studied. Increases in patent deposits coincide with periods following widely reported oil spills, suggesting a relationship between media disclosure and stimulation of innovation activities. China leads the list of countries with patent applications in bioremediation with 152 deposits, followed by Russia with 133 and the US with 48. These three countries have completely different temporal deposit profiles, influenced by their historical, political, and economic scenarios. A total of 368 patents described degradation of the oil compounds exclusively by bacteria, 24 by fungi and yeasts, 1 by Archaea, 1 using a microalgal strain, and 32 by mixed consortia. The leading microbial genera found in the patents are Pseudomonas (114 patents), Bacillus (75), and Rhodococcus (60). In the top-10 list of microbial strains mostly cited/claimed, no genera are obligate hydrocarbonoclastic bacteria. This fact, together with the broad pattern found in the main International Patent Classification (IPC) codes, suggest that most of the documents are general bioremediation approaches and not focused on oil-polluted seawater. This work highlights the importance of stimulating the development of innovative environmentally friendly strategies focused on the degradation of oil hydrocarbons in marine ecosystems.
Collapse
Affiliation(s)
- Helena D M Villela
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS, Bl E, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Raquel S Peixoto
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS, Bl E, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil; IMAM-AquaRio - Rio Marine Aquarium Research Center, Praça Muhammad Ali, Gambôa, Rio de Janeiro, RJ 20220-360, Brazil
| | - Adriana U Soriano
- Leopoldo A. Miguez de Mello Research and Development Center, CENPES, PETROBRAS - Petroleo Brasileiro S. A, CENPES, Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Flavia L Carmo
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS, Bl E, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil; Innovation Agency UFRJ, Federal University of Rio de Janeiro. R. Hélio de Almeida, s/n - Incubadora de Empresas - Prédio 2 (salas 25 a 29), Cidade Universitária, Rio de Janeiro, RJ 21941-614, Brazil
| |
Collapse
|
7
|
Akbari S, Abdurahman NH, Yunus RM, Fayaz F, Alara OR. Biosurfactants—a new frontier for social and environmental safety: a mini review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biori.2018.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Analysis of Draft Genome Sequence of Pseudomonas sp. QTF5 Reveals Its Benzoic Acid Degradation Ability and Heavy Metal Tolerance. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4565960. [PMID: 29270429 PMCID: PMC5705866 DOI: 10.1155/2017/4565960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022]
Abstract
Pseudomonas sp. QTF5 was isolated from the continuous permafrost near the bitumen layers in the Qiangtang basin of Qinghai-Tibetan Plateau in China (5,111 m above sea level). It is psychrotolerant and highly and widely tolerant to heavy metals and has the ability to metabolize benzoic acid and salicylic acid. To gain insight into the genetic basis for its adaptation, we performed whole genome sequencing and analyzed the resistant genes and metabolic pathways. Based on 120 published and annotated genomes representing 31 species in the genus Pseudomonas, in silico genomic DNA-DNA hybridization (<54%) and average nucleotide identity calculation (<94%) revealed that QTF5 is closest to Pseudomonas lini and should be classified into a novel species. This study provides the genetic basis to identify the genes linked to its specific mechanisms for adaptation to extreme environment and application of this microorganism in environmental conservation.
Collapse
|
9
|
McDonald NC. Trends in Automobile Travel, Motor Vehicle Fatalities, and Physical Activity: 2003-2015. Am J Prev Med 2017; 52:598-605. [PMID: 28190689 DOI: 10.1016/j.amepre.2016.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/31/2016] [Accepted: 12/13/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Annual per-capita automobile travel declined by 600 miles from 2003 to 2014 with decreases greatest among young adults. This article tests whether the decline has been accompanied by public health co-benefits of increased physical activity and decreased motor vehicle fatalities. METHODS Minutes of auto travel and physical activity derived from active travel, sports, and exercise were obtained from the American Time Use Survey. Fatalities were measured using the Fatality Analysis Reporting System. Longitudinal change was assessed for adults aged 20-59 years by age group and sex. Significance of changes was assessed by absolute differences and unadjusted and adjusted linear trends. Analyses were conducted in 2016. RESULTS Daily auto travel decreased by 9.2 minutes from 2003 to 2014 for all ages (p<0.001) with the largest decrease among men aged 20-29 years (Δ= -21.7, p<0.001). No significant changes were observed in total minutes of physical activity. Motor vehicle occupant fatalities per 100,000 population showed significant declines for all ages (Δ=-5.8, p<0.001) with the largest for young men (Δ= -15.3, p<0.001). Fatalities per million minutes of auto travel showed only modest declines across age groups and, for men aged 20-29 years, varied from 10.9 (95% CI=10.0, 11.7) in 2003 to 9.7 (95% CI=8.7, 10.8) in 2014. CONCLUSIONS Reduced motor vehicle fatalities are a public health co-benefit of decreased driving, especially for male millennials. Despite suggestions to the contrary, individuals did not switch from cars to active modes nor spend more time in sports and exercise. Maintenance of the safety benefits requires additional attention to road safety efforts, particularly as auto travel increases.
Collapse
Affiliation(s)
- Noreen C McDonald
- Department of City and Regional Planning, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
10
|
Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0791-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Affiliation(s)
- Daniel R George
- Department of Humanities, Penn State Milton S Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Wade Edris
- Penn State College of Medicine, Hershey, PA, USA
| | - Ryan Hanson
- Penn State College of Medicine, Hershey, PA, USA
| | | |
Collapse
|
12
|
Illy N, Fache M, Ménard R, Negrell C, Caillol S, David G. Phosphorylation of bio-based compounds: the state of the art. Polym Chem 2015. [DOI: 10.1039/c5py00812c] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this review is to present both fundamental and applied research on the phosphorylation of renewable resources, through reactions on naturally occurring functions, and their use in biobased polymer chemistry and applications.
Collapse
Affiliation(s)
- Nicolas Illy
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8232
- IPCM
- Paris
| | - Maxence Fache
- Institut Charles Gerhardt Montpellier UMR 5353 – Equipe Ingénierie et Architectures Macromoléculaires
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier, CEDEX 5
- France
| | - Raphaël Ménard
- Institut Charles Gerhardt Montpellier UMR 5353 – Equipe Ingénierie et Architectures Macromoléculaires
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier, CEDEX 5
- France
| | - Claire Negrell
- Institut Charles Gerhardt Montpellier UMR 5353 – Equipe Ingénierie et Architectures Macromoléculaires
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier, CEDEX 5
- France
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier UMR 5353 – Equipe Ingénierie et Architectures Macromoléculaires
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier, CEDEX 5
- France
| | - Ghislain David
- Institut Charles Gerhardt Montpellier UMR 5353 – Equipe Ingénierie et Architectures Macromoléculaires
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier, CEDEX 5
- France
| |
Collapse
|
13
|
Brown LH, Blanchard IE. Sustainable emergency medical service systems: how much energy do we need? Am J Emerg Med 2014; 33:190-6. [PMID: 25488338 DOI: 10.1016/j.ajem.2014.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Modern emergency medical service (EMS) systems are vulnerable to both rising energy prices and potential energy shortages. Ensuring the sustainability of EMS systems requires an empirical understanding of the total energy requirements of EMS operations. This study was undertaken to determine the life cycle energy requirements of US EMS systems. METHODS Input-output-based energy requirement multipliers for the US economy were applied to the annual budgets for a random sample of 19 metropolitan or county-wide EMS systems. Calculated per capita energy requirements of the EMS systems were used to estimate nationwide EMS energy requirements, and the leading energy sinks of the EMS supply chain were determined. RESULTS Total US EMS-related energy requirements are estimated at 30 to 60 petajoules (10(15) J) annually. Direct ("scope 1") energy consumption, primarily in the form of vehicle fuels but also in the form of natural gas and heating oil, accounts for 49% of all EMS-related energy requirements. The energy supply chain-including system electricity consumption ("scope 2") as well as the upstream ("scope 3") energy required to generate and distribute liquid fuels and natural gas-accounts for 18% of EMS energy requirements. Scope 3 energy consumption in the materials supply chain accounts for 33% of EMS energy requirements. Vehicle purchases, leases, maintenance, and repair are the most energy-intense components of the non-energy EMS supply chain (23%), followed by medical supplies and equipment (21%). CONCLUSION Although less energy intense than other aspects of the US healthcare system, ground EMS systems require substantial amounts of energy each year.
Collapse
Affiliation(s)
- Lawrence H Brown
- Mt. Isa Centre for Rural and Remote Health, Faculty of Medicine, Health and Molecular Sciences, James Cook University, Townsville, QLD, Australia.
| | - Ian E Blanchard
- Alberta Health Services Emergency Medical Services, Calgary, Alberta, Canada; University of Calgary, Department of Community Health Sciences, Alberta, Canada
| |
Collapse
|
14
|
De Young R. Some behavioral aspects of energy descent: how a biophysical psychology might help people transition through the lean times ahead. Front Psychol 2014; 5:1255. [PMID: 25404926 PMCID: PMC4217334 DOI: 10.3389/fpsyg.2014.01255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/16/2014] [Indexed: 11/21/2022] Open
Abstract
We may soon face biophysical limits to perpetual growth. Energy supplies may tighten and then begin a long slow descent while defensive expenditures rise to address problems caused by past resource consumption. The outcome may be significant changes in daily routines at the individual and community level. It is difficult to know when this scenario might begin to unfold but it clearly would constitute a new behavioral context, one that the behavioral sciences least attends to. Even if one posits a less dramatic scenario, people may still need to make many urgent and perhaps unsettling transitions. And while a robust response would be needed, it is not at all clear what should be the details of that response. Since it is likely that no single response will fix things everywhere, for all people or for all time, it would be useful to conduct many social experiments. Indeed, a culture of small experiments should be fostered which, at the individual and small group level, can be described as behavioral entrepreneurship. This may have begun, hidden in plain sight, but more social experiments are needed. To be of help, it may be useful to both package behavioral insights in a way that is practitioner-oriented and grounded in biophysical trends and to propose a few key questions that need attention. This paper begins the process of developing a biophysical psychology, incomplete as it is at this early stage.
Collapse
Affiliation(s)
- Raymond De Young
- Environmental Psychology Lab, School of Natural Resources and Environment, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|
15
|
Anderko L, Davies-Cole J, Strunk A. Identifying populations at risk: interdisciplinary environmental climate change tracking. Public Health Nurs 2014; 31:484-91. [PMID: 25319352 DOI: 10.1111/phn.12164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Climate change, experienced as extreme weather events such as heat waves can lead to poorer air quality and underscores the critical need to consider the consequences of these environmental changes on health. Changes are occurring at a rate that exceeds what the world has experienced over the last 650,000 years, yet little attention has been focused on the potentially catastrophic public health effects of climate change. METHODS This study instituted a two-phase approach. In building capacity for an Environmental Public Health Tracking Network, the District of Columbia Department of Health first examined the availability of climate change and health data. These data were then used to assess vulnerabilities and disease burden associated with heat, air quality, and hospitalizations for asthma (N = 5,921) and acute myocardial infarction (AMI) (N = 2,773) during 2007-2010. A Poisson regression analysis was applied to the time series of daily counts for hospitalizations for selected age, race, and gender groups. RESULTS Although no significant associations were found for PM2.5, PM10, or ozone with asthma-related or AMI-related hospitalizations with seasonal changes, surveillance data found disparities in hospitalizations particularly in female, African American residents for both asthma and AMI. CONCLUSIONS Tracking Networks are critical for assessing community environmental health vulnerabilities.
Collapse
Affiliation(s)
- Laura Anderko
- School of Nursing and Health Studies, Georgetown University, Washington, District of Columbia
| | | | | |
Collapse
|
16
|
Dalglish SL, Poulsen MN, Winch PJ. Localization of health systems in low- and middle-income countries in response to long-term increases in energy prices. Global Health 2013; 9:56. [PMID: 24199690 PMCID: PMC3826843 DOI: 10.1186/1744-8603-9-56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/17/2013] [Indexed: 11/17/2022] Open
Abstract
External challenges to health systems, such as those caused by global economic, social and environmental changes, have received little attention in recent debates on health systems’ performance in low-and middle-income countries (LMICs). One such challenge in coming years will be increasing prices for petroleum-based products as production from conventional petroleum reserves peaks and demand steadily increases in rapidly-growing LMICs. Health systems are significant consumers of fossil fuels in the form of petroleum-based medical supplies; transportation of goods, personnel and patients; and fuel for lighting, heating, cooling and medical equipment. Long-term increases in petroleum prices in the global market will have potentially devastating effects on health sectors in LMICs who already struggle to deliver services to remote parts of their catchment areas. We propose the concept of “localization,” originating in the environmental sustainability literature, as one element of response to these challenges. Localization assigns people at the local level a greater role in the production of goods and services, thereby decreasing reliance on fossil fuels and other external inputs. Effective localization will require changes to governance structures within the health sector in LMICs, empowering local communities to participate in their own health in ways that have remained elusive since this goal was first put forth in the Alma-Ata Declaration on Primary Health Care in 1978. Experiences with decentralization policies in the decades following Alma-Ata offer lessons on defining roles and responsibilities, building capacity at the local level, and designing appropriate policies to target inequities, all of which can guide health systems to adapt to a changing environmental and energy landscape.
Collapse
Affiliation(s)
- Sarah L Dalglish
- Social and Behavioral Interventions Program, Department of International Health, Johns Hopkins Bloomberg School of International Health, 615 N, Wolfe St,, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
17
|
Brown LH, Chaiechi T, Buettner PG, Canyon DV, Crawford JM, Judd J. Higher energy prices are associated with diminished resources, performance and safety in Australian ambulance systems. Aust N Z J Public Health 2013; 37:83-9. [PMID: 23379811 DOI: 10.1111/1753-6405.12015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To evaluate the impact of changing energy prices on Australian ambulance systems. METHODS Generalised estimating equations were used to analyse contemporaneous and lagged relationships between changes in energy prices and ambulance system performance measures in all Australian State/Territory ambulance systems for the years 2000-2010. Measures included: expenditures per response; labour-to-total expenditure ratio; full-time equivalent employees (FTE) per 10,000 responses; average salary; median and 90th percentile response time; and injury compensation claims. Energy price data included State average diesel price, State average electricity price, and world crude oil price. RESULTS Changes in diesel prices were inversely associated with changes in salaries, and positively associated with changes in ambulance response times; changes in oil prices were also inversely associated with changes in salaries, as well with staffing levels and expenditures per ambulance response. Changes in electricity prices were positively associated with changes in expenditures per response and changes in salaries; they were also positively associated with changes in injury compensation claims per 100 FTE. CONCLUSION Changes in energy prices are associated with changes in Australian ambulance systems' resource, performance and safety characteristics in ways that could affect both patients and personnel. Further research is needed to explore the mechanisms of, and strategies for mitigating, these impacts. The impacts of energy prices on other aspects of the health system should also be investigated.
Collapse
Affiliation(s)
- Lawrence H Brown
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Queensland.
| | | | | | | | | | | |
Collapse
|
18
|
Nisbet MC, Maibach E, Leiserowitz A. Framing peak petroleum as a public health problem: audience research and participatory engagement in the United States. Am J Public Health 2011; 101:1620-6. [PMID: 21778500 PMCID: PMC3154229 DOI: 10.2105/ajph.2011.300230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2011] [Indexed: 11/04/2022]
Abstract
Between December 2009 and January 2010, we conducted a nationally representative telephone survey of US adults (n = 1001; completion rate = 52.9%) to explore perceptions of risks associated with peak petroleum. We asked respondents to assess the likelihood that oil prices would triple over the next 5 years and then to estimate the economic and health consequences of that event. Nearly half (48%) indicated that oil prices were likely to triple, causing harm to human health; an additional 16% said dramatic price increases were unlikely but would harm health if they did occur. A large minority (44%) said sharp increases in oil prices would be "very harmful" to health. Respondents who self-identified as very conservative and those who were strongly dismissive of climate change were the respondents most likely to perceive very harmful health consequences.
Collapse
Affiliation(s)
- Matthew C Nisbet
- School of Communication, American University, Washington, DC, USA.
| | | | | |
Collapse
|
19
|
Winch P, Stepnitz R. Peak oil and health in low- and middle-income countries: impacts and potential responses. Am J Public Health 2011; 101:1607-14. [PMID: 21778508 PMCID: PMC3154234 DOI: 10.2105/ajph.2011.300231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2011] [Indexed: 11/04/2022]
Abstract
Peak oil refers to the predicted peak and subsequent decline in global production of petroleum products over the coming decades. We describe how peak oil will affect health, nutrition, and health systems in low- and middle-income countries along 5 pathways. The negative effects of peak oil on health and nutrition will be felt most acutely in the 58 low-income countries experiencing minimal or negative economic growth because of their patterns of sociopolitical, geographic, and economic vulnerability. The global health community needs to take additional steps to build resilience among the residents of low- and middle-income countries and maintain access to maternal and other health services in the face of predicted changes in availability and price of fossil fuels.
Collapse
Affiliation(s)
- Peter Winch
- Social and Behavioral Interventions Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA.
| | | |
Collapse
|
20
|
Hess J, Bednarz D, Bae J, Pierce J. Petroleum and health care: evaluating and managing health care's vulnerability to petroleum supply shifts. Am J Public Health 2011; 101:1568-79. [PMID: 21778473 DOI: 10.2105/ajph.2011.300233] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Petroleum is used widely in health care-primarily as a transport fuel and feedstock for pharmaceuticals, plastics, and medical supplies-and few substitutes for it are available. This dependence theoretically makes health care vulnerable to petroleum supply shifts, but this vulnerability has not been empirically assessed. We quantify key aspects of petroleum use in health care and explore historical associations between petroleum supply shocks and health care prices. These analyses confirm that petroleum products are intrinsic to modern health care and that petroleum supply shifts can affect health care prices. In anticipation of future supply contractions lasting longer than previous shifts and potentially disrupting health care delivery, we propose an adaptive management approach and outline its application to the example of emergency medical services.
Collapse
Affiliation(s)
- Jeremy Hess
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Competition for resources between or within nations is likely to become an increasingly common cause of armed conflict. Competition for petroleum is especially likely to trigger armed conflict because petroleum is a highly valuable resource whose supply is destined to contract. Wars fought over petroleum and other resources can create public health concerns by causing morbidity and mortality, damaging societal infrastructure, diverting resources, uprooting people, and violating human rights. Public health workers and the organizations with which they are affiliated can help prevent resource wars and minimize their consequences by (1) promoting renewable energy and conservation, (2) documenting the impact of past and potential future resource wars, (3) protecting the human rights of affected noncombatant civilian populations during armed conflict, and (4) developing and advocating for policies that promote peaceful dispute resolution.
Collapse
Affiliation(s)
- Michael T Klare
- Five College Program in Peace and World Security Studies, Hampshire College, Amherst, MA, USA
| | | | | |
Collapse
|
22
|
Kaza N, Knaap GJ, Knaap I, Lewis R. Peak oil, urban form, and public health: exploring the connections. Am J Public Health 2011; 101:1598-606. [PMID: 21778494 DOI: 10.2105/ajph.2011.300192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We assessed the relationships between peak oil and urban form, travel behavior, and public health. Peak oil will affect the general economy, travel behavior, and urban form through income and substitution effects; however, because of the wide range of substitution possibilities, the impacts are likely to be gradual and relatively small. Furthermore, we suggest that changes in travel behavior and increases in urban density will have both favorable and unfavorable effects on public health. To mitigate the adverse impacts and to maximize the positive effects of peak oil, we recommend that careful attention should be paid to urban design and public health responses for a range of urbanization patterns.
Collapse
Affiliation(s)
- Nikhil Kaza
- Department of City and Regional Planning, University of North Carolina at Chapel Hill, USA
| | | | | | | |
Collapse
|
23
|
Neff RA, Parker CL, Kirschenmann FL, Tinch J, Lawrence RS. Peak oil, food systems, and public health. Am J Public Health 2011; 101:1587-97. [PMID: 21778492 DOI: 10.2105/ajph.2011.300123] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all.
Collapse
Affiliation(s)
- Roni A Neff
- Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
24
|
Schwartz BS, Parker CL, Hess J, Frumkin H. Public health and medicine in an age of energy scarcity: the case of petroleum. Am J Public Health 2011; 101:1560-7. [PMID: 21778506 DOI: 10.2105/ajph.2010.205187] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Petroleum supplies have heretofore been abundant and inexpensive, but the world petroleum production peak is imminent, and we are entering an unprecedented era of petroleum scarcity. This fact has had little impact on policies related to climate, energy, the built environment, transportation, food, health care, public health, and global health. Rising prices are likely to spur research and drive efficiency improvements, but such innovations may be unable to address an increasing gap between supply and demand. The resulting implications for health and the environment are explored in the articles we have selected as additional contributions in this special issue. Uncertainty about the timing of the peak, the shape of the production curve, and decline rates should not delay action. The time for quick, decisive, comprehensive action is now.
Collapse
Affiliation(s)
- Brian S Schwartz
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
25
|
Osterholm MT, Kelley NS. Energy and the public's health: making the connection. Public Health Rep 2009; 124:20-1. [PMID: 19413023 DOI: 10.1177/003335490912400104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
26
|
Spady D. The environment and our responsibility to our children and youth: A message for adults. Paediatr Child Health 2009; 14:290-2. [DOI: 10.1093/pch/14.5.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2009] [Indexed: 11/12/2022] Open
|