1
|
Tsao FHC, Li Z, Amessoudji AW, Jawdat D, Sadat M, Arabi Y, Meyer KC. The Role of Serum Albumin and Secretory Phospholipase A2 in Sepsis. Int J Mol Sci 2024; 25:9413. [PMID: 39273360 PMCID: PMC11395451 DOI: 10.3390/ijms25179413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sepsis is caused by a dysregulated host response to an infection that leads to cascading cell death and eventually organ failure. In this study, the role of inflammatory response serum secretory phospholipase A2 (sPLA2) and albumin in sepsis was investigated by determining the activities of the two proteins in serial serum samples collected on different days from patients with sepsis after enrollment in the permissive underfeeding versus standard enteral feeding protocols in an intensive care unit. Serum sPLA2 and albumin showed an inverse relationship with increasing sPLA2 activity and decreasing albumin membrane-binding activity in patients with evolving complications of sepsis. The activities of sPLA2 and albumin returned to normal values more rapidly in the permissive underfeeding group than in the standard enteral feeding group. The inverse sPLA2-albumin activity relationship suggests a complex interplay between these two proteins and a regulatory mechanism underlying cell membrane phospholipid homeostasis in sepsis. The decreased albumin-membrane binding activity in patients' serum was due to its fatty acid-binding sites occupied by pre-bound fatty acids that might alter albumin's structure, binding capacities, and essential functions. The sPLA2-albumin dual serum assays may be useful in determining whether nutritional intervention effectively supports the more rapid recovery of appropriate immune responses in critically ill patients with sepsis.
Collapse
Affiliation(s)
- Francis H. C. Tsao
- Departments of Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA (K.C.M.)
| | - Zhanhai Li
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53792, USA;
| | - Amy W. Amessoudji
- Departments of Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA (K.C.M.)
| | - Dunia Jawdat
- Saudi Stem Cells Donor Registry and Cord Blood Bank, King Abdullah International Medical Research Center, College of medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| | - Musharaf Sadat
- Intensive Care Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (M.S.); (Y.A.)
| | - Yaseen Arabi
- Intensive Care Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (M.S.); (Y.A.)
| | - Keith C. Meyer
- Departments of Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA (K.C.M.)
| |
Collapse
|
2
|
Yang XJ, Wang XH, Yang MY, Ren HY, Chen H, Zhang XY, Liu QF, Yang G, Yang Y, Yang XJ. Exploring choices of early nutritional support for patients with sepsis based on changes in intestinal microecology. World J Gastroenterol 2023; 29:2034-2049. [PMID: 37155528 PMCID: PMC10122787 DOI: 10.3748/wjg.v29.i13.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Sepsis exacerbates intestinal microecological disorders leading to poor prognosis. Proper modalities of nutritional support can improve nutrition, immunity, and intestinal microecology.
AIM To identify the optimal modality of early nutritional support for patients with sepsis from the perspective of intestinal microecology.
METHODS Thirty patients with sepsis admitted to the intensive care unit of the General Hospital of Ningxia Medical University, China, between 2019 and 2021 with indications for nutritional support, were randomly assigned to one of three different modalities of nutritional support for a total of 5 d: Total enteral nutrition (TEN group), total parenteral nutrition (TPN group), and supplemental parenteral nutrition (SPN group). Blood and stool specimens were collected before and after nutritional support, and changes in gut microbiota, short-chain fatty acids (SCFAs), and immune and nutritional indicators were detected and compared among the three groups.
RESULTS In comparison with before nutritional support, the three groups after nutritional support presented: (1) Differences in the gut bacteria (Enterococcus increased in the TEN group, Campylobacter decreased in the TPN group, and Dialister decreased in the SPN group; all P < 0.05); (2) different trends in SCFAs (the TEN group showed improvement except for Caproic acid, the TPN group showed improvement only for acetic and propionic acid, and the SPN group showed a decreasing trend); (3) significant improvement of the nutritional and immunological indicators in the TEN and SPN groups, while only immunoglobulin G improved in the TPN group (all P < 0.05); and (4) a significant correlation was found between the gut bacteria, SCFAs, and nutritional and immunological indicators (all P < 0.05).
CONCLUSION TEN is recommended as the preferred mode of early nutritional support in sepsis based on clinical nutritional and immunological indicators, as well as changes in intestinal microecology.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Hong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ming-Yue Yang
- Department of Emergency Medicine, Affiliated Hospital of Jining Medical University, Jining 272030, Shandong Province, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Hui Chen
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Xiao-Ya Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qin-Fu Liu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ge Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- Department of Critical Care Medicine, Southeast University School of Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Jun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
3
|
Toni T, Alverdy J, Gershuni V. Re-examining chemically defined liquid diets through the lens of the microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:903-911. [PMID: 34594028 PMCID: PMC8815794 DOI: 10.1038/s41575-021-00519-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Trends in nutritional science are rapidly shifting as information regarding the value of eating unprocessed foods and its salutary effect on the human microbiome emerge. Unravelling the evolution and ecology by which humans have harboured a microbiome that participates in every facet of health and disease is daunting. Most strikingly, the host habitat has sought out naturally occurring foodstuff that can fulfil its own metabolic needs and also the needs of its microbiota, each of which remain inexorably connected to one another. With the introduction of modern medicine and complexities of critical care, came the assumption that the best way to feed a critically ill patient is by delivering fibre-free chemically defined sterile liquid foods (that is, total enteral nutrition). In this Perspective, we uncover the potential flaws in this assumption and discuss how emerging technology in microbiome sciences might inform the best method of feeding malnourished and critically ill patients.
Collapse
Affiliation(s)
- Tiffany Toni
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - John Alverdy
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Victoria Gershuni
- University of Pennsylvania, Department of Surgery, Philadelphia, PA, USA and Washington University in St Louis, Department of Surgery, St Louis, MO, USA,Corresponding author
| |
Collapse
|
4
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
5
|
The Effect of Butyrate-Supplemented Parenteral Nutrition on Intestinal Defence Mechanisms and the Parenteral Nutrition-Induced Shift in the Gut Microbiota in the Rat Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7084734. [PMID: 30941370 PMCID: PMC6421034 DOI: 10.1155/2019/7084734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Butyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total dependence on parenteral nutrition (PN) is associated with numerous adverse effects, including severe microbial dysbiosis and loss of important butyrate producers. We hypothesised that a lack of butyrate produced by the gut microbiota may be compensated by its supplementation in PN mixtures. We tested whether i.v. butyrate administration would (a) positively modulate intestinal defence mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins, and cytokine expression were assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins (ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIIIγ), and lysozyme in the ileal mucosa. Butyrate partially alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10, and IgA mRNA expression. PN administration was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+ and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of some potentially beneficial/pathogenic genera, which might contribute to its overall beneficial effect.
Collapse
|
6
|
Pluske JR, Kim JC, Black JL. Manipulating the immune system for pigs to optimise performance. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17598] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disease and enhanced microbial load are considered to be major factors limiting the performance and overall efficiency of feed use by pigs in Australian piggeries. It is recognised that pigs exposed to conventional housing systems with high microbial loads grow 10–20% more slowly than do gnotobiotic pigs or pigs kept in ‘clean’ environments. Consequently, a proportion of pigs in any production cycle are continuously being challenged by their immediate environment, which can cause an immune response to be mounted. Such a process is physiologically expensive in terms of energy and protein (comprised of amino acids), with, for example, the enhanced rate of protein turnover associated with the production of immune cells, antibodies and acute-phase proteins increasing energy expenditure by 10–15% of maintenance needs and protein requirements by 7–10%. The requirements for lysine, tryptophan, sulfur-containing amino acids and threonine can be increased by a further 10%. The over-stimulation of the immune response with excess production of pro-inflammatory cytokines causes excessive production primarily of the prostaglandin E2 (PGE2), which contributes to anorexia, fever and increased proteolysis, and a concomitant reduction in pig performance. Prostaglandin E2 is produced from dietary and cell-membrane phospholipids via secretory phospholipase A2 (sPLA2) to produce arachidonic acid, which is catalysed by the COX-2 enzyme. Negating the negative effects of PGE2 appears not to adversely affect the ability of the immune system to combat pathogens, but improves pig performance. There are negative outcomes for pig health and productivity through both under- and over-stimulation of the immune response. This review briefly outlines the impact of immune stimulation on pigs and discusses strategies to optimise the immune response for pig health and performance.
Collapse
|
7
|
Demehri FR, Barrett M, Teitelbaum DH. Changes to the Intestinal Microbiome With Parenteral Nutrition: Review of a Murine Model and Potential Clinical Implications. Nutr Clin Pract 2015; 30:798-806. [PMID: 26424591 DOI: 10.1177/0884533615609904] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parenteral nutrition (PN) dependence, while life sustaining, carries a significant risk of septic complications associated with epithelial barrier dysfunction and translocation of gut-derived microbiota. Increasing evidence suggests that PN-associated changes in the intestinal microbiota play a central role in the breakdown of the intestinal epithelial barrier. This review outlines the clinical and experimental evidence of epithelial barrier dysfunction with PN, the role of gut inflammatory dysregulation in driving this process, and the role of the intestinal microbiome in modulating inflammation in the gut and systemically. The article summarizes the most current work of our laboratory and others and describes many of the laboratory findings behind our current understanding of the PN enteral environment. Understanding the interaction between nutrient delivery, the intestinal microbiome, and PN-associated complications may lead to the development of novel therapies to enhance safety and quality of life for patients requiring PN.
Collapse
Affiliation(s)
- Farokh R Demehri
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Meredith Barrett
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Daniel H Teitelbaum
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
8
|
Busch RA, Heneghan AF, Pierre JF, Neuman JC, Reimer CA, Wang X, Kimple ME, Kudsk KA. Bombesin Preserves Goblet Cell Resistin-Like Molecule β During Parenteral Nutrition but Not Other Goblet Cell Products. JPEN J Parenter Enteral Nutr 2015; 40:1042-9. [PMID: 25934045 DOI: 10.1177/0148607115585353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Parenteral nutrition (PN) increases the risk of infection in critically ill patients and is associated with defects in gastrointestinal innate immunity. Goblet cells produce mucosal defense compounds, including mucin (principally MUC2), trefoil factor 3 (TFF3), and resistin-like molecule β (RELMβ). Bombesin (BBS), a gastrin-releasing peptide analogue, experimentally reverses PN-induced defects in Paneth cell innate immunity. We hypothesized that PN reduces goblet cell product expression and PN+BBS would reverse these PN-induced defects. METHODS Two days after intravenous cannulation, male Institute of Cancer Research mice were randomized to chow (n = 15), PN (n = 13), or PN+BBS (15 µg tid) (n = 12) diets for 5 days. Defined segments of ileum and luminal fluid were analyzed for MUC2, TFF3, and RELMβ by quantitative reverse transcriptase polymerase chain reaction and Western blot. Th2 cytokines interleukin (IL)-4 and IL-13 were measured by enzyme-linked immunosorbent assay. RESULTS Compared with chow, PN significantly reduced MUC2 in ileum (P < .01) and luminal fluid (P = .01). BBS supplementation did not improve ileal or luminal MUC2 compared with PN (P > .3). Compared with chow, PN significantly reduced TFF3 in ileum (P < .02) and luminal fluid (P < .01). BBS addition did not improve ileal or luminal TFF3 compared with PN (P > .3). Compared with chow, PN significantly reduced ileal RELMβ (P < .01). BBS supplementation significantly increased ileal RELMβ to levels similar to chow (P < .03 vs PN; P > .6 vs chow). Th2 cytokines were decreased with PN and returned to chow levels with BBS. CONCLUSION PN significantly impairs the goblet cell component of innate mucosal immunity. BBS only preserves goblet cell RELMβ during PN but not other goblet cell products measured.
Collapse
Affiliation(s)
- Rebecca A Busch
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aaron F Heneghan
- Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph F Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA Department of Medicine, Division of Gastroenterology, University of Chicago, Chicago, Illinois, USA
| | - Joshua C Neuman
- Department of Nutritional Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Claire A Reimer
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Xinying Wang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA Department of Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kenneth A Kudsk
- Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
9
|
The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition. Ann Surg 2015; 260:432-43; discussion 443-4. [PMID: 25115419 DOI: 10.1097/sla.0000000000000871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lack of enteral stimulation during parenteral nutrition (PN) impairs mucosal immunity. Bombesin (BBS), a gastrin-releasing peptide analogue, reverses PN-induced defects in acquired immunity. Paneth cells produce antimicrobial peptides (AMPs) of innate immunity for release after cholinergic stimulation. OBJECTIVE Determine if BBS restores AMPs and bactericidal function during PN. METHODS Intravenously cannulated male ICR mice were randomized to Chow, PN, or PN+BBS (15 μg 3 times daily, n = 7 per group) for 5 days. Ileum was analyzed for AMPs (Protein: sPLA2 by fluorescence, lysozyme and RegIII-γ by western andcryptdin-4 by ELISA; mRNA: all by RT-PCR). Cholinergic stimulated (100 μM bethanechol) ileal specimens assessed Pseudomonas bactericidal activity. Ileum (Chow: n = 7; PN: n = 9; PN+BBS: n = 8) was assessed for Escherichia coli invasion in ex-vivo culture. RESULTS PN significantly decreased most AMPs versus Chow while BBS maintained Chow levels (sPLA2: Chow: 107 + 14*, PN: 44.6 + 7.2, PN+BBS: 78.7 + 13.4* Fl/min/μL/total protein; Lysozyme: Chow: 63.9 + 11.9*, PN: 26.8 + 6.2; PN+BBS: 64.9 + 13.8* lysozyme/total protein; RegIII-γ: Chow: 51.5 + 10.0*, PN: 20.4 + 4.3, PN+BBS: 31.0 + 8.4 RegIII-γ/total protein; Cryptdin-4: Chow: 18.4 + 1.5*, PN: 12.7 + 1.6, PN+BBS: 26.1 + 2.4*† pg/mg [all *P < 0.05 vs PN and †P < 0.05 vs Chow]). Functionally, BBS prevented PN loss of bactericidal activity after cholinergic stimulation (Chow: 25.3 + 3.6*, PN: 13.0 + 3.2; PN+BBS: 27.0 + 4.7* percent bacterial killing, *P < 0.05 vs PN). BBS reduced bacterial invasion in unstimulated tissue barely missing significance (P = 0.06). CONCLUSIONS The enteric nervous system (ENS) controls AMP levels in Paneth cells during PN but mucosal protection by innate immunity requires both ENS and parasympathetic stimulation.
Collapse
|
10
|
Pierre JF, Barlow-Anacker AJ, Erickson CS, Heneghan AF, Leverson GE, Dowd SE, Epstein ML, Kudsk KA, Gosain A. Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung's disease. J Pediatr Surg 2014; 49:1242-51. [PMID: 25092084 PMCID: PMC4122863 DOI: 10.1016/j.jpedsurg.2014.01.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Hirschsprung's disease (HSCR), characterized by the absence of ganglia in the distal colon, results in functional obstruction. Despite surgical resection of the aganglionic segment, around 40% of patients suffer recurrent life threatening Hirschsprung's-associated enterocolitis (HAEC). The aim of this study was to investigate whether gut microbiota and intestinal immunity changes contribute to the HAEC risk in an HSCR model. METHODS Mice with neural crest conditional deletion of Endothelin receptor B (EdnrB) and their littermate controls were used (EdnrB-null and EdnrB-het). Bacterial DNA was prepared from cecal contents of P16-18 and P21-24 animals and pyrosequencing employed for microbiome analysis. Ileal tissue was isolated and secretory phospholipase A2 (sPLA2) expression and activity determined. Enteroinvasion of Escherichia coli into ileal explants was measured using an ex vivo organ culture system. RESULTS EdnrB-het and EdnrB-nulls displayed similar flora, sPLA2 expression and activity at P16-18. However, by P21-24, EdnrB-hets demonstrated increased Lactobacillus and decreased Bacteroides and Clostridium, while EdnrB-nulls exhibited reciprocal changes. EdnrB-nulls also showed reduced sPLA2 expression and luminal activity at this stage. Functionally, EdnrB-nulls were more susceptible to enteroinvasion with E. coli ex vivo and released less sPLA2 than EdnrB-hets. CONCLUSIONS Initially, EdnrB-het and EdnrB-nulls contain similar cecal flora but then undergo reciprocal changes. EdnrB-nulls display dysbiosis, demonstrate impaired mucosal defense, decreased luminal sPLA2 and increased enteroinvasion of E. coli just prior to robust colonic inflammation and death. These findings suggest a role for the intestinal microbiome in the development of HAEC.
Collapse
Affiliation(s)
- Joseph F. Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christopher S. Erickson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Aaron F. Heneghan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Glen E. Leverson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Scot E. Dowd
- Research and Testing Laboratory, Lubbock, Texas, United States of America
| | - Miles L. Epstein
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kenneth A. Kudsk
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America,Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, United States of America
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
11
|
Abstract
BACKGROUND Parenteral nutrition (PN) increases risks of infections in critically injured patients. Recently, PN was shown to reduce intestine luminal levels of the Paneth cell antimicrobial molecule secretory phospholipase A2 (sPLA2) and the goblet cell glycoprotein mucin2 (MUC2). These molecules are critical factors for innate mucosal immunity and provide barrier protection. Interleukin-4 (IL-4) and IL-13 regulate sPLA2 and MUC2 production through the IL-13 receptor. Because IL-25 stimulates IL-4 and IL-13 release and PN reduces luminal sPLA2 and MUC2, we hypothesized that adding IL-25 to PN would restore these innate immune factors and maintain barrier function. METHODS Two days after venous cannulation, male ICR (Institute of Cancer Research) mice were randomized to receive chow (n = 12), PN (n = 9), or PN + 0.7 μg of exogenous IL-25 (n = 11) daily for 5 days. Small-intestine wash fluid (SIWF) was collected for analysis of sPLA2 activity, MUC2 density, and luminal levels of IL-4 and IL-13. Small-intestinal tissue was harvested for analysis of tissue sPLA2 activity or immediate use in an ex-vivo intestinal segment culture (EVISC) to assess susceptibility of the tissue segments to enteroinvasive Escherichia coli. RESULTS PN reduced luminal sPLA2 (P < 0.0001) and MUC2 (P <0.002) compared with chow, whereas the addition of IL-25 to PN increased luminal sPLA2 (P < 0.0001) and MUC2 (P < 0.02) compared with PN. Tissue IL-4 and IL-13 decreased with PN compared with chow (IL-4: P < 0.0001, IL-13: P < 0.002), whereas IL-25 increased both cytokines compared with PN (IL-4: P < 0.03, IL-13: P < 0.02). Tissue levels of sPLA2 were significantly decreased with PN compared with chow, whereas IL-25 significantly increased tissue sPLA2 levels compared with PN alone. Functionally, more bacteria invaded the PN-treated tissue compared with chow (P < 0.01), and the addition of IL-25 to PN decreased enteroinvasion to chow levels (P < 0.01). CONCLUSIONS PN impairs innate mucosal immunity by suppressing luminal sPLA2 activity and MUC2 density compared with chow. PN also increases bacterial invasion in ex-vivo tissue. Administration of exogenous IL-25 reverses this dysfunction and increases luminal sPLA2 and MUC2. PN tissue treated with IL-25 was significantly more resistant to bacterial invasion than with PN alone, suggesting that IL-25-induced effects augment the barrier defense mechanisms.
Collapse
|
12
|
Heneghan AF, Pierre JF, Tandee K, Shanmuganayagam D, Wang X, Reed JD, Steele JL, Kudsk KA. Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. JPEN J Parenter Enteral Nutr 2013; 38:817-824. [PMID: 23894173 DOI: 10.1177/0148607113497514] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Parenteral nutrition (PN) increases the risk of infection in patients with contraindication to enteral feeding. Paneth cells produce and secrete antimicrobial products that protect the mucosa from pathogens. Their loss is associated with increased host-pathogen interactions, mucosal inflammation, and altered microbiome composition. HYPOTHESIS We hypothesized that PN reduces Paneth cell product expression, and these changes would reduce bactericidal properties of tissue secretions following cholinergic stimulation, increase mucosal enteroinvasion, and shift the intestinal microbiome. METHOD Experiment 1: Male ICR mice were randomized to Chow (n = 8) or PN (n = 8). Ileum tissue was collected for Paneth cell antimicrobial expression using RT-PCR, stimulated with a cholinergic agonist degranulate Paneth cells bactericidal activity, or used to assess bacterial enteroinvasion in EVISC. Experiment 2: Mice were randomized to Chow (n = 11) or PN (n = 8) and ileum washing was collected for 16s pyrosequencing analysis. RESULTS Compared to Chow, PN decreased tissue expression of REGIII-g (p < 0.002), lysozyme (p < 0.002), and cryptdin-4 (p < 0.03). At the phylum level, PN decreased total Firmicutes but increased total Bacteroidetes, and Proteobacteria. Functionally, secretions from PN tissue was less bactericidal (p < 0.03) and demonstrated increased susceptibility to enteroinvasion by E coli (p < 0.02). CONCLUSION PN without enteral nutrition impairs innate mucosal immune function. Tissue expression of Paneth cell antimicrobial proteins decreases associated with compositional shifts to the microbiome, decreased bactericidal activity of mucosal secretions and greater susceptibility of to enteroinvasion by E coli. These changes may explain in-part the increased risk of infection in parenterally fed patients.
Collapse
Affiliation(s)
- Aaron F Heneghan
- Surgical Service of the William S. Middleton Veteran Memorial Hospital, Madison WI, USA.,Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph F Pierre
- Surgical Service of the William S. Middleton Veteran Memorial Hospital, Madison WI, USA.,Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Kanokwan Tandee
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Xinying Wang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Surgery, Nanjing University, Jinling hospital, Nanjing, China
| | - Jess D Reed
- Reed Research Group, Department of Animal Sciences, University of Wisconsin -Madison, Madison, WI 53706
| | - James L Steele
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth A Kudsk
- Surgical Service of the William S. Middleton Veteran Memorial Hospital, Madison WI, USA.,Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Pierre JF, Heneghan AF, Feliciano RP, Shanmuganayagam D, Roenneburg DA, Krueger CG, Reed JD, Kudsk KA. Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. JPEN J Parenter Enteral Nutr 2013; 37:401-9. [PMID: 23064255 PMCID: PMC4564871 DOI: 10.1177/0148607112463076] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Lamina propria Th2 cytokines, interleukin (IL)-4 and IL-13, stimulate goblet cell (GC) proliferation and MUC2 production, which protect the intestinal mucosa. Elemental enteral nutrition (EEN) reduces tissue IL-4 and impairs barrier function. Proanthocyanidins (PACs) stimulate oral mucin levels. We hypothesized that adding PAC to EEN would maintain Th2-without stimulating Th1-cytokines and preserve luminal MUC2 vs EEN alone. MATERIALS AND METHODS Seventy mice were randomized to 5 diet groups-standard chow, intragastric EEN, or EEN with lowPAC, midPAC (50 mg), or highPAC (100 mg PAC/kg BW)-for 5 days, starting 2 days after gastric cannulation. Ileal tissue was analyzed for histomorphology and the cytokines IL-4, IL-13, IL-1β, IL-6, and TNF-α by enzyme-linked immunosorbent assay. MUC2 was measured in intestinal washes. RESULTS EEN lowered IL-13 (P < .05) compared with standard chow, whereas IL-4 was not significant (P < .07). LowPAC and midPAC increased IL-13 (P < .05), whereas highPAC increased both IL-4 and IL-13 (P < .05) compared with EEN. All EEN diets reduced (P < .05) crypt depth compared with the chow group. Compared with standard chow, GC numbers and luminal MUC2 were reduced with EEN (P < .05). These effects were attenuated (P < .05) with midPAC and highPAC. No changes were observed in tissue Th1 cytokines. CONCLUSIONS Adding PACs to EEN reverses impaired intestinal barrier function following EEN by improving the gut mucous layer and function through increased GC size and number as well as levels of MUC2 and ileal IL-4 and IL-13.
Collapse
Affiliation(s)
- Joseph F Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Parenteral nutrition increases susceptibility of ileum to invasion by E coli. J Surg Res 2013; 183:583-91. [PMID: 23481564 DOI: 10.1016/j.jss.2013.01.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/16/2013] [Accepted: 01/25/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Parenteral nutrition (PN), with the lack of enteral feeding, compromises mucosal immune function and increases the risk of infections. We developed an ex vivo intestinal segment culture (EVISC) model to study the ex vivo effects of PN on susceptibility of the ileum to invasion by extra-intestinal pathogenic Escherichia coli (ExPEC) and on ileal secretion of antimicrobial secretory phospholipase A2 (sPLA2) in response to the pathogen. MATERIALS AND METHODS Study 1: Using mouse (n = 7) ileal tissue, we examined the effects of ileal region (proximal versus distal) and varying ExPEC inoculum concentrations on ex vivo susceptibility to ExPEC invasion and sPLA2 secretion. Study 2: Ten mice were randomized to oral chow or intravenous PN feeding for 5 d (n = 5/group). Using the EVISC model, we compared the susceptibility of ileal tissue to invasion by ExPEC and sPLA2 secretion in response to the pathogen. RESULTS Study 1: The proximal ileum was more susceptible to invasion (P < 0.0001) and secreted lower amounts of sPLA2 (P = 0.0002) than the distal ileum. Study 2: Ileal tissue from PN-fed animals was more susceptible (approximately 4-fold, P = 0.018) to invasion than those from chow-fed animals. Ileal tissue from PN-fed animals secreted less sPLA2 (P < 0.02) than those from chow-fed animals. CONCLUSIONS The data illustrate EVISC as a reproducible model for studying host-pathogen interactions and the effects of diet on susceptibility to infections. Specifically, the findings support our hypothesis that PN with the lack of enteral feeding decreases mucosal responsiveness to pathogen exposure and provides a plausible mechanism by which PN is associated with increased risk of infectious complication.
Collapse
|
15
|
Pierre JF, Heneghan AF, Feliciano RP, Shanmuganayagam D, Krueger CG, Reed JD, Kudsk KA. Cranberry proanthocyanidins improve intestinal sIgA during elemental enteral nutrition. JPEN J Parenter Enteral Nutr 2013; 38:107-14. [PMID: 23359014 DOI: 10.1177/0148607112473654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Elemental enteral nutrition (EEN) decreases gut-associated lymphoid tissue (GALT) function, including fewer Peyer's patch lymphocytes and lower levels of the tissue T helper 2 (Th2) cytokines and mucosal transport protein polymeric immunoglobulin receptor (pIgR), leading to lower luminal secretory immunoglobulin A (sIgA) levels. Since we recently demonstrated that cranberry proanthocyanidins (PACs) maintain the Th2 cytokine interleukin (IL)-4 when added to EEN, we hypothesized the addition of PACs to EEN would normalize other GALT parameters and maintain luminal levels of sIgA. METHODS Institute of Cancer Research mice were randomized (12/group) to receive chow, EEN, or EEN + PACs (100 mg/kg body weight) for 5 days, starting 2 days after intragastric cannulation. Ileum tissue was collected to measure IL-4 by enzyme-linked immunosorbent assay, pIgR by Western blot, and phosphorylated STAT-6 by microarray. Intestinal wash fluid was collected to measure sIgA by Western blot. RESULTS Compared with chow, EEN significantly decreased tissue IL-4, phosphorylated STAT-6, and pIgR. The addition of PACs to EEN prevented these alterations. Compared with chow, EEN resulted in significantly lower levels of luminal sIgA. The addition of PACs to EEN increased luminal sIgA levels compared with EEN alone. CONCLUSIONS This study suggests the addition of PACs to EEN may support GALT function and maintain intestinal sIgA levels compared with EEN administration alone.
Collapse
Affiliation(s)
- Joseph F Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | | | | |
Collapse
|
16
|
Tsao FHC, Culver BJ, Pierre JF, Shanmuganayagam D, Patten CC, Meyer KC. Effect of prophylactic supplementation with grape polyphenolics on endotoxin-induced serum secretory phospholipase A2 activity in rats. Comp Med 2012; 62:271-278. [PMID: 23043779 PMCID: PMC3415368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/07/2011] [Accepted: 02/15/2012] [Indexed: 06/01/2023]
Abstract
This study investigated whether dietary supplementation of polyphenolics-rich grape extract (GE) could attenuate endotoxin-induced serum secretory phospholipase A(2) (sPLA(2)) activity, a modulator of inflammation. Male Sprague-Dawley rats were fed a control diet or the diet supplemented with polyphenolic-rich GE (100 or 300 mg/kg daily) for 3 wk prior to intraperitoneal injection of 3 or 15 mg/kg LPS. A fluorometric assay was used to measure serum sPLA(2) activity during a 5-d period before and after LPS injection. Body weight, hematocrit, and serum C-reactive protein level were also measured. Administration of LPS induced a rapid increase in sPLA(2) activity, which peaked 1 to 2 d after LPS injection and resolved to near-baseline values on days 4 to 5. Marked declines in body weight and hematocrit, increases in C-reactive protein levels, and effects on health status also occurred. GE supplementation significantly attenuated the LPS-induced increase in sPLA(2) activity and decline in hematocrit, but its effects on the loss of body weight and C-reactive protein levels were not significant. Among the measurements, serum sPLA(2) was the only marker that showed a dose-dependent response to both LPS and GE supplementation. The current findings show that oral consumption of polyphenolic-rich GE suppresses endotoxin-induced sPLA(2) activity.
Collapse
Affiliation(s)
- Francis H C Tsao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Omata J, Pierre JF, Heneghan AF, Tsao FHC, Sano Y, Jonker MA, Kudsk KA. Parenteral nutrition suppresses the bactericidal response of the small intestine. Surgery 2012; 153:17-24. [PMID: 22698933 DOI: 10.1016/j.surg.2012.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 04/12/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Parenteral nutrition (PN) increases infectious risk in critically ill patients compared with enteral feeding. Previously, we demonstrated that PN feeding suppresses the concentration of the Paneth cell antimicrobial protein secretory phospholipase A2 (sPLA2) in the gut lumen. sPLA2 and other Paneth cell proteins are released in response to bacterial components, such as lipopolysaccharide (LPS), and they modulate the intestinal microbiome. Because the Paneth cell protein sPLA2 was suppressed with PN feeding, we hypothesized PN would diminish the responsiveness of the small bowel to LPS through reduced secretions and as a result exhibit less bactericidal activity. METHODS The distal ileum was harvested from Institute of Cancer Research mice, washed, and randomized for incubation with LPS (0, 1, or 10 μg/mL). Culture supernatant was collected and sPLA2 activity was measured. Bactericidal activity of the ileum segment secretions was assessed against Pseudomonas aeruginosa with and without an sPLA2 inhibitor at 2 concentrations, 100 nmol/L and 1 μmol/L. Institute of Cancer Research mice were randomized to chow or PN for 5 days. Tissue was collected for immunohistochemistry (IHC) and ileal segments were incubated with LPS (0 or 10 μg/mL). sPLA2 activity and bactericidal activity were measured in secretions from ileal segments. RESULTS Ileal segments responded to 10 μg/mL LPS with significantly greater sPLA2 activity and bactericidal activity. The bactericidal activity of secretions from LPS stimulated tissue was suppressed 50% and 70%, respectively, with the addition of the sPLA2-inhibitor. Chow displayed greater sPLA2 in the Paneth cell granules and secreted higher levels of sPLA2 than PN before and after LPS. Accordingly, media collected from chow was more bactericidal than PN. IHC confirmed a reduction in Paneth cell granules after PN. CONCLUSION This work demonstrates that ileal segments secrete bactericidal secretions after LPS exposure and the inhibition of the Paneth cell antimicrobial protein sPLA2 significantly diminishes this. PN feeding resulted in suppressed secretion of the sPLA2 and resulted in increased bacterial survival. This demonstrates that PN significantly impairs the innate immune response by suppressing Paneth cell function.
Collapse
Affiliation(s)
- Jiro Omata
- Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Current world literature. Lipid metabolism. Curr Opin Lipidol 2012; 23:248-254. [PMID: 22576583 DOI: 10.1097/mol.0b013e3283543033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|