1
|
Sousa A, Dinis-Oliveira RJ. Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects. Subst Abus 2020; 41:155-173. [PMID: 31951804 DOI: 10.1080/08897077.2019.1700584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modafinil is a nonamphetamine nootropic drug with an increasingly therapeutic interest due to its different sites of action and behavioral effects in comparison to cocaine or amphetamine. A review of modafinil (and of its prodrug adrafinil and its R-enantiomer armodafinil) chemical, pharmacokinetic, pharmacodynamic, toxicological, clinical and forensic aspects was performed, aiming to better understand possible health problems associated to its unconscious and unruled use. Modafinil is a racemate metabolized mainly in the liver into its inactive acid and sulfone metabolites, which undergo primarily renal excretion. Although not fully clarified, major effects seem to be associated to inhibition of dopamine reuptake and modulation of several other neurochemical pathways, namely noradrenergic, serotoninergic, orexinergic, histaminergic, glutamatergic and GABAergic. Due its wake-promoting effects, modafinil is used for the treatment of daily sleepiness associated to narcolepsy, obstructive sleep apnea and shift work sleep disorder. Its psychotropic and cognitive effects are also attractive in several other pathologies and conditions that affect sleep structure, induce fatigue and lethargy, and impair cognitive abilities. Additionally, in health subjects, including students, modafinil is being used off-label to overcome sleepiness, increase concentration and improve cognitive potential. The most common adverse effects associated to modafinil intake are headache, insomnia, anxiety, diarrhea, dry mouth and raise in blood pressure and heart rate. Infrequently, severe dermatologic effects in children, including maculopapular and morbilliform rash, erythema multiforme and Stevens-Johnson Syndrome have been reported. Intoxication and dependence associated to modafinil are uncommon. Further research on effects and health implications of modafinil and its analogs is steel needed to create evidence-based policies.
Collapse
Affiliation(s)
- Ana Sousa
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.,IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Rowland A, Mangoni AA, Hopkins A, Sorich MJ, Rowland A. Optimized Cocktail Phenotyping Study Protocol Using Physiological Based Pharmacokinetic Modeling and In silico Assessment of Metabolic Drug-Drug Interactions Involving Modafinil. Front Pharmacol 2017; 7:517. [PMID: 28082902 PMCID: PMC5186771 DOI: 10.3389/fphar.2016.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
In vivo cocktail pathway phenotyping (ICPP) is routinely used to assess the metabolic drug-drug interaction (mDDI) potential of new drug candidates (NDC) during drug development. However, there are a number of potential limitations to this approach and the use of validated drug cocktails and study protocols is essential. Typically ICPP mDDI studies assess only the impact of interactions following multiple postulated perpetrator doses and hence the emphasis in terms of validation of these studies has been ensuring that there are no interactions between probe substrates. Studies assessing the comparative impact of single and multiple doses of the postulated perpetrator have the potential to provide richer information regarding both the clinical impact and mechanism of mDDIs. Using modafinil as a model compound, we sought to develop an optimized ICPP mDDI study protocol to evaluate the potential magnitude and clinical relevance of mDDIs using a physiologically based pharmacokinetic modeling approach.
Collapse
Affiliation(s)
- Angela Rowland
- Department of Clinical Pharmacology, School of Medicine, Flinders University Adelaide, SA, Australia
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, School of Medicine, Flinders UniversityAdelaide, SA, Australia; Precision Medicine Group, Flinders Center for Innovation in Cancer, School of Medicine, Flinders University AdelaideSA, Australia
| | - Ashley Hopkins
- Department of Clinical Pharmacology, School of Medicine, Flinders UniversityAdelaide, SA, Australia; Precision Medicine Group, Flinders Center for Innovation in Cancer, School of Medicine, Flinders University AdelaideSA, Australia
| | - Michael J Sorich
- Department of Clinical Pharmacology, School of Medicine, Flinders UniversityAdelaide, SA, Australia; Precision Medicine Group, Flinders Center for Innovation in Cancer, School of Medicine, Flinders University AdelaideSA, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology, School of Medicine, Flinders UniversityAdelaide, SA, Australia; Precision Medicine Group, Flinders Center for Innovation in Cancer, School of Medicine, Flinders University AdelaideSA, Australia
| |
Collapse
|
3
|
Abstract
Medications promoting wakefulness are currently used in psychopharmacology in different contexts and with different objectives. In particular, they may be used for the treatment of syndromes that primarily show significant impairment in alertness/wakefulness (e.g., excessive sleepiness and other sleep disorders) as well as for the symptomatic treatment of different neuropsychiatric disorders that, in turn, are not exclusively characterized by sleep-wake disturbances (like mood disorders, for instance). In addition, several psychotropic compounds, including some antipsychotics, mood stabilizers, antidepressants, and anxiolytics have well-established sedating side effects that may go beyond the therapeutic target and require the symptomatic use of wake-promoting agents. Even though such a clinical scenario reflects millions of individuals affected (alterations of wakefulness have a prevalence rate of 20-43% in the general population), relatively few pharmacotherapies are available, mainly including compounds with psychostimulating effects, such as methylphenidate, modafinil, and armodafinil and some amphetaminic agents. In light of their side effects and potential for abuse, such compounds have received FDA approval only for a limited number of psychiatric disorders. Nonetheless, their clinical application has recently become more widespread, including attention deficit hyperactivity disorder, narcolepsy, treatment-resistant depression, bipolar disorder, shift work sleep disorder, schizophrenia, and addictions. Wake-promoting agents have different mechanisms of action, peculiar clinical strengths and specific limitations, with novel drugs in the field under extensive investigation. The present review is aimed to provide an updated overview of the aforementioned compounds as well as investigational drugs in the field, in terms of mechanism of action, indications and use in clinical practice.
Collapse
|
4
|
Nadkarni A, Oldham MA, Howard M, Berenbaum I. Drug-Drug Interactions Between Warfarin and Psychotropics: Updated Review of the Literature. Pharmacotherapy 2012; 32:932-42. [DOI: 10.1002/j.1875-9114.2012.01119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Mark Howard
- Boston University School of Medicine; Boston; Massachusetts
| | | |
Collapse
|
5
|
Nadkarni A, Oldham MA, Howard M, Berenbaum I. Drug-Drug Interactions Between Warfarin and Psychotropics: Updated Review of the Literature. Pharmacotherapy 2012. [DOI: 10.1002/phar.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Mark Howard
- Boston University School of Medicine; Boston; Massachusetts
| | | |
Collapse
|
6
|
Abstract
Anticoagulants and psychotropic medications are commonly prescribed together. Thus, the potential for interaction exists. Whereas thrombolytics and heparins are implicated in few pharmacokinetic interactions, warfarin and platelet inhibitors have been implicated in various interactions with psychotropic medications. In this article, I review the various psychotropic drug classes' relationships to anticoagulants. In a field devoid of randomized, placebo-controlled trials, clinical vigilance is advised when managing patients on concomitant therapy.
Collapse
|
7
|
Schwartz JRL. Modafinil in the treatment of excessive sleepiness. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:71-85. [PMID: 19920895 PMCID: PMC2761173 DOI: 10.2147/dddt.s2377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The wake-promoting agent modafinil is approved for the treatment of excessive sleepiness associated with obstructive sleep apnea (OSA), shift work disorder (SWD), and narcolepsy. In OSA, modafinil is recommended for use as an adjunct to standard therapies that treat the underlying airway obstruction. This article reviews the literature on modafinil (pharmacology, pharmacokinetics, efficacy, tolerability, and abuse potential), with emphasis on use of modafinil in the treatment of excessive sleepiness in patients with OSA, SWD, and narcolepsy. In large-scale, double-blind, placebo-controlled studies, modafinil improved objectively determined sleep latency, improved overall clinical condition related to severity of sleepiness, and reduced patient-reported sleepiness. Improvements in wakefulness were accompanied by improvements in behavioral alertness, functional status, and health-related quality of life. In patients with SWD, diary data showed modafinil reduced the maximum level of sleepiness during night shift work, level of sleepiness during the commute home, and incidence of accidents or near-accidents during the commute home when compared with placebo. Modafinil was well tolerated, without adversely affecting cardiovascular parameters or scheduled sleep. These findings and those of extension studies which reported improvements were maintained suggest modafinil has a beneficial effect on daily life and well-being in patients with excessive sleepiness associated with OSA, SWD, or narcolepsy.
Collapse
Affiliation(s)
- Jonathan R L Schwartz
- INTEGRIS Sleep Disorders Center and University of Oklahoma Health Sciences Center, 4200 S. Douglas Avenue, Oklahoma City, OK 73109, USA.
| |
Collapse
|
8
|
Abstract
Modafinil is a wake-promoting agent that is pharmacologically different from other stimulants. It has been investigated in healthy volunteers, and in individuals with clinical disorders associated with excessive sleepiness, fatigue, impaired cognition and other symptoms. This review examines the use of modafinil in clinical practice based on the results of randomized, double-blind, placebo-controlled clinical trials available in the English language in the MEDLINE database. In sleep-deprived individuals, modafinil improves mood, fatigue, sleepiness and cognition to a similar extent as caffeine but has a longer duration of action. Evidence for improved cognition in non-sleep-deprived healthy volunteers is controversial.Modafinil improves excessive sleepiness and illness severity in all three disorders for which it has been approved by the US FDA, i.e. narcolepsy, shift-work sleep disorder and obstructive sleep apnoea with residual excessive sleepiness despite optimal use of continuous positive airway pressure (CPAP). However, its effects on safety on the job and on morbidities associated with these disorders have not been ascertained. Continued use of CPAP in obstructive sleep apnoea is essential. Modafinil does not benefit cataplexy.In very small, short-term trials, modafinil improved excessive sleepiness in patients with myotonic dystrophy. It was efficacious in fairly large studies of attention deficit hyperactivity disorder (ADHD) in children and adolescents, and was as efficacious as methylphenidate in a small trial, but has not been approved by the FDA, in part because of its serious dermatological toxicity. In a trial of 21 non-concurrent subjects, with 2-week treatment periods, modafinil was as effective as dexamfetamine in adult ADHD. Modafinil was helpful for depressive symptoms in bipolar disorder in a trial that excluded patients with stimulant-induced mania. A single dose of modafinil may hasten recovery from general anaesthesia after day surgery. A single dose of modafinil improved the ability of emergency room physicians to attend didactic lectures after a night shift, but did not improve their ability to drive home and caused sleep disturbances subsequently.Modafinil had a substantial placebo effect on outcomes such as fatigue, excessive sleepiness and depression in patients with traumatic brain injury, major depressive disorder, schizophrenia, post-polio fatigue and multiple sclerosis; however, it did not provide any benefit greater than placebo.Trials of modafinil for excessive sleepiness in Parkinson's disease, cocaine addiction and cognition in chronic fatigue syndrome provided inconsistent results; all studies had extremely small sample sizes. Modafinil cannot be recommended for these conditions until definitive data become available.Modafinil induces and inhibits several cytochrome P450 isoenzymes and has the potential for interacting with drugs from all classes. The modafinil dose should be reduced in the elderly and in patients with hepatic disease. Caution is needed in patients with severe renal insufficiency because of substantial increases in levels of modafinil acid. Common adverse events with modafinil include insomnia, headache, nausea, nervousness and hypertension. Decreased appetite, weight loss and serious dermatological have been reported with greater frequency in children and adolescents, probably due to the higher doses (based on bodyweight) used. Modafinil may have some abuse/addictive potential although no cases have been reported to date.
Collapse
Affiliation(s)
- Raminder Kumar
- Department of Family Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
9
|
Abstract
Modafinil (2-[(Diphenylmethyl) sulfinyl] acetamide, Provigil) is an FDA-approved medication with wake-promoting properties. Pre-clinical studies of modafinil suggest a complex profile of neurochemical and behavioral effects, distinct from those of amphetamine. In addition, modafinil shows initial promise for a variety of off-label indications in psychiatry, including treatment-resistant depression, attention-deficit/hyperactivity disorder, and schizophrenia. Cognitive dysfunction may be a particularly important emerging treatment target for modafinil, across these and other neuropsychiatric disorders. We aimed to comprehensively review the empirical literature on neurochemical actions of modafinil, and effects on cognition in animal models, healthy adult humans, and clinical populations. We searched PubMed with the search term 'modafinil' and reviewed all English-language articles for neurochemical, neurophysiological, cognitive, or information-processing experimental measures. We additionally summarized the pharmacokinetic profile of modafinil and clinical efficacy in psychiatric patients. Modafinil exhibits robust effects on catecholamines, serotonin, glutamate, gamma amino-butyric acid, orexin, and histamine systems in the brain. Many of these effects may be secondary to catecholamine effects, with some selectivity for cortical over subcortical sites of action. In addition, modafinil (at well-tolerated doses) improves function in several cognitive domains, including working memory and episodic memory, and other processes dependent on prefrontal cortex and cognitive control. These effects are observed in rodents, healthy adults, and across several psychiatric disorders. Furthermore, modafinil appears to be well-tolerated, with a low rate of adverse events and a low liability to abuse. Modafinil has a number of neurochemical actions in the brain, which may be related to primary effects on catecholaminergic systems. These effects are in general advantageous for cognitive processes. Overall, modafinil is an excellent candidate agent for remediation of cognitive dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael J Minzenberg
- Imaging Research Center, Davis School of Medicine, UC-Davis Health System, University of California, Sacramento, CA 95817, USA.
| | | |
Collapse
|
10
|
Darwish M, Kirby M, Robertson P, Hellriegel ET. Interaction Profile of Armodafinil with Medications Metabolized by Cytochrome P450 Enzymes 1A2, 3A4 and 2C19 in Healthy Subjects. Clin Pharmacokinet 2008; 47:61-74. [DOI: 10.2165/00003088-200847010-00006] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Persson KP, Ekehed S, Otter C, Lutz ESM, McPheat J, Masimirembwa CM, Andersson TB. Evaluation of Human Liver Slices and Reporter Gene Assays as Systems for Predicting the Cytochrome P450 Induction Potential of Drugs in Vivo in Humans. Pharm Res 2006; 23:56-69. [PMID: 16328606 DOI: 10.1007/s11095-005-8812-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 09/28/2005] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of the study was to investigate the feasibility of predicting human in vivo cytochrome P450 (CYP) induction properties of drugs using in vitro methods. METHODS The CYP induction potential of compounds was tested in human liver slices and in reporter gene assays for the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). RESULTS In human liver slices, CYP activities decreased dramatically over the experimental period, whereas mRNA levels could reliably be used to investigate CYP1A, 2C9, and 3A4 induction. However, the interindividual variations and demanding experimentation limit the use of liver slices in screening programs. Reporter gene assays are robust and reliable assays, amenable to high throughput screening. Several compounds activated AhR. The relevance of this activation, however, needs to be further investigated since there are no clear reports on drugs inducing CYP1A in vivo. The results from the PXR assay could be used to correctly classify compounds with known CYP3A induction properties when relating in vivo AUCtot to PXR EC50 values. CONCLUSIONS Liver slices are a valuable model to study the regulation of a larger number of enzymes by single compounds. The PXR reporter gene assay could be used as a reliable screening method to predict CYP3A induction in vivo.
Collapse
Affiliation(s)
- Kajsa P Persson
- DMPK & Bioanalytical Chemistry, AstraZeneca R&D Mölndal, 431 83, Mölndal, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Howgate EM, Rowland Yeo K, Proctor NJ, Tucker GT, Rostami-Hodjegan A. Prediction of in vivo drug clearance from in vitro data. I: impact of inter-individual variability. Xenobiotica 2006; 36:473-97. [PMID: 16769646 DOI: 10.1080/00498250600683197] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Simcyp Population-Based ADME Simulator was used to predict median drug clearances and their associated variance from in vitro data. Fifteen drugs satisfied the entry criteria for the study and the relevant information (in vitro metabolism data and in vivo human clearance values) were collated from the literature. Predicted values of median clearances fell within 2-fold of observed values for 73% of the drugs (oral route) and 78% of the drugs (intravenous route) when microsomal binding was disregarded, and for 93% (oral) and 100% (intravenous) when it was considered. Irrespective of whether microsomal binding was considered, the predicted fold variability fell within 2-fold of the observed variability for 80% (oral) and 67% (intravenous) of the drugs.
Collapse
Affiliation(s)
- E M Howgate
- Simcyp Ltd, Blades Enterprise Centre, Sheffield, UK
| | | | | | | | | |
Collapse
|
13
|
Abstract
In January 2004, the wake-promoting agent, modafinil, was approved in the US for the treatment of excessive sleepiness (ES) associated with obstructive sleep apnoea/hypopnoea syndrome (OSAHS) and shift-work sleep disorder (SWSD), representing an expansion of its labelling from the initial indication for ES associated with narcolepsy. A total of five randomised, placebo-controlled studies in these three disorders showed statistically significant benefits on various objective measures and subjective estimates of ES, including the Multiple Sleep Latency Test, Maintenance of Wakefulness Test, Epworth Sleepiness Scale and Karolinska Sleepiness Scale. Significant improvement was also seen in overall clinical condition (on the Clinical Global Impression of Change) and measures of sustained attention and reaction time (on the Psychomotor Vigilance Task). The clinical efficacy of modafinil, combined with improved safety over CNS stimulants, has made it the most prescribed medication for the treatment of ES associated with narcolepsy. Modafinil is the only medication approved for ES associated with OSAHS and SWSD (for OSAHS, it is indicated as an adjunct to standard treatments for the under-lying obstruction). Unlike many other medications used for ES, modafinil is not known to be abused. The most common adverse event reported in clinical studies was headaches; most were transient and mild-to-moderate in severity. Modafinil also has the potential for interactions with other drugs metabolised via cytochrome P450 enzyme pathways. Potential obstacles to the use of modafinil include an under-recognition of ES and its consequences. Increased education, both of the public and the medical community, should improve the recognition and therapy of ES.
Collapse
Affiliation(s)
- Jonathan R L Schwartz
- Integris Sleep Disorders Center of Oklahoma, Integris Southwest and Baptist Medical Centers, 4200 S. Douglas, Suite 313, Oklahoma City, OK 73109, USA.
| |
Collapse
|
14
|
Dorne JLCM, Walton K, Renwick AG. Human variability for metabolic pathways with limited data (CYP2A6, CYP2C9, CYP2E1, ADH, esterases, glycine and sulphate conjugation). Food Chem Toxicol 2004; 42:397-421. [PMID: 14871582 DOI: 10.1016/j.fct.2003.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 10/13/2003] [Indexed: 01/24/2023]
Abstract
Human variability in the kinetics of a number of phase I (CYP2A6, CYP2C9, CYP2E1, alcohol dehydrogenase and hydrolysis) and phase II enzymes (glycine and sulphate conjugation) was analysed using probe substrates metabolised extensively (>60%) by these routes. Published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and available data on subgroups of the population (effects of ethnicity, age and disease) were abstracted using parameters relating primarily to chronic exposure [metabolic and total clearances, area under the plasma concentration time-curve (AUC)] and acute exposure (C(max)). Interindividual differences in kinetics for all these pathways were low in healthy adults ranging from 21 to 34%. Pathway-related uncertainty factors to cover the 95th, 97.5th and 99th centiles of healthy adults were derived for each metabolic route and were all below the 3.16 kinetic default uncertainty factor in healthy adults, with the possible exception of CYP2C9*3/*3 poor metabolisers (based on a very limited number of subjects). Previous analyses of other pathways have shown that neonates represent the most susceptible subgroup and this was true also for glycine conjugation for which an uncertainty factor of 29 would be required to cover 99% of this subgroup. Neonatal data were not available for any other pathway analysed.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
15
|
Abstract
Modafinil is a unique wake-promoting agent for oral administration. Its pharmacological properties are distinct from those of other CNS agents, and it selectively targets neuronal pathways in the sleep/wake centres of the brain. After single or multiple oral doses, modafinil is readily absorbed, reaching maximum plasma concentrations at 2-4 hours after administration and pharmacokinetic steady state within 2-4 days. Its pharmacokinetics are dose-independent between 200 and 600 mg/day. The elimination half-life is approximately 12-15 hours, which is largely reflective of the pharmacokinetics of the longer-lived l-enantiomer. Modafinil is primarily eliminated via metabolism, mainly in the liver, with subsequent excretion in the urine. Less than 10% of the dose is excreted as unchanged drug. Metabolism is largely via amide hydrolysis, with lesser contributions from cytochrome P450 (CYP)-mediated oxidative pathways. In patients who are renally or hepatically compromised, the elimination processes can be slowed, and in a similar manner (although to a lesser extent), elimination in the elderly may be reduced due to normal effects of aging. Because modafinil is administered concomitantly with other medications, the potential for metabolic drug-drug interactions has been examined both in vitro and in vivo. In vitro, modafinil was observed to produce a reversible inhibition of CYP2C19 in human liver microsomes. It also caused a small, but concentration-dependent, induction of CYP1A2, CYP2B6 and CYP3A4 activities and suppression of CYP2C9 activity in primary cultures of human hepatocytes. Clinical studies have been conducted to examine the potential for interactions with methylphenidate, dexamfetamine, warfarin, ethinylestradiol and triazolam. The only substantive interactions observed were with ethinylestradiol and triazolam, apparently through induction of CYP3A4, primarily in the gastrointestinal system. Overall, the results of the interaction studies suggest that modafinil has potential to affect the pharmacokinetics of drugs that are metabolised by certain CYP enzymes. Compounds that induce or inhibit CYP activity are unlikely to have major effects on the pharmacokinetics of modafinil. In summary, the results show that modafinil is a moderately long-lived drug that is well absorbed and extensively metabolised.
Collapse
Affiliation(s)
- Philmore Robertson
- Department of Drug Safety and Disposition, Cephalon, Inc, West Chester, Pennsylvania, USA.
| | | |
Collapse
|
16
|
Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2002; 11:421-36. [PMID: 12271887 DOI: 10.1002/pds.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|