1
|
Wilson T, Siddiqi M, Xi Y, LaPointe G. Tracking the microbial communities from the farm to the processing facility of a washed-rind cheese operation. Front Microbiol 2024; 15:1404795. [PMID: 39268533 PMCID: PMC11390512 DOI: 10.3389/fmicb.2024.1404795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Milk residue and the accompanying biofilm accumulation in milking systems can compromise the microbial quality of milk and the downstream processes of cheese production. Over a six-month study, the microbial ecosystems of milk (n = 24), tap water (n = 24) and environmental swabs (n = 384) were cultured by plating decimal dilutions to obtain viable counts of total aerobic mesophilic lactose-utilizing bacteria (lactose-M17), lactic acid bacteria (MRS), yeasts and molds (Yeast, Glucose, Chloramphenicol (YGC) medium). Viable aerobic lactose-M17 plate counts of milk remained well below 4.7 log CFU/ml over five of the months, except for 1 week in November where milk at the facility exceeded 5 log CFU/ml. Swab samples of the farm milking equipment showed consistent viable counts after sanitation, while the bulk tank swabs contained the lowest counts. Viable counts from swabs of the facility were generally below the detection limit in the majority of samples with occasional residual contamination on some food contact surfaces. Extracted DNA was amplified using primers targeting the V3-V4 region of the 16S rRNA gene, and the amplicons were sequenced by MiSeq to determine the shared microbiota between the farm and the processing facility (8 genera). Culture independent analysis of bacterial taxa in milk, water and residual contamination after sanitation with swab samples revealed the shared and distinct microbiota between the sample types of both facilities. Amplicon sequence variants (ASVs) of the V3-V4 region of the 16S rRNA gene revealed that the microbiota of milk samples had lower diversity than water or environmental swabs (279 ASVs compared to 3,444 in water and 8,747 in environmental swabs). Brevibacterium and Yaniella (both Actinomycetota) were observed in all sampling types. Further studies will include whole genome sequencing of Brevibacterium spp. isolates to determine their functionality and diversity within the system.
Collapse
Affiliation(s)
- Tara Wilson
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Myra Siddiqi
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Yueqi Xi
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Gisèle LaPointe
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Fernández-Grajera M, Pacha-Olivenza MA, Fernández-Calderón MC, González-Martín ML, Gallardo-Moreno AM. Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3349. [PMID: 38998429 PMCID: PMC11243244 DOI: 10.3390/ma17133349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Interest in biodegradable implants has focused attention on the resorbable polymer polylactic acid. However, the risk of these materials promoting infection, especially in patients with existing pathologies, needs to be monitored. The enrichment of a bacterial adhesion medium with compounds that are associated with human pathologies can help in understanding how these components affect the development of infectious processes. Specifically, this work evaluates the influence of glucose and ketone bodies (in a diabetic context) on the adhesion dynamics of S. aureus to the biomaterial polylactic acid, employing different approaches and discussing the results based on the physical properties of the bacterial surface and its metabolic activity. The combination of ketoacidosis and hyperglycemia (GK2) appears to be the worst scenario: this system promotes a state of continuous bacterial colonization over time, suppressing the stationary phase of adhesion and strengthening the attachment of bacteria to the surface. In addition, these supplements cause a significant increase in the metabolic activity of the bacteria. Compared to non-enriched media, biofilm formation doubles under ketoacidosis conditions, while in the planktonic state, it is glucose that triggers metabolic activity, which is practically suppressed when only ketone components are present. Both information must be complementary to understand what can happen in a real system, where planktonic bacteria are the ones that initially colonize a surface, and, subsequently, these attached bacteria end up forming a biofilm. This information highlights the need for good monitoring of diabetic patients, especially if they use an implanted device made of PLA.
Collapse
Affiliation(s)
- María Fernández-Grajera
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
| | - Miguel A. Pacha-Olivenza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Biomedical Science, University of Extremadura, 06006 Badajoz, Spain
| | - María Coronada Fernández-Calderón
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Biomedical Science, University of Extremadura, 06006 Badajoz, Spain
| | - María Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Applied Physics, University of Extremadura, 06006 Badajoz, Spain
| | - Amparo M. Gallardo-Moreno
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Applied Physics, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
3
|
O'Connor MJ, Bartler AV, Ho KC, Zhang K, Casas Fuentes RJ, Melnick BA, Huffman KN, Hong SJ, Galiano RD. Understanding Staphylococcus aureus in hyperglycaemia: A review of virulence factor and metabolic adaptations. Wound Repair Regen 2024. [PMID: 38853489 DOI: 10.1111/wrr.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Staphylococcus aureus is one of the most commonly detected bacteria in diabetic skin and soft tissue infections. The incidence and severity of skin and soft tissue infections are higher in patients with diabetes, indicating a potentiating mechanism of hyperglycaemia and infection. The goal of this review is to explore the metabolic and virulence factor adaptations of S. aureus under hyperglycaemic conditions. Primary data from identified studies were included and summarised in this paper. Understanding the nexus of hyperglycaemia, metabolism, and virulence factors provides insights into the complexity of diabetic skin and soft tissue infections attributed to S. aureus.
Collapse
Affiliation(s)
- Madeline J O'Connor
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Creighton University School of Medicine, Phoenix, Arizona, USA
| | - Angelica V Bartler
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly C Ho
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenneth Zhang
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rolando J Casas Fuentes
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley A Melnick
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Kristin N Huffman
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seok Jong Hong
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Galiano
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
5
|
Aonofriesei F. Surfactants' Interplay with Biofilm Development in Staphylococcus and Candida. Pharmaceutics 2024; 16:657. [PMID: 38794319 PMCID: PMC11125353 DOI: 10.3390/pharmaceutics16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The capacity of micro-organisms to form biofilms is a pervasive trait in the microbial realm. For pathogens, biofilm formation serves as a virulence factor facilitating successful host colonization. Simultaneously, infections stemming from biofilm-forming micro-organisms pose significant treatment challenges due to their heightened resistance to antimicrobial agents. Hence, the quest for active compounds capable of impeding microbial biofilm development stands as a pivotal pursuit in biomedical research. This study presents findings concerning the impact of three surfactants, namely, polysorbate 20 (T20), polysorbate 80 (T80), and sodium dodecyl sulfate (SDS), on the initial stage of biofilm development in both Staphylococcus aureus and Candida dubliniensis. In contrast to previous investigations, we conducted a comparative assessment of the biofilm development capacity of these two taxonomically distant groups, predicated on their shared ability to reduce TTC. The common metabolic trait shared by S. aureus and C. dubliniensis in reducing TTC to formazan facilitated a simultaneous evaluation of biofilm development under the influence of surfactants across both groups. Our results revealed that surfactants could impede the development of biofilms in both species by disrupting the initial cell attachment step. The observed effect was contingent upon the concentration and type of compound, with a higher inhibition observed in culture media supplemented with SDS. At maximum concentrations (5%), T20 and T80 significantly curtailed the formation and viability of S. aureus and C. dubliniensis biofilms. Specifically, T20 inhibited biofilm development by 75.36% in S. aureus and 71.18% in C. dubliniensis, while T80 exhibited a slightly lower inhibitory effect, with values ranging between 66.68% (C. dubliniensis) and 65.54% (S. aureus) compared to the controls. Incorporating these two non-toxic surfactants into pharmaceutical formulations could potentially enhance the inhibitory efficacy of selected antimicrobial agents, particularly in external topical applications.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 1, University Street, 900470 Constanța, Romania
| |
Collapse
|
6
|
Er-Rahmani S, Errabiti B, Matencio A, Trotta F, Latrache H, Koraichi SI, Elabed S. Plant-derived bioactive compounds for the inhibition of biofilm formation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34859-34880. [PMID: 38744766 DOI: 10.1007/s11356-024-33532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Biofilm formation is a widespread phenomenon that impacts different fields, including the food industry, agriculture, health care and the environment. Accordingly, there is a serious need for new methods of managing the problem of biofilm formation. Natural products have historically been a rich source of varied compounds with a wide variety of biological functions, including antibiofilm agents. In this review, we critically highlight and discuss the recent progress in understanding the antibiofilm effects of several bioactive compounds isolated from different plants, and in elucidating the underlying mechanisms of action and the factors influencing their adhesion. The literature shows that bioactive compounds have promising antibiofilm potential against both Gram-negative and Gram-positive bacterial and fungal strains, via several mechanisms of action, such as suppressing the formation of the polymer matrix, limiting O2 consumption, inhibiting microbial DNA replication, decreasing hydrophobicity of cell surfaces and blocking the quorum sensing network. This antibiofilm activity is influenced by several environmental factors, such as nutritional cues, pH values, O2 availability and temperature. This review demonstrates that several bioactive compounds could mitigate the problem of biofilm production. However, toxicological assessment and pharmacokinetic investigations of these molecules are strongly required to validate their safety.
Collapse
Affiliation(s)
- Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Badr Errabiti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Adrián Matencio
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Hassan Latrache
- Laboratory of Bioprocesses and Bio-Interfaces, Faculty of Science and Technology, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco.
| |
Collapse
|
7
|
Araújo D, Silva AR, Fernandes R, Serra P, Barros MM, Campos AM, Oliveira R, Silva S, Almeida C, Castro J. Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals. Pathogens 2024; 13:320. [PMID: 38668275 PMCID: PMC11054384 DOI: 10.3390/pathogens13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The importance of addressing the problem of biofilms in farm, wild, and companion animals lies in their pervasive impact on animal health and welfare. Biofilms, as resilient communities of microorganisms, pose a persistent challenge in causing infections and complicating treatment strategies. Recognizing and understanding the importance of mitigating biofilm formation is critical to ensuring the welfare of animals in a variety of settings, from farms to the wild and companion animals. Effectively addressing this issue not only improves the overall health of individual animals, but also contributes to the broader goals of sustainable agriculture, wildlife conservation, and responsible pet ownership. This review examines the current understanding of biofilm formation in animal diseases and elucidates the complex processes involved. Recognizing the limitations of traditional antibiotic treatments, mechanisms of resistance associated with biofilms are explored. The focus is on alternative therapeutic strategies to control biofilm, with illuminating case studies providing valuable context and practical insights. In conclusion, the review highlights the importance of exploring emerging approaches to mitigate biofilm formation in animals. It consolidates existing knowledge, highlights gaps in understanding, and encourages further research to address this critical facet of animal health. The comprehensive perspective provided by this review serves as a foundation for future investigations and interventions to improve the management of biofilm-associated infections in diverse animal populations.
Collapse
Affiliation(s)
- Daniela Araújo
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Rúben Fernandes
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Patrícia Serra
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Maria Margarida Barros
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Maria Campos
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Ricardo Oliveira
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Castro
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Li J, Zhang Q, Zhao J, Zhang H, Chen W. Lactobacillus-derived components for inhibiting biofilm formation in the food industry. World J Microbiol Biotechnol 2024; 40:117. [PMID: 38429597 DOI: 10.1007/s11274-024-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Biofilm, a microbial community formed by especially pathogenic and spoilage bacterial species, is a critical problem in the food industries. It is an important cause of continued contamination by foodborne pathogenic bacteria. Therefore, removing biofilm is the key to solving the high pollution caused by foodborne pathogenic bacteria in the food industry. Lactobacillus, a commonly recognized probiotic that is healthy for consumer, have been proven useful for isolating the potential biofilm inhibitors. However, the addition of surface components and metabolites of Lactobacillus is not a current widely adopted biofilm control strategy at present. This review focuses on the effects and preliminary mechanism of action on biofilm inhibition of Lactobacillus-derived components including lipoteichoic acid, exopolysaccharides, bacteriocins, secreted protein, organic acids and some new identified molecules. Further, the review discusses several modern biofilm identification techniques and particularly interesting new technology of biofilm inhibition molecules. These molecules exhibit stronger inhibition of biofilm formation, playing a pivotal role in food preservation and storage. Overall, this review article discusses the application of biofilm inhibitors produced by Lactobacillus, which would greatly aid efforts to eradicate undesirable bacteria from environment in the food industries.
Collapse
Affiliation(s)
- Jiaxun Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
9
|
Wang Z, Wang H, Bai J, Cai S, Qu D, Xie Y, Wu Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024; 12:256. [PMID: 38399660 PMCID: PMC10891534 DOI: 10.3390/microorganisms12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 μM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 μM or 1.5 μM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| |
Collapse
|
10
|
Stefany Aires do Nascimento FB, do Amaral Valente Sá LG, de Andrade Neto JB, da Silva LJ, Rodrigues DS, de Farias Cabral VP, Barbosa AD, Almeida Moreira LE, Braga Vasconcelos CR, Cavalcanti BC, França Rios ME, Silva J, Marinho ES, Dos Santos HS, de Mesquita JR, Pinto Lobo MD, de Moraes MO, Nobre Júnior HV, da Silva CR. Antimicrobial activity of hydralazine against methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Future Microbiol 2024; 19:91-106. [PMID: 38294293 DOI: 10.2217/fmb-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 02/01/2024] Open
Abstract
Background: Staphylococcus aureus is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. Materials & methods: The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. Results: MIC and minimum bactericidal concentration values ranged from 128 to 2048 μg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. Conclusion: Hydralazine is a potential antibacterial.
Collapse
Affiliation(s)
- Francisca B Stefany Aires do Nascimento
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, 60190-180, Brazil
| | - João B de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, 60190-180, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Vitória P de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Lara E Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Camille R Braga Vasconcelos
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Bruno Coêlho Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Maria E França Rios
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil
| | - Helcio Silva Dos Santos
- Science & Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, 62010-560, Brazil
| | - Jacó Rl de Mesquita
- St. Joseph Hospital for Infectious Diseases, Fortaleza, CE, 60455-610, Brazil
| | | | - Manoel Odorico de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Hélio V Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| |
Collapse
|
11
|
Król J, Wanecka A, Twardoń J, Florek M, Marynowska M, Banaszkiewicz S, Kaczmarek-Pieńczewska A, Pląskowska E, Brodala M, Chwirot W, Korzeniowska-Kowal A, De Buck J. Staphylococcus borealis - A newly identified pathogen of bovine mammary glands. Vet Microbiol 2023; 286:109876. [PMID: 37776630 DOI: 10.1016/j.vetmic.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Twelve Staphylococcus borealis strains, isolated in Canada and Poland from milk of cows with intramammary infections, were characterized phenotypically (biochemical reactions on ID 32 STAPH and Biolog Phenotype MicroArrays™ PM1 and PM2A, ability of biofilm production) and genotypically (random amplified polymorphic DNA). In addition, a genomic comparison was done with S. borealis strains of human and porcine origin using the multilocus sequence typing (MLST) technique. The bovine isolates showed a high degree of phenotypic and genotypic diversity, however, they could be differentiated from human strains by the negative test for urease (found in all but one bovine isolate examined with ID 32 STAPH) and positive reaction for D-galactose (on Biolog phenotype microarray PM1) and D-lactose (on both commercial systems). The MLST method, utilizing six concatenated genes of the total length of ∼2930 bp, revealed that bovine strains (irrespective of the country of origin) show a distinctly greater degree of mutual relationship than to the strains of human and porcine origin, suggesting that S. borealis has evolved independently in these hosts. In conclusion, bovine-specific S. borealis can be involved in intramammary infections in cattle.
Collapse
Affiliation(s)
- Jarosław Król
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland.
| | - Anna Wanecka
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Jan Twardoń
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Pl. Grunwaldzki 49, 50-366 Wrocław, Poland
| | - Magdalena Florek
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Maja Marynowska
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Sylwia Banaszkiewicz
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Agata Kaczmarek-Pieńczewska
- Department of Plant Protection, Division of Plant Pathology and Mycology, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Division of Plant Pathology and Mycology, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
| | - Maria Brodala
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Wojciech Chwirot
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. Weigla 12, 53-114 Wrocław, Poland
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Alberta, Canada
| |
Collapse
|
12
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Hou Y, Zhu S, Chen Y, Yu M, Liu Y, Li M. Evaluation of Antibacterial Activity of Thiourea Derivative TD4 against Methicillin-Resistant Staphylococcus aureus via Destroying the NAD+/NADH Homeostasis. Molecules 2023; 28:molecules28073219. [PMID: 37049981 PMCID: PMC10096324 DOI: 10.3390/molecules28073219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
To develop effective agents to combat bacterial infections, a series of thiourea derivatives (TDs) were prepared and their antibacterial activities were evaluated. Our results showed that TD4 exerted the most potent antibacterial activity against a number of Staphylococcus aureus (S. aureus), including the methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis and Enterococcus faecalis strains, with the minimum inhibitory concentration (MIC) at 2-16 µg/mL. It inhibited the MRSA growth curve in a dose-dependent manner and reduced the colony formation unit in 4× MIC within 4 h. Under the transmission electron microscope, TD4 disrupted the integrity of MRSA cell wall. Additionally, it reduced the infective lesion size and the bacterial number in the MRSA-induced infection tissue of mice and possessed a good drug likeness according to the Lipinski rules. Our results indicate that TD4 is a potential lead compound for the development of novel antibacterial agent against the MRSA infection.
Collapse
Affiliation(s)
- Yachen Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Sikai Zhu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yamiao Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Moxi Yu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yongsheng Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
14
|
Lamret F, Lemaire A, Lagoutte M, Varin-Simon J, Abraham L, Colin M, Braux J, Velard F, Gangloff SC, Reffuveille F. Approaching prosthesis infection environment: Development of an innovative in vitro Staphylococcus aureus biofilm model. Biofilm 2023; 5:100120. [PMID: 37125394 PMCID: PMC10130472 DOI: 10.1016/j.bioflm.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
The major role and implication of bacterial biofilms in the case of bone and prosthesis infections have been highlighted and often linked to implant colonization. Management strategies of these difficult-to-treat infections consist in surgeries and antibiotic treatment, but the rate of relapse remains high, especially if Staphylococcus aureus, a high-virulent pathogen, is involved. Therapeutic approaches are not adapted to the specific features of biofilm in bone context whereas infectious environment is known to importantly influence biofilm structure. In the present study, we aim to characterize S. aureus SH1000 (methicillin-sensitive strain, MSSA) and USA300 (methicillin-resistant strain, MRSA) biofilm on different surfaces mimicking the periprosthetic environment. As expected, protein adsorption on titanium enhanced the number of adherent bacteria for both strains. On bone explant, USA300 adhered more than SH1000. The simultaneous presence of two different surfaces was also found to change the bacterial behaviour. Thus, proteins adsorption on titanium and bone samples (from bank or directly recovered after an arthroplasty) were found to be key parameters that influence S. aureus biofilm formation: adhesion, matrix production and biofilm-related gene regulation. These results highlighted the need for new biofilm models, more relevant with the infectious environment by using adapted culture medium and presence of surfaces that are representative of in situ conditions to better evaluate therapeutic strategies against biofilm.
Collapse
|
15
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
16
|
Current molecular approach for diagnosis of MRSA: a meta-narrative review. Drug Target Insights 2022; 16:88-96. [PMID: 36761068 PMCID: PMC9906022 DOI: 10.33393/dti.2022.2522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Detection and diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) are important in ensuring a correct and effective treatment, further reducing its spread. A wide range of molecular approaches has been used for the diagnosis of antimicrobial resistance (AMR) in MRSA. This review aims to study and appraise widely used molecular diagnostic methods for detecting MRSA. Methods: This meta-narrative review was performed by searching PubMed using the following search terms: (molecular diagnosis) AND (antimicrobial resistance) AND (methicillin-resistant Staphylococcus aureus). Studies using molecular diagnostic techniques for the detection of MRSA were included, while non-English language, duplicates and non-article studies were excluded. After reviewing the libraries and a further manual search, 20 studies were included in this article. RAMESES publication standard for narrative reviews was used for this synthesis. Results: A total of 20 full papers were reviewed and appraised in this synthesis, consisting of PCR technique (n = 7), deoxyribonucleic acid (DNA) Microarray (n = 1), DNA sequencing (n = 2), Xpert MRSA/SA BC assay (n = 2), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) (n = 2), MLST (n = 4), SCCmec typing (n = 1) and GENECUBE (n = 1). Discussion: Different diagnostic methods used to diagnose MRSA have been studied in this review. This study concludes that PCR has been extensively used due to its higher sensitivity and cost-effectiveness in the past five years
Collapse
|
17
|
Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis. Foods 2022; 11:foods11233862. [PMID: 36496670 PMCID: PMC9738827 DOI: 10.3390/foods11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Bacteria enter milk during poor hygiene practices and can form a biofilm on surfaces that come into contact with human milk. The presence of a biofilm increases the risk of infections among newborns as bacteria protected by biofilm are resistant to washing and disinfection processes. The formation of the biofilm depends on the microbial species, environmental conditions, and the specific materials colonized. The aim of this study is to analyze the effects of factors such as temperature, incubation time, and initial cell concentration on biofilm formation by pathogenic bacteria isolated from human milk on model hydrophobic polystyrene surfaces. Model studies confirm that pathogenic bacteria appearing in human milk as a result of cross-contamination tend to form a biofilm. The majority of isolates formed biofilm at both 25 and 37 °C after 12 h at 1 × 103 CFU/mL inoculum count. Multivariate principal component analysis (PCA) showed that at lower temperatures, biofilm formation by bacterial isolates was the main determinant of biofilm formation, other factors were less important; however, at 37 °C, time was a factor in biofilm formation. The model research performed underlines the importance of maintaining the proper hygiene of rooms, surfaces, and devices for expressing, storing, and preparing mothers' milk and powdered infant formula (PIF) in facilities responsible for feeding newborns and premature babies.
Collapse
|
18
|
Zheng M, Zhu K, Peng H, Shang W, Zhao Y, Lu S, Rao X, Li M, Zhou R, Li G. CcpA Regulates Staphylococcus aureus Biofilm Formation through Direct Repression of Staphylokinase Expression. Antibiotics (Basel) 2022; 11:antibiotics11101426. [PMID: 36290085 PMCID: PMC9598941 DOI: 10.3390/antibiotics11101426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus represents a notorious opportunistic pathogen causing various infections in biofilm nature, imposing remarkable therapeutic challenges worldwide. The catabolite control protein A (CcpA), a major regulator of carbon catabolite repression (CCR), has been recognized to modulate S. aureus biofilm formation, while the underlying mechanism remains to be fully elucidated. In this study, the reduced biofilm was firstly determined in the ccpA deletion mutant of S. aureus clinical isolate XN108 using both crystal violet staining and confocal laser scanning microscopy. RNA-seq analysis suggested that sak-encoding staphylokinase (Sak) was significantly upregulated in the mutant ∆ccpA, which was further confirmed by RT-qPCR. Consistently, the induced Sak production correlated the elevated promoter activity of sak and increased secretion in the supernatants, as demonstrated by Psak-lacZ reporter fusion expression and chromogenic detection, respectively. Notably, electrophoretic mobility shift assays showed that purified recombinant protein CcpA binds directly to the promoter region of sak, suggesting the direct negative control of sak expression by CcpA. Double isogenic deletion of ccpA and sak restored biofilm formation for mutant ∆ccpA, which could be diminished by trans-complemented sak. Furthermore, the exogenous addition of recombinant Sak inhibited biofilm formation for XN108 in a dose-dependent manner. Together, this study delineates a novel model of CcpA-controlled S. aureus biofilm through direct inhibition of sak expression, highlighting the multifaceted roles and multiple networks regulated by CcpA.
Collapse
Affiliation(s)
- Mingxia Zheng
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Keting Zhu
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Correspondence: (M.L.); (R.Z.); (G.L.)
| | - Renjie Zhou
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Correspondence: (M.L.); (R.Z.); (G.L.)
| | - Gang Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Correspondence: (M.L.); (R.Z.); (G.L.)
| |
Collapse
|
19
|
Influence of Environmental Factors on Biofilm Formation of Staphylococci Isolated from Wastewater and Surface Water. Pathogens 2022; 11:pathogens11101069. [PMID: 36297126 PMCID: PMC9611571 DOI: 10.3390/pathogens11101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of biofilms can negatively affect several different areas, such as the food industry, environment, and biomedical sectors. Conditions under which bacteria grow and develop, such as temperature, nutrients, and pH, among others, can largely influence biofilm production. Staphylococcus species survive in the natural environment due to their tolerance to a wide range of temperatures, dryness, dehydration, and low water activity. Therefore, we aimed to evaluate the influence of external environmental factors on the formation of biofilm of staphylococci isolated from hospital wastewater and surface waters. We investigated the biofilm formation of methicillin-resistant and -susceptible S. aureus (MRSA and MSSA) and coagulase-negative staphylococci (CoNS) under various temperatures, pH values, salt concentrations, glucose concentrations, and under anaerobic and aerobic conditions. CoNS had the ability to produce more biofilm biomass than MSSA and MRSA. All environmental factors studied influenced the biofilm formation of staphylococci isolates after 24 h of incubation. Higher biofilm formation was achieved at 4% of NaCl and 0.5% of glucose for MSSA and CoNS, and 1% of NaCl and 1.5% of glucose for MRSA isolates. Biofilm formation of isolates was greater at 25 °C and 37 °C than at 10 °C and 4 °C. pH values between 6 and 8 led to more robust biofilm formation than pH levels of 9 and 5. Although staphylococci are facultative anaerobes, biofilm formation was higher in the presence of oxygen. The results demonstrated that multiple environmental factors affect staphylococci biofilm formation. Different conditions affect differently the biofilm formation of MRSA, MSSA, and CoNS strains.
Collapse
|
20
|
The prevalence of virulence determinants in methicillin-resistant Staphylococcus aureus isolated from different infections in hospitalized patients in Poland. Sci Rep 2022; 12:5477. [PMID: 35361858 PMCID: PMC8971418 DOI: 10.1038/s41598-022-09517-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for hard-to-treat infections. The presence of 19 virulence genes in 120 MRSA isolates obtained from hospitalized patients and genetic relationships of these isolates were investigated. The eno (100%) and ebps (93.3%) genes encoding laminin- and elastin binding proteins, respectively, were ubiquitous. Other adhesion genes: fib (77.5%), fnbB (41.6%), bbp (40.8%), cna (30.8%) encoding proteins binding fibrinogen, fibronectin, bone sialoprotein and collagen, respectively, and map/eap (62.5%), encoding Eap, were also frequent. The etB and etD genes, encoding exfoliative toxins, were present in 15.6% and 12.5% isolates, respectively. The splA, splE and sspA, encoding serine protease were detected in 100%, 70.8% and 94.2% isolates, respectively. The tst gene, encoding toxic shock syndrome toxin-1 was found in 75% isolates. The cna, map/eap and tst genes were the most common in wound isolates and much less common in blood isolates. We identified 45 different spa types, t003 (21.7%) and t008 (18.8%) being the most common. The t003 was the most frequent among isolates from the respiratory tract (35.5%), while t008 in blood isolates (40%). Identification of virulence factors of MRSA is important for evaluation of pathogen transmission rate and disease development.
Collapse
|
21
|
Klagisa R, Racenis K, Broks R, Kise L, Kroiča J. Evaluation of Staphylococcus aureus Colonization in Adult Patients Undergoing Tonsillectomy for Recurrent Tonsillitis. Pathogens 2022; 11:pathogens11040427. [PMID: 35456100 PMCID: PMC9029959 DOI: 10.3390/pathogens11040427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Background and objectives: Staphylococcus aureus (S. aureus) is often recovered from the pharynx. However, the role of this pathogen in the etiology of tonsillar inflammation is still unclear and complicated due to frequent carriage of S. aureus. The aim of the study was to evaluate the frequency and the clinical importance of S. aureus colonization and biofilm production ability in patients with recurrent tonsillitis (RT) using patient samples from tonsillar crypts during tonsillectomy, and from the throat, nasal cavity, and armpits after tonsillectomy. Materials and Methods: A case series study was carried out at a tertiary referral center among 16 patients diagnosed with RT who were undergoing tonsillectomy. Samples from tonsillar crypts were obtained during tonsillectomy, and samples from the throat, nasal cavity, and armpit were obtained a year after surgery. An evaluation of S. aureus incidence, biofilm formation, and antibacterial susceptibility was performed. Results: During tonsillectomy, 16 strains of S. aureus were isolated from 16 patients, while 15/16 S. aureus strains were biofilm producers. A year after tonsillectomy, 8 S. aureus strains were isolated from 6 out of 16 patients, while 6/8 S. aureus strains were biofilm producers. After tonsillectomy, 3 patients showed S. aureus in throat culture. Conclusions: In 10/16 cases S. aureus was the causative agent of RT, in 4/16 cases patients had a predisposition to colonization of S. aureus, and in 2/16 cases S. aureus was a part of the patients` oral microbiome. Tonsillectomy results in less frequent isolation of S. aureus strains.
Collapse
Affiliation(s)
- Renata Klagisa
- Department of Otorhinolaryngology, Daugavpils Regional Hospital, LV-5401 Daugavpils, Latvia
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia;
- Correspondence: ; Tel.: +371-28471191
| | - Karlis Racenis
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.R.); (R.B.); (J.K.)
- Center of Nephrology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Renars Broks
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.R.); (R.B.); (J.K.)
| | - Ligija Kise
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Juta Kroiča
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.R.); (R.B.); (J.K.)
| |
Collapse
|
22
|
Paulitsch-Fuchs AH, Bödendorfer B, Wolrab L, Eck N, Dyer NP, Lohberger B. Effect of Cobalt–Chromium–Molybdenum Implant Surface Modifications on Biofilm Development of S. aureus and S. epidermidis. Front Cell Infect Microbiol 2022; 12:837124. [PMID: 35300379 PMCID: PMC8921486 DOI: 10.3389/fcimb.2022.837124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Periprosthetic infections are an eminent factor in patient care and also having significant economic implications. The number of biofilm-infection related replacement surgeries is increasing and will continue to do so in the following decades. To reduce both the health burden of the patients and the costs to the healthcare sector, new solutions for implant materials resistant to such infections are necessary. This study researches different surface modifications of cobalt–chromium–molybdenum (CoCrMo) based implant materials and their influence on the development of biofilms. Three smooth surfaces (CoCrMo, CoCrMo TiN, and CoCrMo polished) and three rough surfaces (CoCrMo porous coated, CoCrMo cpTi, and CoCrMo TCP) are compared. The most common infectious agents in periprosthetic infections are Staphylococcus aureus and Coagulase-negative staphylococci (e.g., Staphylococcus epidermidis), therefore strains of these two species have been chosen as model organisms. Biofilms were grown on material disks for 48 h and cell number, polysaccharide content, and protein contend of the biofilms were measured. Additionally, regulation of genes involved in early biofilm development (S. aureus icaA, icaC, fnbA, fnbB, clfB, atl; S. epidermidis atlE, aap) was detected using RT-q-PCR. All results were compared to the base alloy without modifications. The results show a correlation between the surface roughness and the protein and polysaccharide content of biofilm structures and also the gene expression of the biofilms grown on the different surface modifications. This is supported by the significantly different protein and polysaccharide contents of the biofilms associated with rough and smooth surface types. Additionally, early phase biofilm genes (particularly icaA, icaC, and aap) are statistically significantly downregulated compared to the control at 48 h on rough surfaces. CoCrMo TiN and polished CoCrMo were the two smooth surface modifications which performed best on the basis of low biofilm content.
Collapse
Affiliation(s)
- Astrid H. Paulitsch-Fuchs
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Benjamin Bödendorfer
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
| | - Lukas Wolrab
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Nigel P. Dyer
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
- *Correspondence: Birgit Lohberger,
| |
Collapse
|
23
|
Mgomi FC, Yuan L, Chen CW, Zhang YS, Yang ZQ. Bacteriophages: A weapon against mixed-species biofilms in the food processing environment. J Appl Microbiol 2021; 133:2107-2121. [PMID: 34932868 DOI: 10.1111/jam.15421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Mixed-species biofilms represent the most frequent actual lifestyles of microorganisms in food processing environments, and they are usually more resistant to control methods than single-species biofilms. The persistence of biofilms formed by foodborne pathogens is believed to cause serious human diseases. These challenges have encouraged researchers to search for novel, natural methods that are more effective towards mixed-species biofilms. Recently, the use of bacteriophages to control mixed-species biofilms have grown significantly in the food industry as an alternative to conventional methods. This review highlights a comprehensive introduction of mixed-species biofilms formed by foodborne pathogens and their enhanced resistance to anti-biofilm removal strategies. Additionally, several methods for controlling mixed-species biofilms briefly focused on applying bacteriophages in the food industry have also been discussed. This article concludes by suggesting that using bacteriophage, combined with other 'green' methods, could effectively control mixed-species biofilms in the food industry.
Collapse
Affiliation(s)
- Fedrick C Mgomi
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Cao-Wei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yuan-Song Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| |
Collapse
|
24
|
Gaire U, Thapa Shrestha U, Adhikari S, Adhikari N, Bastola A, Rijal KR, Ghimire P, Banjara MR. Antibiotic Susceptibility, Biofilm Production, and Detection of mecA Gene among Staphylococcus aureus Isolates from Different Clinical Specimens. Diseases 2021; 9:diseases9040080. [PMID: 34842640 PMCID: PMC8628674 DOI: 10.3390/diseases9040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing incidence of methicillin-resistant and biofilm-forming S. aureus isolates in hospital settings is a gruesome concern today. The main objectives of this study were to determine the burden of S. aureus in clinical samples, assess their antibiotic susceptibility pattern and detect biofilm formation and mecA gene in them. A total of 1968 different clinical specimens were processed to isolate S. aureus following standard microbiological procedures. Antibiotic susceptibility test of the isolates was performed by Kirby–Bauer disc-diffusion method following CLSI guidelines. Biofilm was detected through tissue culture plate method. Methicillin-resistant S. aureus (MRSA) isolates were screened using cefoxitin (30 µg) discs and mecA gene was amplified by conventional polymerase chain reaction (PCR). Of 177 bacterial growth, the prevalence of S. aureus was 15.3% (n = 27). MRSA were 55.6% (15/27) and 44% (12/27) exhibited multidrug resistance (MDR). There was no significant association between methicillin resistance and MDR (p > 0.05). Both MRSA and MSSA were least sensitive to penicillin (100%, 75%) followed by erythromycin (86.6%, 66.6%). Most of the MRSA (93.4%) were susceptible to tetracycline. All S. aureus isolates were biofilm producers—19 (70%) were weak and only one (4%) was a strong biofilm producer. The strong biofilm-producing MSSA was resistant to most of the antibiotics except cefoxitin and clindamycin. None of the MSSA possessed mecA gene while 8 (53.3%) MRSA had it. More than half of S. aureus isolated were MRSA. High incidence of multidrug resistance along with capacity to form biofilm among clinical isolates of S.aureus is a matter of apprehension and prompt adoption of biosafety measures is suggested to curb their dissemination in the hospital environments.
Collapse
Affiliation(s)
- Upama Gaire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Upendra Thapa Shrestha
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Sanjib Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Anup Bastola
- Sukraraj Tropical and Infectious Diseases Hospital, Teku, Kathmandu 44600, Nepal;
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
- Correspondence: (K.R.R.); (M.R.B.)
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
- Correspondence: (K.R.R.); (M.R.B.)
| |
Collapse
|
25
|
Identification of cbiO Gene Critical for Biofilm Formation by MRSA CFSa36 Strain Isolated from Pediatric Patient with Cystic Fibrosis. Pathogens 2021; 10:pathogens10111363. [PMID: 34832519 PMCID: PMC8622116 DOI: 10.3390/pathogens10111363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
The colonization of Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has a detrimental effect on the respiratory care of pediatric patients with cystic fibrosis (CF). In addition to being resistant to multiple antibiotics, S. aureus also has the ability to form biofilms, which makes the infection more difficult to treat and eradicate. In this study, we examined the ability of S. aureus strains isolated from pediatric patients with CF to form biofilms. We screened a transposon mutant library of MRSA and identified a putative cobalt transporter ATP binding domain (cbiO) that is required for biofilm formation. We discovered that deleting cbiO creating a cbiO null mutant in CFSa36 (an MRSA strain isolated from a patient with cystic fibrosis) significantly hinders the ability of CFSa36 to form biofilm. The complementation of cbiO restored the ability of the cbiO deletion mutant to generate biofilm. Interestingly, we revealed that incorporating extra copper ions to the chemically defined medium (CDM) complemented the function of cbiO for biofilm formation in a dose-dependent manner, while the addition of extra iron ions in CDM enhanced the effect of cbiO null mutation on biofilm formation. In addition, neither the addition of certain extra amounts of copper ions nor iron ions in CDM had an impact on bacterial growth. Taken together, our findings suggest that cbiO mediates biofilm formation by affecting the transportation of copper ions in the MRSA CFSa36 strain. This study provides new insights into the molecular basis of biofilm formation by S. aureus.
Collapse
|
26
|
Lamret F, Varin-Simon J, Velard F, Terryn C, Mongaret C, Colin M, Gangloff SC, Reffuveille F. Staphylococcus aureus Strain-Dependent Biofilm Formation in Bone-Like Environment. Front Microbiol 2021; 12:714994. [PMID: 34557170 PMCID: PMC8453086 DOI: 10.3389/fmicb.2021.714994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus species is an important threat for hospital healthcare because of frequent colonization of indwelling medical devices such as bone and joint prostheses through biofilm formations, leading to therapeutic failure. Furthermore, bacteria within biofilm are less sensitive to the host immune system responses and to potential antibiotic treatments. We suggested that the periprosthetic bone environment is stressful for bacteria, influencing biofilm development. To provide insights into S. aureus biofilm properties of three strains [including one methicillin-resistant S. aureus (MRSA)] under this specific environment, we assessed several parameters related to bone conditions and expected to affect biofilm characteristics. We reported that the three strains harbored different behaviors in response to the lack of oxygen, casamino acids and glucose starvation, and high concentration of magnesium. Each strain presented different biofilm biomass and live adherent cells proportion, or matrix production and composition. However, the three strains shared common responses in a bone-like environment: a similar production of extracellular DNA and engagement of the SOS response. This study is a step toward a better understanding of periprosthetic joint infections and highlights targets, which could be common among S. aureus strains and for future antibiofilm strategies.
Collapse
Affiliation(s)
- Fabien Lamret
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France
| | | | - Frédéric Velard
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France
| | - Christine Terryn
- Plateforme en Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | - Céline Mongaret
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Service Pharmacie, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, Reims, France
| | - Sophie C Gangloff
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, Reims, France
| | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, Reims, France
| |
Collapse
|
27
|
Bright R, Hayles A, Fernandes D, Visalakshan RM, Ninan N, Palms D, Burzava A, Barker D, Brown T, Vasilev K. In Vitro Bactericidal Efficacy of Nanostructured Ti6Al4V Surfaces is Bacterial Load Dependent. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38007-38017. [PMID: 34374279 DOI: 10.1021/acsami.1c06919] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The demand for medical implants globally has increased significantly due to an aging population amongst other reasons. Despite the overall increase in the survivorship of Ti6Al4V implants, implant infection rates are increasing due to factors such as diabetes, obesity, and bacterial resistance to antibiotics. Two commonly found bacteria implicated in implant infections are Staphylococcus aureus and Pseudomonas aeruginosa. Based on prior work that showed nanostructured surfaces might have potential in passively killing these bacterial species, we developed a hierarchical, hydrothermally etched, nanostructured titanium surface. To evaluate the antibacterial efficacy of this surface, etched and as-received surfaces were inoculated with S. aureus or P. aeruginosa at concentrations ranging from 102 to 109 colony-forming units per disc. Live/dead staining revealed there was a 60% decrease in viability for S. aureus and greater than a 98% decrease for P. aeruginosa on etched surfaces at the lowest inoculum of 102 CFU/disc, when compared to the control surface. Bactericidal efficiency decreased with increasing bacterial concentrations in a stepwise manner, with decreases in bacterial viability noted for S. aureus above 105 CFU/disc and above 106 CFU/disc for P. aeruginosa. Surprisingly, biofilm depth analysis revealed a decrease in bacterial viability in the 2 μm layer furthest from the nanostructured surface. The nanostructured Ti6Al4V surface developed here holds the potential to reduce the rate of implant infections.
Collapse
Affiliation(s)
- Richard Bright
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Andrew Hayles
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Daniel Fernandes
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Rahul M Visalakshan
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Neethu Ninan
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Dennis Palms
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Anouck Burzava
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Dan Barker
- Corin Australia, Baulkham Hills, NSW 2153, Australia
| | - Toby Brown
- Corin Australia, Baulkham Hills, NSW 2153, Australia
| | - Krasimir Vasilev
- STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| |
Collapse
|
28
|
Vashchenko AO, Voronkova YS, Kulyk EE, Snisar OS, Sidashenko OI, Voronkova OS. Influence of sugars on biofilm formation of Staphylococcus epidermidis. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The problem of biofilm formation by clinical strains of opportunistic bacteria is one of the most significant for medicine, because in a state of biofilm bacteria become more resistant to environmental factors, including antibiotics, a situation that can cause failure of treatment. Among opportunistic pathogens staphylococci are of special interest. Knowledge about the peculiarities of biofilm formation of these strains, in particular the polysaccharide biosynthesis, can be used for creation of a strategy of prophylaxis of different lesions that bind with staphylococci. The effect of different concentrations of the most widespread sugars (glucose, sucrose, lactose, galactose) on the activity of biofilm formation by strains of Staphylococcus epidermidis was investigated. Strains of S. epidermidis (n = 7) were isolated from the reproductive tract of women with dysbiosis. The cultures were grown in universal synthetic media with concentration of one of the listed sugars (0.5–3.0%) during 72 h. Results were obtained colorimetrically. We studied the number of cells in biofilm and the index of biofilm formation. The largest number of cells in the biofilm was observed when the culture incubated in a medium with 2.0% of glucose (increase of 25.3 times compared to control). The amount of CFU in the control biofilm was 9.96 lg CFU/mL. The glucose concentration of 3.0% inhibited the biofilm formation: the number of cells in the biofilm was 569 times less compared to the control. The highest value of biofilm formation index was 7.2, which was 1.3 times higher than the control (5.4). In the presence of lactose and galactose in nutrient medium in concentrations from 1.0% a decrease in the number of cells and biofilm formation index were observed. The received data show that process of biofilm formation is significantly dependent on external sources of sugars, which can indicate the possibility of their use as antibiofilm drug compounds, which inhibit membrane transport of sugars in bacteria.
Collapse
|
29
|
Stuermer EK, Besser M, Brill F, Geffken M, Plattfaut I, Severing AL, Wiencke V, Rembe JD, Naumova EA, Kampe A, Debus S, Smeets R. Comparative analysis of biofilm models to determine the efficacy of antimicrobials. Int J Hyg Environ Health 2021; 234:113744. [PMID: 33780904 DOI: 10.1016/j.ijheh.2021.113744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023]
Abstract
Biofilms are one of the greatest challenges in today's treatment of chronic wounds. While antimicrobials kill platonic bacteria within seconds, they are rarely able to harm biofilms. In order to identify effective substances for antibacterial therapy, cost-efficient, standardized and reproducible models that aim to mimic the clinical situation are required. In this study, two 3D biofilm models based on human plasma with immune cells (lhBIOM) or based on sheep blood (sbBIOM) containing S. aureus or P. aeruginosa, are compared with the human biofilm model hpBIOM regarding their microscopic structure (scanning electron microscopy; SEM) and their bacterial resistance to octenidine hydrochloride (OCT) and a sodium hypochlorite (NaOCl) wound-irrigation solution. The three analyzed biofilm models show little to no reaction to treatment with the hypochlorous solution while planktonic S. aureus and P. aeruginosa cells are reduced within minutes. After 48 h, octenidine hydrochloride manages to erode the biofilm matrix and significantly reduce the bacterial load. The determined effects are qualitatively reflected by SEM. Our results show that both ethically acceptable human and sheep blood based biofilm models can be used as a standard for in vitro testing of new antimicrobial substances. Due to their composition, both fulfill the criteria of a reality-reflecting model and therefore should be used in the approval for new antimicrobial agents.
Collapse
Affiliation(s)
- E K Stuermer
- Dept. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Martini Street 52, 20246, Hamburg, Germany.
| | - M Besser
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany
| | - F Brill
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Stiegstueck 34, 22339, Hamburg, Germany
| | - M Geffken
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - I Plattfaut
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany
| | - A L Severing
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany
| | - V Wiencke
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Stiegstueck 34, 22339, Hamburg, Germany
| | - J D Rembe
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany; Dpt. of Vascular and Endovascular Surgery, Heinrich-Heine-University of Düsseldorf, Moorenstreet 5, 40225, Düsseldorf, Germany
| | - E A Naumova
- Department of Biological and Material Sciences in Dentistry, School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - A Kampe
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Stiegstueck 34, 22339, Hamburg, Germany
| | - S Debus
- Dept. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Martini Street 52, 20246, Hamburg, Germany
| | - R Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martini Street 52, 20246, Hamburg, Germany
| |
Collapse
|
30
|
Dotto C, Lombarte Serrat A, Ledesma M, Vay C, Ehling-Schulz M, Sordelli DO, Grunert T, Buzzola F. Salicylic acid stabilizes Staphylococcus aureus biofilm by impairing the agr quorum-sensing system. Sci Rep 2021; 11:2953. [PMID: 33536503 PMCID: PMC7858585 DOI: 10.1038/s41598-021-82308-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Salicylic acid (SAL) has recently been shown to induce biofilm formation in Staphylococcus aureus and to affect the expression of virulence factors. This study was aimed to investigate the effect of SAL on the regulatory agr system and its impact on S. aureus biofilm formation. The agr quorum-sensing system, which is a central regulator in S. aureus pathogenicity, plays a pivotal role in the dispersal of S. aureus mature biofilms and contributes to the creation of new colonization sites. Here, we demonstrate that SAL impairs biofilm dispersal by interfering with agr expression. As revealed by our work, protease and surfactant molecule production is diminished, and bacterial cell autolysis is also negatively affected by SAL. Furthermore, as a consequence of SAL treatment, the S. aureus biofilm matrix revealed the lack of extracellular DNA. In silico docking and simulation of molecular dynamics provided evidence for a potential interaction of AgrA and SAL, resulting in reduced activity of the agr system. In conclusion, SAL stabilized the mature S. aureus biofilms, which may prevent bacterial cell dissemination. However, it may foster the establishment of infections locally and consequently increase bacterial persistence leading to therapeutic failure.
Collapse
Affiliation(s)
- Cristian Dotto
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Andrea Lombarte Serrat
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Ledesma
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vay
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Daniel O Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Fernanda Buzzola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|